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Last zero time or Maximum time of the winding number of
Brownian motions

Izumi Okada

Abstract

In this paper we consider the winding numl#s), of planar Brownian motion and study asymp-
totic behavior of the process of the maximum time, the timemd(s) attains the maximum in the
interval 0< s < t. We find the limit law of its logarithm with a suitable normadtion factor and the
upper growth rate of the maximum time process itself. We shsaw that the process of the last zero
time ofg(s) in [0, t] has the same law as the maximum time process.

1 Introduction and Main results

In this paper we seek for an analogue of the arcsine law ofitlead Brownian motion for the argument
of a complex Brownian motiof\W(t) = Wi(t) + iWy(t) : t > 0} started atV(0) = (1,0). Skew-product
representation tells us that there exist two independeeatiBrownian motion§B(t) : t > 0} and{B(t) :

t > 0} such that

W(t) = exp@(H(D) + iB(H (1)) for all t > O, 1)

where
H(t)—fi—inf{u>o-fuexp(zé(s))ds>t}
~Jo W(9P —Jo ’

which entails thaB is independent ofv| and hence oH, while log|W| is time change oB (cf. e.g., [5],
Theorem 726).

We letd(t) = B(H(t)) so thatd(t) = argW(t), which we call the winding number. Without loss of
generality we suppos#0) = 0. The well-known result of Spitzer][9] states the conveogeaof 2)(t)/ logt

in law:
a
lim P(ze—(t)sa):lf dx_
t—oo IOgt T J—co 1+ X2

It is shown in [1] that for any increasing functidn: (0, o) — (0, o)

. ot)
"T_)SOOUpW =0oreo a.s. (2)

according as the integrgi”™ ﬁdt converges or diverges and

. 1
Ilrtn inf W supé(s),1<s<t}=00rc0 a.s.
according as the integr#loo 1O gt diverges or converges; moreover, it is shown that the squateof

t(logt)2
the random timéH (t) is subjected to the same growth law a® af (Z) and the lim inf behavior ofi(t) is

also given. Another proof of]2) is given inl[8]. Also, it is@hn in [7]

lim inf loglog logt sudlf(9)l, 1< s<t}= I

a.s..
t—co logt 4
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Before advancing our result we recall the two arcsine lawssglanalogues are studied in this paper.
Let{B(t) : t > 0} be a standard linear Brownian motion started at zero andtelday; the time when the
maximum ofBg in the interval O< s < tis attained. Then, the procegsand the process s{ge [0,1] :
B(s) = 0}, the last zero of Brownian motion in the time interval Q) are subject to the same law, and
according to Lévy’s arcsine law the scaled variafjlé is subject to the arcsin law. (cf. e.d.] [5] Theorem
5.26 and 528)

In order to state the results of this paper we set

4 dx dy
V(a) = — —_— 3
@ n? fj;<y<axl+le+y2 3)

We also define a random varialg € [0, t] by

6(My) = Srg[glgfe(s),

the time wherg(s) attains the maximum in the interval<0s < t, and a random variable by
L; = sugse [0,1] : 6(s) = O},

the last zero of)(s) in [0,t]. According to Theorem 21 of [5] a linear Brownian motion attains its
maximum at a single point on each finite interval with probgbibne. In view of the representation
o(t) = B(H(t)), it therefore follows that the maximis®; is uniquely determined for allwith probability
one.

Theorem 1.1. (a) Forevery0<a<1

im P23 <o) - v(:2)
t-oo  \ logt l-a

(b) It holds that
{Li :t >0} =¢g {M;:t >0}
Theorem 1.2. Leta(t) be a positive function that is non-increasing, tends to z8ro— oo and satisfies
2a(t°) > a(t), 4)

and put

|{a}_f°° a(®lloga (V)]
B tlogt '

Then, with probability one

L. M
liminf — = co or 0
t—oo ta(t)

according as the integral{l} converges or diverges.

It may be worth noting that the distribution functid{a/(1 — a)) (0 < a < 1) is expressed as
a a1 u
VI——| = log ——du.
(1—a) fo 2u—1 91— ¢™

0 xdx logc
V, = = 1
© fo 1+x)1+c2x3) -1 (c#1)

Indeed,

where

%V(lila) " —1a)2vl(1fa) @z %)’

and we find the density asserted above.



2 Proofs

2.1 Proof of Theorem[L1

Let {N(t) : t > O} be the maximum process of a winding numb#t) : t > 0}, i.e. the process defined by
N(t) = Srer}gée(s).

Lemma?2.1. If a > 0, then RN(t) > a) = 2P(4(t) > a) = P(|6(t)| > a).

Proof. By reflection principle[[5], (Theorem.21) it holds that for any > 0

0rglaggB(l) =4 [B()I.

Skew product representatids(t) is independent ofW(t)|, hence sincd3(l) is independent oH(t) =

fo |W(m)|2 it holds

maxB(H(1)) = BHO).
showing the assertion of the lemma. O
Lemma2.2. {N(t) —6(t) : t > 0} =4 {|0(t)| : t > O}.
Proof. According to Lévy's representation of the reflecting Brasmmotion [5], (Theorem 24) we have

{Cr)rlla<>t<B(I) - B(t):t >0} =q {|B(t)| : t > 0}.

Hence as in the preceding proof,

(maxB(H()) - B(H(®)) : t 2 0} =4 (IBH(®)I: t = 0},

as desired. m]

Proof of Theoreri I11LemmaZ.2 together with Lemnia 2.1 show that the pro¢bks: s > 0} has the
same law a$lLs : s> 0}, being nothing but the last zero of the proc@sgt) — 6(t) : 0 <t < s} foranys.
So it remains to prove part (a). Faxe (0,1). SetT. = inf{l > 0 : [W(l)| = c}, for which we sometimes
write T (c) for typographical reasons. We first prove the upper bounyd(IBit holds that

P(M; < t%) =P(max B(H(u)) > max B(H(u)))
O<ux<t? ta<u<t
=P( max B(H(u)) — B(H(t?)) > max B(H(u)) — B(H(t%))
O<u<t?d ta<u<t
=P(max B(H(u)) - B(H(t)) > max B(H(u)) - B(H(t%)), (5)
O<u<t? ta<u<t
whereB is a linear Brownian motion started at zero WhICh is indepenaf W. Corresponding td{1)
we can write\TV(O) = (1,0), argW(l) = B(H (1)), H() = fo T With W independent ofV, and put

Te = inf{l > 0 : \W(l)] = ¢}. By LemmaZ]l and Lemnia 2.2 we have max= B(H(U)) — B(H(t?) =4
MaXo<y<ta B(H(U)), and therefore

P(max B(H() - BH() > max BH(W) - BHE)
=P( max B(H() > max B(H(u) - BH(). ®)

By standard large deviation result (cf. e.@l, [4], (11) ah2)), givene > O, it holds that for all sfficiently
larget

a
P(t ST%’Tt% <t)>1l-e



Therefore, we get
P(Oguggg B(H(W) > max B(H(u)) - BH(t))
<P( max_ B(H() > max B(H(u)) — B(H(Tt%))) +e (7)

O<u<T(t'2) T(t%_e)susT(t_E_e)

Also, strong Markov property tells us

th%‘ dm fTT dm
Tae IW(M)2 0 IW(m)[2’
t 2

andH(Tt%e) - H(Ttgf) is independent oIf-I(Tt%).

So, if we set fora, b < oo

Q(a,b) = P( max B(H(u)) > max B(H(u))),
0<u<T(a) 0<u<T(b)

it holds that

ate a

P( max B(HW)>  max B(H(U) — BH(T,a50))) = Q% .t
0<u<T (%) Tt 2 )<usT(t72)

“). (8)

Note that by Skew-product representatiB(t)( resp. B(t)) is independent oH (T ay:)( resp. H(T z5)).
Then, if6(1) = B(H()), by reflection principle we get

ate

Q=

= P(B(H(T,5))l > [BH(T 152)))
= P(O(T 25)1 > 10(T g2 )). ©)

Moreover, sinced(T;) follows the Cauchy distribution with parametdogr| (cf. e.g., [6], Section 5,
Exercise 216, [11], Proposition 38, and [12] ), we get

ate a+ e

Qt2 P(|9(T a+e)| > |9(T g 2 )]) = V(m

). (10)

Therefore, since is arbitrary, this gives the desired upper bound.
Next, we prove the lower bound. By standard large deviagsult (cf. e.g.,[[4], (11) and (12)), given
€ > 0, it holds that for all sfficiently larget

P(Tt? <t t< Tt%) >1-e. (11)
Moreover, by repeating the argument[ih (7) aid (8), we get
P(max B(H(u) > max B(H(u)) - B(H(t*)
>Q(tu tl ) —e
Therefore, repeating the argumentsih (8), (6), (9) and, (#8)get

P(M; < t3) :P( max B(H(u) > max B(H(u)) — B(H(t?))

a—e 1a+25)_6

>Q(t_ t
=V( ) — €

— €
1- a+2

yielding the lower bound. O



2.2 Proof of Theorem[L.2

Proof of Theorerfi I12We first prove liminf_. M/t?® = oo if 1{a} < co. We may replacex(t) by
a(t) v (log logt) 2. Indeed, if we set

a(t) = a(t)la(t) > (loglogt)~2} + (log logt)?1{a(t) < (log logt)~?},

I{a@} < . By standard large deviation result (cf. e.gl, [4], (11) &) for anyq < oo there exist O< ¢y,
C < oo such that

P(qt**® < T(t%0), T(tz7°0) < t) > 1 - ¢; exp(-t2*). (12)
Therefore, by the same arguments as madé for{(5) [(6) ({7 ({ABand [ID) we infer that for any < oo
P(M; < qt*®¥) =P(_max B(H(W)) - B(H(at*)) > max B(H(u)) - B(H(at*®)))
O<u<qtie® gtie®<us<t

<Q(t%®, 12750y 4 ¢, exp(-te2®)

(e

5~ 5(1’('[)

) + c1 expt2e®)y,

We sett, = exp"). Then, noting thaV(a(n)) =< a(n)|log @(n)|, we deduce froni {12) that for sorfle< oo
P(My, < t9™) < Ca(ty)|log a(ty)| + c1 expt&2*®™).

The sum of the right-hand side oveiis finite since}. ; a(ty)log a(tn)| < oo if I{a} < oo, anda(t) >
(log logt)~2 according to our assumption. Thus, by Borel-Cantelli lenfonanyq < co, with probability
one

M,
W >(q foralmost alin. (13)

Note that if we choosesuch that, < t < tn,1, thenti®®™ > t2® and from [IB) it follows thaM > My, >
qt®® for all sufficiently largen. Hence,

liminf M >(Qq as.

tooo  ta(t)

Sinceq < o is arbitrary, this concludes the proof.
Next, we prove liminf. M/t*® = 0 assuming thalt{a} = co. For anya < b < co, we set
O [a,b] = maxo(t) : Ta <t < Ty},
and defineM[a, b] via
o(M[a,b]) = 6*[a,b] andTa < M[a, b] < Tp.
Recall we have sdf, = expE"). Forq > 0, denote byA, the event
Ml ™, ta] < T(ata"").

Bringing in the seD = {n e N : a(t,) > }, we shall provey [, .p P(An) = co and

1
(loglogty)?

iminf 2izhied Zeerkep PAIOAD (14)
neD,n—oo (ZT:l,jED P(Aj))2 ’




which together implyP(lim sup,.p ., An) = 1 according to the Borel-Cantelli lemma (cf._[10], p.319
or [3]) and Kolmogorov's 0- 1 law. First we provey,* 1 n.p P(An) = . Note that it holds that for
O<a<bx<c

i * _ s b " b c
PO[a.b] > 6°[b.c]) = P(E°[L. ] > €' 2)).
Thus,
P('[qr"®, V] > 6" [q®, 1]) = P(E[1, 1°0] > 61?0, é‘l‘““)l).

Therefore, we get by the same argument as employedlfof 1526 (8), [9) and[(T0)
P(M[at*®.1] < T(qt**®))
=P(e"[1,1°0] > o7t étl‘a@])

=P( max B(H(u)) - B(H(T(t*®))) > max B(H(u)) - B(H(T t*®))))
u<T (o T(t"0)<usT (§t--00)

_ a(t)
V(Z 2a(t) - (logtlog q)—l)' (15)

Moreover, using/(a(n)) < a(n)|log a(n)| again, we get for som€ > 0
P(An) = Ca(ty)l log a(ty)l.

It holds that}.pa(th)lloga(ty)| = oo if H{a} = oo, since Y nep a(th)llogae(ty)) < c. So we get

2ined P(An) = oo
Next we prove [(I4). We only need to considgl_1 jep Yk<jkep P(Aj N Ay). First we consider

Z?=1,j€D 2keRre; keD P(Aj N A) whereRj = {k: qt ) 5 tx}. Notethatfom<b<c<d< o
M[a, b] — T, is independent oM[c, d] — Te. (16)
Then, sinceqttf(tk) <t < qt‘j’( < tj whenkis satisfied W|trqt"(t1) > ty, it holds that
P(A; N AQ) = P(Aj)P(AW). 17)

So, next we consider the casq‘f(tj) < t. We denote by, | the evenivi [qt’®), qt?(tj)] < T(@t"™). Note
that wherk is satisfied wittgt! ") < t, we haveA, c Ay ;, and by [IBP(A| N A, ) = P(A)P(A, ). Then,
since by the same argument fEI(IE()A{(’j) = V(%), we get

a(ty)

ela(t)) - eka/(tk)) (18)

P(A; N AQ < P(Aj N A;) = P(A)P(A, ) = P(A)V(

Furthermore, since(tx) < 2a(tk;1) due to the assumptiohl(4), we get

’ oy eka/(tk)
2 PA= 2L V- ety

keRck,j,k<j,keD keRck,j,k<j,keD

S;V(m)scé(z) <C, (19)



whereRE | = {k: qff"" < t). So, by [TB) andT19) we g&17_; jcp Tiere ke PIAJNA) < C Xy o P(A)).
Combined with[(1I7) this shows

n n n n n
> > PANAYS ) Z P(A)P(A) +C" > P(A),
j=1,jeD k<j,keD j=1,jeD k< j=1,jeD
completing the proof of{14). Therefore, we can concludé whith probability one
M[gte™, t,] < T(@qZ*™) infinitely often forn € D. (20)

On the other hand, by standard large deviation result (gf, @], (11) and (12)) there exist c3, ¢4 < o
such that

P(T(q®) < g t1 < T)) > 1 - cz exp(cst®®).
Moreover, Y .p Cz exp(-cata™) < co. Then, by Borel-Cantelli lemma it holds that with probatgilone

T@QE®) < g™, M 1 < M[gt?®™ t,], for almost alln € D. (21)
tn

So, by [20) and(21) it holds that

M, AT o)
I|m |nf Z)Ia lim inf < liminf i < liminf M <1l as.
q (t) neD,n—oo qtn(h(tn) neD,n—oo qtﬁa'(tn) neD,n—oo T(qtna/(tn))
The proof finishes sincg > 0 is arbitrary by replacing(t) by 5 “(t) O
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