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MILNE’S CORRECTING FACTOR AND DERIVED DE RHAM

COHOMOLOGY

BAPTISTE MORIN

Abstract. Milne’s correcting factor is a numerical invariant playing an important role in
formulas for special values of zeta functions of varieties over finite fields. We show that
Milne’s factor is simply the Euler characteristic of the derived de Rham complex (relative to
Z) modulo the Hodge filtration.

A Result of Milne ([8] Theorem 0.1) describes the special values of the zeta function of a
smooth projective variety over a finite field satisfying the Tate conjecture. This result was
later reformulated by Lichtenbaum and Geisser (see [1], [6] and [9]) as follows. They conjecture
that

(1) limt→q−nZ(X, t) · (1− qnt)ρn = ±χ(H∗
W (X,Z(n)),∪e) · qχ(X/Fq ,OX ,n)

and show that (1) holds whenever the groups H i
W (X,Z(n)) are finitely generated. Here

H∗
W (X,Z(n)) denotes Weil-étale motivic cohomology, e ∈ H1(WFq ,Z) is a fundamental class

and χ(H∗
W (X,Z(n)), e) is the Euler characteristic of the complex

(2) ...
∪e
−→ H i

W (X,Z(n))
∪e
−→ H i+1

W (X,Z(n))
∪e
−→ ...

More precisely, the cohomology groups of the complex (2) are finite and χ(H∗
W (X,Z(n)),∪e)

is the alternating product of their orders. Finally, Milne’s correcting factor qχ(X/Fq ,O,n) was
defined in[8] by the formula

χ(X/Fq,OX , n) =
∑

i≤n,j

(−1)i+j · (n− i) · dimFqH
j(X,Ωi

X/Fq
).

It is possible to generalize (1) in order to give a conjectural description of special values of zeta
functions of all separated schemes of finite type over Fq (see [2] Conjecture 1.4), and even of
all motivic complexes over Fq (see [10] Conjecture 1.2). The statement of those more general
conjectures is in any case very similar to formula (1). The present note is motivated by the
hope for a further generalization, which would apply to zeta functions of all algebraic schemes
(and ultimately motives) over Spec(Z) (see [11] for the case n = 0). As briefly explained below,
the special-value conjecture for (flat) schemes over Spec(Z) must take a rather different form
than formula (1). Going back to the special case of smooth projective varieties over finite
fields, this leads to a slightly different restatement of formula (1).

Let X be a regular scheme proper over Spec(Z). The "fundamental line"

∆(X/Z, n) := detZRΓW,c(X ,Z(n)) ⊗Z detZRΓdR(X/Z)/Fn

should be a well defined invertible Z-module endowed with a canonical trivialization

R
∼

−→ ∆(X/Z, n)⊗Z R.
1
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involving a fundamental class θ ∈ H1(R,R) = ”H1(WF1
,R)” analogous to e ∈ H1(WFq ,Z).

Here RΓW,c(X ,Z(n)) is Weil-étale cohomology with compact support, where "compact sup-
port" sould be understood in the sense of [11]. However, there is no natural trivialization

R
∼
→ detZRΓW,c(X ,Z(n))⊗Z R. Consequently, it is not possible to define an Euler character-

istic generalizing χ(H∗
W (X,Z(n)),∪e), neither to define a correcting factor generalizing Milne’s

correcting factor: one is forced to consider the fundamental line as a whole (we should point
out that this viewpoint in conflict with [7]). Let us go back to the case of smooth projective
varieties X/Fq, which we now see as schemes over Z. Accordingly, we replace Z(X, t) with
ζ(X, s) = Z(X, q−s), the fundamental class e with θ and the cotangent sheaf Ω1

X/Fq
≃ LX/Fq

with the cotangent complex LX/Z. Assuming that H i
W (X,Z(n)) is finitely generated for all i,

the fundamental line

∆(X/Z, n) := detZRΓW (X,Z(n)) ⊗Z detZRΓ(X,LΩ∗
X/Z/F

n)

is well defined and cup-product with θ gives a trivialization

λ : R
∼

−→ ∆(X/Z, n)⊗Z R.

Here LΩ∗
X/Z/F

n is the derived de Rham complex modulo the Hodge filtration (see [5] VIII.2.1).

The aim of this note is to show that the Euler characteristic of RΓ(X,LΩ∗
X/Z/F

n) equals

qχ(X/Fq ,OX ,n), hence that Milne’s correcting factor is naturally part of the fundamental line.
We denote by ζ∗(X,n) the leading coefficient in the Taylor development of ζ(X, s) near s = n.

Theorem. Let X be a smooth proper scheme over Fq. Then we have

∏

i∈Z

| H i(X,LΩ∗
X/Z/F

n) |(−1)i = qχ(X/Fq ,OX ,n).

Assume moreover that X is projective and that the groups H i
W (X,Z(n)) are finitely generated

for all i. Then one has

∆(X/Z, n) = λ
(

log(q)ρn · χ(H∗
W (X,Z(n)),∪e)−1 · q−χ(X/Fq ,OX ,n)

)

· Z

= λ
(

ζ∗(X,n)−1
)

· Z

where ρn := −ords=nζ(X, s) is the order of the pole of ζ(X, s) at s = n.

Before giving the proof, we need to fix some notations. For an object C in the derived
category of abelian groups such that H i(C) is finitely generated for all i and H i(C) = 0 for
almost all i, we set

detZ(C) :=
⊗

i∈Z

det
(−1)i

Z H i(C).

If H i(C) is moreover finite for all i, then we call the following isomorphism

detZ(C)⊗Z Q
∼
→
⊗

i∈Z

det
(−1)i

Q

(

H i(C)⊗Z Q
) ∼
→
⊗

i∈Z

det
(−1)i

Q (0)
∼
→ Q

the canonical Q-trivialization of detZ(C). If A is a finite abelian group, we see A as a complex
concentrated in degree 0 and use the same terminology for detZ(A) ⊗Z Q ≃ Q. Finally, the
notation RΓ(X,−) refers to hypercohomology with respect to the Zariski topology.
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Proof. Firstly we prove the first assertion of the Theorem. Since Milne’s correcting factor is
insensitive to restriction of scalars (i.e. qχ(X/Fq ,OX ,n) = pχ(X/Fp,OX ,n)), we may consider X
over Fp. We need the following

Lemma 1. Let E∗,∗
∗ = (Ep,q

r , dp,qr )p,qr be a cohomological spectral sequence of abelian groups with

abutment H∗. Assume that there exists an index r0 such that Ep,q
r0 is finite for all (p, q) ∈ Z2

and Ep,q
r0 = 0 for all but finitely many (p, q). Then we have a canonical isomorphism

ι :
⊗

p,q

det
(−1)p+q

Z Ep,q
r0

∼
−→

⊗

n

det
(−1)n

Z Hn

such that the square of isomorphisms

(

⊗

p,q det
(−1)p+q

Z Ep,q
r0

)

⊗Q
ι⊗Q

//

��

(

⊗

n det
(−1)n

Z Hn
)

⊗Q

��

Q
Id

// Q

commutes, where the vertical maps are the canonical Q-trivializations.

Proof. For any t ≥ r0, consider the bounded cochain complex C∗
t of finite abelian groups:

... −→
⊕

p+q=n−1

Ep,q
t −→

⊕

p+q=n

Ep,q
t

⊕dp,qt−→
⊕

p+q=n+1

Ep,q
t −→ ....

The fact that the cohomology of C∗
t is given by Hn(C∗

t ) =
⊕

p+q=nE
p,q
t+1 gives an isomorphism

⊗

p,q

det
(−1)p+q

Z Ep,q
t

∼
−→

⊗

p,q

det
(−1)p+q

Z Ep,q
t+1

compatible with the canonical Q-trivializations. By assumption, there exists an index r1 ≥ r0
such that the spectral sequence degenerates at the r1-page, i.e. E∗,∗

r1 = E∗,∗
∞ . The induced

filtration on each Hn is such that grpHn = Ep,n−p
∞ . We obtain isomorphisms

⊗

p,q

det
(−1)p+q

Z Ep,q
r0

∼
→
⊗

p,q

det
(−1)p+q

Z Ep,q
∞

∼
→
⊗

n

⊗

p

det
(−1)n

Z Ep,n−p
∞

∼
→
⊗

n

det
(−1)n

Z Hn

compatible with the canonical Q-trivializations. �

Consider the Hodge filtration F ∗ on the derived de Rham complex LΩ∗
X/Z. By ([5] VIII.2.1.1.5)

we have

gr(LΩ∗
X/Z) ≃

⊕

p≥0

LΛpLX/Z[−p].

This gives a (convergent) spectral sequence

Ep,q
1 = Hq(X,LΛp<nLX/Z) =⇒ Hp+q(X,LΩ∗

X/Z/F
n)

where LΛp<nLX/Z := LΛpLX/Z for p < n and LΛp<nLX/Z := 0 otherwise. The scheme X
is proper and LΛpLX/Z is isomorphic, in the derived category D(OX) of OX-modules, to a
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bounded complex of coherent sheaves, so that Ep,q
1 is a finite dimensional Fp-vector space for

all (p, q) vanishing for almost all (p, q). By Lemma 1, this yields isomorphisms

detZRΓ(X,LΩ∗
X/Z/F

n)
∼

−→
⊗

i

det
(−1)i

Z H i(X,LΩ∗
X/Z/F

n)

∼
−→

⊗

p<n,q

det
(−1)p+q

Z Hq(X,LΛpLX/Z)

∼
−→

⊗

p<n

det
(−1)p

Z RΓ(X,LΛpLX/Z)

which are compatible with the canonical Q-trivializations. The transitivity triangle (see [4]

II.2.1) for the composite map X
f
→ Spec(Fp) → Spec(Z) reads as follows (using [4] III.3.1.2

and [4] III.3.2.4(iii)):

(3) Lf∗(pZ/p2Z)[1] → LX/Z → Ω1
X/Fp

[0]
ω
→ Lf∗(pZ/p2Z)[2].

We set L := Lf∗(pZ/p2Z), a trivial invertible OX -module. By ([4] Théorème III.2.1.7), the
class

ω ∈ Ext2OX
(Ω1

X/Fp
,L) ≃ H2(X,TX/Fp

)

is the obstruction to the existence of a lifting of X over Z/p2Z. If such a lifting does exist
then we have ω = 0, in which case the following lemma is superfluous. For an object C of
D(OX) with bounded cohomology, we set

grτC :=
⊕

i∈Z

H i(C)[−i].

Lemma 2. We have an isomorphism

detZRΓ(X,LΛpLX/Z) ≃ detZRΓ(X,LΛp(grτLX/Z))

compatible with the canonical Q-trivializations.

Proof. The map X → Spec(Z) is a local complete intersection, hence the complex LX/Z has
perfect amplitude ⊂ [−1, 0] (see [4] III.3.2.6). In other words, LX/Z is locally isomorphic in
D(OX) to a complex of free modules of finite type concentrated in degrees −1 and 0. By ([3]
2.2.7.1) and ([3] 2.2.8), LX/Z is globally isomorphic to such a complex, i.e. there exists an
isomorphism LX/Z ≃ [M → N ] in D(OX), where M and N are finitely generated locally free
OX -modules put in degrees −1 and 0 respectively. Consider the exact sequences

(4) 0 → L → M → F → 0 and 0 → F → N → Ω → 0

where L := Lf∗(pZ/p2Z) and Ω := Ω1
X/Fp

are finitely generated and locally free. It follows

that F is also finitely generated and locally free. One has an isomorphism in D(OX)

(5) LΛpLX/Z ≃ [ΓpM → Γp−1M ⊗N → ... → M ⊗ Λp−1N → ΛpN ]

where the right hand side is concentrated in degrees [−p, 0] (see [5] VIII.2.1.2 and [4] I.4.3.2.1).
Moreover, in view of (3) we may choose an isomorphism

grτLX/Z ≃ [L
0
→ Ω]



MILNE’S CORRECTING FACTOR AND DERIVED DE RHAM COHOMOLOGY 5

in D(OX), the right hand side being concentrated in degrees [−1, 0]. Hence the complex
LΛp(grτLX/Z) ∈ D(OX) is represented by a complex of the form

(6) LΛp(grτLX/Z) ≃ LΛp([L → Ω]) ≃ [ΓpL → Γp−1L ⊗ Ω → ... → L⊗ Λp−1Ω → ΛpΩ]

concentrated in degrees [−p, 0]. Lemma 1 and (5) give an isomorphism

(7) detZRΓ(X,LΛpLX/Z) ≃
⊗

0≤q≤p

det
(−1)p−q

Z RΓ(X,Γp−qM ⊗ ΛqN)

compatible with the Q-trivializations. The second exact sequence in (4) endows ΛqN with a
finite decreasing filtration Fil∗ such that griFil(Λ

qN) = ΛiF ⊗Λq−iΩ. Since Γp−qM is flat, Fil∗

induces a similar filtration on Γp−qM ⊗ ΛqN such that

griFil(Γ
p−qM ⊗ ΛqN) = Γp−qM ⊗ ΛiF ⊗ Λq−iΩ.

This filtration induces an isomorphism

(8) detZRΓ(X,Γp−qM ⊗ ΛqN) ≃
⊗

0≤i≤q

detZRΓ(X,Γp−qM ⊗ ΛiF ⊗ Λq−iΩ)

compatible with the Q-trivializations. Lemma 1 and (6) give an isomorphism

(9) detZRΓ(X,LΛp(grτLX/Z)) ≃
⊗

0≤i≤p

det
(−1)p−i

Z RΓ(X,Γp−iL ⊗ ΛiΩ)

compatible with the Q-trivializations. Moreover, we have an isomorphism (see [4] I.4.3.1.7)

Γp−iL ≃ [Γp−iM → Γp−i−1M ⊗ F → ... → M ⊗ Λp−i−1F → Λp−iF ]

where the right hand side sits in degrees [0, p− i]. Since ΛiΩ is flat, we have an isomorphism
between Γp−iL ⊗ ΛiΩ and

[Γp−iM ⊗ ΛiΩ → Γp−i−1M ⊗ F ⊗ ΛiΩ → ... → M ⊗ Λp−i−1F ⊗ ΛiΩ → Λp−iF ⊗ ΛiΩ].

By Lemma 1, we have

(10) detZRΓ(X,Γp−iL ⊗ ΛiΩ) ≃
⊗

0≤j≤p−i

det
(−1)j

Z RΓ(X,Γp−i−jM ⊗ ΛjF ⊗ ΛiΩ).

Putting (9), (10), (8) and (7) together, we obtain isomorphisms

detZRΓ(X,LΛp(grτLX/Z)) ≃
⊗

0≤i≤p

det
(−1)p−i

Z RΓ(X,Γp−iL ⊗ ΛiΩ)

≃
⊗

0≤i≤p





⊗

0≤j≤p−i

det
(−1)p−i−j

Z RΓ(X,Γp−i−jM ⊗ ΛjF ⊗ ΛiΩ)





=
⊗

0≤q≤p





⊗

0≤i,j ; i+j=q

det
(−1)p−q

Z RΓ(X,Γp−qM ⊗ ΛjF ⊗ ΛiΩ)





≃
⊗

0≤q≤p

det
(−1)p−q

Z RΓ(X,Γp−qM ⊗ ΛqN)

≃ detZRΓ(X,LΛpLX/Z)

compatible with the canonical Q-trivializations. �
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Recall from (6) that the complex LΛp(grτLX/Z) is isomorphic in D(OX) to a complex of
the form

0 → ΓpL → Γp−1L ⊗ Ω1
X/Fp

→ ... → Γ1L ⊗ Ωp−1
X/Fp

→ Ωp
X/Fp

→ 0

concentrated in degrees [−p, 0]. Choose an isomorphism of Fp-vector spaces Fp ≃ pZ/p2Z.
This induces an identification L ≃ OX , and more generally

ΓiL ≃ SiL ≃ OX

for any i ≥ 0. Hence (LΛp(grτLX/Z))[−p] ∈ D(OX) is represented by a complex of the form

(11) 0 → OX → Ω1
X/Fp

→ ... → Ωp
X/Fp

→ 0

concentrated in degrees [0, p]. Hence there is a spectral sequence of the form

Ei,j
1 = Hj(X,Ωi≤p

X/Fp
) =⇒ H i+j(X, (LΛp(grτLX/Z))[−p])

where Ωi≤p := Ωi for i ≤ p and Ωi≤p := 0 for i > p. By Lemma 1 again, we get an identification
⊗

i≤p,j

det
(−1)i+j

Z Hj(X,Ωi
X/Fp

)
∼

−→ detZRΓ(X, (LΛp(grτLX/Z))[−p])

∼
−→ det

(−1)p

Z RΓ(X,LΛp(grτLX/Z)).

In summary, we have the following isomorphisms

detZRΓ(X,LΩ∗
X/Z/F

n)
∼
−→

⊗

p<n

det
(−1)p

Z RΓ(X,LΛpLX/Z)(12)

∼
−→

⊗

p<n

det
(−1)p

Z RΓ(X,LΛp(grτLX/Z))(13)

∼
−→

⊗

p<n





⊗

i≤p,j

det
(−1)i+j

Z Hj(X,Ωi
X/Fp

)



(14)

such that the square
(

detZRΓ(X,LΩ∗
X/Z/F

n)
)

⊗Q //

γ

��

(

⊗

p<n

⊗

i≤p,j det
(−1)i+j

Z Hj(X,Ωi
X/Fp

)
)

⊗Q

γ′

��

Q
Id

// Q

commutes, where the top horizontal map is induced by (14), and the vertical isomorphisms
are the canonical trivializations. The first assertion of the theorem follows:

(

∏

i∈Z

| H i(X,LΩ∗
X/Z/F

n) |(−1)i

)−1

· Z = γ
(

detZRΓ(X,LΩ∗
X/Z/F

n)
)

= γ′





⊗

p<n

⊗

i≤p,j

det
(−1)i+j

Z Hj(X,Ωi
X/Fp

)





= p−χ(X/Fp,OX ,n) · Z.
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We now explain why the second assertion of the theorem is a restatement of ([1] Theorem
1.3). We assume that H i(X,Z(n)) is finitely generated for all i ∈ Z (X and n being fixed). It
follows that H i(X,Z(n)) is in fact finite for i 6= 2n, 2n+1 and that the complex (2) has finite
cohomology groups. In particular the complex

(15) ...
∪e
−→ H i

W (X,Z(n)) ⊗Q
∪e
−→ H i+1

W (X,Z(n))⊗Q
∪e
−→ ...

is acyclic and concentrated in degrees [2n, 2n + 1]. It also follows from the finite generation
of the Weil-étale cohomology groups that

ords=nζ(X, s) = −rankZH
i
W (X,Z(n)) =: −ρn.

The acyclic complex (15) induces a trivialization

β : Q
∼

−→
⊗

i

det
(−1)i

Q

(

H i
W (X,Z(n)) ⊗Q

) ∼
−→

(

⊗

i

det
(−1)i

Z H i
W (X,Z(n))

)

⊗Q

such that

β
(

χ(H∗
W (X,Z(n)),∪e)−1

)

· Z =
⊗

i

det
(−1)i

Z H i
W (X,Z(n)).

The class e ∈ H1(WFq ,Z) = Hom(WFq ,Z) maps the Frobenius Frob ∈ WFq to 1 ∈ Z. We
define the map

WFq = Z · Frob −→ R =: WF1

as the map sending Frob to log(q), while θ ∈ H1(WF1
,R) = Hom(R,R) is the identity map.

It follows that the acyclic complex

...
∪θ
−→ H i

W (X,Z(n)) ⊗ R
∪θ
−→ H i+1

W (X,Z(n))⊗ R
∪θ
−→ ...

induces a trivialization

α : R
∼

−→
⊗

i

det
(−1)i

R

(

H i
W (X,Z(n))⊗ R

) ∼
−→

(

⊗

i

det
(−1)i

Z H i
W (X,Z(n))

)

⊗ R

such that

α
(

χ(H∗
W (X,Z(n)),∪e)−1 · log(q)ρn

)

· Z =
⊗

i

det
(−1)i

Z H i
W (X,Z(n)).

The trivialization λ is the product of α with the canonical trivialization

R
∼

−→ detZRΓ(X,LΩ∗
X/Z/F

n)⊗Z R.

Hence we have

λ
(

log(q)ρn · χ(H∗
W (X,Z(n)),∪e)−1 · q−χ(X,OX ,n)

)

· Z = ∆(X/Z, n).

Moreover, formula (1) gives

ζ∗(X, s) = ±log(q)−ρn · χ(H∗
W (X,Z(n)),∪e) · qχ(X,OX ,n)

hence the result follows from ([1] Theorem 1.3). �
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