
ar
X

iv
:1

40
6.

65
85

v1
  [

m
at

h.
D

G
] 

 2
5 

Ju
n 

20
14

CALABI FLOW ON TORIC VARIETIES WITH BOUNDED

SOBOLEV CONSTANT, I

HONGNIAN HUANG

Abstract. Let (X,P ) be a toric variety. In this note, we show that
the C0-norm of the Calabi flow ϕ(t) on X is uniformly bounded in [0, T )
if the Sobolev constant of ϕ(t) is uniformly bounded in [0, T ). We also
show that if (X,P ) is uniform K-stable, then the modified Calabi flow
converges exponentially fast to an extremal Kähler metric if the Ricci
curvature and the Sobolev constant are uniformly bounded. At last, we
discuss an extension of our results to a quasi-proper Kähler manifold.

1. Introduction

In [9, 10], Chen and He study the Calabi flow on toric surfaces with
bounded Sobolev constant. The study of Calabi flow with bounded Sobolev
constant has been also elaborated by Li and Zheng [19]. Related work can
be found in [20, 21, 12, 11, 23, 24, 25]. Interested readers are encouraged to
read these papers and the references therein.

In this note, we study the Calabi flow on toric varieties with bounded
Sobolev constant and on general Kähler manifolds which are quasi-proper.
Our first result is:

Theorem 1.1. Let X be a toric variety with Delzant polytope P . Let
ϕ(t), 0 ≤ t < T < ∞ be a one parameter family toric invariant rela-
tive Kähler potentials satisfying the Calabi flow equation. Suppose that the
Sobolev constant of ϕ(t) is uniformly bounded. Then

|ϕ(t)|L∞ < C, ∀ t ∈ [0, T ),

where C is some constant independent of t.

Suppose (X,P ) is uniform K-stable, we would like to understand the
global convergence of the (modified) Calabi flow. The following result can
be compared to the global convergence results in [16, 17, 22].

Theorem 1.2. If (X,P ) is uniform K-stable, then the modified Calabi flow
introduced in [18] will converge to an extremal Kähler metric exponentially
fast if

• The Calabi flow starts from a toric invariant Kähler metric.
• The Sobolev constant is uniformly bounded along the flow.
• The Ricci curvature is uniformly bounded along the flow.

For a general manifold, we have:

Theorem 1.3. Let (X,J, ω) be a quasi-proper Kähler manifold in the sense
of Chen [7], i.e., there exists a small constant δ > 0 and a constant C such
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that the Mabuchi energy

Ma(ϕ) ≥ δ

∫

X

log
ωn
ϕ

ωn
ωn
ϕ − C.

Then |ϕ(t)|L∞ is uniformly bounded for t ∈ [0, T ) if the Sobolev constant is
uniformly bounded in [0, T ).

Acknowledgment: The results in this note are motivated by discussions
with Vestislav Apostolov. The author would like to thank him for sharing
his ideas. Thanks also go to Yiyan Xu and Kai Zheng for help discussions.

2. Notations and setup

2.1. Kähler geometry. Let (X,J, ω) be a Kähler manifold with complex
dimension n, where locally

ω =
√
−1gij̄dz

i ∧ dz̄j ,
(

gij̄
)

is a positive definite Hermitian matrix. The Kähler metric is (locally):

g = gij̄dz
i ⊗ dz̄j .

The set of Kähler metrics can be identified with H/R, where

H = {ϕ ∈ C∞(X) | ωϕ = ω +
√
−1∂∂̄ϕ > 0}.

We call ϕ ∈ H is a relative Kähler potential. The corresponding Kähler
metric is

gϕ =
(

gij̄ + ϕij̄

)

dzi ⊗ dz̄j .

Its volume form is

ωn
ϕ =

(√
−1
)n

n!
det
(

gij̄
)

dz1 ∧ dz̄1 ∧ · · · ∧ dzn ∧ dz̄n,

where n is the complex dimension of X. Its Ricci and scalar curvature are:

Ricϕ = −∂∂̄ log det(gϕ,ij̄), Rϕ = −△ϕ log det(gϕ,ij̄).

The Calabi flow [3, 4] starting from ωϕ is defined as:

∂ϕ

∂t
= Rϕ −R,

where R =
∫
X

Rϕ ωn
ϕ∫

X
ωn
ϕ

is a topological constant. The short time existence

of the Calabi flow is established in [8].
Now we introduce three functionals I, J,D. The I and J functionals are

introduced by Aubin [2]: for any ϕ ∈ H,
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I(ϕ) =

∫

X

ϕ(ωn − ωn
ϕ) =

√
−1

n−1
∑

i=0

∫

X

∂ϕ ∧ ∂ϕ̄ ∧ ωi ∧ ωn−1−i
ϕ ,

J(ϕ) =
√
−1

n−1
∑

i=0

i+ 1

n+ 1

∫

X

∂ϕ ∧ ∂ϕ̄ ∧ ωi ∧ ωn−1−i
ϕ .

We have

1

n+ 1
I ≤ J ≤ n

n+ 1
I.

The third functional is the D functional defined as follows: (c.f. [13])

D(ϕ) =

∫

X

ϕ ωn − J(ϕ).

Direct calculations show that

δ (D(ϕ)) (f) =

∫

X

f ωn
ϕ.

Thus D(t) = const along the Calabi flow.

2.2. Toric geometry. Let X be a toric manifold and ω be a toric invariant
Kähler metric. We obtain the Delzant polytope P of X through the moment
map. On P , we have the standard Lebesgue measure dµ. On each facet Pi

of P , the measure dσ equals to 1
|~ni|

times the standard Lebesgue measure,

where ~ni is an inward normal vector associated to Pi. Also for any vertex v of
P , there exists exactly n facets P1, . . . , Pn intersecting at v and (~n1, . . . , ~nn)
is a basis of Zn.

Suppose that P has d facets. Each facet Pi can be represented by

li(x) = 0,

where li(x) = 〈x, ~ni〉 + ci. A symplectic potential u of P satisfies the
following Guillemin boundary conditions [15]:

• u is a smooth, strictly convex function on P .
• The restriction of u to each facet of P is also a smooth, strictly
convex function.

•

u(x) =
1

2

d
∑

i=1

li(x) ln li(x) + f(x), x ∈ P,

where f(x) is a smooth function on P̄ .

On the open orbit of the (C∗)n = R
n × T

n action of X, a toric invariant
Kähler metric ω can be express as

ω = ψijdz
i ∧ dz̄j ,
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where ψ is a real, smooth, strictly convex function on R
n and zi = ξi +√

−1θi, (ξ1, . . . , ξn) ∈ R
n, (θ1, . . . , θn) ∈ T

n. In fact, the Legendre dual of
ψ is a symplectic potential u on P . Thus

ψ(ξ) + u(x) =

n
∑

i=1

ξixi, x = ∇ψ(ξ).

The following Proposition is due to Donaldson [14]:

Proposition 2.1. For any toric invariant ϕ ∈ H, we obtain a symplectic
potential uϕ through the Legendre dual of ψ + ϕ. The map from ϕ to uϕ is
one to one and onto.

Using the Legendre transform, Abreu [1] shows that the scalar curvature
equation of a toric invariant metric ωϕ on the open (C∗)n orbit

Rϕ = △ϕ log det(D
2(ψ + ϕ))

can be transformed to

Ruϕ = −
n
∑

i,j=1

uijϕ, ij

in the symplectic side. Thus the Calabi flow equation on P is

∂u

∂t
= R−Ru.

3. Controlling maxϕ

Let u(t, x) be a sequence of symplectic potentials satisfying the Calabi
flow equation on P . Our first lemma is

Lemma 3.1.

‖u(t, x)‖L2 < C(P, T, u0),

where C(P, T, u0) is a constant depending on P, T and u(0, x).

Proof. Since the Calabi flow decreases the distance [5], for any t ∈ [0, T ),
we have

‖u( t
2
, x)− u(0, x)‖L2 ≥ ‖u(t, x)− u(

t

2
, x)‖L2 .

By the triangle inequality, we have

2‖u( t
2
, x)‖L2 + ‖u(0, x)‖L2 ≥ ‖u(t, x)‖L2 .

Similarly,

2‖u( t
4
, x)‖L2 + ‖u(0, x)‖L2 ≥ ‖u( t

2
, x)‖L2 .

Thus,
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4‖u( t
4
, x)‖L2 + 3‖u(0, x)‖L2 ≥ ‖u(t, x)‖L2 .

It is easy to see that there exists a constant C(P, T, u0) depending on P, T
and u(0, x) such that

‖u(t, x)‖L2 < C(P, T, u0),

�

An immediate corollary is:

Corollary 3.2.

min
x∈P̄

u(t, x) < C1(P, T, u0),

where C1(P, T, u0) is some constant depending on P, T and u(0, x).

Since the L2 norm of u(t, x) is bounded by C(P, T, u0), our next lemma
shows that minx∈P̄ u(x) is bounded from below by some constant C2(P, T, u0)
which depends on u(0, x), P and T .

Lemma 3.3. If ‖u(t, x)‖L2 < C(P, T, u0) for any t < T , then

min
x∈P̄

u(x, t) > C2(P, T, u0)

Proof. To simplify our notation, we write u(t, x) as u(x). Let o be the
barycenter of P . By shrinking the vertices by 1

2 around o, we get P 1
2
. Our

first observation is that there exists a constant C3(P, T, u0) depending on
P, T and u(0, x) such that for any x ∈ P 1

2
, we have

u(x) < C3(P, T, u0).

This is because:

• u(x) is a convex function.
• For any x ∈ P 1

2
, any hyperplane l passing through x will cut P as

P1 and P2. There exists a positive constant C4(P ) depending on P
such that the Euclidean volume of P1 and P2 are both greater than
C4(P ).

Let x0 ∈ P̄ be a point such that u(x0) = minx∈P̄ u(x). Then there exists
a constant C5(P ) depending on P such that the follwing holds:

• At least one facet of P 1
2
, say Q ⊂ ∂P 1

2
such that the Euclidean

distance between x0 and Q is greater than C5(P ).

By shrinking the vertices of Q by 1
2 around x0, we obtain Q 1

2
. We denote

P̃ as the convex hull of x0 and Q 1
2
. Then for any point x ∈ P̃ , we have

u(x) ≤ u(x0) + C3(P, T, u0)

2
.

Since we know
∫

P̃

u2(x) dµ ≤
∫

P

u2(x) dµ < C1(P, T, u0)
2,
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it is clear that there exists a constant C2(P, T, u0) depending on P , T and
u(0, x) such that

min
x∈P̄

u(x, t) > C2(P, T, u0).

�

Translating our result to the complex side, we have the following propo-
sition:

Proposition 3.4. There exists a constant C3(P, T, u0) depending on P, T
and u(0, x) such that for any t < T we have

max
z∈X

ϕ(t, z) < C3(P, T, u0).

Proof. We write x = ∇(ψ(t, ξ)), ξ ∈ R
n. Then we have

ϕ(t, ξ) = ψ(t, ξ) − ψ(0, ξ)

=

(

n
∑

i=1

ξx− u(t, x)

)

−max
y∈P

(

n
∑

i=1

ξy − u(0, y)

)

≤ u(0, x) − u(t, x)

< C3(P, T, u0).

�

A conjecture of Donaldson, proved by Chen [6], saying that

Lemma 3.5.

d(0, ϕ) ≥ 1
√

C(P )

(

max

(
∫

ϕ>0
ϕ ωn

ϕ, −
∫

ϕ<0
ϕ ωn

))

,

where C(P ) = (2π)nV ol(P ).

In the toric case, we can have a stronger result:

Lemma 3.6. For any toric invariant Kähler metric

ωϕ = ω +
√
−1∂∂̄ϕ =

√
−1∂∂̄(ψ + ϕ) on R

n.

Let the Legendre dual of ψ,ψ + ϕ be u, uϕ respectively. We have

(2π)n

n!

∫

P

(uϕ − u)2 dµ ≥
(

max

(
∫

ϕ>0
ϕ2 ωn

ϕ,

∫

ϕ<0
ϕ2 ωn

))

.

Proof. Let x = ∇(ψ + ϕ)(ξ), ξ ∈ R
n. Again we have

ϕ(ξ) ≤ u(x)− uϕ(x).

It implies that

(2π)n

n!

∫

P

(uϕ − u)2 dµ ≥
∫

ϕ>0
ϕ2 ωn

ϕ.

On the other hand, let x = ∇ψ(ξ), ξ ∈ R
n. Similarly we have
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ϕ(ξ) = (ψ + ϕ)(ξ) − ψ(ξ)

=

(

max
y∈P

n
∑

i=1

ξy − uϕ(y)

)

−
(

n
∑

i=1

ξx− u(x)

)

≥ u(x)− uϕ(x).

Then we have

(2π)n

n!

∫

P

(uϕ − u)2 dµ ≥
∫

ϕ<0
ϕ2 ωn.

�

As a consequence, we have

Corollary 3.7. There exists a constant C4(P, T, u0) depending on P, T and
u(0, x) such that for any t < T we have

max
z∈X

ϕ(t, z) > C4(P, T, u0).

4. L1-norm

It is easy to see that for any t < T , we have

Lemma 4.1.
∫

X

|ϕ(t)| ωn < C5(P, T, u0),

for some constant C5(P, T, u0) depending on P, T and u0.

In fact, it is well known that the bound of

∫

X

|ϕ| ωn

can be derived from the bound of maxz∈X ϕ(z). The arguments go as
follows:

Let z0 ∈ X be the point where ϕ(z) reaches its maximum. By the Green’s
formula, we have

ϕ(z0) = (V ol(X))−1
∫

X

ϕ ωn − (V ol(X))−1
∫

X

△ωϕ(z̃)G(z0, z̃) ω
n.

Since ωϕ = ω +
√
−1∂∂̄ϕ > 0, taking trace with respect to ω, we have

n+△ωϕ > 0.

Thus we obtain

ϕ(z0)− (V ol(X))−1
∫

X

ϕ ωn < C(ω),

where C(ω) is a constant depending on ω.
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• If ϕ(z0) > 0, then

C(ω) > ϕ(z0)− V ol(X)−1

∫

ϕ>0
ϕ ωn + V ol(X)−1

∫

ϕ<0
−ϕ ωn

> V ol(X)−1

∫

ϕ<0
−ϕ ωn.

Thus we have

∫

X

|ϕ| ωn < C(ω,ϕ(z0)),(1)

where C(ω,ϕ(z0)) depending on ω and ϕ(z0).
• If ϕ(z0) ≤ 0, then it is straightforward to see inequality (1).

Our next lemma shows that we can also bound the L1-norm of ϕ(t) with
respect to ω(t).

Lemma 4.2. Suppose that Dω(ϕ) = 0, then
∫

X

|ϕ| ωn
ϕ < C

(

max
z∈X

ϕ(z), |ϕ|L1(ω)

)

,(2)

where C
(

maxz∈X ϕ(z), |ϕ|L1(ω)

)

is some constant depending on maxz∈X ϕ(z)
and |ϕ|L1(ω).

Proof. Recall that

D(ϕ) =

∫

X

ϕ ωn − J(ϕ).

The bound of L1
ω(ϕ) give us the bound of J(ϕ). Since

1

n+ 1
I(ϕ) ≤ J(ϕ) ≤ n

n+ 1
I(ϕ).

We obtain the bound of I(ϕ) which also gives us the bound of

∫

X

ϕ ωn
ϕ.

Hence we obtain the inequality (2).
�

5. L∞-norm

First, we will try to control the L2-norm of ϕ with respect of ωϕ:

Proposition 5.1. Let ϕ be a smooth relative Kähler potential with |ϕ(z)| ≥
c0 > 0, ∀z ∈ X. Then

‖ϕ‖L2
ωϕ

≤ C(n, c0, Cs, Jω(ϕ), L
1
ωϕ

(ϕ)),

where C(n, c0, Cs, Jω(ϕ), L
1
ωϕ

(ϕ)) is a constant depending on n, c0, the Sobolev

constant of ωϕ, Jω(ϕ) and the L1-norm of ϕ with respect to ωϕ.
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Proof. Notice that
∫

X

|∇
√

|ϕ||2 ωn
ϕ

=

∫

X

|∇ϕ|2
4|ϕ| ωn

ϕ

≤ 1

4c0

∫

X

|∇ϕ|2 ωn
ϕ

≤n+ 1

4c0
Jω(ϕ).

The Sobolev inequality shows that

‖
√

|ϕ|‖
L

2n
n−1
ωϕ

≤ Cs

(

‖∇
√

|ϕ|‖L2
ωϕ

+ ‖
√

|ϕ|‖L2
ωϕ

)

It is clear that

‖ϕ‖
L

n
n−1
ωϕ

≤ C(n, c0, Cs, Jω(ϕ), L
1
ωϕ

(ϕ)).

If the complex dimension of X is 2, then we are done. If n > 2, then we

let f = |ϕ|
n

2(n−1) . Notice that

|∇f | = n

2(n− 1)

|∇ϕ|
|ϕ|

n−2
2(n−1)

≤ C(n, c0)|∇ϕ|

‖f‖L2
ωϕ

=

(

‖ϕ‖
L

n
n−1
ωϕ

)
n

2(n−1)

≤ C(n, c0, Cs, Jω(ϕ), L
1
ωϕ

(ϕ)).

Applying the Sobolev inequality again, we have

‖ϕ‖
L

n2

(n−1)2
ωϕ

=

(

‖f‖
L

2n
n−1
ωϕ

)

2(n−1)
n

≤ C(n, c0, Cs, Jω(ϕ), L
1
ωϕ

(ϕ)).

Repeating the steps, we get the conclusion. �

Once we have the L2 estimate, we could get the L∞ estimate by using
the De Giorgi-Nash-Moser iteration:

Proposition 5.2. For a smooth relative Kähler potential ϕ,

|ϕ|L∞ ≤ C

(

n,Cs,max
z∈X

ϕ(z), L2
ωϕ

(ϕ)

)

,

where C
(

n,Cs,maxz∈X ϕ(z), L
2
ωϕ

(ϕ)
)

is a constant depending on n, the

Sobolev constant of ωϕ , maxz∈X ϕ(z) and L2
ωϕ

(ϕ)).

Proof. Let ϕ1 = −ϕ+maxz∈X ϕ(z) + 1. Since ω = ωϕ +
√
−1∂∂̄ϕ1 > 0, we

have

n+△ϕϕ1 > 0.

Thus for any p ≥ 1,
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∫

X

nϕp
1 ω

n
ϕ ≥

∫

X

−ϕp
1△ϕϕ1 ω

n
ϕ

=
p

(p+1
2 )2

∫

X

|∇ϕ
p+1
2

1 |2ϕ ωn
ϕ

Thus by the Sobolev inequality, we have

(
∫

X

ϕ
(p+1) n

n−1

1 ωn
ϕ

)
n−1
n

≤ C(n,Cs)(p + 1)

∫

X

ϕp+1
1 ωn

ϕ.

Then

‖ϕ1‖
L

(p+1)n
n−1

ωϕ

≤ (C(p+ 1))
1

p+1 ‖ϕ1‖Lp+1
ωϕ
.

By iterations, we get the conclusion. �

6. Proofs of the theorems

Proof of Theorem (1.1). By Proposition (3.4) and Corollary (3.7), we uni-
formly control maxz∈X ϕ(t, z) for any t ∈ [0, T ). Then Lemma (4.1) and
Lemma (4.2) provide us the uniform L1-norm bound of ϕ(t) with respect
to ω and ω(t) respectively. Hence Proposition (5.1) gives us the L2-norm
of ϕ(t) with respect to ω(t) uniformly and Proposition (5.2) gives us the
L∞-norm of ϕ(t) uniformly. �

6.1. Global convergence.

Proof of Theorem (1.2). Let us fix t0 > 0 and write ϕ(t) as ϕ0 and u(t) as
u0. Let u be the normalized symplectic potential of u0 at some point x0 ∈ P .
Since (X,P ) is uniformly K-stable, we have

∫

P
u dµ < C where C is some

constant independent of t by Proposition 5.1.8 and Lemma 5.1.3 in [14].

We shall consider the corresponding Kähler potential ψ of u under the
Legendre transformation and the relative Kähler potential ϕ = ψ − ψω. As
in Proposition (3.4) and Corollary (3.7), we obtain the upper and lower
bound of maxz∈X ϕ(z). By using the arguments of Lemma (3.6), we obtain
the bounds of

∫

ϕ>0
ϕ ωn

ϕ,

∫

ϕ<0
−ϕ ωn.

Lemma 2.1 in [26] provides the bound of J(ϕ). Thus we obtain the bound
of

∫

X

|ϕ| ωn
ϕ.

As before, we obtain the L∞ estimate of ϕ. The rest of the proof is identical
to the proof of Theorem 1.6 of [17]. �
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6.2. General case.

Proof of Theorem (1.3). By the proof of Theorem 1.4 in [7], we obtain uni-
form upper bounds of

max
z∈X

ϕ(t, z)

and
∫

X

|ϕ| ωn.

Then Lemma (4.2) provide us the L1-norm bound of ϕ(t) with respect to
ω(t) uniformly. Hence Proposition (5.1) gives us the L2-norm of ϕ(t) with
respect to ω(t) uniformly and Proposition (5.2) gives us the L∞-norm of
ϕ(t) uniformly. �
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