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Abstract

We consider the nonlinear problem

(P)

{

Iu = f (x,u) in Ω,

u= 0 onRN \Ω

in an open bounded setΩ ⊂ R
N, whereI is a nonlocal operator which may be anisotropic

and may have varying order. We assume mild symmetry and monotonicity assumptions on
I , Ω and the nonlinearityf with respect to a fixed direction, sayx1, and we show that any
nonnegative weak solutionu of (P) is symmetric inx1. Moreover, we have the following
alternative: Eitheru ≡ 0 in Ω, or u is strictly decreasing in|x1|. The proof relies on
new maximum principles for antisymmetric supersolutions of an associated class of linear
problems.

Keywords.Nonlocal Operators· Maximum Principles· Symmetries

1 Introduction

In this work we study the following class of nonlocal and semilinear Dirichlet problems in a
bounded open setΩ ⊂ R

N:

(P)

{

Iu = f (x,u) in Ω;

u= 0 onRN \Ω.

Here the nonlinearityf : Ω×R→ R is a measurable function with properties to be specified
later, andI is a nonlocal linear operator. Due to various applications in physics, biology and
finance with anomalous diffusion phenomena, nonlocal problems have gained enormous at-
tention recently. In particular, problem(P) has been studied withI = (−∆) α

2 , the fractional
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Laplacian of orderα ∈ (0,2). In this case, special properties of the fractional Laplacian have
been used extensively to study existence, regularity and symmetry of solutions to(P). In partic-
ular, some approaches rely on available Green function representions associated with(−∆) α

2 ,
(see e.g. [6,7,10–12,16]), whereas other techniques are based on a representation of(−∆) α

2 as a
Dirichlet-to-Neumann map (see e.g [8,9,19]). These usefulfeatures of the fractional Laplacian
are closely linked to its isotropy and its scaling laws. However, in the modeling of anisotropic
diffusion phenomena and of processes which do not exhibit similar properties, it is necessary
to study more general nonlocal operatorsI . In this spirit, general classes of nonlocal operators
have been considered e.g. in [17,18,27].
In the present work we consider(P) for a class of nonlocal operatorsI which includes the
fractional Laplacian but also more general operators whichmay be anisotropic and may have
varying order. More precisely, the class of operatorsI in (P) is related to nonnegative nonlocal
bilinear forms of the type

J (u,v) =
1
2

∫

RN

∫

RN

(u(x)−u(y))(v(x)−v(y))J(x−y) dxdy (1.1)

with a measurable functionJ : RN \{0} → [0,∞). We assume thatJ is even, i.e,J(−z) = J(z)
for z∈ R

N \{0}. Moreover, we assume the following integral condition:

(J1)
∫

RN\B1(0)

J(z) dz+
∫

B1(0)

|z|2J(z) dz< ∞ and
∫

RN

J(z) dz= ∞.

By similar arguments as in the recent paper [18], we shall seein Section 2 below that this
assumption ensures thatJ is closed and symmetric quadratic form inL2(Ω) with a dense
domain given by

D(Ω) := {u : RN → R measurable :J (u,u) < ∞ andu≡ 0 onRN \Ω} (1.2)

Here and in the following, we identifyL2(Ω) with the space of functionsu∈ L2(RN) with u≡ 0
onRN \Ω. Consequently,J is the quadratic form of a unique self-adjoint operatorI onL2(Ω),
which also satisfies

[Iu](x) = lim
ε→0

∫

|y−x|≥ε

[u(x)−u(y)]J(x−y)dy for u∈ C 2
c (Ω), x∈R

N

see Corollary 2.4 below. One may study solutionsu of (P) in strong sense, requiring thatu is
contained in the domain of the operatorI . However, it is more natural to consider the weaker
notion of solutions given by the quadratic formJ itself. More precisely, we call a function
u∈ D(Ω) a solution of(P) if the integral

∫

Ω f (x,u(x))ϕ(x) dxexists for allϕ ∈ D(Ω) and

J (u,ϕ) =

∫

Ω

f (x,u(x))ϕ(x) dx for all ϕ ∈ D(Ω),

We note that the fractional LaplacianI := (−∆)α/2 corresponds to the kernelJ(z)= cN,α |z|−N−α

with cN,α = α(2−α)π−N/22α−2 Γ(N+α
2 )

Γ(2− α
2 )

. Our paper is motivated by recent symmetry results for
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nonlinear equations involving the fractional Laplacian (see [4,6,10,11,16,21]). More precisely,
we present a general approach, based on maximum principles for antisymmetric functions, to
investigate symmetry properties of bounded nonnegative solutions of (P) in bounded Steiner
symmetric open setsΩ. We claim that this approach is simpler and more general thanthe
techniques applied in the papers cited above. In particular, it also applies to anisotropic opera-
tors and operators of variable order. To state our main symmetry result, we first introduce the
following geometric assumptions onJ and the setΩ.

(D) Ω ⊂R
N is an open bounded set which is Steiner symmetric inx1, i.e. for everyx∈ Ω and

s∈ [−1,1] we have(sx1,x2, . . . ,xN) ∈ Ω.

(J2) The kernelJ is strictly monotone inx1, i.e. for all z′ ∈ R
N−1, s, t ∈ R with |s| < |t| we

haveJ(s,z′)> J(t,z′).

Note that(J2) in particular implies thatJ is positive onRN \{0}. We may now state our main
symmetry result.

Theorem 1.1. Let (J1),(J2) and (D) be satisfied, and assume that the nonlinearity f has the
following properties.

(F1) f : Ω×R→ R, (x,u) 7→ f (x,u) is a Carath́eodory function such that for every bounded
set K⊂R there exists L= L(K)> 0 with

sup
x∈Ω

| f (x,u)− f (x,v)| ≤ L|u−v| for u,v∈ K.

(F2) f is symmetric and monotone in x1, i.e. for every u∈ R, x∈ Ω and s∈ [−1,1] we have
f (sx1,x2, . . . ,xN,u)≥ f (x,u).

Then every nonnegative solution u∈ L∞(Ω)∩D(Ω) of (P) is symmetric in x1. Moreover, either
u≡ 0 in R

N, or u is strictly decreasing in|x1| and therefore satisfies

essinf
K

u> 0 for every compact set K⊂ Ω. (1.3)

Here and in the following, ifΩ satisfies(D) andu : Ω → R is measurable, we say thatu is

• symmetric in x1 if u(−x1,x′) = u(x1,x′) for almost everyx= (x1,x′) ∈ Ω.

• strictly decreasing in|x1| if for everyλ ∈R\{0} and every compact setK ⊂{x∈ Ω : x1
λ > 1}

we have
essinf

x∈K

[

u(2λ −x1,x2, . . . ,xN)−u(x)
]

> 0.

Remark 1.2. We wish to single out a particular class of operators satisfying (J1) and(J2). Let
α ,β ∈ (0,2), c> 0 and consider a measurable mapk : (0,∞)→ (0,∞) such that

ρ−N

c
≤ k(ρ)≤ cρ−N−α for ρ ≤ 1 and k(ρ)≤ cρ−N−β for ρ > 1.



Symmetry via antisymmetric maximum principles in nonlocalproblems of variable order 4

Suppose moreover thatk is strictly decreasing on(0,∞), and let| · |♯ denote a norm onRN with
the property that|(s,z′)|♯ < |(t,z′)|♯ for everys, t ∈ R with |s| < |t| andz′ ∈ R

N−1. Then the
kernel

J : RN \{0} → R, J(z) = k(|z|♯)

satisfies(J1) and(J2). As remarked before, the case where| · |♯ = | · | is the euclidean norm
onR

N andk(ρ) = cN,α ρ−N−α corresponds to the fractional LaplacianI = (−∆)α/2. The class
defined here also includes operators of order varying between 0 andα ∈ (0,2). In particular,
zero order operators are admissible. Moreover, the choice of non-euclidean norms| · |♯ leads to
anisotropic operators. In particular, for 1≤ p< ∞, the norm

|x|♯ = |x|p :=
(

N

∑
i=1

|xi |
p
)1/p

for x∈R
N (1.4)

has the required properties.

As a direct consequence of Theorem 1.1 we have the following.Hereej ∈ R
N denotes the

j-th coordinate vector forj = 1, . . . ,N.

Corollary 1.3. Let J(z) = k(|z|p), where k is as in Remark 1.2,1≤ p< ∞ and | · |p is given in
(1.4).

(i) Let Ω⊂R
N be Steiner symmetric in x1, . . . ,xN , i.e., for every x∈Ω, j = 1, . . . ,N and s∈ [0,2]

we have x−sxjej ∈Ω. Moreover, let f fulfill(F1) and be symmetric and monotone in x1, . . . ,xN,
i.e. for every u∈ R, x∈ Ω, j = 1, . . . ,N and s∈ [0,2] we have f(x− sxjej ,u) ≥ f (x,u). Then
every nonnegative solution u∈ L∞(Ω)∩D(Ω) of (P) is symmetric in x1, . . . ,xN. Moreover,
either u≡ 0 in R

N, or u is strictly decreasing in|x1|, . . . , |xN| and therefore satisfies (1.3).

(ii) If p = 2, Ω ⊂ R
N is a ball centered in0 and f fulfills (F1), (F2) and is radial in x i.e.

f (x,u) = f (|x|e1,u) for x ∈ Ω, then every nonnegative solution u∈ L∞(Ω)∩D(Ω) of (P) is
radially symmetric. Moreover, either u≡ 0 in R

N, or u is strictly decreasing in|x| and therefore
satisfies (1.3).

In the special case whereI = (−∆) α
2 , α ∈ (0,2), Theorem 1.1 has been obtained by the

authors in [21, Corollary 1.2] as a corollary of result on asymptotic symmetry for the corre-
sponding parabolic problem. While some of the parabolic estimates in [21] are not available for
the class of nonlocal operators considered here, we will be able to formulate elliptic counter-
parts of some of the tools from [21] in the present setting. Independently from our work [21],
a weaker variant of Theorem 1.1 in the special caseI = (−∆) α

2 , restricted to strictly positive
solutions, is proved in the very recent preprint [4, Theorem1.2], where also related problems
for the fractional Laplacian with singular local linear terms are considered. Corollary 1.3(ii) for
I =(−∆) α

2 , α ∈ (0,2) has been proved first by Birkner, López-Mimbela and Wakolbinger [6] for
I = (−∆) α

2 and a nonlinearityf = f (u) which is nonnegative and increasing. In the very recent
papers [10, 16], Corollary 1.3(ii) is proved for strictly positive solutions in the caseI = (−∆) α

2

under different assumptions onf . The proofs in these papers rely on the explicit form of the
Green function associated with(−∆) α

2 in balls.
In order to explain the difference between considering nonnegative or positive solutions, we
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point out that the conclusion (1.3) can be seen as a strong maximum principle for bounded
solutions of(P) in open sets satisfying(D) which is not true for the corresponding Dirichlet
problem

{

−∆u= f (x,u) in Ω;

u= 0 on∂Ω.
(1.5)

Note that we do not assumeΩ to be connected in Theorem 1.1, but even in domainsΩ ⊂R
N the

assumptions(D) and(F1), (F2) do not guarantee that nonnegative solutions of (1.5) are either
strictly positive or identically zero inΩ, see e.g. [22] for examples for nonnegative solutions of
(1.5) with interior zeros. The positivity property (1.3) can be seen as a consequence of the long
range nonlocal interaction enforced by(J2). Note that(J2) is not satisfied for kernels of the
form

z 7→ J(z) = 1Br(0)|z|
−N−α with α ∈ (0,2), r > 0. (1.6)

It is therefore natural to ask whether a result similar to Theorem 1.1 also holds for kernels of
the type (1.6) which vanish outside a compact set and therefore model short range nonlocal
interaction. Related to this case, we have to following result for a.e. positive solutions of(P) in
Ω.

Theorem 1.4.LetΩ ⊂R
N satisfy(D), and let the even kernel J: RN \{0}→ [0,∞) satisfy(J1)

and

(J2)′ For all z′ ∈ R
N−1, s, t ∈ R with |s| ≤ |t| we have J(s,z′) ≥ J(t,z′). Moreover, there is

r0 > 0 such that

J(s,z′)> J(t,z′) for all z′ ∈ R
N−1 and s, t ∈ R, with |z′| ≤ r0 and |s|< |t| ≤ r0.

Furthermore, suppose that the nonlinearity satisfies(F1) and (F2). Then every a.e. positive
solution u∈ L∞(Ω)∩D(Ω) of (P) is symmetric in x1 and strictly decreasing in|x1| on Ω.
Consequently, it satisfies (1.3).

Note that the kernel class given by (1.6) satisfies(J1) and(J2)′. We recall that Gidas, Ni
and Nirenberg [20] proved the corresponding symmetry result for strictly positive solutions of
(1.5) under some restrictions onΩ which were then removed in [5]. These results rely on the
moving plane method which, in other variants, had already been introduced in [1, 26]. For
nonlocal problems involving the fractional Laplacian, themoving plane method was used in a
stochastic framework by Birkner, López-Mimbela and Wakolbinger in the above-mentioned pa-
per [6]. Chen, Li and Ou [11] used the explicit form of the inverse of the fractional Laplacian to
prove symmetry results forI = (−∆)

α
2 and f (u) = u(N+α)/(N−α) in R

N. For this they developed
a variant of the moving plane method for integral equations.Similar methods were used in the
above-mentioned papers [10,16].
The results on the present paper rely on a different variant of the moving plane method which
partly extends recent techniques of [15, 21, 25] and, independently, [4]. More precisely, we
show that(J1) and(J2) – or, alternatively,(J2)′ – are sufficient assumptions for the bilinear
form J to provide maximum principles for antisymmetric solutionsof associated linear opera-
tor inequalities in weak form, see Section 3. Here antisymmetry refers to a reflection at a given
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hyperplane. Combining different (weak and strong) versions of these maximum principles, we
then develop a framework for the moving plane method for nonnegative solutions of(P) which
are not necessarily strictly positive. The approach seems more direct and more flexible than the
ones in [10,11,16] since it does not depend on Green functionrepresentations.
The paper is organized as follows. In Section 2 we collect useful properties of the nonlocal bi-
linear forms which we consider. Section 3 is devoted to classes of linear problems related to(P)
and hyperplane reflections. In particular, we prove a small volume type maximum principle and
a strong maximum principle for antisymmetric supersolutions of these problems. In Section 4
we complete the proof of Theorem 1.1, and in Section 5 we complete the proof of Theorem 1.4.

Acknowledgment: Part of this work was done while the first author was visiting AIMS-
Senegal. He would like to thank them for their kind hospitality.

2 Preliminaries

We fix some notation. For subsetsD,U ⊂R
N we write dist(D,U) := inf{|x−y| : x∈D, y∈U}.

If D = {x} is a singleton, we write dist(x,U) in place of dist({x},U). ForU ⊂ R
N andr > 0

we considerBr(U) := {x∈ R
N : dist(x,U) < r}, and we let, as usualBr(x) = Br({x}) be the

open ball inRN centered atx ∈ R
N with radius r > 0. For any subsetM ⊂ R

N, we denote
by 1M : RN → R the characteristic function ofM and by diam(M) the diameter ofM. If M is
measurable|M| denotes the Lebesgue measure ofM. Moreover, ifw : M → R is a function,
we let w+ = max{w,0} resp. w− = −min{w,0} denote the positive and negative part ofw,
respectively.

Throughout the remainder of the paper, we assume thatJ : RN \{0} → [0,∞) is even and
satisfies(J1). We letJ be the corresponding quadratic form defined in (1.1) and, foran open
setΩ ⊂R, we considerD(Ω) as defined in (1.2). It follows from(J1) thatJ is positive on a set
of positive measure. Thus, by [18, Lemma 2.7] we haveD(Ω)⊂ L2(Ω) and

Λ1(Ω) := inf
u∈D(Ω)

J (u,u)

‖u‖2
L2(Ω)

> 0 for every open bounded setΩ ⊂ R
N, (2.1)

which amounts to a Poincaré-Friedrichs type inequality. We will need lower bounds forΛ1(Ω)
in the case where|Ω| is small. For this we set

Λ1(r) := inf{Λ1(Ω) : Ω ⊂ R
N open,|Ω|= r} for r > 0.

Lemma 2.1. We haveΛ1(r)→ ∞ as r→ 0.

Proof. Let

Jc := {z∈ R
N \{0} : J(z)≥ c} and Jc := {z∈ R

N \{0} : J(z)< c}

for c∈ [0,∞]. We also consider the decreasing rearrangementd : (0,∞)→ [0,∞] of J given by
d(r) = sup{c≥ 0 : |Jc| ≥ r}. We first note that

|Jd(r)| ≥ r for everyr > 0 (2.2)
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Indeed, this is obvious ifd(r) = 0, sinceJ0 = R
N \ {0}. If d(r) > 0, we have|Jc| ≥ r for

everyc< d(r) by definition, whereas|Jc|< ∞ for everyc> 0 as a consequence of the fact that
J∈ L1(RN\B1(0)) by (J1). Consequently, sinceJd(r) =

⋂

c<d(r)
Jc, we have|Jd(r)|= inf

c<d(r)
|Jc| ≥ r.

Next we claim that
Λ1(r)≥

∫

Jd(r)

J(z)dz for r > 0. (2.3)

Indeed, letr > 0 andΩ ⊂ R
N be measurable with|Ω|= r. Foru∈ D(Ω) we have

J (u,u) =
1
2

∫

RN

∫

RN

(u(x)−u(y))2J(x−y) dxdy

=
1
2

∫

Ω

∫

Ω

(u(x)−u(y))2J(x−y) dxdy+
∫

Ω

u2(x)
∫

RN\Ω

J(x−y) dy dx

≥ inf
x∈Ω

(

∫

RN\Ωx

J(y) dy

)

‖u‖2
L2(Ω) (2.4)

with Ωx := x+Ω. Let d := d(r). Since|Jd| ≥ r = |Ω| by (2.2), we have|Jd \Ωx| ≥ |Ωx \Jd|
and thus, for everyx∈ Ω,

∫

RN\Ωx

J(y) dy=
∫

RN\Jd

J(y) dy+
∫

Jd\Ωx

J(y) dy−
∫

Ωx\Jd

J(y) dy

≥

∫

Jd

J(y) dy+
(

|Jd \Ωx|− |Ωx\Jd|
)

d ≥

∫

Jd

J(y) dy.

Combining this with (2.4), we obtain (2.3), as claimed. As a consequence of the second property
in (J1), the decreasing rearrangement ofJ satisfiesd(r)→ ∞ asr → 0 and

∫

Jd(r)

J(y) dy→ ∞ asr → 0.

Together with (2.3), this shows the claim.

Proposition 2.2. Let Ω ⊂ R
N be open and bounded. ThenD(Ω) is a Hilbert space with the

scalar productJ .

Proof. We argue similarly as in the proof of [18, Lemma 2.3]. Let(un)n ⊂ D(Ω) be a Cauchy
sequence. By (2.1) and the completeness ofL2(Ω), we have thatun → u∈ L2(Ω) for a function
u ∈ L2(Ω). Hence there exists a subsequence such thatunk → u almost everywhere inΩ as
k→ ∞. By Fatou’s Lemma, we therefore have that

J (u,u) ≤ lim inf
k→∞

J (unk,unk)≤ sup
k∈N

J (unk,unk)< ∞,
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so thatu∈ D(Ω). Applying Fatou’s Lemma again, we find that

J (unk−u,unk −u)≤ lim inf
j→∞

J (unk −unj ,unk−uuj )≤ sup
j≥k

J (unk−unj ,unk −uuj ) for k∈N.

Since(un)n is a Cauchy sequence with respect to the scalar productJ , it thus follows that
lim
k→∞

unk = u and therefore also lim
n→∞

un = u in D(Ω). This shows the completeness ofD(Ω).

Proposition 2.3. (i) We haveC 0,1
c (RN)⊂ D(RN).

(ii) Let v∈ C 2
c (R

N). Then the principle value integral

[Iv](x) := P.V.
∫

RN

(v(x)−v(y))J(x−y)dy= lim
ε→0

∫

|x−y|≥ε

(v(x)−v(y))J(x−y)dy (2.5)

exists for every x∈ R
N. Moreover, Iv∈ L∞(RN), and for every bounded open setΩ ⊂ R

N and
every u∈ D(Ω) we have

J (u,v) =
∫

RN

u(x)[Iv](x)dx.

Proof. (i) Let u∈ C 0,1
c (RN), and letK > 0, R> 2 be such that supp(u) ⊂ BR−2(0),

|u(x)| ≤ K and |u(x)−u(y)| ≤ K|x−y| for x,y∈ R
N, x 6= y.

Then, as a consequence of(J1),

2J (u,u) =
∫

BR(0)

∫

BR(0)

(u(x)−u(y))2J(x−y) dxdy+2
∫

BR(0)

u2(x)
∫

RN\BR(0)

J(x−y) dydx

≤ K2
∫

BR(0)

∫

BR(0)

|x−y|2J(x−y) dxdy+2K2
∫

BR−2(0)

∫

RN\BR(0)

J(x−y) dydx

≤ 2K2|BR(0)|
(

∫

B2R(0)

|z|2J(z) dz+
∫

RN\B1(0)

J(z) dz
)

< ∞

and thusu∈ D(RN).
(ii) Sincev∈ C 2

c (R
N), there exist constantsδ ,K > 0 such that

|2v(x)−v(x+z)−v(x−z)| ≤ K|z|2 for all x,z∈ R
N with |z| ≤ δ . (2.6)

Puth(x,y) := (v(x)− v(y))J(x− y) for x,y∈ R
N, x 6= y. For everyx∈ R

N, ε ∈ (0,δ ) we then
have, sinceJ is even,

∫

ε≤|y−x|≤δ

h(x,y)dy=
∫

ε≤|z|≤δ

[v(x)−v(x+z)]J(z)dz=
∫

ε≤|z|≤δ

[v(x)−v(x−z)]J(z)dz

=
1
2

∫

ε≤|z|≤δ

[2v(x)−v(x+z)−v(x−z)]J(z)dz.
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By the first inequality in(J1), (2.6) and Lebesgue’s theorem we thus conclude the existence of
the limit

lim
ε→0

∫

ε≤|y−x|≤δ

h(x,y)dy=
1
2

∫

0≤|z|≤δ

[2v(x)−v(x+z)−v(x−z)]J(z)dz.

Moreover we have forx∈R
N andε ∈ (0,δ )

∫

|y−x|≥ε

h(x,y)dy≤ 2‖v‖L∞(RN)

∫

RN\Bδ (0)

J(z)dz+
K
2

∫

Bδ (0)

|z|2J(z)dz=: K′, (2.7)

where the right hand side is finite by the first inequality in(J1). In particular,[Iv](x) is well
defined by (2.5), and|[Iv](x)

∣

∣ ≤ K′ for x∈ R
N, so thatIv ∈ L∞(RN). Next, letΩ ⊂ R

N be open
and bounded andu ∈ D(Ω), so that alsou ∈ L2(Ω). Then we have, by (2.7) and Lebesgue’s
Theorem,

J (u,v) =
1
2

lim
ε→0

∫

|x−y|≥ε

(u(x)−u(y))h(x,y)dxdy

= lim
ε→0

∫

RN

u(x)
∫

|y−x|≥ε

h(x,y)dydx=
∫

RN

u(x)
[

lim
ε→0

∫

|y−x|≥ε

h(x,y)dy
]

dx=
∫

RN

u(x)[Iv](x)dx.

The proof is finished.

Corollary 2.4. Let Ω ⊂ R
N be open and bounded. ThenJ is a closed quadratic form with

dense form domainD(Ω) in L2(Ω). Consequently,J is the quadratic form of a unique self-
adjoint operator I in L2(Ω). Moreover, C2

c(Ω) is contained in the domain of I, and for every
v∈ C 2

c (Ω) the function Iv∈ L2(Ω) is a.e. given by (2.5).

Proof. SinceC 0,1
c (Ω)⊂ L2(Ω) is dense,D(Ω) is a dense subset ofL2(Ω) by Proposition 2.3(i).

Moreover, the quadratic formJ is closed inL2(Ω) as a consequence of (2.1) and Lemma 2.2.
HenceJ is the quadratic form of a unique self-adjoint operatorI in L2(Ω) (see e.g. [23,
Theorem VIII.15, pp. 278]). Moreover, for everyv ∈ C 2

c (Ω), u ∈ D(Ω) we have|J(u,v)| ≤
|Ω|‖Iv‖L∞(Ω)‖u‖L2(Ω) by Proposition 2.3(ii). Consequently,v is contained in the domain ofI
and satisfiesJ(u,v) =

∫

RN u[Iv]dx for everyu∈ D(Ω). From Proposition 2.3(ii) it then follows
that Iv is a.e. given by (2.5).

Next, we wish to extend the definition ofJ (v,ϕ) to more general pairs of functions(v,ϕ).
In the following, for a measurable subsetU ′ ⊂ R

N, we defineH (U ′) as the space of all func-
tionsv∈ L2(RN) such that

ρ(v,U ′) :=
∫

U ′

∫

U ′

(v(x)−v(y))2J(x−y) dxdy< ∞. (2.8)

Note thatD(RN)∩L2(RN)⊂H (U ′) for any measurable subsetU ′⊂R
N, and thus alsoD(U)⊂

H (U ′) for any bounded open setU ⊂ R
N by (2.1).
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Lemma 2.5. Let U′ ⊂ R
N be an open set and v,ϕ ∈ H (U ′). Moreover, suppose thatϕ ≡ 0 on

R
N \U for some subset U⊂U ′ with dist(U,RN \U ′)> 0. Then

∫

RN

∫

RN

|v(x)−v(y)||ϕ(x)−ϕ(y)|J(x−y)dxdy< ∞, (2.9)

and thus

J (v,ϕ) :=
1
2

∫

RN

∫

RN

(v(x)−v(y))(ϕ(x)−ϕ(y))J(x−y)dxdy

is well defined.

Proof. SinceJ satisfies(J1), we haveK :=
∫

R
N \Br (0)

J(z)dz< ∞ with r := dist(U,RN \U ′)> 0.
As a consequence,
∫

RN

∫

RN

|v(x)−v(y)||ϕ(x)−ϕ(y)|J(x−y)dxdy

=
∫

U ′

∫

U ′

|v(x)−v(y)||ϕ(x)−ϕ(y)|J(x−y) dxdy+2
∫

U

∫

RN\U ′

|v(x)−v(y)||ϕ(x)|J(x−y) dydx

≤
1
2

[

ρ(v,U ′)+ρ(ϕ ,U ′)
]

+
∫

U

∫

RN\U ′

[

2
(

|v(x)|2+ |v(y)|2
)

+ |ϕ(x)|2
]

J(x−y) dydx

≤
1
2

[

ρ(v,U ′)+ρ(ϕ ,U ′)
]

+K
(

4‖v‖2
L2(RN)+‖ϕ‖2

L2(RN)

)

< ∞.

Lemma 2.6. If U ′ ⊂ R
N is open and v∈ H (U ′), then v± ∈ H (U ′) andρ(v±,U ′)≤ ρ(v,U ′).

Proof. We havev± ∈ L2(RN) sincev∈ L2(RN). Moreover,v+(x)v−(x) = 0 for x∈R
N and thus

ρ(v,U ′) = ρ(v+,U ′)+ρ(v−,U ′)−2
∫

U ′

∫

U ′

(v+(x)−v+(y))(v−(x)−v−(y))J(x−y) dxdy

= ρ(v+,U ′)+ρ(v−,U ′)+2
∫

U ′

∫

U ′

[v+(x)v−(y)+v+(y)v−(x)]J(x−y) dxdy

≥ ρ(v+,U ′)+ρ(v−,U ′).

The claim follows.

We close this section with a remark on assumption(J2).

Remark 2.7. Suppose that(J2) is satisfied. Then, for every fixedz′ ∈ R
N, the functiont 7→

J(t,z′) is strictly decreasing in|t| and therefore coincides a.e. onR with the functiont 7→
J̃(t,z′) := lim

s→t−
J(s,z′). HenceJ and the functionJ̃ differ only on a set of measure zero inRN.

ReplacingJ by J̃ if necessary, we may therefore deduce from(J2) the symmetry property

J(−t,z′) = J(t,z′) for everyz′ ∈ R
N−1, t ∈R. (2.10)

This will be used in the following section.
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3 The linear problem associated with a hyperplane reflection

In the following, we consider a fixed open affine half spaceH ⊂ R
N, and we letQ : RN → R

N

denote the reflection at∂H. For the sake of brevity, we sometimes write ¯x in place ofQ(x) for
x∈R

N. A functionv : RN →R
N is called antisymmetric (with respect toQ) if v(x̄) =−v(x) for

x∈ R
N. As before, we consider an even kernelJ : RN \{0} → [0,∞) satisfying(J1). We also

assume the following symmetry and monotonicity assumptions onJ:

J(x̄− ȳ) = J(x−y) for all x,y∈ R
N; (3.1)

J(x−y)≥ J(x− ȳ) for all x,y∈ H. (3.2)

Remark 3.1. If (J1), (J2) and (2.10) are satisfied and

H = {x∈ R
N : x1 > λ} or H = {x∈ R

N : x1 <−λ}

for someλ ≥ 0, then (3.1) and (3.2) hold. Ifλ > 0, thenJ also satisfies the following strict
variant of (3.2):

J(x−y)> J(x− ȳ) for all x,y∈ H. (3.3)

We will need this property in Proposition 3.6 below.

Lemma 3.2. Let J satisfy(J1), (3.1) and (3.2). Moreover, let U′ ⊂ R
N be an open set with

Q(U ′) = U ′, and let v∈ H (U ′) be an antisymmetric function such that v≥ 0 on H\U for
some open bounded set U⊂ H with U ⊂ U ′. Then the function w:= 1H v− is contained in
D(U) and satisfies

J (w,w)≤−J (v,w) (3.4)

Proof. We first show thatw∈ H (U ′). Clearly we havew∈ L2(RN), sincev∈ L2(RN). More-
over, by (3.1), the symmetry ofU ′, the antisymmetry ofv and (3.2) we have

ρ(v,U ′) =

∫

U ′∩H

∫

U ′∩H

(v(x)−v(y))2J(x−y) dxdy

+

∫

U ′\H

∫

U ′\H

(v(x)−v(y))2J(x−y) dxdy+2
∫

U ′\H

∫

U ′∩H

(v(x)−v(y))2J(x−y) dxdy

= 2
∫

U ′∩H

∫

U ′∩H

[

(v(x)−v(y))2J(x−y)+ (v(x)+v(y))2J(x− ȳ)
]

dxdy

≥

∫

U ′∩H

∫

U ′∩H

[

(v(x)−v(y))2J(x−y)+ [(v(x)−v(y))2+(v(x)+v(y))2]J(x− ȳ)
]

dxdy

≥
∫

U ′∩H

∫

U ′∩H

[

(v(x)−v(y))2J(x−y)+2v2(x)J(x− ȳ)
]

dxdy

=
∫

U ′

∫

U ′

(1Hv(x)−1Hv(y))2J(x−y) dxdy= ρ(1H v,U ′) (3.5)
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and thusρ(1H v,U ′)< ∞. Hence 1H v∈H (U ′) and thus alsow∈H (U ′) by Lemma 2.6. Since
w≡ 0 in R

N \U , the right hand side of (3.4) is well defined and finite by Lemma2.5. To show
(3.4), we first note that

[w+v]w= [1Hv++1RN\Hv]1Hv− ≡ 0 onRN

and therefore

[w(x)−w(y)]2+[v(x)−v(y)][w(x)−w(y)] =−
(

w(x)[w(y)+v(y)]+w(y)[w(x)+v(x)]
)

for x,y ∈ R
N. Using this identity in the following together with the antisymmetry ofv, the

symmetry properties ofJ and the fact thatw≡ 0 onRN \H, we find that

J (w,w)+J (v,w) =−
∫

H

∫

RN

w(x)[w(y)+v(y)]J(x−y)dydx

=−

∫

H

∫

RN

w(x)[1H(y)v
+(y)+1RN\Hv(y)]J(x−y)dydx

=−

∫

H

∫

H

w(x)[v+(y)J(x−y)−v(y)J(x− ȳ)]dydx≤ 0,

where in the last step we used the fact thatv+(y)≥ v(y) andJ(x−y)≥ J(x− ȳ)≥ 0 for x,y∈H.
Hence (3.4) is true, and in particular we haveJ (w,w) < ∞. Sincew ≡ 0 onR

N \U , it thus
follows thatw∈ D(U).

In order to implement the moving plane method, we have to dealwith the class of antisym-
metric supersolutions of a class of linear problems. A related notion was introduced in [21] in
a parabolic setting related to the fractional Laplacian.

Definition 3.3. LetU ⊂H be an open bounded set and letc∈ L∞(U). We call an antisymmetric
functionv : RN → R

N anantisymmetric supersolutionof the problem

Iv = c(x)v in U , v≡ 0 onH \U (3.6)

if v∈H (U ′) for some open bounded setU ′ ⊂R
N with Q(U ′) =U ′ andU ⊂U ′, v≥ 0 onH \U

and
J (u,ϕ)≥

∫

U

c(x)u(x)ϕ(x) dx for all ϕ ∈ D(U), ϕ ≥ 0. (3.7)

Remark 3.4. Assume(J1) and (3.1), and letΩ ⊂R
N be an open bounded set such thatQ(Ω∩

H)⊂ Ω. Furthermore, letf : Ω×R→ R be a Carathéodory function satisfying(F1) and such
that

f (x̄,τ)≥ f (x,τ) for everyτ ∈ R, x∈ H ∩Ω. (3.8)

If u∈ D(Ω) is a nonnegative solution of(P), thenv := u◦Q−u is an antisymmetric superso-
lution of (3.6) withU := Ω∩H andc∈ L∞(U) defined by

c(x) =







f (x,u(x̄))− f (x,u(x))
v(x)

if v(x) 6= 0;

0 if v(x) = 0.
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Indeed, sinceu∈ D(Ω), we havev∈ D(RN)∩L2(RN) and thusv∈ H (U ′) for any open set
U ′ ⊂ R

N. Moreover,v≥ 0 onH \U sinceu is nonnegative andu≡ 0 onH \U . Furthermore,
if ϕ ∈ D(U), thenϕ ◦Q−ϕ ∈ D(Ω) by the symmetry properties ofJ and sinceQ(U)⊂ Ω. If,
in addition,ϕ ≥ 0, then we have, using (3.1),

J (v,ϕ) = J (u◦Q−u,ϕ) = J (u,ϕ ◦Q−ϕ) =
∫

Ω

f (x,u)[ϕ ◦Q−ϕ ]dx

=

∫

Q(U)

f (x,u(x))ϕ ◦Qdx−
∫

U

f (x,u(x))ϕ dx=
∫

U

[ f (x̄,u(x̄))− f (x,u(x))]ϕ(x)dx≥
∫

U

c(x)vϕ dx.

Here (3.8) was used in the last step. The boundedness ofc follows from (F1).

We now have all the tools to establish maximum principles forantisymmetric supersolutions
of (3.6).

Proposition 3.5. Assume that J satisfies(J1), (3.1) and (3.2), and let U⊂ H be an open
bounded set. Let c∈ L∞(U) with ‖c+‖L∞(U) < Λ1(U), whereΛ1(U) is given in (2.1).
Then every antisymmetric supersolution v of (3.6) in U satisfies v≥ 0 a.e. in H.

Proof. By Lemma 3.2 we have thatw := 1Hv− ∈ D(U) andJ (w,w) ≤ −J (v,w). Conse-
quently,

Λ1(U)‖w‖2
L2(U) ≤ J (w,w)≤−J (v,w)≤−

∫

U

c(x)v(x)w(x) dx=
∫

U

c(x)w2(x) dx

≤ ‖c+‖L∞(U)‖w‖2
L2(U).

Since‖c+‖L∞(U) < Λ1(U) by assumption, we conclude that‖w‖L2(U) = 0 and hencev≥ 0 a.e.
in H.

We note that a combination of Proposition 3.5 with Lemma 2.1 gives rise to an “antisymmet-
ric” small volume maximum principle which generalizes the available variants for the fractional
Laplacian, see [15, Proposition 3.3 and Corollary 3.4] and [25, Lemma 5.1]. Next we prove a
strong maximum principle which requires the strict inequality (3.3).

Proposition 3.6. Assume that J satisfies(J1), (3.1) and (3.3). Moreover, let U⊂ H be an open
bounded set and c∈ L∞(U). Furthermore, let v be an antisymmetric supersolution of (3.6) such
that v≥ 0 a.e. in H. Then either v≡ 0 a.e. inRN, or

essinf
K

v> 0 for every compact subset K⊂U.

Proof. We assume thatv 6≡ 0 inR
N. For givenx0 ∈U , it then suffices to show that essinf

Br(x0)
v> 0

for r > 0 sufficiently small. Sincev 6≡ 0 in R
N andv is antisymmetric withv≥ 0 in H, there

exists a bounded setM ⊂ H of positive measure withxo 6∈ M and such that

δ := inf
M

v> 0. (3.9)
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By Lemma 2.1, we may fix 0< r < 1
4dist(x0, [R

N \H]∪M) such thatΛ1(B2r(x0))> ‖c‖L∞(U).
Next, we fix a functionf ∈ C 2

c (R
N) such that 0≤ f ≤ 1 onRN and

f (x) :=

{

1, for |x−x0| ≤ r,

0, for |x−x0| ≥ 2r.

Moreover we define

w : RN → R, w(x) := f (x)− f (x̄)+a
[

1M(x)−1M(x̄))
]

,

wherea> 0 will be fixed later. We also putU0 :=B2r(x0) andU ′
0 := B3r(x0)∪Q(B3r(x0)). Note

that the functionw is antisymmetric and satisfies

w≡ 0 onH \ (U0∪M), w≡ a on M. (3.10)

We claim thatw ∈ H (U ′
0). Indeed, by Proposition 2.3(i) we havef − f ◦ Q ∈ D(RN) ∩

L2(RN)⊂H (U ′
0), whereas 1M−1Q(M) ∈H (U ′

0) sinceM is bounded and[M∪Q(M)]∩U ′
0= /0.

Next, letϕ ∈ D(U0), ϕ ≥ 0. By Proposition 2.3(ii) we have

J ( f ,ϕ)≤C
∫

U0

ϕ(x) dx (3.11)

with C=C( f )> 0 independent ofϕ . Since

f (x̄)ϕ(x) = 1M(x)ϕ(x) = 1Q(M)(x)ϕ(x) = 0 for everyx∈ R
N,

we have

J (w,ϕ) = J ( f ,ϕ)−J ( f ◦Q,ϕ)+a
[

J (1M ,ϕ)−J (1Q(M),ϕ)
]

≤C
∫

U0

ϕ(x) dx+
∫

U0

∫

Q(U0)

ϕ(x) f (y)J(x−y) dydx

−a
[

∫

U0

∫

M

ϕ(x)J(x−y) dydx−
∫

U0

∫

Q(M)

ϕ(x)J(x−y) dydx
]

≤
(

C+ sup
x∈U0

∫

Q(U0)

J(x−y)dy
)

∫

U0

ϕ(x) dx−a
∫

U0

ϕ(x)
∫

M

[J(x−y)−J(x− ȳ)] dydx

≤Ca

∫

U0

ϕ(x)dx

with
Ca :=C+ sup

x∈U0

∫

Q(U0)

J(x−y)dy−a inf
x∈U0

∫

M

(J(x−y)−J(x− ȳ)) dy∈ R

SinceU0 ⊂ H, (3.3) and the continuity of the functionx 7→
∫

M(J(x− y)− J(x− ȳ)) dy onU0

imply that

inf
x∈U0

∫

M

(J(x−y)−J(x, ȳ)) dy> 0
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Consequently, we may fixa> 0 sufficiently large such thatCa ≤−‖c‖L∞(U0). Since 0≤ w≤ 1
in U0, we then have

J (w,ϕ)≤−‖c‖L∞(U0)

∫

U0

ϕ(x)dx≤
∫

U0

c(x)w(x)ϕ(x) dx. (3.12)

We now consider the function ˜v := v− δ
aw∈ H (U ′

0), which by (3.9) and (3.10) satisfies ˜v≥ 0
onH \U0. Hence, by assumption and (3.12), ˜v is an antisymmetric supersolution of the problem

I ṽ= c(x)ṽ in U0, ṽ≡ 0 onH \U0 (3.13)

Since‖c‖L∞(U0) < Λ1(U0), Proposition 3.5 implies that ˜v≥ 0 a.e. inU0, so thatv≥ δ
aw= δ

a > 0
a.e. inBr(x0). This ends the proof.

4 Proof of the main symmetry result

In this section we complete the proof of Theorem 1.1. So throughout this section, we assume
that J : RN \ {0} → [0,∞) is even and satisfies(J1) and (J2), Ω ⊂ R

N satisfies(D) and the
nonlinearity f satisfies(F1) and(F2). Moreover, we letu ∈ L∞(Ω)∩D(Ω) be a nonnegative
solution of(P). Forλ ∈ R, we consider the open affine half space

Hλ :=

{

{x∈R
N : x1 > λ} if λ ≥ 0;

{x∈R
N : x1 < λ} if λ < 0.

Moreover, we letQλ : RN → R
N denote the reflection at∂Hλ , i.e. Qλ (x) = (2λ − x1,x′).

By Remark 2.7, we may assume without loss of generality that (2.10) holds. As noted in
Remark 3.1,J therefore satisfies the symmetry and monotonicity conditions (3.1) and (3.3)
with H replaced byHλ for λ 6= 0. Letℓ := sup

x∈Ω
x1. SettingΩλ := Hλ ∩Ω for λ ∈R, we note that

Qλ (Ωλ )⊂ Ω for all λ ∈ (−ℓ,ℓ) andQ0(Ω) = Ω as a consequence of assumption(D). Then for
all λ ∈ (−ℓ,ℓ), Remark 3.4 implies thatvλ := u◦Qλ −u∈D(RN)∩L2(RN) is an antisymmetric
supersolution of the problem

Iv = cλ (x)v in Ωλ , v≡ 0 onHλ \Ωλ (4.1)

with

cλ ∈ L∞(Ωλ ) given by cλ (x) =







f (x,u(Qλ (x)))− f (x,u(x))
vλ (x)

, vλ (x) 6= 0;

0, vλ (x) = 0.

Note that, as a consequence of(F1) and sinceu∈ L∞(Ω), we have

c∞ := sup
λ∈(−ℓ,ℓ)

‖cλ‖L∞(Ωλ ) < ∞.
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We now consider the statement

(Sλ ) essinf
K

vλ > 0 for every compact subsetK ⊂ Ωλ .

Assuming thatu 6≡ 0 from now on, we will show(Sλ ) for all λ ∈ (0, ℓ). Since|Ωλ | → 0 as
λ → ℓ, Lemma 2.1 implies that there existsε ∈ (0, ℓ) such thatΛ1(Ωλ )> c∞ for all λ ∈ [ε , ℓ).
Applying Proposition 3.5 we thus find that

vλ ≥ 0 a.e. inHλ for all λ ∈ [ε , ℓ). (4.2)

We now show

Claim 1: If vλ ≥ 0 a.e. in Hλ for someλ ∈ (0, ℓ), then(Sλ ) holds.

To prove this, by Proposition 3.6 it suffices to show thatvλ 6≡ 0 in R
N. If, arguing by contra-

diction, vλ ≡ 0 in R
N, then∂Hλ is a symmetry hyperplane ofu. Sinceλ ∈ (0, ℓ) andu≡ 0 in

R
N\Ω, we then haveu≡ 0 in the nonempty setΩ−ℓ+2λ . Settingλ ′ =−ℓ+λ , we thus infer that

vλ ′ ≡ 0 in Ωλ ′ . Consequently,vλ ′ ≡ 0 in R
N by Proposition 3.6. Thusu has the two different

parallel symmetry hyperplanes∂Hλ and ∂Hλ ′ . Sinceu vanishes outside a bounded set, this
implies thatu≡ 0, which is a contradiction. Thus Claim 1 is proved.

Next we show

Claim 2: If (Sλ ) holds for someλ ∈ (0, ℓ), then there isδ ∈ (0,λ ) such that(Sµ) holds for all
µ ∈ (λ −δ ,λ ).
To prove this, suppose that(Sλ ) holds for someλ ∈ (0, ℓ). Using Lemma 2.1, we fixs∈
(0, |Ωλ |) such thatΛ1(s) > c∞, which implies thatΛ1(U) > c∞ for all open setsU ⊂ R

N with
|U | ≤ s. SinceΩ is bounded, we may also fixδ0 > 0 such that

|Ωµ \Ωµ+δ0
|< s/2 for all µ ≥ 0.

By Lusin’s Theorem, there exists a compact subsetK ⊂ Ω such that|Ω\K|< s/4 and such that
the restrictionu|K is continuous. Forµ ≥ 0, we now consider the compact set

Kµ := Ωµ+δ0
∩K∩Qµ(K) ⊂ K∩Ωµ

and the open setUµ := Ωµ \Kµ . Note that

|Uµ | ≤ |Ωµ \Ωµ+δ0
|+ |Ωµ \K|+ |Ωµ \Qµ(K)| ≤

s
2
+2|Ω\K|< s for µ ≥ 0. (4.3)

As a consequence, for 0≤ µ ≤ λ we have|Kµ | > |Ωµ |− s≥ |Ωλ |− s> 0 and thusKµ 6= ∅.
Property(Sλ ) and the continuity ofu|K imply that min

Kλ
vλ > 0. Thus, again by the continuity of

u|K , there existsδ ∈ (0,min{λ ,δ0}) such that

min
Kµ

vµ > 0 for all µ ∈ [λ −δ ,λ ].

Consequently, forµ ∈ (λ − δ ,λ ), the functionvµ is an antisymmetric supersolution of the
problem

Iv = cµ(x)v in Uµ , v≡ 0 onHµ \Uµ ,
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whereasΛ1(Uµ)> c∞ by (4.3) and the choice ofs. Hencevµ ≥ 0 in Hµ by Proposition 3.5, and
thus(Sµ) holds by Claim 1. This proves Claim 2.

To finish the proof, we consider

λ0 := inf{λ̃ ∈ (0, ℓ) : (Sλ ) holds for allλ ∈ (λ̃ , ℓ)} ∈ [0, ℓ).

We then havevλ0
≥ 0 in Hλ0

. Hence Claim 1 and Claim 2 imply thatλ0 = 0. Since the procedure
can be repeated in the same way starting from−ℓ, we find thatv0 ≡ 0. Hence the functionu has
the asserted symmetry and monotonicity properties.
It remains to show (1.3). So letK ⊂ Ω be compact. ReplacingK by K ∪Q0(K) if necessary,
we may assume thatK is symmetric with respect toQ0. Let K′ := {x∈ K : x1 ≤ 0}. Since for
λ > 0 sufficiently smallQλ (K

′) is a compact subset ofΩλ , the property(Sλ ) and the symmetry
of u then imply that

essinf
K

u= essinf
K′

u≥ essinf
Qλ (K′)

vλ > 0,

as claimed in (1.3).

5 Proof of a variant symmetry result

In this section we prove Theorem 1.4, which is concerned withthe class of even kernel functions
satisfying (J2)′ in place of(J2). Throughout this section, we consider a symmetric kernel
J : RN \{0}→ [0,∞) satisfying(J1). We fix an open affine half spaceH ⊂R

N, and we consider
the notation of Section 3. Moreover, we assume the symmetry and monotonicity assumptions
(3.1) and (3.2), so that Lemma 3.2 and Proposition 3.5 are available. In order to derive a variant
of the strong maximum principle given in Proposition 3.6, weintroduce the following strict
monotonicity condition:

There existsr0 > 0 such thatJ(x−y)> J(x− ȳ) for all x,y∈ H with |x−y| ≤ r0 (5.1)

We then have the following.

Proposition 5.1. Assume that J satisfies(J1), (3.1), (3.2) and (5.1). Moreover, let U⊂ H be a
subdomain and c∈ L∞(U). Furthermore, let v be an antisymmetric supersolution of (3.6) such
that v≥ 0 a.e. in H.
Then either v≡ 0 a.e. in a neighborhood ofU, or

essinf
K

v> 0 for every compact subset K⊂U.

We stress that, in contrast to Proposition 3.6, we require connectedness ofU here.

Proof. Let W denote the set of pointsy∈U such that essinf
Br(y)

v> 0 for r > 0 sufficiently small,

and letr0 > 0 be as in (5.1). We claim the following.

If x0 ∈U is such thatv 6≡ 0 in B r0
2
(x0), thenx0 ∈W. (5.2)
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To prove this, letx0 ∈U be such thatv 6≡ 0 in B r0
2
(x0). Then there exists a bounded setM ⊂

H ∩B r0
2
(x0) of positive measure withx0 6∈ M and such that

δ := inf
M

v> 0 (5.3)

By Lemma 2.1, we may fix 0< r < 1
4 min{r0 , dist(x0, [R

N \H]∪M)} such thatΛ1(B2r(x0))>
‖c‖L∞(U). Next, we putU0 := B2r(x0) andU ′

0 := B3r(x0)∪Q(B3r(x0)). Moreover, we define the
functions f ∈C2

c(R
N) andw∈ H (U ′

0), depending ona> 0, as in the proof of Proposition 3.6.
As noted there,w is antisymmetric and satisfies

w≡ 0 onH \ (U0∪M), w≡ a on M. (5.4)

As in the proof of Proposition 3.6, we also see that

J (w,ϕ)≤Ca

∫

U0

ϕ(x)dx for all ϕ ∈ D(U0),ϕ ≥ 0

with
Ca :=C+ sup

x∈U0

∫

Q(U0)

J(x−y)dy−a inf
x∈U0

∫

M

(J(x−y)−J(x− ȳ)) dy

SinceU0 ⊂ H ∩B r0
2
(x0) andM ⊂ H ∩B r0

2
(x0), (5.1) and the continuity of the functionx 7→

∫

M(J(x−y)−J(x− ȳ)) dyonU0 imply that

inf
x∈U0

∫

M

(J(x−y)−J(x, ȳ)) dy> 0

Hence we may proceed precisely as in the proof of Proposition3.6 to prove thatv≥ δ
a > 0 a.e.

in Br(x0) for a> 0 sufficiently large, so thatx0 ∈W. Hence (5.2) is true.
From (5.2) it immediately follows thatW is both open and closed inU . Moreover, ifv 6≡ 0 in
{x∈ H : dist(x,U) < r0

2 }, thenW is nonempty and thereforeW =U by the connectedness of
U . This ends the proof.

Next we complete the proof of Theorem 1.4. So throughout the remainder of this section,
we assume thatJ : RN \{0} → [0,∞) is even and satisfies(J1) and(J2)′, Ω ⊂ R

N satisfies(D)
and the nonlinearityf satisfies(F1) and(F2). Moreover, we letu∈ L∞(Ω)∩D(Ω) denote an a.e.
positive solution of(P). For λ ∈ R, we letHλ , Qλ , Ωλ , cλ andvλ be defined as in Section 4,
and again we putℓ := sup

x∈Ω
x1. As a consequence of(J1) and (J2)′, we may assume thatJ

satisfies (3.1) (3.2) and (5.1) withH replaced byHλ for λ 6= 0 (the argument of Remark 3.1 still
applies). As in Section 4, we then consider the statement

(Sλ ) essinf
K

vλ > 0 for every compact subsetK ⊂ Ωλ .

We wish to show(Sλ ) for all λ ∈ (0, ℓ). As in Section 4, we findε ∈ (0, ℓ) such that

vλ ≥ 0 a.e. inHλ for all λ ∈ [ε , ℓ). (5.5)
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We now show

Claim 1: If vλ ≥ 0 a.e. in Hλ for someλ ∈ (0, ℓ), then(Sλ ) holds.

To prove this, we argue by contradiction. If(Sλ ) does not hold, then, by Proposition 5.1, there
exists a connected componentΩ′ of Ωλ and a neighborhoodN of Ω′ such thatvλ ≡ 0 in N.
However, sinceλ ∈ (0, ℓ), the setÑ := Qλ (N\Ω)∩Ω has positive measure andvλ ≡ 0 in Ñ by
the antisymmetry ofvλ . However,v≡−u on Ñ, sou≡ 0 a.e. onÑ, contrary to the assumption
thatu> 0 a.e. inΩ. Thus Claim 1 is proved.

Precisely as in Section 4 we may now show

Claim 2: If (Sλ ) holds for someλ ∈ (0, ℓ), then there isδ ∈ (0,λ ) such that(Sµ) holds for all
µ ∈ (λ −δ ,λ ).
Moreover, based on (5.5), Claim 1 and Claim 2, we may now finishthe proof of Theorem 1.4
precisely as in the end of Section 4.
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[15] M. M. Fall and S. Jarohs,Overdetermined problems with fractional Laplacian, available
online athttp://arxiv.org/abs/1311.7549.

[16] P. Felmer and Y. Wang Radial symmetry of positive solutions involving the
fractional Laplacian, Commun. Contemp. Math (2013), available online at
http://www.worldscientific.com/doi/pdf/10.1142/S0219199713500235.

[17] M. Felsinger and M. Kassmann,Local regularity for parabolic nonlocal operators,
Comm. Partial Differential Equations38.9(2013), 1539–1573.

[18] M. Felsinger, M. Kassmann and P. Voigt,The Dirichlet problem for nonlocal operators,
available online athttp://arxiv.org/abs/1309.5028.

[19] R. L. Frank, E. Lenzmann and L. Silvestre,Uniqueness of radial solutions for the frac-
tional Laplacian, available online athttp://arxiv.org/abs/1302.2652.

[20] B. Gidas, W. N. Ni and L. Nirenberg,Symmetry and related properties via the maximum
principle, Communications in Mathematical Physics68.3(1979), 209-243.

[21] S. Jarohs and T. Weth,Asymptotic Symmetry for Parabolic Equations involving theFrac-
tional Laplacian, Discrete and Continuous Dynamical Systems - Series A34.6 (2014),
2581–2615.
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