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Abstract

We consider the nonlinear problem

lu=f(x,u) iInQ,
u=0 onRN\ Q

in an open bounded sg&t ¢ RN, wherel is a nonlocal operator which may be anisotropic
and may have varying order. We assume mild symmetry and rapioitly assumptions on

I, Q and the nonlinearity with respect to a fixed direction, say, and we show that any
nonnegative weak solutiamof (P) is symmetric inx;. Moreover, we have the following
alternative: Eithem =0 in Q, or u is strictly decreasing inx;|. The proof relies on
new maximum principles for antisymmetric supersolutioharassociated class of linear
problems.

Keywords.Nonlocal OperatorsMaximum Principles Symmetries

1 Introduction

In this work we study the following class of nonlocal and demar Dirichlet problems in a
bounded open s& C RN:

b lu=f(x,u) inQ;
) u=0 onRN\ Q.

Here the nonlinearityf : Q x R — R is a measurable function with properties to be specified
later, andl is a nonlocal linear operator. Due to various applicationghysics, biology and
finance with anomalous diffusion phenomena, nonlocal probl have gained enormous at-
tention recently. In particular, problei®) has been studied with= (—A)%, the fractional
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Laplacian of orderr € (0,2). In this case, special properties of the fractional Lapladiave
been used extensively to study existence, regularity amarstry of solutions t@P). In partic-
ular, some approaches rely on available Green functioreseptions associated wi(hA)%,
(see e.gll6,]7,10-12,16]), whereas other techniques aesllma a representation (Gf-A)% asa
Dirichlet-to-Neumann map (see e.gl[8.9, 19]). These udehtlres of the fractional Laplacian
are closely linked to its isotropy and its scaling laws. Hegrein the modeling of anisotropic
diffusion phenomena and of processes which do not exhiilasi properties, it is necessary
to study more general nonlocal operatbrsn this spirit, general classes of nonlocal operators
have been considered e.q.[in[17,18, 27].

In the present work we consid¢P) for a class of nonlocal operatotswhich includes the
fractional Laplacian but also more general operators whiely be anisotropic and may have
varying order. More precisely, the class of operatars (P) is related to nonnegative nonlocal
bilinear forms of the type

1 n
S V) =5 [ [ = um)vx) - viy)(x—y) dxdly (L.1)
RNRN
with a measurable functiodi: RN\ {0} — [0,0). We assume thatis even, i.e])(—2) = J(2)
for ze RN\ {0}. Moreover, we assume the following integral condition:

(J1) / J(z) dz+ / 122J(2) dz< oo and /J(z) dz= oo,
RN

RN\B;(0) B1(0)

By similar arguments as in the recent paper [18], we shallise®ection[2 below that this
assumption ensures that is closed and symmetric quadratic form iA(Q) with a dense
domain given by

2(Q) :={u: RN — R measurable ;7 (u,u) < andu=0onRN\Q} (1.2)

Here and in the following, we identify?(Q) with the space of functions < L(RN) withu=0
onRN\ Q. Consequently,# is the quadratic form of a unique self-adjoint operaton L%(Q),
which also satisfies
[lu](x) = lim [u(x) —u(y)]I(x—y)dy  foruec €?(Q),xc RN
£—
ly—x|>¢
see Corollary_2]4 below. One may study solutionsf (P) in strong sense, requiring thats
contained in the domain of the operatorHowever, it is more natural to consider the weaker
notion of solutions given by the quadratic forpf itself. More precisely, we call a function
ue€ 2(Q) a solution of(P) if the integral [, f(x,u(x))¢ (x) dxexists for allp € 2(Q) and

7(u,9) :/f(x,u(x))cp(x) dx  forall ¢ € 2(Q),
Q

We note that the fractional Laplacian= (—A)?/2 corresponds to the kernd(z) = cy o2 N~

. _pr(Nge
with ey g = a(2— o) N/229 Zr((zf%%

. Our paper is motivated by recent symmetry results for
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nonlinear equations involving the fractional Laplaciaeg§.6,10,111,16,21]). More precisely,
we present a general approach, based on maximum princgesfisymmetric functions, to

investigate symmetry properties of bounded nonnegatigisos of (P) in bounded Steiner

symmetric open set®. We claim that this approach is simpler and more general than

techniques applied in the papers cited above. In particiilalso applies to anisotropic opera-
tors and operators of variable order. To state our main symymesult, we first introduce the
following geometric assumptions dnand the sef.

(D) Q c RNis an open bounded set which is Steiner symmetrig ine. for everyx € Q and
se [—1,1] we have(sx, Xp,...,Xn) € Q.

(J2) The kerneld is strictly monotone irxy, i.e. for allZ ¢ RN-1, st € R with |g] < |t| we
havel(s,Z) > J(t,2).

Note that(J2) in particular implies thaf is positive onRN \ {0}. We may now state our main
symmetry result.

Theorem 1.1. Let (J1),(J2) and (D) be satisfied, and assume that the nonlinearity f has the
following properties.

(F1) f:QxR—R, (x,u)— f(xu) is a Caratieodory function such that for every bounded
set KC R there exists |= L(K) > 0 with

sup| f(x,u) — f(x,v)] <Llu—v| foruveK.
XeQ

(F2) fis symmetric and monotone in,x.e. for every ue R, x € Q and se [—1,1] we have
f(SX17X27"'7XN7u) > f(X,U)-

Then every nonnegative solutiorel”(Q) N Z(Q) of (P) is symmetric in x. Moreover, either
u=0in RN, or u is strictly decreasing ifx;| and therefore satisfies

esEinfu >0 for every compact set K Q. 1.3)

Here and in the following, if2 satisfieg D) andu: Q — R is measurable, we say thats
e symmetric in xif u(—xg,X) = u(xz,X) for almost everyk = (x1,X) € Q.
e strictly decreasing irjx, | if for everyA € R\ {0} and every compact sktC {xe Q : 3 > 1}
we have

essinflu(2A —xg, Xz, ..., Xn) — u(x)] > 0.

xeK

Remark 1.2. We wish to single out a particular class of operators satigf{J1) and(J2). Let
a,B € (0,2), c> 0 and consider a measurable nmag0, ) — (0,) such that

pN

— <kp) < co N forp<i and k(p)<co NP forp>1.
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Suppose moreover thkis strictly decreasing of0, »), and let] - |; denote a norm oM with
the property that(s,Z)|; < |(t,Z)|; for everyst € R with |s| < |t| andZ € RN-1. Then the
kernel

J:RM\{0} =R,  J(2 =k(2)

satisfies(J1) and (J2). As remarked before, the case wherg = | - | is the euclidean norm
onRN andk(p) = ey ap N9 corresponds to the fractional Laplacibe: (—A)9/2. The class
defined here also includes operators of order varying betWesnda < (0,2). In particular,
zero order operators are admissible. Moreover, the chdinereeuclidean norms |; leads to
anisotropic operators. In particular, forllp < o, the norm

N
1
Xl = |X|p := (Z|>q|p) ® forxeRN (1.4)

|
has the required properties.

As a direct consequence of Theoreml 1.1 we have the follovktegee; € RN denotes the
j-th coordinate vector foy =1,...,N.

Corollary 1.3. Let J(z) = k(|Z|p), where k is as in Remalk 1.2, < p < o and|- |, is given in
@.4).

(i) LetQ c RN be Steiner symmetricinx..,xx ,i.e.,foreveryx Q, j=1,...,N and sc [0, 2]

we have x-sxe; € Q. Moreover, let f fulfill(F1) and be symmetric and monotone in.x. , X,

i.e. forevery .e R, xe€ Q, j=1,...,N and sc [0,2] we have fx—sxej,u) > f(x,u). Then
every nonnegative solution&L*(Q) N 2(Q) of (P) is symmetric in x...,Xy. Moreover,
either u= 0in RN, or u is strictly decreasing ifxy|,.. ., |xn| and therefore satisfiegE(1.3).

(i) If p =2, Q c RN is a ball centered ir0 and f fulfills (F1), (F2) and is radial in x i.e.
f(x,u) = f(|x/er,u) for x € Q, then every nonnegative solutionel.*(Q) N 2(Q) of (P) is
radially symmetric. Moreover, eithera 0in RN, or u is strictly decreasing ifx| and therefore

satisfies[(1.3).

In the special case whete= (—A)?, a € (0,2), Theoren[ L1l has been obtained by the
authors in[[21L, Corollary 1.2] as a corollary of result onragyotic symmetry for the corre-
sponding parabolic problem. While some of the parabolicreges in[[21] are not available for
the class of nonlocal operators considered here, we willbbe ta formulate elliptic counter-
parts of some of the tools from_[21] in the present settinglefrendently from our work [21],

a weaker variant of Theoref 1.1 in the special dase(—A)?, restricted to strictly positive
solutions, is proved in the very recent preprint [4, Theotef], where also related problems
for the fractional Laplacian with singular local linearres are considered. Corolldry 1..3(ii) for

| = (—A)% , a € (0,2) has been proved first by Birkner, Lopez-Mimbela and Wakabr [6] for

| = (—A)? and a nonlinearityf = f(u) which is nonnegative and increasing. In the very recent
papers|[10, 16], Corollafdy_11.3(ii) is proved for strictly gitive solutions in the cade= (—A)%
under different assumptions dn The proofs in these papers rely on the explicit form of the
Green function associated with-A) % in balls.

In order to explain the difference between considering egative or positive solutions, we
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point out that the conclusiom (1.3) can be seen as a strongmax principle for bounded

solutions of(P) in open sets satisfyingD) which is not true for the corresponding Dirichlet
problem

{ —Au= f(x,u) inQ;

(1.5)

u=20 ondQ.

Note that we do not assunieto be connected in Theordm 1.1, but even in dom@insRN the
assumptiongD) and(F1), (F2) do not guarantee that nonnegative solution$ of (1.5) anereit
strictly positive or identically zero iR, see e.gl[22] for examples for nonnegative solutions of
(1.5) with interior zeros. The positivity properfy (I.3)che seen as a consequence of the long
range nonlocal interaction enforced pJ2). Note that(J2) is not satisfied for kernels of the
form

2 3(2) =15l N7  witha €(0,2),r>0. (1.6)

It is therefore natural to ask whether a result similar todreen[1.1 also holds for kernels of
the type [(1.6) which vanish outside a compact set and therefmdel short range nonlocal
interaction. Related to this case, we have to following ltéfeu a.e. positive solutions @P) in
Q.

Theorem 1.4.LetQ c RN satisfy(D), and let the even kernel: RN\ {0} — [0, ) satisfy(J1)
and

(J2) For all Z € RN-1, st € R with |g| < |t| we have Js,Z) > J(t,Z). Moreover, there is
ro > 0 such that

J(s,Z)>J(t,Z) forallZ e RN tand st € R, with |Z| <rgand|s| < [t| < ro.

Furthermore, suppose that the nonlinearity satisfige4) and (F2). Then every a.e. positive
solution ue L*(Q) N 2(Q) of (P) is symmetric in x and strictly decreasing inx;| on Q.
Consequently, it satisfies (1.3).

Note that the kernel class given Hy (1.6) satisfiék) and (J2)’. We recall that Gidas, Ni
and Nirenberg[20] proved the corresponding symmetry tésubtrictly positive solutions of
(L.5) under some restrictions @ which were then removed in![5]. These results rely on the
moving plane method which, in other variants, had alreadynbatroduced in[[1, 26]. For
nonlocal problems involving the fractional Laplacian, theving plane method was used in a
stochastic framework by Birkner, Lopez-Mimbela and Wakader in the above-mentioned pa-
per [6]. Chen, Liand Ou [11] used the explicit form of the irseof the fractional Laplacian to
prove symmetry results for= (—A) 2 and f (u) = uNt@)/(N-a) jn RN For this they developed
a variant of the moving plane method for integral equati@imilar methods were used in the
above-mentioned papefs [10] 16].

The results on the present paper rely on a different varifititeomoving plane method which
partly extends recent techniques bf![15,/21, 25] and, indagetly, [4]. More precisely, we
show that(J1) and (J2) — or, alternatively,(J2)" — are sufficient assumptions for the bilinear
form ¢ to provide maximum principles for antisymmetric solutimisissociated linear opera-
tor inequalities in weak form, see Sectldn 3. Here antisytrynmefers to a reflection at a given
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hyperplane. Combining different (weak and strong) versiofithese maximum principles, we
then develop a framework for the moving plane method for egative solutions ofP) which
are not necessarily strictly positive. The approach seeore aiirect and more flexible than the
ones in[[10, 111, 16] since it does not depend on Green funotipresentations.

The paper is organized as follows. In Secfidon 2 we collectuligeoperties of the nonlocal bi-
linear forms which we consider. Sectigh 3 is devoted to elasé linear problems related (B)
and hyperplane reflections. In particular, we prove a snodlinme type maximum principle and
a strong maximum principle for antisymmetric supersohgiof these problems. In Sectioh 4
we complete the proof of Theordm 1.1, and in Sedtion 5 we ceraphe proof of Theorem 1.4.

Acknowledgment: Part of this work was done while the first author was visiting/s-
Senegal. He would like to thank them for their kind hosptiyali

2 Preliminaries

We fix some notation. For subsésU C RN we write distD,U) :=inf{|x—y| : xeD,yecU}.

If D = {x} is a singleton, we write digx,U) in place of dist{x},U). ForU c RN andr >0

we consideB, (U) := {x € RN : dist(x,U) < r}, and we let, as usud, (x) = B;({x}) be the
open ball inRN centered ak € RN with radiusr > 0. For any subseW c RN, we denote
by 1y : RN — R the characteristic function dfl and by dianiM) the diameter oM. If M is

measurableéM| denotes the Lebesgue measurévbf Moreover, ifw: M — R is a function,
we letw™ = max{w,0} resp. w~ = —min{w,0} denote the positive and negative partvpf
respectively.

Throughout the remainder of the paper, we assumedth&" \ {0} — [0,) is even and
satisfiegJ1). We let_# be the corresponding quadratic form definedinl(1.1) andafoopen
setQ C R, we consideZ(Q) as defined in[(1]2). It follows froriJ1) thatJ is positive on a set
of positive measure. Thus, by [18, Lemma 2.7] we ha(€) C L?(Q) and

A1 (Q) = inf /(Zu, W >0 for every open bounded s@tc RV, (2.1)
uez(Q) ||u|||_2(Q)

which amounts to a Poincaré-Friedrichs type inequalitg. Will need lower bounds foh; (Q)
in the case wherf| is small. For this we set

A1(r) :=inf{A1(Q) : Qc RN open,|Q|=r}  forr>0.
Lemma 2.1. We have\;(r) — o asr— 0.
Proof. Let
J:={zeRV\{0}:J(z)>c} and J%:={zeRN\{0}:J(2) <c}

for c € [0,]. We also consider the decreasing rearrangereri, ) — [0, ] of J given by
d(r) =sup{c>0 : |J| >r}. We first note that

oy | > 1 for everyr >0 (2.2)
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Indeed, this is obvious ifl(r) = 0, sinceJo = RN\ {0}. If d(r) > 0, we have|J| > r for
everyc < d(r) by definition, whereagl;| < « for everyc > 0 as a consequence of the fact that

Je LY(RN\B1(0)) by (J1). Consequently, sinck,) = N J;, we havey, |_ |nf |JC|>r
c<d(r)
Next we claim that

A1) > / J2dz  forr>o0. 2.3)
Jd(r)

Indeed, let >0 andQ c RN be measurable wit/Q| =r. Foru € 2(Q) we have

(u,u) 2// y))2J(x—y) dxdy
RNRN
2// y)2J(x—y) dxdy+/ / J(x—y) dy dx
RN\Q
. " 2
z;g&( / ) dy)HUHLz(m (2.4)
RN\Q,

with Qy := x+ Q. Letd :=d(r). Since|Jy| >r = |Q| by (2.2), we haveJs \ Qx| > |Qx \ Jd|
and thus, for everx € Q,

[ dy= [ amay+ [ ady= [ 3 dy

BN\Q, RN\3y 3\ o\

> [30) dy+ (190 @l - |2\l ) > [ 3(y) ay
Jd Jd

Combining this with[(2.4), we obtaifi (2.3), as claimed. Asasequence of the second property
in (J1), the decreasing rearrangementifatisfiesd(r) — c asr — 0 and

/J(y) dy — o asr — 0.
Jd(r)

Together with[(2.B), this shows the claim. O

Proposition 2.2. Let Q ¢ RN be open and bounded. Then Q) is a Hilbert space with the
scalar product 7.

Proof. We argue similarly as in the proof df [18, Lemma 2.3]. Laf), C 2(Q) be a Cauchy
sequence. BY(2l1) and the completeness’0R), we have thati, — u € L?(Q) for a function
u € L?(Q). Hence there exists a subsequence suchupats u almost everywhere i as
k — . By Fatou’s Lemma, we therefore have that

J(u,u) <liminf _# (Un,,Up, ) < sup/(unk,unk) < 0,

k—sco
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so thatu € Z(Q). Applying Fatou’s Lemma again, we find that

F(Up,—u unk—u)<I|r11l|0r3fj(unk Un; , Un, — <SU|P/ Uny — Un; , Un, — Uy;) for ke N.
1>

Since (un)n is a Cauchy sequence with respect to the scalar progagit thus follows that
Ilim un, = uand therefore alsr(]) lim, =uin 2(Q). This shows the completeness®{Q). O
—$00 — 00

Proposition 2.3. (i) We havezd(RN) ¢ 2(RN).
(i) Let v € €2(RN). Then the principle value integral

):=PV. / Jx=y)ydy=lm [ (vx)-vy)Ix-y)dy  (25)
x-y>¢

exists for every x RN. Moreover, Ive L*(RN), and for every bounded open £tc RN and
every ue Z(Q) we have

7 (uy) = [uividx

RN
Proof. (i) Let ue %2 (RN), and letk > 0, R > 2 be such that sugp) C Br_»(0),
lux)| <K and |ux)—uy)| <Klx—y]  forxyeRN x+#y.

Then, as a consequence(dt),

2 7(uu) = / / ) —u(y))?I(x— y)dxdy+2/ / J(x—vy) dydx

Br(0) RN\Br(0)
§K2/ /\x—y\zJ(x—y)dxderZKz/ / J(x—y) dydx
Br(0) BA(0) Br_2(0) BV\Br(0)
§2K2|BR(0)|(/ 1223(2) dz+ / )(2) dz) <o

Br(0) RN\B;(0)

and thusu € 2(RN).
(i) Sincev € €2(RN), there exist constanty K > 0 such that

[2v(X) —V(x+2) —Vv(x—2)| <K|Z*>  forall x,ze RN with |z| < 3. (2.6)

Puth(x,y) := (v(X) — v(y))J(x—Y) for x,y € RN, x #y. For everyx € RN, ¢ € (0,5) we then
have, sincél is even,

h(x,y)dy = / [V(X) —v(X+2)]J(z)dz= / [V(X) —v(x—2)]J(z)dz

e<|y—x|<o s<\z\<6 e<|z|<d

=5 / V(X+2) —V(x—2)]J(z)dz

£<|z/<5
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By the first inequality in(J1), (2.8) and Lebesgue’s theorem we thus conclude the exestanc
the limit

lim / h(x,y)dy:% / [2v(X) — V(X+2) — Vv(x—2)]I(2)dz

£—0
e<|y—x|<é 0<|7<d

Moreover we have fox € RN ande € (0,0)
[ noydys2iiegy [ d@dzes [ Pa@d=K, @)
ly—x|>¢ RN\B5(0) B5(0)

where the right hand side is finite by the first inequalitydi). In particular,[Iv](x) is well
defined by[(Zb), anfIv](x)| < K’ for xe RN, so thatlv € L®(RN). Next, letQ c RN be open
and bounded and € 2(Q), so that alsa € L%(Q). Then we have, by (2.7) and Lebesgue’s
Theorem,

Fuv=3lm [ () - uy)hixy) dxdy

£-0
x=yl>¢
=lim [ u(x) / h(x,y)dydx:/u(x)[lim / h(x,y)dy}dx:/u(x)[lv](x)dx
£—0 e—0
RN ly—x|>¢ RN ly—x|>¢ RN
The proof is finished. O

Corollary 2.4. LetQ c RN be open and bounded. Thex is a closed quadratic form with
dense form domaity(Q) in L?(Q). Consequently,# is the quadratic form of a unique self-
adjoint operator | in [?(Q). Moreover, G(Q) is contained in the domain of I, and for every
v E 6€2(Q) the function Ive L2(Q) is a.e. given by[(2]5).

Proof. Since¢2}(Q) c L2(Q) is denseZ(Q) is a dense subset bf(Q) by Propositiof Z13(i).
Moreover, the quadratic forny is closed inL2(Q) as a consequence 6f (2.1) and Lenima 2.2.
Hence ¢ is the quadratic form of a unique self-adjoint operatdn L%(Q) (see e.g.[[23,
Theorem VIII.15, pp. 278]). Moreover, for evewye 62(Q), u€ 2(Q) we have|J(u,v)| <
|Q[[IV]|L=(q) lullL2(qr) by Propositiorf 213(ii). Consequently,is contained in the domain df
and satisfles](u v) fRN u[lv]dxfor everyu € 2(Q). From Propositiof 2]3(ii) it then follows
thatlv is a.e. given by[(2]5). O

Next, we wish to extend the definition of (v, ¢ ) to more general pairs of functiorig ¢ ).
In the following, for a measurable subs¢tc RN, we defines#(U’) as the space of all func-
tionsv € L?(RN) such that

/ / ¥))23(x—y) dxdy< o. 2.8)
U’ u’

Note thatZ(RN)NL2(RN) c s#(U’) for any measurable subsgétc RN, and thus als&(U)
2 (U’) for any bounded open setc RN by (2.1).
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Lemma 2.5. Let U’ ¢ RN be an open set andgr € .2 (U’). Moreover, suppose thgt= 0 on
RN\ U for some subset & U’ with dist(U, RN\ U’) > 0. Then

[ [ M0 v 11900~ p (I3 x—y) dxdy < o 29)
RN RN
and thus 1.
yi=5 [ [0 =)@~ $(1)3(x—y) dxdy
RNRN
is well defined.

Proof. SinceJ satisfiegJ1), we haveK := [,
As a consequence,

J(2)dz< oo with r := dist(U,RN\U’) >

\ B (0)

[ M= v)lig (0~ 6 ()13(x- ) dxdy
RN RN
-/ / VO~ V)89 = #)I0x—y) dxdy+2 [ [ vx) —viy)l[ (913(x-y) dydx
uru’ U RN\U'
< Sl +p@. U]+ [ [ [20v0012+ M) P) + 19| 3(x—y) dydx

U ]RN\U’
<1‘ U/ U/ K 4 2 2 00
< S[PMU) +p(¢,U")] +K( AVl G2 + 119 T2y ) < -
]
Lemma 2.6. If U’ ¢ RN is open and & 7 (U’), then v € s#(U’) and p(v:,U’) < p(v,U").

Proof. We havev® € L2(RN) sincev € L2(RN). Moreoveryt (x)v~(x) = 0 for x€ RN and thus

p(WU') = p(v" .U +p(v U -2 / (V' 00—V () (0 =V (1)I(x—y) dxdy

U’ u’
= p(vEU) +p(v U +2 [ VRV () + v )V 013 (x-y) dxdly
U’ u’
> p(vF,U") +p(v-,U).
The claim follows. O

We close this section with a remark on assumpfidi).

Remark 2.7. Suppose thatJ2) is satisfied. Then, for every fixed € RN, the functiont —

J(t,Z) is strictly decreasing int| and therefore coincides a.e. @with the functiont —

Jt,2):= Iir? J(s,Z). HenceJ and the functiorJ differ only on a set of measure zerol.
st~

Replacingd by Jif necessary, we may therefore deduce frl®) the symmetry property
J(-t,Z)=J(t,Z) foreveryZ e RN"1teR. (2.10)

This will be used in the following section.
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3 The linear problem associated with a hyperplane reflection

In the following, we consider a fixed open affine half space RN, and we letQ : RN — RN

denote the reflection @H. For the sake of brevity, we sometimes writen place ofQ(x) for

x € RN, A functionv: RN — RN is called antisymmetric (with respect @ if v(x) = —v(x) for

x € RN. As before, we consider an even kerdelRN \ {0} — [0, ) satisfying(J1). We also
assume the following symmetry and monotonicity assumptamJ:

JX—y)=J(x—y) forallx,yeRN; (3.1)
J(x—y) >JI(X-Y) forall x,y € H. (3.2)

Remark 3.1. If (J1), (J2) and [2.1D) are satisfied and
H={xeRN:xy>A} or H={xeRV:x<-A}

for someA > 0, then [(3.11) and(312) hold. K > 0, thenJ also satisfies the following strict
variant of [3.2):
J(x—y) > JI(X—Y) forall x,y € H. (3.3)

We will need this property in Proposition 8.6 below.
Lemma 3.2. Let J satisfy(J1), (3.1) and [3.R). Moreover, let Uz RN be an open set with
Q") =U’, and let ve s (U’) be an antisymmetric function such thatv0 on H\ U for

some open bounded setdH with U c U’. Then the function w= 1, v~ is contained in
2(U) and satisfies

A (Ww) < — 7 (v,w) (3.4)

Proof. We first show thatv ¢ .72 (U’). Clearly we havev € L?(RN), sincev € L2(RN). More-
over, by [(3.1), the symmetry &f’, the antisymmetry of and [3.2) we have

/ / y))2J(x—y) dxdy

U'NnHU'NH
+ y))2J(x—y) dxdy+ 2 y))2J(x—y) dxdy
U/\/HU/\/H U’(—lU’L
-2 [ / V2I(x=Y) + (V0 +U(y))2I(x - 9] dxdy
U'NHU'NH
> [ 00 = v(y)230c= )+ [0 ~ )2+ (v + viy) Ha (x5 ] dxay
U/NHU'NH
> [ [(v(x)—v<y>>2J<x—y>+aF<x>J<x—y7] dxdy
U/NHU’NH
— [ [ @9 = av(y)23(x—y) dxdy= p(1 wL) (35)

u’u’
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and thup (14 v,U’) < 0. Hence 4 ve 2 (U’) and thus alsw € 7 (U’) by Lemmd 2.5. Since
w=0in RN\ U, the right hand side of(3.4) is well defined and finite by Lenf® To show
(3.4), we first note that

WH+VIW= [14v" + Ign V] Iyv- =0 onRN
and therefore
[W(x) —w(y)]? + [V(X) — v(y)] [W(X) —w(y)] = — (W(X) [w(y) +v(y)] +w(y)[w(x) + V(X)])

for x,y € RN. Using this identity in the following together with the ayimmetry ofv, the
symmetry properties af and the fact thatv= 0 onRN \ H, we find that

7w+ 7 (uw) = = [ [ woofw(y) +viy)l3(x—y) dydx
H RN
= [ [ WO9[aa )V () + Lo vy I(x—y) dydlx
H RN

/ /w XV (Y)I(X—Y) — v(y)I(x— )] dydx < 0,

where in the last step we used the fact thaly) > v(y) andJ(x—y) > J(x—y) > 0 forx,y € H.
Hence [[34) is true, and in particular we hayé(w,w) < . Sincew =0 onRN\ U, it thus
follows thatw e 2(U). O

In order to implement the moving plane method, we have tow#hlthe class of antisym-
metric supersolutions of a class of linear problems. A eelatotion was introduced i [21] in
a parabolic setting related to the fractional Laplacian.

Definition 3.3. LetU C H be an open bounded set anddet L*(U ). We call an antisymmetric
functionv: RN — RN anantisymmetric supersolutioof the problem

lv=c(x)v inU, v=0 onH\U (3.6)
if ve 2#(U’) for some open bounded ggt ¢ RN with Q(U’) =U’andU c U’,v>0onH \U
and
T(u9)> /c(x)u(x)¢(x) dx  forallg € Z(U), ¢ > 0. 3.7)
U

Remark 3.4. Assume(J1) and [3.1), and le® c RN be an open bounded set such Q&0 N
H) C Q. Furthermore, lef : Q x R — R be a Carathéodory function satisfyi(i§1) and such
that

f(x,1) > f(x1) foreveryt e R, xe HNQ. (3.8)
If ue 2(Q) is a nonnegative solution @¢P), thenv := uo Q—u is an antisymmetric superso-
lution of (3.6) withU := QN H andc € L*(U) defined by

{ (O0U) — FU) g,
0

v(x)

c(x) =
if v(x) = 0.
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Indeed, sinces € 2(Q), we havev € 2(RN) NL2(RN) and thusv € 7 (U’) for any open set
U’ c RN, Moreover,v > 0 onH \ U sinceu is nonnegative and = 0 onH \ U. Furthermore,
if p € 2(U), thenp cQ— ¢ € 2(Q) by the symmetry properties dfand sinceQ(U) C Q. If,
in addition,¢ > 0, then we have, using (3.1),

JWh) = #(ueQ-ud)= #(upoQ—9)= [ f(xu)poQ-9ldx
Q
— [ 100 u)8 0Qax— [1(xu(x)p dx= [ [f(R () ~ F(xu(x)$(dx=> [ covpdx
U

Q(U) u U
Here [3.8) was used in the last step. The boundednestotdws from (F1).

We now have all the tools to establish maximum principlesfdisymmetric supersolutions

of (3.6).

Proposition 3.5. Assume that J satisfigd1), (3.1) and [(3.2), and let UZ H be an open
bounded set. Lete L*(U) with [|c*[| =) < A1(U), whereA;(U) is given in [2.1).
Then every antisymmetric supersolution V of](3.6) in U fas/> 0a.e. in H.

Proof. By Lemmal3.2 we have that:= 1yv- € Z(U) and 7 (w,w) < — _#(v,w). Conse-
quently,

AaU)WIEz ) < 7 (W) < — 7 (vw) < — [ c(ovxw(x) dx= [ c(xw?(x) dx
U U
<11 w2 .

Since||c*||L=u) < A1(U) by assumption, we conclude thiaw| >y) = 0 and hence > 0 a.e.
inH. O

We note that a combination of Propositfon|3.5 with Lenimé& &/&gyrise to an “antisymmet-
ric” small volume maximum principle which generalizes thaitable variants for the fractional
Laplacian, see [15, Proposition 3.3 and Corollary 3.4] &% [emma 5.1]. Next we prove a
strong maximum principle which requires the strict inegydB.3).

Proposition 3.6. Assume that J satisfi€dl), (3.1) and[(3.B). Moreover, let \d H be an open
bounded set ande€ L*(U). Furthermore, let v be an antisymmetric supersolutior_diiY8uch
that v> 0 a.e. in H. Then either = 0a.e. inRN, or

esKsinfv >0 for every compact subset&U.

Proof. We assume that= 0 in RN, For givenxg € U, it then suffices to show that (es)sinf> 0
Br (%o

for r > O sufficiently small. Since Z 0 in RN andv is antisymmetric withv > 0 in H, there
exists a bounded st C H of positive measure witk, ¢ M and such that

0.= i’\n/lfv> 0. (3.9)
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By Lemmal2.1, we may fix & r < dist(xo, [RN \ HJUM) such that\; (B (X0)) > |/¢]|i=u
Next, we fix a functionf € €2(RN) such that < f <1 onRN and

1, for|x—xo| <r,
f(x):=
0, for|x—xo|>2r.

Moreover we define
WiRN SR, w(x) = f(x)— f(X)+a[lm(X) — I (X))],

wherea > 0 will be fixed later. We also puilg := By (Xp) andUg := Ba (Xo) UQ(Bsr (X0)). Note
that the functiorw is antisymmetric and satisfies

w=0 onH\ (UguM), w=a onM. (3.10)

We claim thatw € #(U}). Indeed, by Propositioh 2.3()) we havie— f o Q € 2(RV) N
L2(RN) € #(Up), whereas § — 1guw) € 7 (Ug) sinceM is bounded angM UQ(M)]NUj= 0.
Next, let¢ € 2(Up), ¢ > 0. By Proposition 2]3(ii) we have

s (1.8)=C [$(9 dx (3.12)
Uo

with C = C(f) > O independent o. Since
F(X () = (X (X) = low)()$(x) =0 for everyx e RV,
we have

S W)= _7(f,¢)- 7(foQ, ¢)+a[/(lm,¢)—/(lQ(M>,¢)]

<C/¢ dx+//¢ J(x—vy) dydx

Uo Q(Uo)
—a//¢(x) (x—vy) dydx—/ / ¢ (x)I(x—y) dydx
Up M Uo Q(M
(C+XS€%E>)U (x—y)dy /¢ X) dx— a/¢ / —J(x—y)] dydx
cal{mx)dx

with .
Ca:=C+sup [ J(x—y)dy— axiengo/(J(X—y) —J(x—y)) dyeR

U
Xe OQ(U())

SinceUy C H, (3:3) and the continuity of the function— f,,(J(x—y) —J(x—y)) dy onUyg
imply that
inf [ (J(x—y)—J(x,y))dy>0

xeUg
M
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Consequently, we may fia > 0 sufficiently large such thal, < —||c||_~(y,)- Since 0<w <1
in Up, we then have

S W) < ~[eli=y [ #(dx< [ ok (9 dx (3.12)
Uo

Uo

We now consider the function:= v — gw € ¢ (Ug), which by [3.9) and(3.10) satisfies>"0
onH \Up. Hence, by assumption arid (3. 12)s an antisymmetric supersolution of the problem

IV=c(X)V inUp, V=0 onH\Up (3.13)

Since||c]|»(uy) < A1(Uo), Propositio .35 implies that= 0 a.e. inUp, so that > 2w= 2 > 0
a.e. inBy(Xp). This ends the proof. O

4 Proof of the main symmetry result

In this section we complete the proof of Theoreml 1.1. So thinout this section, we assume
thatJ : RN\ {0} — [0,) is even and satisfiegl1) and (J2), Q c RN satisfies(D) and the
nonlinearity f satisfies(F;) and(F,). Moreover, we leu € L*(Q) N 2(Q) be a nonnegative
solution of(P). ForA € R, we consider the open affine half space

" {xeRN : x> A} if A >0:
Tl ixeRN i xg <A} ifA <O

Moreover, we letQ, : RN — RN denote the reflection alH,, i.e. Q) (X) = (2A —x¢,X).
By Remark 2.V, we may assume without loss of generality Bdf0) holds. As noted in
Remark{3.1L,J therefore satisfies the symmetry and monotonicity conati8.1) and[(3]13)

with H replaced byH, for A £ 0. Let/ :=supx;. SettingQ, :=H, NQ for A € R, we note that
xeQ
Q\(Qy) cQforall A € (—¢,¢) andQo(Q) = Q as a consequence of assumptir). Then for

all A € (—¢,£), Remark 34 implies that, == uoQ) —uc 2(RV)NL?(RN) is an antisymmetric
supersolution of the problem

Iv=cy(X)v inQ,, v=0 onH,\Q, 4.1)
with

f(X7 U(Q)\ (X))) - f(X7 U(X))
cy €L®(Q,) givenby c,(x) = { Vi (X)
0, V) (x) =0.

Note that, as a consequence(Bfl) and sinceu € L*(Q), we have

Co .= SUp HCAHLW(QA)<00.
Ae(—£,0)
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We now consider the statement

(S) esKsinva >0 for every compact subsktcC Q, .

Assuming thau # 0 from now on, we will show(S,) for all A € (0,¢). Since|Q,| — 0 as
A — ¢, LemmdZ.1 implies that there exigts (0,¢) such thai\1(Q,) > ¢, forall A € [g,7).
Applying Propositio 3.6 we thus find that

vy >0 a.e.inHy, forallA € le,?). 4.2)

We now show

Claim 1: If vy > Oa.e. in H, for someA € (0,¢), then(S,) holds.

To prove this, by Propositidn_3.6 it suffices to show thatz 0 in RN, If, arguing by contra-
diction, vy = 0in RN, thendH, is a symmetry hyperplane of SinceA € (0,¢) andu= 0 in
RN\ Q, we then havel = 0 in the nonempty s€®_,, 5. SettingA’ = —¢+ A, we thus infer that
vy = 01in Q). Consequentlyy,, = 0 in RN by Propositiori 3J6. Thus has the two different
parallel symmetry hyperplaneH, anddH,.. Sinceu vanishes outside a bounded set, this
implies thatu = 0, which is a contradiction. Thus Claim 1 is proved.

Next we show

Claim 2: If (Sy) holds for some\ € (0,¢), then there i € (0,A) such that(S,) holds for all
HeEA—=05,A).

To prove this, suppose th&§,) holds for someA € (0,¢). Using Lemmd 2]1, we fixs €
(0,|Qx1) such that\;(s) > ¢, which implies that\;(U) > ¢, for all open setd) ¢ RN with
|U| <'s. SinceQ is bounded, we may also fi% > 0 such that

1Qu\Qpia| <8/2 forallp > 0.

By Lusin’s Theorem, there exists a compact subset Q such thatQ \ K| < s/4 and such that
the restrictioru|k is continuous. Fort > 0, we now consider the compact set

Ku:=Qui5NKNQuK) C KNQy,
and the open sé&i,, := Q,, \ K,. Note that
s
Ul = 19\ Q| + QA K[+ 12\ Qu(K) < 5 +2|Q\K[ <s - foru>0. (4.3)
As a consequence, forQ u <A we havelK,| > |Q,| —s> |Q)|—s> 0 and thuK, # @.

Property(S, ) and the continuity ofijx imply that TWA > 0. Thus, again by the continuity of
A
ulk, there exist® € (0,min{A,&}) such that

rﬂinv“>0 forallp e [A —9,A].

U
Consequently, fop € (A —,A), the functionv, is an antisymmetric supersolution of the
problem
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whereas\;(U,) > ¢, by (4.3) and the choice &f Hencev, > 0 in H, by Propositio 35, and
thus(S,) holds by Claim 1. This proves Claim 2.

To finish the proof, we consider
Ao:=inf{A € (0,¢) : (S,) holdsforallA € (A,6)} € [0,0).

We then have,, > 0inH,,. Hence Claim 1 and Claim 2 imply thag = 0. Since the procedure
can be repeated in the same way starting frofnwe find thatvo = 0. Hence the function has
the asserted symmetry and monotonicity properties.
It remains to show[ (1]13). So I& C Q be compact. Replacing by K UQu(K) if necessary,
we may assume that is symmetric with respect tQp. LetK’ := {x € K : x; < 0}. Since for
A > 0 sufficiently smallQ, (K) is a compact subset €, , the property(S, ) and the symmetry
of u then imply that
essinfu = essinfu > essinfv, > 0,
K K! Qi (K')

as claimed in[(113).

5 Proof of a variant symmetry result

In this section we prove Theordm 1.4, which is concerned thigrtlass of even kernel functions
satisfying (J2)’ in place of (J2). Throughout this section, we consider a symmetric kernel
J: RN\ {0} — [0, =) satisfying(J1). We fix an open affine half spatec RN, and we consider
the notation of Sectionl 3. Moreover, we assume the symmathyn@onotonicity assumptions
(3.3) and[(3.R), so that Lemrha B.2 and Propositioh 3.5 aritable In order to derive a variant
of the strong maximum principle given in Proposition]3.6, iw&oduce the following strict
monotonicity condition:

There existso > 0 such thatl(x—y) > J(x—vy) for all x,y € H with [x—y| <ro  (5.1)

We then have the following.

Proposition 5.1. Assume that J satisfi¢d1), (3.1), [3.2) and[(5]1). Moreover, let d H be a
subdomain and € L*(U). Furthermore, let v be an antisymmetric supersolutiori_ d{3uch
thatv>0a.e. in H.

Then either v= 0 a.e. in a neighborhood a7, or

esKsinfv >0 for every compact subset®&U.

We stress that, in contrast to Proposition 3.6, we requinmectedness & here.

Proof. LetW denote the set of pointse U such that e_?s)im‘> 0 for r > O sufficiently small,
Br(y

and letro > 0 be as in[(5.11). We claim the following.

If Xo €U is such thav £ 0 in Br?o (X0), thenxg € W. (5.2)
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To prove this, letxo € U be such that # 0 in Bro (X0). Then there exists a bounded 8&tC
HN By (Xo) of positive measure witky ¢ M and such that

0= ipﬂfv> 0 (5.3)

By LemmaZ1, we may fix & r < Zmin{ro, dist(xo, [RN '\ H]UM)} such that\1 (B (X)) >
[[Cllieu)- Next, we puldo := By (o) andU := Bgr (o) UQ(Bsr (Xo0)). Moreover, we define the
functionsf € CZ2(RN) andw € 7 (U{), depending om > 0, as in the proof of Propositidn_3.6.
As noted therew is antisymmetric and satisfies

w=0 onH\ (UgUM), w=a onM. (5.4)

As in the proof of Proposition 3.6, we also see that

W) <Ca[9(0dx  forall ¢ € Z(Uo).g >0
Uo

with .
Ca:=C+sup J(x—y)dy—ainf [(I(x—y)—JI(x—Y))dy
xeUg xcUo
Q(Uo) M

SinceUg C HN Bro (X0) andM C H N B (xo), (6.1) and the continuity of the functiox—
Ju(A(x—y) —=JI(x—y)) dyonUq imply that

inf [ (J(x—y)—J(x,y)) dy>0

xeU,
oM

Hence we may proceed precisely as in the proof of Propo$giéno prove thatv > g >0a.e.
in B (xo) for a > 0 sufficiently large, so thag € W. Hence[(5.R) is true.

From [5.2) it immediately follows that/ is both open and closed . Moreover, ifv # 0 in
{xeH :dist(x,U) < 2}, thenW is nonempty and therefol® = U by the connectedness of
U. This ends the proof. O

Next we complete the proof of Theorém]1.4. So throughout ¢éneainder of this section,
we assume that: RN\ {0} — [0,) is even and satisfigd1) and(J2)’, Q c RN satisfieg D)
and the nonlinearity satisfiedF;) and(F,). Moreover, we let € L*(Q)N2(Q) denote an a.e.
positive solution of(P). ForA € R, we letH,, Q,, Q,, ¢, andv, be defined as in Section 4,

and again we put := supx;. As a consequence ¢fi1) and (J2)', we may assume thak
xeQ

satisfies[(311)(3]2) an@ (5.1) with replaced byH, for A # 0 (the argument of Remalrk 3.1 still

applies). As in Sectionl4, we then consider the statement

(S) esKsinva >0 for every compact subsktC Q, .

We wish to show(S, ) for all A € (0,¢). As in Section $4, we find < (0, ¢) such that

vy >0 a.e.inHy, forallA €leg,?). (5.5)
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We now show
Claim 1: If vy > Oa.e. in H, for someA € (0,¢), then(S,) holds.

To prove this, we argue by contradiction.(8, ) does not hold, then, by Propositibn5.1, there
exists a connected componedt of Q, and a neighborhoodll of Q' such thatvy =0 in N.
However, since\ € (0,), the seN := Q) (N\ Q)N Q has positive measure argl= 0 in N by
the antisymmetry of,. Howevery = —uonN, sou= 0 a.e. orl\, contrary to the assumption
thatu > 0 a.e. inQ. Thus Claim 1 is proved.

Precisely as in Sectidd 4 we may now show

Claim 2: If (Sy) holds for some\ € (0,/), then there i € (0,A) such that(S,) holds for all
HeA—-9,A).

Moreover, based of_(3.5), Claim 1 and Claim 2, we may now fitlishproof of Theorern 114
precisely as in the end of Sectigh 4.
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