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Abstract.

Let (Yi, θi), i = 1, ..., n, be independent random vectors distributed like
(Y, θ) ∼ G∗, where the marginal distribution of θ is completely unknown, and
the conditional distribution of Y conditional on θ is known. It is desired to esti-
mate the marginal distribution of θ under G∗, as well as functionals of the form
EG∗h(Y, θ) for a given h, based on the observed Y1, ..., Yn.

In this paper we suggest a deconvolution method for the above estimation
problems and discuss some of its applications in Empirical Bayes analysis. The
method involves a quadratic programming step, which is an elaboration on the
formulation and technique in Efron(2013). It is computationally efficient and
may handle large data sets, where the popular method, of deconvolution using
EM-algorithm, is impractical.

The main application that we study is treatment of non-response. Our ap-
proach is nonstandard and does not involve missing at random type of assump-
tions. The method is demonstrated in simulations, as well as in an analysis of
a real data set from the Labor force survey in Israel. Other applications includ-
ing estimation of the risk, and estimation of False Discovery Rates, are also
discussed.

We also present a method, that involves convex optimization, for constructing
confidence intervals for EG∗h, under the above setup.

1. Introduction, Preliminaries and Examples.

Consider a general empirical Bayes setup, where (Yi, θi), are i.i.d., i = 1, ..., n,
distributed like (Y, θ) ∼ G∗, and the conditional distribution of Y conditional on
θ is Fθ, θ ∈ Θ. The marginal distribution of θ under G∗ is denoted G. Suppose
we only observe Y1, ..., Yn, and we should estimate the parameters θ1, ..., θn. It
is often the case that G is unknown and should be estimated in the process
of estimating the unknown parameters. We concentrate on the non-parametric
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empirical Bayes setup where G is completely unknown, as opposed to the para-
metric setup where G is assumed to be a member of some parametric family.

We have two main novel contributions in this paper. One is suggesting a new
deconvolution method, for the purpose of estimating G by a corresponding esti-
mator Ĝ. The deconvolution method is based on quadratic programming. Note,
an estimator Ĝ for G induces a corresponding estimator Ĝ∗ for G∗, through
dĜ∗(y, s) = dFs(y)dĜ(s) ≡ dG∗(y|θ = s)dĜ(s). The other main contribution is
a nonstandard application of deconvolution and empirical Bayes to the problem
of treating non-response. Other applications are also described.

In the canonical examples of empirical Bayes the ultimate goal is the estima-
tion of the parameters θi, i = 1, ..., n, based on the observed Y1, ..., Yn. However,
our main interest and emphasis is on estimating various functionals of the form
EGh and EG∗h for various functions h. We also consider the more general setup
where (Xi, Yi, θi), i = 1, ..., n are i.i.d., distributed like (X,Y, θ) ∼ G∗; the
joint distribution, G, of X and θ is completely unknown, while G∗(Y |X, θ) the
conditional distribution of Y conditional of X and θ is known. We observe n
independent realizations T (Xi, Yi), i = 1, ..., n for some function T . Here the
pair (Xi, θi) may be considered as the ‘parameter’ that determines the con-
ditional distribution of Y , however, unlike the former setup, the ”X-part” of
the ‘parameter’ is observed through T (Yi, Xi), i.e., the parameter (X, θ) is not
completely latent. The goal is again to estimate EG∗h(X,Y, θ) for various func-
tions h. The estimators are of the form E

Ĝ∗
h, for a ”deconvolution-estimator”,

dĜ∗(x, y, s) = dG∗(y|θ = s,X = x)dĜ(x, s).
In Section 3 we present a method for constructing a confidence interval for

quantities of the form EG∗h(X,Y, θ), based on T (Xi, Yi) i = 1, ..., n. The main
idea of that method is defining an appropriate convex optimization problem,
where the target function is linear and the constraints are convex.

In the rest of this section we elaborate on a few empirical Bayes examples,
where it is desired to estimate quantities of the formEG∗h. Our primary example
is the problem of treating non-response. Finally, we explain why estimation of
G by Ĝ and then estimation of EGh by E

Ĝ
h is a good alternative to, say, mle

estimation of 1
n

∑

h(θi) by 1
n

∑

h(θ̂i), where θ̂i = θ̂i(Yi) is the point-wise mle
estimator of θi, i = 1, ..., n.

1.1. Examples.

Deconvolution, Empirical-Bayes, and Estimation of the risk.

In the canonical examples of Empirical Bayes, the ultimate goal is to estimate
the individual parameters θi, i = 1, ..., n. In such problems the estimation of
EG∗h for various h could still be central, as demonstrated in the following.

Let δ(Y ) be a decision function and L(θ, δ(Y )) a loss function. Of a primary
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interest is the quantity

EG∗L(θ, δ(Y )) = EGR(θ, δ) = EGhδ(θ); (1)

here Y ∼ Fθ, and R(θ, δ) ≡ hδ(θ) is the risk of δ conditional on θ. Thus, the
quantity in (1) is the Bayes risk that corresponds to the decision function δ,
under the loss L and the prior G. The Bayes procedure is

δB = argminδEGhδ(θ).

Uniformly good estimation of EGhδ(θ) over all δ, yields good estimates of δB.
Once an estimator Ĝ for G is obtained, a natural approach is to let

δ̂B = argminδEĜ
hδ(θ). (2)

Under a squared loss, the estimated decision function in ( 2) is

δ̂B(y) = E
Ĝ∗

(θ|Y = y).

More generally, under squared loss, in the setup where (Xi, Yi, θi) ∼ G∗ and
we observe T (Xi, Yi), i = 1, ..., n, a natural estimator for θ based on T (X,Y )
is:

δ̂(T (X,Y )) = E
Ĝ∗

(θ|T (X,Y )).

The case whereX and Y are independent conditional on θ is of a special interest,
e.g., as in our simulation section.

We should remark that T may be a randomized transformation. In Brown
et.al. (2013), the set up is (Xi, Yi, θi) ∼ G∗, i = 1, ..., n, are i.i.d, where the con-
ditional distribution of Y conditional on θ is Poisson(θ), while X ∼ Poisson(h)
is independent of θ and Y . In that paper even though a direct observation of
Y is available, the approach is to estimate the optimal decision function with
respect to the artificially ”‘corrupted”’ observation T (X,Y ) = X + Y , with
h = hn → 0, as n → ∞. This approach is shown to have advantages relative
to, say, the classical EB estimator for a Poisson parameter, suggested by Rob-
bins. In the sequel we will not consider randomized T , although it is within our
formulation.

There are common examples, e.g., Poisson, Normal, where an estimator for
δB may be obtained directly without the estimation of G and application of (2).
On the direct approach for the estimation of δB, versus approaches that involve
the estimation of G, see, e.g., Efron (2013). On direct estimation of δB in the
normal case see, e.g., Brown and Greenshtein (2009); on direct estimation in
the Poisson case see, e.g., Brown, et.al. (2013).

Deconvolution and Variations on False Discovery Rate

Problems that involve estimation of EG∗h are related also to the problem of
estimating false discovery rates (FDR), see, Benjamini and Hochberg (1995).

Let (Yi, θi) ∼ G∗, i = 1, ..., n, be independent where conditional on θi, Yi ∼
Fθi , i = 1, ..., n. Consider first the problem where it is desired to estimate
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the proportion of indices i for which θi > C. When n is large and G, the
marginal of θ is known, a reasonable trivial estimator, is PG(θ > C). Note that,
PG(θ > C) = EGh(θ) for the function h which is the indicator of the event
{θ > C}. When G is unknown and estimated by Ĝ, the induced estimator is
E

Ĝ
h.
We now treat the more general (FDR) problem. In order to fix ideas consider

the case Fθi = N(θi, 1). Suppose that we consider observations i with Yi > A
for some A as ”suspected discoveries”, while we consider as ”true discoveries”,
observations for which θi > C. In order to estimate the proportion of true
discoveries among suspected discoveries we should estimate the quantity EG∗h
for the function h which is the indicator of the event ((θi > C) ∩ (Yi > A)).

When it is desired to estimate the proportion of ”true discoveries” among
suspected discoveries for a given realization, the following perspective and al-
ternative approach might be beneficial. Let G∗t be the conditional distribution
of (Y, θ) conditional on the event Y > A, we treat the observations (Yi, θi) with
Yi ≤ A, as truncated and the remaining ones are treated as i.i.d., observations
from G∗t, where G∗t(y|θ) = Fθ(y|Y > A). Let Gt be the marginal distribution
of θ under G∗t and Ĝt its ”deconvolution-estimate”, let h be an indicator of the
event θ > C, we may estimate EGth by E

Ĝth. See Greenshtein et. al. (2008),
for treatment of a related problem.

Deconvolution and Treatment of Non-Response. A main novel contribution of
this paper, is an application of our deconvolution method to treat non-response.
The proposed treatment of non-response does not involve the, often assumed
and seldom verifiable, assumption of Missing At Random (MAR), conditional
on some covariates.

Let S = {i1, ..., in} be a random set of indices that correspond to randomly
sampled items from a finite population of size N , indexed by {1, ..., N}. Those
are the indices of the items in the population who i) were randomly sampled for
a survey ii) responded.

Suppose, it is desired to estimate the total T =
∑N

i=1 Xi in the population,
based on the n available observations. Let Ii be an indicator of the event ”‘item
i ∈ S”’, i = 1, ..., N . Let pi = E(Ii). Then

T̂ =
∑

i∈S

Xi

pi
,

is the Horvitz Thompson estimator for T . It is an unbiased estimator, as may
be seen from the representation

T̂ =

N
∑

i=1

Xi

pi
Ii. (3)

Typically, pi, i = 1, ..., N are unknown although the sampling probabilities
are known. This is since the corresponding response probabilities are unknown.
Thus, the above estimator can not be applied.
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We will approximate (3), by a nonparametric empirical Bayes modeling to-
gether with a deconvolution step. Consider a situation where there is an addi-
tional covariate Yi for every item i, i ∈ S, such that Yi ∼ Fpi

. In one example,
that we will give, Yi is the number of visits until a response was obtained; in
another example Yi is the number of responses of item i in a longitudinal panel
survey, where each sampled item is attempted to be interviewed four times in
four consecutive months.

We model the observations (Xi, Yi, pi), i ∈ S as i.i.d (Xi, Yi, pi) ∼ G∗t. Here
G∗t is the conditional distribution of (Xi, Yi, pi) conditional on i ∈ S, which is
different than G∗ the distribution of (Xi, Yi, pi), i = 1, ..., N . A natural estimator
for (3) is nEG∗t

X
p

≡ nEG∗th(X, p), for h(X, p) = X
p
. This treatment is under

truncation, where we have no knowledge about the observations that correspond
to indices i, i /∈ S . Under censoring, when there exists partial information about
items with index i, i /∈ S, related ideas will be applied. The formal distinction
and different treatment under truncation versus censoring will be explained and
demonstrated in Sections 4,5.

A general reference to sampling is, e.g., Lohr(2009). A reference for missing
data and non-response issues is, e.g., Little and Rubin (2002).

Non parametric maximum likelihood estimation of G
The first study of the estimation of G, under the above setup, was conducted

by Kiefer and Wolfowitz (1956). They suggested to find the non-parametric mle
for G, and also gave conditions under which the non-parametric mle estimator
Ĝ converges weakly to the true G. Estimation of EGh by E

Ĝ
h is often much

better than estimating the individual parameters θi, say by an mle, θ̂i(Yi), and

then average, to obtain the estimator
∑n

h(θ̂i)/n. This is demonstrated in the
following Example 1.

Example 1. Consider the Normal example where Fθi = N(θi, 1). Let h be
the function h(θ) = 1/θ. Suppose it is known that the support of G is bounded
bellow by 0.5, but otherwise it is completely unknown. Then the mle for θi is
θ̂i = max(0.5, Yi). Now suppose that the true G has a point mass at 1. By Kiefer
and Wolfowitz (1956), the mle Ĝ for G converges weakly to G, so E

Ĝ
h → 1.

However, a quick simulation shows that 1
n

∑

1

θ̂i
converges to 1.19.

Estimation of sums of the form
∑

i h(Yi, θi), was studied by Zhang (2005).
Further examples may be found there, as well as a study of the efficiency of
certain estimators.

The rest of the paper is organized as follows. In Section 2, our deconvolution
method is explained. In Section 3, we present a method that involves convex
optimization, to construct confidence intervals for quantities of the form EG∗h.
In Section 4 we present ‘empirical Bayes type Horvitz Thompson’ estimators in
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the context of treating non-response. In Section 5, the derivation and perfor-
mance of those estimators are illustrated through a simulated practical example.
In Section 6, we demonstrate our method for treating non-response, through a
real data set from the Labor Force Survey in Israel.

2. Deconvolution using quadratic programming.

In this section we present a deconvolution algorithm which involves quadratic
programming.

Our deconvolution is a method for deriving a Non-Parametric Maximum
Likelihood Estimator (NPMLE) for a ‘prior’ G. We use the term deconvolution
in a wide sense, that includes identifying mixtures, as studied, e.g., by Lind-
say (1995), Lindsay and Roeder (1993), Lee et.al., (2013), and, of course, the
fore mentioned seminal paper of Kiefer and Wolfowitz (1956). Our quadratic
programming approach, rather than the more common EM-algorithm, is in line
with the general suggestion and advocation of Koenker and Mizera (2013) for
the usage of convex optimization. It may be applied on high dimensional prob-
lems with tens of thousands of observations and general mixing G, where the
complexity of EM algorithms makes them impractical.

In the following subsection we treat the problem of estimating the marginal
distribution of a latent-variable/unknown-parameter. The same ideas apply to
the more general problem of estimating the joint distribution of a latent variable
and an observed variable. We present the ideas in two stages where the general
case is formulated in subsection (2.2).

Our approach is based on the setup and formulation in Efron (2013). We
elaborate more by defining and solving an appropriate quadratic programming
problem.

2.1. Deconvolution for the estimation of the marginal distribution

of a latent variable.

Consider a standard empirical Bayes setup, as described in the introduction,
where (Yi, θi) ∼ G∗, are i.i.d., i = 1, ..., n. We assume discrete distributions,
in particular Fθ, θ ∈ Θ, are discrete with a common finite support denoted
{y1, ..., yJ}, and G is discrete with a given support {s1, ..., sK}. The treatment
of the continuous cases may be done through discretization. In principle the
discretization of the Y -variables should be more delicate as the number of ob-
servations increases, but the ‘right’ way of discretization is beyond the scope of
this paper. Our main examples and applications in sections 4-6 involve discrete
observations Yi, i = 1, ..., n, specifically, censored Geometric and Binomial. The
considerations that are involved in the discretezation of G have to do with the
complexity of the estimation algorithm.

Our observations Yi, i = 1, ..., n, are independent and identically distributed
like a random variable Y . Denote their discrete density by f = (f1, ..., fJ)

′,
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where fj = P (Y = yj), j = 1, ..., J . Denote

pjk = P (Y = yj |θ = sk), j = 1, ..., J ; k = 1, ...,K.

Denote the density of the discrete distribution G by g = (g1, ..., gK)′, where
gk = PG(θ = sk), k = 1, ...,K. Denote by P the J ×K matrix P = (pjk).

Then:
f = Pg. (4)

Recall, the support ofG is known (or practically approximated by a dense grid
{s1, ..., sK} ), it is the density g that should be estimated. We now reduce the

problem through sufficiency. Note that a sufficient statistic is f̂ = (f̂1, ..., f̂J)
′,

where f̂j is the proportion of observations among Y1, ..., Yn, that had the value

yj, j = 1, ..., J . Now, f̂ is a scaled multinomial vector with mean f and a corre-
sponding covariance matrix Σf/n. Its distribution is asymptotically multivariate
normal. Note, that there is a linear dependence, thus the corresponding covari-
ance matrix Σ−1

f does not exist. We may replace f̂ by the sufficient statistic

f̂∗ = (f̂1, ..., f̂J−1)
′, whose corresponding covariance matrix is Σ∗/n. The mean

of f̂∗ is P ∗g, where P ∗
(J−1)×K

is obtained from P by deleting its last column.

Since the distribution of f̂∗ is asymptotically multivariate normal, a solution ĝ

to:

min
g

(f̂∗ − P ∗g)′Σ∗−1(f̂∗ − P ∗g), (5)

s.t. 0 ≤ gi ≤ 1,
∑

gi = 1,
is asymptotically an mle estimator for g. Note!, we write ‘an mle’ rather

than ‘the mle’ since a solution and an mle are not necessarily unique. See, also
Remark 1 bellow. Practically, Σ∗ is replaced by its estimate, which is obtained
by utilizing the multinomial distribution of nf̂ . A special care should be taken
when estimating Σ∗−1, since Σ∗ might be close to being singular. Our approach
in our numerical work was to add 0.001 to the diagonal of the regular estimator
of the covariance matrix of a multinomial vector, then take its inverse as the
estimator of Σ∗−1.

Calibration.

Suppose there is a function A, for which it is known that EGA(θ) = a. In
such a case we may add to the above linear programming the linear constraint:

∑

gkA(sk) = a.

Similarly, when there are a few such functions A1, ..., Ab.

The numeric work in this paper was done by applying the quadratic program-
ming function ipop, from the R-package kernlab, Karatzoglou, et. al. (2004).
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Remark 1:

It may be concluded from Lindsay and Roeder (1993) or Lindsay (1995) that
when there are only J possible values to Y , there exists an mle for G, that has
J − 1 points or less in its support. Thus, we can not expect consistency of an
arbitrary mle estimator Ĝ, unless the support of G is known to have no more
than J − 1 points. However, if Y is obtained by a discretization of a continuous
observation, which may become more and more delicate as n grows, we may
expect consistency when J = Jn → ∞.

Furthermore, by adding calibration constraints, we might get an mle which
has a larger support and the corresponding estimator Ĝ is a better approxima-
tion of G.

2.2. Deconvolution for estimation of the joint distribution of a

latent and an observed variables.

In the previous section we considered the problem of estimating the distribution
G of a latent variable θ. In this section we will generalize the method to estimate
the joint distribution of a latent variable θ and an observed variable X , where
(X,Y, θ) ∼ G∗. Let (Xi, Yi, θi) ∼ G∗, i = 1, ..., n be independent. We only
observe T (Xi, Yi), i = 1, ..., n for some T , and the estimation is based only on
those observed values.

The variables Xi are discrete, their possible values are x1, x2, ..., xL.
Our goal is to estimate the joint distribution of θ and X , which is determined

by

glk = PG∗(X = xl, θ = sk), l = 1, ..., L, k = 1, ...,K,

we denote g = (g11, g12, ..., gLK) ≡ (g1, g2, ..., gL×K), note the dual indexing of
the vector g.

Let t1, ..., tQ, be the distinct values of T (xl, yj), l = 1, ..., L, j = 1, ..., J .
We assume that the conditional distribution G∗(T = t|X = x, θ = s) is known,
thus the L × K pairs vlk = (xl, sk), l = 1, ..., L, k = 1, ...,K, play the role
of the ”‘parameter”’ that governs the conditional distribution. Denote by v =
(v11,v1,2, ...,vLK) ≡ (v1, ...,vL×K), the vector of ”parameters”, note the dual
indexing of the vector v.

As in the previous subsection, denote by

pjk = P (T = tj|(X, θ) = vk), j = 1, ..., Q, k = 1, ..., L×K,

let P = (pjk) be the corresponding matrix as in the previous subsection.
Given n observations, let fj = P (T (Xi, Yi) = tj), j = 1, ..., Q, let f =

(f1, ..., fQ)
′, then

f = Pg.
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Let f̂j, j = 1, ..., Q be the proportion of observations i for which T (Xi, Yi) = tj,

let f̂∗ = (f̂1, ..., f̂Q−1). Then f∗ ≡ E f̂∗ = P ∗g, for the matrix P ∗, which is
obtained from P , as in the previous subsection, by deleting its last row.

Let Σ∗/n be the covariance matrix of f̂
∗
, and suppose it is non-singular.

Then,

min
g

(f̂∗ − P ∗g)′Σ∗−1(f̂∗ − P ∗g), (6)

s.t. 0 ≤ glk ≤ 1,
∑

lk glk = 1,
is asymptotically an mle estimator for g.

Calibration

The above quadratic programming may incorporate various additional linear
constraints. For example suppose that there is an indicator I = I(X), I = 1
if the corresponding measurement was taken from a male, I = 0 otherwise.
Suppose it is known that PG∗(I = 1) = 0.5. Then the constraint

∑

(l,k):I(Xl)=1

glk = 0.5,

may be added to the quadratic programming defined in (6).

3. Confidence intervals and linear optimization.

We consider the setup of the previous section, where we observe i.i.d (Xi, Yi, θi) ∼
G∗, i = 1, ..., n.

Suppose it is desired to estimate the expectation

T = EG∗h(X, θ) =
∑

k,l

(xl, sk)glk.

Note, a simple modification of the treatment bellow applies also for expectations
of the form T = EG∗h(X,Y, θ); however in order to simplify the notations we
consider the above functionals.

It is of an interest to obtain a confidence interval for T , this could reassure
that an mle estimator (recall, often the mle is not unique), is giving a reliable
estimate.

Let f̂∗ and Σ∗ be as in the previous section. Suppose that Σ∗ is non-singular.
Let Σ̂∗ be the empirical covariance matrix. Then as the sample size approaches
infinity Σ̂∗−1 approaches Σ∗−1 in probability. Furthermore, the distribution
of

√
nf̂∗ converges weakly to a multivariate normal distribution with covari-

ance matrix Σ∗. Recall, under the general setup of subsection 3.2, we observe
T (X,Y ), whose support is of size Q.
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Consider the solution of the following problem, of linear optimization under
convex constraints.

TU = max
g

∑

l,k

h(xl, sk)glk (7)

TL = min
g

∑

l,k

h(xl, sk)glk

s.t.

n(f̂∗ − P ∗g)′Σ̂∗−1(f̂∗ − P ∗g) < χ2
(Q−1),1−α,

0 ≤ glk ≤ 1,
∑

l,k

glk = 1,

in the above χ2
(Q−1),1−α

is the critical value of the appropriate α-level χ2 test
with Q − 1 degrees of freedom. As before, additional convex calibration con-
straints nay be added if available.

Theorem 1: If Σ∗ is non-singular, then (TL, TU ) is a (1−α) level confidence
interval, asymptotically as n → ∞.

The above theorem is for discrete variables θ, X and Y . For continuous cases
a discretization should be done. The general guide lines for discretization is that
Q will be of size o(n), so that there will be enough observations in each of the
Q−1 ”‘cells”’ and the asymptotic χ2

Q−1 distribution will hold; the considerations
involved in the discretization of θ and X have to do with the complexity of the
convex optimization. A formal asymptotic treatment of the discretization is
beyond the scope of this paper.

4. Non-response and Empirical Bayes type Horvitz Thompson

estimators.

A general survey from a population of size N indexed by {1, ..., N}, may be
described as follows. Each subject i, i = 1, ..., N , in the population is sampled
with probability πi for an interview, but once subject i is sampled a response
from that subject is obtained with probability p∗i ≤ 1. Let S be the random set
of indices, corresponding to subjects who i) were sampled for an interview ii)
responded. Then, for subject i, P (i ∈ S) = πip

∗
i = pi, i = 1, ..., N . We define

the indicator random variable Ii, Ii = 1 iff i ∈ S; denote P (Ii = 1) = pi.
In many surveys the subjects are equally likely to be sampled to the survey,

i.e., πi ≡ π are all equal. In the following we treat this case. Thus, w.l.o.g.,
we may assume that π = 1, and pi = p∗i . Modification of the treatment bellow
applies when πi, i = 1, ..., N , may have ‘a few’ possible values.
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We will apply our deconvolution technique and the empirical Bayes ideas, to
provide Horvitz Thompson type of estimators in the context of Empirical Bayes.

We model the items of the size N population, as realizations of N , i.i.d
random vectors (Xi, Yi, pi, Ii), which are distributed like (X,Y, p, I) ∼ G∗, X is
the variable of interest. The joint distribution of X and p is arbitrary and the
conditional distribution of Y conditional on X and p is known;

pi = P (Ii = 1) = P (Ii = 1|Xi, pi). (8)

In order to fix ideas think of Xi as an employment-status of item i, Ii indicator
of the event ”‘item i was sampled for a survey and responded”’. In one of
our examples in the sequel, Yi is the number of attempts until a response was
obtained from subject i, where there are at most M0 attempts. Thus, in this
example Ii = 0 iff Yi > M0. We model Y ∼ Fp = Geometric(p̃) for p̃ = p̃(p),
p = 1− (1− p̃)M0 .

Truncated versus censored observations. We will consider two different setups.
In one setup the event Ii = 0 means that the observation is truncated, i.e., we
do not know about variables with Ii = 0, and thus, our available observations
may be considered as an i.i.d sample from the distribution, denoted G∗t, of
(X,Y, p, I), conditional on I = 1. Another setup is of censored observations
where we do know about the event Ii = 0; e.g., in the example where Yi is
the number of visits until a response, the event Ii = 0 implies Yi > M0. The
two setups lead to two versions of our general deconvolution technique, in the
truncated setup we estimate the joint distribution of p and X under G∗t, while
in the censored setup we estimate the joint distribution of p and X under G∗.
The joint distribution of X and p under G∗ and G∗t will be denoted by G and
by Gt correspondingly.

4.1. Empirical Bayes type Horvitz Thompson estimators.

Suppose we want to estimate T = E
∑N

i=1 Xi. We now present three unbiased
estimators. Those are in fact pseudo-estimators since they are functions of the
unknown pi, however they will be modified later to become legitimate estima-
tors.

T̂0 =
∑ Xi

pi
Ii ≡

∑

XiIiA
i
0,

T̂1 =
∑

XiIiE(
1

pi
|Xi, Ii = 1) ≡

∑

XiIiA
i
1,

T̂2 =
∑ Xi

E(pi|Xi)
Ii ≡

∑

XiIiA
i
2.

In the above Ai
j are implicitly defined. The estimator T̂0 is basically the

standard Horvitz Thompson estimator.
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Theorem 2:

i) Under the condition pi > 0 w.p.1, E(T̂1) = E(T̂0) = T . Under the (weaker)
condition E(p|X) > 0 w.p.1, E(T̂2) = T .

ii) Under the condition pi > 0 w.p.1, V ar(T̂1) ≤ V ar(T̂0).
iii) Under the condition pi > 0 w.p.1, T̂2 = T̂1.

Proof: We prove the theorem for the case N = 1.
i) ET̂0 = T follows immediately, similarly to the implication for a standard

Horvitz-Thompson estimator. ET̂1 = T follows since

EE(T̂0|X, I) = ET̂1.

Assume that E(p|X) > 0, w.p.1, then

E(T̂2) = E
XI

E(p|X)
= EE(

XI

E(p|X)
|X) = EX = T,

the third equality in the above follows since by (8) E(I|X) = E(p|X).
ii) The assertion follows by a Rao-Blackwell argument, due to the above

conditional expectation representation.
iii) The assertion follows since

dG∗(p|I = 1, Xi = x) =
pdG∗(p|Xi = x)
∫

pdG∗(p|X = xi)
,

whence Ai
1 =

∫

1
p
dG∗(p|I = 1, X = xi) =

1
E(p|X=xi)

= Ai
2.

In practice the terms Ai
j , j = 1, 2 are unknown, they will be estimated using

our deconvolution method through the estimation of the joint distribution of X
and p, under G∗ and G∗t respectively, for j = 1, 2.

For every i, i = 1, ..., n, define

Ãi
2 = 1/E

Ĝ
(p|X = Xi);

here Ĝ is the deconvolution estimator for G, the joint distribution of X and Y
under G∗.

In the truncated setup the role of G∗ in our deconvolution method is played
by the conditional distribution G∗t. Now,

Ãi
1 = E

Ĝt(
1

p
|X = Xi);

here Ĝt is the estimated joint distribution of X and p under G∗t.
We now present the legitimate versions of T̂1 and T̂2, i.e., estimators which

are functions only of the available observations,

T̃1 =
∑

XiIiÃ
i
1, (9)
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T̃2 =
∑

XiIiÃ
i
2. (10)

We relate the estimators T̃1 and T̃2 through the Horvitz-Thompson estima-
tor. However, in fact the estimation of T under the censored setup may be
done without the mediation of the Horvitz-Thompson estimator. In fact, an mle
estimator for T = NE(X) under the censored setup is:

T̃3 = NE
Ĝ
X = N

∑

l

xl

∑

k

ĝlk,

for a corresponding, mle, estimator ĝ. Asymptotically T̃2 ≈ T̃3. This may be
seen, by the following. Denote by ml, l = 1, ..., L, the number of indices i
satisfying Xi = xl, then Eml = NE(p|X = xl)

∑

k glk, whence for large N ,

ml ≈ NE
Ĝ
(p|X = xl)

∑

k ĝlk; note that T̃2 =
∑

l xlml/EĜ
(p|X = xl). The

later version, T̃3, is better suited compared to T̃2, for deriving a confidence
interval for T by the method that is given in Section 3.

There are a few advantages to T̃2 compared to T̃1, the obvious one is that
it is defined also when the event p = 0 has a positive probability. The other
advantage is since that in the estimation of A2 we use some additional censored
information, which is not available (i.e., truncated), in the estimation of A1.
Avoiding possible near singularity for small p, involved in the estimation of Ai

1, is
another advantage in attempting to estimate Ai

2 when possible. Finally, typically
there is an available external information about the distribution G∗, that may
be used through calibration, while that information is typically unknown under
G∗t.

In the following simulation sections, we will apply our estimators in the es-
timation of the expected proportion αxl

of items with a corresponding X = xl.
Their expected total number is estimated by

T̃ j
xl

=
∑

i:Xi=xl

Ãi
j , (11)

for j = 1, 2, for the truncated and censored setups correspondingly. The follow-
ing formula applies for the truncated and censored estimators for the proportion
αxl

when setting j = 1, 2 correspondingly,

α̂j
xl0

=

∑

i:Xi=xl0

Ãi
j

∑

l

∑

i:Xi=xl
Ãi

j

. (12)

In the next section we will use as a benchmark the following estimator, that
could be used by an ‘oracle’ that knows pi i = 1, ..., N . Such an oracle could
estimate the size of the population with corresponding X = xl, by

∑

i:Xi=xl

Ii
pi

.
The corresponding oracle estimator for αxl0

would be:

oraclexl0
=

∑

i:Xi=xl0

Ii
pi

∑

l

∑

i:Xi=xl

Ii
pi

(13)
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5. Simulations

Consider a survey where in its first stage an initial subset of the population is
sampled and in the next stage there is an attempt to interview each sampled
subject. As mentioned, we assume that each subject in the population is equally
likely to be sampled in the first stage, with sampling probability πi ≡ π, i =
1, ..., N ; w.l.o.g π = 1.

Suppose our policy is to make at most M0 attempts in order to obtain a
response from a sampled subject, however obviously if a response is obtained
in the j < M0 attempt, no further attempts are made. We model the number
of attempts until a response is obtained by subject i, by a Geometric random
variable with a success probability p̃i, i = 1, ..., N ; assume 0 < mini p̃i. Let Yi

denote the number of attempts until a response was obtained.
Assuming πi ≡ 1, the probability pi of subject i, i = 1, ..., N to be in the set

S, of items that i) were sampled for the survey and ii) responded, is:

pi = 1− (1 − p̃i)
M0 . (14)

Thus, there is a one to one correspondence between p̃i and pi = P (Ii = 1) =
P (Ii = 1|Xi, pi) = P (Yi ≤ M0|Xi, pi).

5.1. Truncated setup

We are interested in the estimation of the joint distribution of X and p under
G∗t, i.e., conditional upon I = 1.

Note, the distribution of Yi, conditional on i ∈ S is:

P (Y = j|p) = (1− p̃)j−1p̃

1− (1 − p̃)M0

, j = 1, ...M0; (15)

here p̃ = p̃(p), as given in (14).
Denote the distribution of Yi, i ∈ S, given in (15) by Fpi

.
Given a grid of points {s1, ..., sK} we define the vector v = ((x1, s1), (x1, s2), ..., (xL, sK)) =

(v1, ...,vL×K). The possible outcomes, T (X,Y ) = (X,Y ) are denoted ((x1, 1), (x1, 2), ..., (xL,M0)) =
(t1, ..., tQ), Q = L × M0. As in subsection (2.2), let f = (f1, ..., fQ), where
fj = P (T (X,Y )) = tj, j = 1, ..., Q. For every j, j = 1, ..., Q, we denote
tj = (tj1, tj2), for every k, k = 1, ...,K × L, vk = (vk1, vk2).

Denote

pjk = P (T = tj|(X, p) = vk), j = 1, ..., Q, k = 1, ..., L×K.

This defines the matrix P = (pjk) as explained in the previous section,

pjk =

{

0 vk1 6= tj1
P (Y = tj2|p = vk2) vk1 = tk1.

Note, f = Pg. We proceed as in subsection (2.2) to derive an estimator for
g. In turn we obtain the estimators α̂1

xl
, l = 1, ..., L, as in (12).
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5.2. Censored setup.

We will repeat the estimation of αxl
, xl = 0, 1, under the same setup, estimating

the proportions by α̂2
xl
, i.e, the censored version of (12) .

In the current setup we observe T (Xi, Yi), where

T (Xi, Yi) =

{

(Xi, Yi) Yi ≤ M0

NR Yi > M0

Here ”NR” abbreviate ”Non-Response” and the outcome NR implies that
Yi > M0. We denote the possible outcomes by (t1, ..., tQ) = ((X1, 1), (X1, 2), ..., (XL,M0), ”NR”).
The number of possible values of T is Q = (M0×L)+1. As in subsection (2.2),
let f∗ be the vector of expected proportions of the Q−1 possible outcomes when
excluding the outcome ”NR”; let v be the L×K dimensional vector, as in (2.2).

We write vk ≡ (vk1, vk2), tj ≡ (tj1, tj2).

pjk =

{

0 vk1 6= tj1
(1− p̃k)

tj2 p̃k vk1 = tj1.

Here p̃k = p̃k(vk2), is the probability of success of the Geometric random
variable Y , while vk2 is the probability of success within M0 trials, vk2 = 1 −
(1− p̃k)

M0 , as explained in the previous subsection.
We proceed as in subsection (2.2), to obtain the deconvolution estimator for

g = (g11, g12, ..., gLK) that determines G, the joint distribution of X and p under
G∗. The estimated Ĝ defines the estimator α̂2

xl
, l = 1, ..., L, for αxl

, as explained
in ( 12).

5.3. Numerical experiments

In the following we simulate populations of size N , where we randomly assigned
to N0 ∼ Binomial(N, 0.5) items a corresponding value X = 0, and to the
remaining N1 a corresponding X = 1 was assigned. A value p̃, of a response
probability in a single attempt, was randomly assigned to each of the N0 items
independently, under a distribution G̃0. Similarly a value p̃ was assigned ran-
domly to each of the N1 items based on a distribution G̃1. A corresponding
pair (G0, G1), of distributions of the possible values of response probabilities p
is determined. Let αxl

= 0.5, xl = 0, 1, be the expected proportion of items
with a corresponding X = xl. Finally, for each item i, i = 1, ..., N , a Geometric
random variable Yi ∼ Geometric(p̃i) was simulated.

We simulated scenarios with N = 1000 and N = 10000. The cases M0 =
4, 6, 8, were studied for each of the following three classes of pairs of distributions
(G̃0, G̃1), parametrized by γ.

Two Points. The distribution G̃0 has a two points support, at the points
0.5 and 0.9, with probability mass 0.5 at each.

The distribution G̃1 ≡ G̃γ
1 is a (−γ) translation of G̃0. We present results for

the cases γ = 0.1, 0.2, 0.3, 0.4.
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Uniform. The distribution G̃0 is uniform on the interval (0.1, 1). The dis-
tribution G̃1 ≡ G̃γ

1 , is a mixture of G̃0 and a point mass at 0.1, where the
mixing weights are (1 − γ) and γ correspondingly. We present results for γ =
0.1, 0.2, 0.3, 0.4.

Normal. The distribution G̃0 is a N(0.5, 0.1), ‘rounded up’ to 0.1 and
‘rounded down’ to 1. The distribution G̃1 ≡ G̃γ

1 is N(0.5 − γ, 0.1) ‘rounded
up’ to 0.1 and ‘rounded down’ to 1. We present results for γ = 0.1, 0.2, 0.3, 0.4.

In the simulations we compared the performance of the following estimators
for α0 = 0.5. The naive estimator, that estimates α0 by the sample proportion,
i.e., the proportion among responders, of items i with Xi = 0; the estimators
α̂j
0, j = 1, 2, that correspond to the truncated and censored setups, as given in

(12) ; the ‘oracle’ estimator as in (13).
The grid points {s1, ..., sK} taken as the support of G, are induced by {s̃1 =

0.1, s̃2 = 0.12, ..., s̃K = 1} that were taken as the support of G̃.
The following two tables correspond to the cases N = 1000 and N = 10000.

The columns S-naive, S-α̂1
0, S-α̂

2
0, S-oracle correspond to the square root of the

simulated mean squared error of each of the corresponding methods, based on
1000 repetitions. The columns m-naive, m-α̂1

0, m-α̂2
0, correspond to the simulated

average of each of the corresponding methods; the simulated mean of the oracle’s
estimator was virtually 0.5 and thus not presented.

It may be seen that α̂2
0, clearly dominates α̂1

0, as may be expected. The
performance of all the methods is improved by an increase in M0, but the
improvement is much sharper for α̂j

0, j = 1, 2. For γ = 0, the setup would
become Missing at Random, in which the naive estimator is the best. As γ
increases, the other methods dominate the naive. It may be seen that for large
enoughM0 and γ, in all of our simulated configurations α̂2

0, dominates the naive.
In the uniform case when N = 1000, α̂1

0 does not dominate the naive in any
of the configurations, however when we let M0 = 10, we get domination of
α̂1
0, specifically, for N = 1000, M0 = 10 , γ = 0.4, S-α̂1

0=0.0279, compared to
S-naive=0.0383.

The performance of the estimator α̂2
0, is comparable to that of the oracle when

M0 = 8, and it is amazingly close to it in the Two-Points case. It may be seen
that our methods reduce the bias. This is important beyond the reduction of the
mse, since often the estimators arrive as a time-series and the final estimators
involve additional smoothing of the time-series. Obviously, smoothing around
the true value gives further reduction in mse, compared to smoothing of a biased
sequence.

Finally, an important ‘moral’ from the two tables is that an increase in M0

is much more important for risk reduction, relative to an increase in the sample
size. For example, in the setup of Two-Points, γ = 0.4, M0 = 6, N = 1000, we
have S-α̂1

0=0.0274, while for γ = 0.4, M0 = 4, N = 10000, the mse is increased
and S-α̂1

0=0.0478. Obviously, the number of interviewing attempts in the first
case is smaller than that in the second case.
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Table 1

N=1000

G̃ M0 γ m-naive m-α̂1

0
m-α̂2

0
S-naive S-oracle S-α̂1

0
S-α̂2

0

TwoPts 4 0.1 0.4909 0.4206 0.4963 0.0184 0.0161 0.0868 0.0186

TwoPts 4 0.2 0.4743 0.4094 0.4891 0.0304 0.0165 0.0996 0.0250

TwoPts 4 0.3 0.4470 0.3867 0.4766 0.0556 0.0173 0.1230 0.0405

TwoPts 4 0.4 0.3978 0.3456 0.4532 0.1035 0.0192 0.1618 0.0668

TwoPts 6 0.1 0.4966 0.4815 0.4995 0.0164 0.0161 0.0300 0.0164

TwoPts 6 0.2 0.4872 0.4823 0.4978 0.0208 0.0165 0.0335 0.0173

TwoPts 6 0.3 0.4663 0.4726 0.4937 0.0373 0.0162 0.0417 0.0203

TwoPts 6 0.4 0.4221 0.4358 0.4846 0.0796 0.0178 0.0731 0.0274

TwoPts 8 0.1 0.4978 0.4975 0.4992 0.0156 0.0154 0.0172 0.0155

TwoPts 8 0.2 0.4933 0.5007 0.4996 0.0173 0.0160 0.0200 0.0160

TwoPts 8 0.3 0.4788 0.5022 0.4990 0.0268 0.0165 0.0245 0.0169

TwoPts 8 0.4 0.4394 0.4762 0.4948 0.0629 0.0178 0.0349 0.0185

Uniform 4 0.1 0.4855 0.3739 0.4921 0.0224 0.0181 0.1335 0.0446

Uniform 4 0.2 0.4682 0.3638 0.4816 0.0360 0.0184 0.1435 0.0548

Uniform 4 0.3 0.4504 0.3562 0.4777 0.0530 0.0201 0.1516 0.0609

Uniform 4 0.4 0.4301 0.3509 0.4710 0.0720 0.0197 0.1571 0.0664

Uniform 6 0.1 0.4882 0.4441 0.4952 0.0205 0.0174 0.0629 0.0287

Uniform 6 0.2 0.4738 0.4399 0.4893 0.0312 0.0174 0.0679 0.0340

Uniform 6 0.3 0.4597 0.4347 0.4860 0.0438 0.0176 0.0735 0.0371

Uniform 6 0.4 0.4457 0.4314 0.4858 0.0570 0.0183 0.0770 0.0388

Uniform 8 0.1 0.4908 0.4757 0.4973 0.0189 0.0166 0.0340 0.0224

Uniform 8 0.2 0.4794 0.4709 0.4941 0.0261 0.0162 0.0373 0.0238

Uniform 8 0.3 0.4679 0.4687 0.4937 0.0362 0.0172 0.0408 0.0256

Uniform 8 0.4 0.4555 0.4634 0.4913 0.0476 0.0173 0.0449 0.0255

Normal 4 0.1 0.4792 0.3570 0.4966 0.0267 0.0168 0.1492 0.0227

Normal 4 0.2 0.4422 0.3485 0.4917 0.0602 0.0176 0.1594 0.0295

Normal 4 0.3 0.3859 0.3414 0.4863 0.1156 0.0199 0.1679 0.0404

Normal 4 0.4 0.3231 0.3332 0.4833 0.1778 0.0211 0.1738 0.0471

Normal 6 0.1 0.4902 0.4571 0.4989 0.0195 0.0169 0.0523 0.0184

Normal 6 0.2 0.4664 0.4489 0.4955 0.0375 0.0169 0.0631 0.0214

Normal 6 0.3 0.4223 0.4380 0.4920 0.0796 0.0180 0.0744 0.0257

Normal 6 0.4 0.3691 0.4333 0.4919 0.1321 0.0191 0.0782 0.0272

Normal 8 0.1 0.4945 0.4899 0.4987 0.0169 0.0160 0.0232 0.0168

Normal 8 0.2 0.4777 0.4875 0.4968 0.0277 0.0166 0.0277 0.0178

Normal 8 0.3 0.4461 0.4813 0.4964 0.0564 0.0170 0.0350 0.0187

Normal 8 0.4 0.4016 0.4762 0.4962 0.0999 0.0183 0.0401 0.0196
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Table 2

N = 10000

G̃ M0 γ m-naive m-α̂1

0
m-α̂2

0
S-naive S-oracle S-α̂1

0
S-α̂2

0

TwoPts 4 0.1 0.4907 0.4191 0.4974 0.0106 0.0052 0.0837 0.0081

TwoPts 4 0.2 0.4747 0.4119 0.4931 0.0258 0.0054 0.0925 0.0136

TwoPts 4 0.3 0.4469 0.3939 0.4849 0.0534 0.0053 0.1110 0.0261

TwoPts 4 0.4 0.3983 0.3478 0.4648 0.1019 0.0061 0.1559 0.0478

TwoPts 6 0.1 0.4957 0.4786 0.4993 0.0067 0.0051 0.0237 0.0053

TwoPts 6 0.2 0.4870 0.4786 0.4990 0.0139 0.0050 0.0261 0.0058

TwoPts 6 0.3 0.4663 0.4767 0.4976 0.0341 0.0053 0.0303 0.0071

TwoPts 6 0.4 0.4228 0.4459 0.4928 0.0774 0.0057 0.0574 0.0117

TwoPts 8 0.1 0.4985 0.4979 0.5001 0.0052 0.0049 0.0066 0.0050

TwoPts 8 0.2 0.4933 0.4976 0.4999 0.0084 0.0050 0.0088 0.0051

TwoPts 8 0.3 0.4785 0.4999 0.4995 0.0221 0.0053 0.0126 0.0054

TwoPts 8 0.4 0.4395 0.4829 0.4978 0.0607 0.0055 0.0206 0.0060

Uniform 4 0.1 0.4845 0.3666 0.4926 0.0164 0.0057 0.1361 0.0321

Uniform 4 0.2 0.4679 0.3617 0.4852 0.0326 0.0060 0.1413 0.0393

Uniform 4 0.3 0.4504 0.3580 0.4833 0.0499 0.0062 0.1457 0.0437

Uniform 4 0.4 0.4317 0.3524 0.4807 0.0686 0.0061 0.1516 0.0493

Uniform 6 0.1 0.4874 0.4412 0.4945 0.0136 0.0052 0.0612 0.0193

Uniform 6 0.2 0.4741 0.4363 0.4919 0.0264 0.0054 0.0663 0.0224

Uniform 6 0.3 0.4600 0.4338 0.4910 0.0404 0.0057 0.0693 0.0238

Uniform 6 0.4 0.4453 0.4299 0.4891 0.0550 0.0057 0.0736 0.0257

Uniform 8 0.1 0.4897 0.4724 0.4976 0.0116 0.0054 0.0296 0.0119

Uniform 8 0.2 0.4791 0.4692 0.4957 0.0216 0.0053 0.0331 0.0134

Uniform 8 0.3 0.4681 0.4677 0.4958 0.0323 0.0054 0.0349 0.0140

Uniform 8 0.4 0.4563 0.4653 0.4947 0.0440 0.0057 0.0375 0.0144

Normal 4 0.1 0.4792 0.3498 0.4963 0.0215 0.0052 0.1519 0.0124

Normal 4 0.2 0.4432 0.3398 0.4913 0.0571 0.0056 0.1633 0.0196

Normal 4 0.3 0.3863 0.3287 0.4852 0.1138 0.0060 0.1749 0.0296

Normal 4 0.4 0.3223 0.3276 0.4870 0.1777 0.0064 0.1751 0.0297

Normal 6 0.1 0.4892 0.4553 0.4981 0.0120 0.0052 0.0466 0.0076

Normal 6 0.2 0.4656 0.4456 0.4943 0.0348 0.0052 0.0574 0.0119

Normal 6 0.3 0.4224 0.4330 0.4915 0.0778 0.0055 0.0710 0.0155

Normal 6 0.4 0.3695 0.4275 0.4920 0.1306 0.0059 0.0756 0.0148

Normal 8 0.1 0.4942 0.4897 0.4990 0.0077 0.0051 0.0131 0.0058

Normal 8 0.2 0.4786 0.4851 0.4973 0.0221 0.0052 0.0186 0.0072

Normal 8 0.3 0.4460 0.4791 0.4965 0.0543 0.0055 0.0260 0.0080

Normal 8 0.4 0.4030 0.4743 0.4964 0.0971 0.0056 0.0300 0.0081



Greenshtein, Itskov/Deconvolution non-response 19

6. Analysis of real data of Labor Force Survey.

In this section we will apply our method on a real data set from the Labor
Force Survey, that is conducted by the Israel Central Bureau of Statistics. The
sampling method is 4-8-4 rotating panels, however for our analysis, it may be
equivalently treated and described as a 4-in rotation, which is described in the
following.

The survey is given to four panels, where each panel is investigated for four
consecutive months. Each month one panel finishes its fourth investigation and
in the next month it will be replaced by a new panel that will remain for
four months. The main purpose of the survey is to estimate the proportion
of ‘Unemployment’, ‘Employment’, and those who are ‘Not in Working Force
(NWF)’, the last category is of those who do not have a job nor they are looking
for one. Denote the corresponding values of our variable X-‘working status’, by
0, 1, 2. We are interested in estimating α0, α1 and α2. The population of interest
is of residents whose age is above 15, and the proportions are with respect to
that population. The probability π to be included in the sample is the same for
each person. As explained, for our purpose of estimating proportions we assume
w.l.o.g that π = 1.

Temporarily assume that, we have only the data from the panel that is in-
vestigated for the fourth time (‘fourth panel’). Its size is about 5000, however,
only n responses were obtained, ml responses from people with working status
xl, xl = 0, 1, 2. The general response rate is about 80 percent in each month.
For each of the responding n units there is a corresponding random variable,
denoted Y , that counts the number of responses, in the four interviewing at-
tempts. Those with 0 responses are truncated. Indeed the records for the reason
of 0 responses were not accurate, and thus we preferred to ignore/truncate the
records that correspond to 0 responses. We model the distribution of an observed
random variable, i.e. conditional on i ∈ S by

Y = 1+W ; W ∼ Binomial(3, p).

The above model amounts to assuming that the probability of response of unit
i, is pi in all of its four investigation attempts, and responses in different months
are independent. Given a grid s1, ..., sk, for the support of the possible values of
p, a matrix P = (pjk) is defined where pjk = P (Y = j|p = sk) = Psk(1+W = j),
j = 1, 2, 3, 4, for W ∼ B(3, sk). In our analysis we took the grid 0.1, 0.11,
0.12,...,1. The above induces a matrix P ∗ in a manner similar to the previous
sections.

Now, αxl
, l = 0, 1, 2, may be estimated by α̂1

xl
as given in (12) for a truncation

setup. However, so far we considered only the data from the panel that has four
investigations. Indeed the panels that have less investigations will yield poor
estimates ofE(1/p|X = xl, I = 1). Our approach is the following hybrid method.
We estimate E(1/p|X = xl, I = 1), l = 0, 1, 2, based not only on the data from
the current ‘fourth panel’, but, in addition we use the data obtained in the
four investigation of the three more panels that had their fourth investigation
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in the previous month, two months ago, and three months ago, altogether four
panels. Let ml, be the number of items in the currently investigated four panels,
with corresponding X = xl, xl = 0, 1, 2. Our hybrid approach is to inflate ml,
which is based on the currently investigated four panels, using the estimated
E(1/p|X = xl, I = 1), xl = 0, 1, 2, which are in turn based on the current as
well as ‘historical’ complementary information. The underlying assumption is
that E(1/p|X = xl, I = 1), changes slowly in time and thus, estimating it based
on a complementary older data, we still get at least some bias correction. We
proceed by estimating by Ĝt, the joint distribution of (X, p) under truncation.
Finally, we get the estimator

α̂xl0
=

ml0EĜt(1/p|X = xl0)
∑

l mlEĜt(1/p|X = xl)
.

Since the true proportions of the various working statuses are unknown, we
will first demonstrate the performance of the above estimation method in esti-
mating the following known true proportions, based on the responses in a given
month.

In one case we estimate the proportion of males in the population, which is
known to be 0.4853; their proportion in the survey among responders is about
one percent lower. In the other example we estimate the proportion of the group
age 20-39. Their known proportion is 0.397 while their, response rate is particu-
larly low, their proportion among the responders is nearly 3 percent lower than
their proportion in the population.

Each of the following tables 3 and 4 has three lines that correspond to the
data obtained in Aug/2012, Dec/2012, and April/2013. We took periods that
are four months apart in order not to have overlapping panels. The general
picture persist in other months.

The columns True, Naive, and α̂, correspond to the true populations propor-
tion, the sample proportion among responders, and our estimator α̂. In each
case one may see that α̂ corrects the sample proportion in the right direction.

After gaining some confidence in α̂, we will now examine its estimates in
the estimation of the proportion of ‘Unemployed’, ‘Employed’ and those ‘Not in
Working Force’ (NWF). In the following Table 5 the columns Naive and α̂ are
as before. The column Bureau gives the estimates of the Israel, Central Bureau
of Statistics, for the three categories of working statuses. The three parts of the
table refer to the three working statuses. The three lines in each part refer to the
three months as described before. The Bureau and the α̂ estimators ‘correct’ the
naive estimator for Employment and NWF, in opposite directions (the official
Bureau estimator involves additional seasonal adjustment that we neglect). The
estimator of the bureau is obtained through a method that involves calibration
in a ‘post-stratification manner’. It seems that the correction of the bureau, of
‘Employment’ and the ‘NWF’ is in the wrong direction. This is indicated also
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when imputing missing values based on their values in months where a response
was obtained looking also ‘into the future’. On the other hand both the Bureau
and α̂ correct the unemployment naive estimate by increasing it. This direction
of correction of unemployment, is ,again, supported also by an analysis that
involves imputation.

Table 3

Comparison of estimates of male’s proportion.

True Naive α̂

Male 0.4853 0.4752 0.4822

0.4853 0.4751 0.4819

0.4853 0.4776 0.4842

Table 4

Comparison of estimates of proportion of 20-39 age group.

True Naive α̂

Age 20-39 0.3970 0.3664 0.3815

0.3970 0.3631 0.3984

0.3970 0.3598 0.3842

Table 5

Comparison of unemployment estimates.

Bureau Naive α̂

Emp 0.6104 0.5931 0.5761

0.6081 0.5992 0.5910

0.6089 0.5986 0.5881

NWF 0.3416 0.3594 0.3748

0.3465 0.3576 0.3605

0.3491 0.3621 0.3720

UnEmp 0.0479 0.0475 0.0492

0.0454 0.0431 0.0484

0.0420 0.0392 0.0399
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