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The ground state of two coupled Gross–Pitaevskii

equations in the Thomas–Fermi limit

Clément Gallo

Abstract

We prove existence and uniqueness of a positive solution to a system of two coupled Gross-Pitaevskii
equations. We give a full asymptotic expansion of this solution into powers of the semi classical
parameter ε in the Thomas–Fermi limit ε → 0.

1 Introduction

Recent experiments with Bose–Einstein condensates [PS] have stimulated new interest in the Gross–
Pitaevskii equation with a harmonic potential. This equation can be written as

iεut + ε2∆u+ (1− |x|2)u− |u|2u = 0, x ∈ R
d, t ∈ R+, (1.1)

where u(t, x) denotes the complex valued wave function of the Bose gas, and ε is a small parameter. The
limit ε → 0 corresponds to the Thomas–Fermi approximation of a nearly compact atomic cloud [Fer],
[T]. At equilibrium and in the absence of rotation, the condensate is described by the ground–state,
which is a positive, time independent solution u(t, x) = ηε(x) to (1.1). The ground state minimizes
the Gross–Pitaevskii energy

Eε(u) =

∫

Rd

(
ε2|∇u|2 + (|x|2 − 1)|u|2 + 1

2
|u|4

)
dx (1.2)

among functions with finite energy. The understanding of the profile of the ground state is particularily
important [A]. It is well known (see for instance [IM]) that in the Thomas–Fermi limit ε → 0, the
ground state ηε converges to the Thomas–Fermi’s compactly supported function

η0(x) =

{
(1− |x|2)1/2 for |x| < 1,

0 for |x| > 1.
(1.3)

The function η0 has a singularity at |x| = 1, whereas for ε > 0, ηε is regular. The question of the
description of the behaviour of ηε close to the turning point |x| = 1 as ε → 0 has been adressed by
Dalfovo, Pitaevskii and Stringari [DPS] and by Fetter and Feder [FF] on a formal level. Among other
reasons, this question is relevant because an important part of the kinetic energy is concentrated in
the region |x| ≈ 1 (see also [G]). In particular, it is shown in [DPS] and [FF] that it is possible to
describe ηε close to |x| = 1 as ε → 0 thanks to solutions of the Painlevé II equation. This analysis
has been made rigorous in [GP], where a full asymptotic expansion of ηε in terms of powers of ε2/3

is calculated. The proof consists in introducing a new variable y = (1− |x|2)/ε2/3 that blows up the
solution close to the turning point |x| = 1, writing ηε(x) = ε1/3νε(y) and solving the equation satisfied
by νε in terms of the variable y. It turns out that the variable y makes it possible to describe the
behaviour of ηε as ε → 0 not only close to the turning point, but also globally for all x ∈ Rd. In [KS],
Karali and Sourdis have extended this result to more general potentials.

The purpose of this paper is to adapt the result obtained in [GP] to the case of a two–component
Bose–Einstein condensate. As we shall see, one of the new difficulties we are facing to is that the ground
state has now two turning points instead of one in the case of a scalar Gross-Pitaevskii equation. As
a matter of fact, it will be necessary to use three different variables to describe the ground state,
instead of one for the scalar equation. Then, denoting by η1 and η2 the wave functions of the two
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components, η1 and η2 solve the following system of two coupled Gross-Pitaevskii equations with
quadratic potentials,

{
ε2∆η1 +

(
µ1 − |x|2

)
η1 − 2α1η

3
1 − 2α0η

2
2η1 = 0

ε2∆η2 +
(
µ2 − |x|2

)
η2 − 2α2η

3
2 − 2α0η

2
1η2 = 0,

(1.4)

where α0, α1, α2 > 0, µ1, µ2 > 0 are chemical potentials, ε is a small parameter and x ∈ Rd where the
dimension d is 1,2 or 3. Ground states of this system have also been studied in the case d = 2 and
with different methods by Aftalion, Noris and Sourdis [ANS]. They prove various estimates on the
difference between the Ground state and the Thomas-Fermi limit, which can be recovered by using
the full asymptotic expansion of the ground state we prove here.

For convenience, we define

Γ1 = 1− α0

α1
, Γ2 = 1− α0

α2
, Γ12 = 1− α2

0

α1α2
.

We will consider here only values of the parameters such that the two components of the Thomas–
Fermi limit (η10, η20) are supported and do not vanish on disks centered at x = 0, in opposition with
other cases where one component is supported in an annulus and the other one in a disk. More specific
conditions are given below. One of the differences between this case and the one component case
is that, as we shall see in the next section, the Thomas–Fermi limit (η10, η20) has now two turning
points. Thus, we have to introduce two different new variables. We will still be able to give a full
asymptotic expansion of (η1, η2) into powers of ε in the limit ε → 0, but functions of each of these two
new variables will appear in every term of the expansion.

1.1 Calculation of the Thomas-Fermi limit

We are interested in solutions of (1.4) which converge in the Thomas-Fermi limit ε → 0 to functions
η10 and η20 which are both supported in a disk, with respective radii R1 and R2 (for j = 1, 2,
Rj = inf {R > 0, Suppηj0 ⊂ B(0, R)}), and such that (η10, η20) solves (1.4) with ε = 0. Let us recall
the arguments leading to the expression of the Thomas–Fermi profile (η10, η20) of the ground state, as
it has been done in [AMW]. Up to a change of the indices, we assume (see Remark 1.2 below for the
case R1 = R2)

R1 < R2.

From our definition of R1 and R2, we have η10(x) = η20(x) = 0 for |x| > R2. For R1 < |x| < R2,
η10(x) = 0, and the second equation in (1.4) implies

η20(x)
2 =

µ2 − |x|2
2α2

.

Thus,

µ2 = R2
2, (1.5)

and η20(x) > 0 for |x| = R1, which implies that η10(x) 6= 0 and η20(x) 6= 0 for |x| ≈ R1, |x| < R1. If
ε = 0, η1 6= 0 and η2 6= 0, then (1.4) can be rewritten into a non-homogeneous linear system in the
variables η2

1 , η
2
2 . Solving this system (for the peculiar case Γ12 = 0, see Remark 1.3 below), we get, for

|x| ≈ R1 and |x| < R1,

η10(x)
2 =

1

2α1Γ12

(
µ1 − α0

α2
µ2 − Γ2|x|2

)
, (1.6)

η20(x)
2 =

1

2α2Γ12

(
µ2 −

α0

α1
µ1 − Γ1|x|2

)
. (1.7)

In particular, since η10 vanishes on the sphere |x| = R1 (or equivalently, using the continuity of η20 on
the same sphere), we deduce

µ1 =
α0

α2
µ2 + Γ2R

2
1 =

α0

α2
R2

2 + Γ2R
2
1. (1.8)
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Moreover, we also infer from the positiveness of η2
10 and (1.6) that the condition

Γ2/Γ12 > 0 (1.9)

has to be satisfied. Finally, (1.7) and the assumption of positiveness of η2 on the disk with radius R2

(and not on an annulus) yields
1

Γ12

(
µ2 − α0

α1
µ1

)
> 0,

which can be rewritten in terms of R1 and R2 as

R2
2 >

α0

α1

Γ2

Γ12
R2

1. (1.10)

As a result, provided that the parameters satisfy conditions (1.9) and (1.10),

η10(x) =

{ (
Γ2

2α1Γ12

)1/2
(R2

1 − |x|2)1/2 if |x| 6 R1

0 if |x| > R1

(1.11)

and

η20(x) =





(
R2

2−R2
1

2α2
+ Γ1

2α2Γ12
(R2

1 − |x|2)
)1/2

if |x| 6 R1
(

R2
2−|x|2

2α2

)1/2
if R1 6 |x| 6 R2

0 if |x| > R2

(1.12)

define a solution for ε = 0 to the system (1.4), which, taking into account (1.5) and (1.8), can be
rewritten as

{
ε2∆η1 +

(
α0
α2

(R2
2 −R2

1) +R2
1 − |x|2

)
η1 − 2α1η

3
1 − 2α0η

2
2η1 = 0

ε2∆η2 +
(
R2

2 − |x|2
)
η2 − 2α2η

3
2 − 2α0η

2
1η2 = 0.

(1.13)

Remark 1.1 From (1.5) and (1.8), µ2−µ1 = Γ2(R
2
2−R2

1). Thus, under the extra assumption Γ2 > 0
(an assumption which will be made later), the assumption R1 < R2 implies µ1 < µ2.

Remark 1.2 If R1 = R2 = R and Γ12 6= 0, η10(x) and η20(x) are given by (1.6) and (1.7) for |x| 6 R,
and they both vanish at |x| = R. We infer Γ2/Γ12 > 0, Γ1/Γ12 > 0 (if Γ1 = 0 or Γ2 = 0, then one
of the two components is identically equal to 0, and therefore we are brought back to the study of one
simple equation, like the one which was studuied in [GP]) and

1

Γ2

(
µ1 −

α0

α2
µ2

)
= R2 =

1

Γ1

(
µ2 −

α0

α1
µ1

)
,

which implies µ1 = µ2 = µ. Then, for ε > 0, if η denotes the ground state of

ε2∆η + (µ− |x|2)η − 2|Γ12|η3 = 0

(which, up to a rescaling, is the one which is described in [GP]), then

(η1, η2) =
(
(|Γ2|/α1)

1/2η, (|Γ1|/α2)
1/2η

)

solves (1.4).

Remark 1.3 If Γ12 = 0, then an analysis similar to the one which is done above implies α1 = α2 =
α0 = α and µ1 = µ2 = µ. Then,

(η1, η2) = (η, η)

solves (1.4), where η is the ground state solution of

ε2∆η + (µ− |x|2)η − 4αη3 = 0,

which is described in [GP] (up to a rescaling).
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1.2 Goal and strategy

Our goal is to construct a solution (η1, η2) of (1.13) for ε > 0 sufficiently small, and to describe its
convergence to (η10, η20) as ε → 0. The first step consists in constructing aproximate solutions of
(1.13). Because of the singularities of η10 and η20 at |x| = R1 and |x| = R2, (η1(x), η2(x)) will be
described by functions of different variables, depending on the region of Rd x belongs to. We write
Rd = D0 ∪D1 ∪D2, where

D0 =
{
x ∈ R

d
∣∣|x|2 6 R2

1 − εβ
}
,

D1 =
{
x ∈ R

d
∣∣R2

1 − 2εβ 6 |x|2 6 R2
1 + 2εβ

}

and

D2 =
{
x ∈ R

d
∣∣|x|2 > R2

1 + εβ
}
,

where β ∈ (0, 2/3) is some number that will be fixed later (note that D0 ∩ D1 and D1 ∩ D2 are not
empty). Then, for x ∈ D0, (η1(x), η2(x)) will be described as a function of the variable z = R2

1 − |x|2,
whereas for j = 1, 2 and x ∈ Dj , it will be described as a function of the real variables yj given by

yj =
R2

j − |x|2
ε2/3

. (1.14)

In order to be more specific, let us introduce the following truncation functions. Let ϕ be a C∞ function
on R wich is identically equal to 0 on R− and identically equal to 1 on [1,+∞). Then, let us define

Φε(z) = ϕ

(
z − εβ

2εβ − εβ

)
,

such that Φε(z) ≡ 0 for z 6 εβ and Φε(z) ≡ 1 for z > 2εβ, which means (if Φε(z) = Φε(R
2
1 − |x|2) is

considered as a function of the variable x, also denoted Φε for convenience) that SuppΦε ⊂ D0 and
Φε ≡ 1 for x ∈ D0\D1. Similarly, we set

χε(y1) =

(
1− ϕ

(
ε2/3y1 − εβ

2εβ − εβ

))
ϕ

(
ε2/3y1 + 2εβ

−εβ + 2εβ

)
,

such that χε(y1) ≡ 0 for y1 > 2εβ−2/3 and y1 6 −2εβ−2/3, whereas χε(y1) ≡ 1 for −εβ−2/3 6 y1 6

εβ−2/3, which means (if χε(y1) = χε((R
2
1 − |x|2)/ε2/3) is considered as a function of the variable x,

also denoted χε) that Suppχε ⊂ D1 and χε ≡ 1 for x ∈ D1\(D0 ∪D2). We also define

Ψε(y2) = 1− ϕ
( z

εβ
+ 2
)
= 1− ϕ

(
−R2

2 −R2
1

εβ
+ ε2/3−βy2 + 2

)
,

such that Ψε(y2) ≡ 0 for y2 >
R2

2−R2
1

ε2/3
−εβ−2/3 and Ψε(y2) ≡ 1 for y2 6

R2
2−R2

1

ε2/3
−2εβ−2/3, which means

(if Ψε(y2) = Ψε((R
2
2−|x|2)/ε2/3) is considered as a function of x, also denoted Ψε) that SuppΨε ⊂ D2

and Ψε ≡ 1 for x ∈ D2\D1. Formally, we look for (η1, η2) under the form

{
η1(x) = Φεω(z) + ε1/3χεν(y1)

η2(x) = Φετ (z) + ε1/3χελ(y1)
1/2 + ε1/3Ψεµ(y2),

(1.15)

in such a way that

for x ∈ D0, (η1, η2)(x) ≈ (ω(z), τ (z)) , (1.16)

for x ∈ D1, (η1, η2)(x) ≈ ε1/3
(
ν(y1), λ(y1)

1/2
)

(1.17)

and

for x ∈ D2, (η1, η2)(x) ≈
(
0, ε1/3µ(y2)

)
. (1.18)
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We look for approximate values of the functions ω, τ, ν, λ and µ by using a multi-scale analysis.
Namely, we write

ω = ω0 + ε2ω1 + ε4ω2 + · · ·
τ = τ0 + ε2τ1 + ε4τ2 + · · ·
ν = ν0 + ε2/3ν1 + ε4/3ν2 + · · ·
λ = λ−1ε

−2/3 + λ0 + ε2/3λ1 + ε4/3λ2 + · · ·
µ = µ0 + ε2/3µ1 + ε4/3µ2 + · · ·

(1.19)

The ωj ’s, τj ’s, νj ’s, λj ’s and µj ’s in this expansions are ε-independent functions, which are chosen in
such a way that (1.16), (1.17) and (1.18) provide at least formally solutions to (1.13) at any order.
Then, we prove rigorously that the truncation of the formal asymptotic expansions we have obtained
are indeed approximations of positive solutions to (1.13) which converge to (η10, η20) as ε → 0. For
this purpose, we use the ansatz





η1(x) = Φεω(z) + ε1/3
(
χεν(y1) + ε2(N+1)/3P (x)

)

η2(x) = Φετ (z) + ε1/3
(
χελ(y1)

1/2 +Ψεµ(y2) + ε2(N+1)/3Q(x)
)
.

(1.20)

where ω, τ , ν, λ and µ are now truncations up to some finite order (N ∈ N for ν, λ, M = M(N) for
ω, τ and L = L(N) for µ) of the formal series (1.19), and P , Q are remainder terms. A fixed point
theorem provides the existence of P,Q as well as estimates which ensure that the remainder terms in
(1.20) are indeed small. The better ω, τ , ν, λ and µ are chosen (that is, the larger is N), the smaller
is ε2(N+1)/3(P,Q). The functional space in which (P,Q) is obtained is H1

w(R
d)2, where

H1
w(R

d) =
{
f ∈ H1(Rd) | min(|y1|, |y2|)1/2f ∈ L2(Rd)

}
.

H1
w(R

d)2 is endowed with the norm

‖(P,Q)‖H1
w(Rd)2 =

(∫

Rd

(
|∇P |2 + |∇Q|2

)
dx+

∫

Rd

max(1,min(|y1|, |y2|))(|P |2 + |Q|2)dx
)1/2

.

Remark 1.4 Note that the set H1
w(R

d)2 does not depend on ε, even though it’s norm does. However,
this norm has been chosen in such a way that the norm of the continuous embedding of H1

w(R
d)2 into

H1(Rd)2 is uniformly bounded in ε.

Once we have constructed (η1, η2), we would like to estimate in different norms the difference
between the exact solution (η1, η2) and its approximation

{
η1app(x) = Φεω(z) + ε1/3χεν(y1)

η2app(x) = Φετ (z) + ε1/3χελ(y1)
1/2 + ε1/3Ψεµ(y2),

(1.21)

where ω, τ , ν, λ and µ are truncations of the formal series (1.19) up to some fixed orders M0 for ω
and τ , N0 for ν and λ and L0 for µ. However, the estimates on P and Q provided by the fixed point
argument are not very good. So in order to get better estimates on ηj − ηjapp (j = 1, 2), we proceed
as follows. We choose three large integers M > M0, N > N0 and L > L0 and write ηj as in (1.20)
(with truncations of the formal power series at orders M , N and L instead of M0, N0 and L0). Then,
the estimate on ηj −ηjapp is obtained thanks to estimates on ε2mωm and ε2mτm for M0+1 6 m 6 M ,
on ε2n/3νn and ε2n/3λn for N0 + 1 6 n 6 N and on ε2n/3µn for L0 + 1 6 n 6 L. The estimates on P
and Q provided by the fixed point argument are good enough to ensure that ε2N/3+1P and ε2N/3+1Q
are negligible in comparison with the other terms in the expression of ηj − ηjapp.

In our main result below, we give estimates on the Lp(Rd) and H1(Rd) norms of ηj − ηjapp for
j = 1, 2. Note however that depending on the need of the reader, our strategy can give many other
informations on ηj − ηjapp (see Remark 1.6 below).

Theorem 1.5 Let d ∈ {1, 2, 3}, and α0, α1, α2 > 0, R2 > R1 > 0 such that Γ2,Γ12 > 0 and such
that (1.10) is satisfied. Then, for ε > 0 sufficiently small, (1.13) has a unique solution (η1, η2) ∈
C0(R

d)2 such that the two components η1 and η2 are both positive. Moreover, if M0, N0, L0 ∈ N, if
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β ∈ (0, ε2/3)\Q, if ωm = ωm(z), τm = τm(z), νn = νn(y1), λn = λn(y1), µn = µn(y2) are the functions
given by (2.6), (2.7), (2.10), (2.19), (2.30), (2.39), (2.34), (2.44) and (2.42), then

‖η1 − η1app‖E = O
(
εγ1(E)

)
and ‖η2 − η2app‖E = O

(
εγ2(E)

)
, (1.22)

where E can be either Lp(Rd) for any p ∈ [2,+∞] or H1(Rd),

η1app = Φε

M0∑

m=0

ε2mωm + ε1/3χε

N0∑

n=0

ε2n/3νn,

η2app = Φε

M0∑

m=0

ε2mτm + ε1/3χε

(
N0∑

n=−1

ε2n/3λn

)1/2

+ ε1/3Ψε

L0∑

n=0

ε2n/3µn

and for p ∈ [2,+∞],

γ1(L
p(Rd)) =





min
(
(2− 3β)M0 + 2− 5β/2 + β/p , 1 + 2/(3p)

)
if N0 = 0

min
(
(2− 3β)M0 + 2− 5β/2 + β/p , 5/3 + 2/(3p)

)
if N0 = 1 and p > 2

min
(
(2− 3β)M0 + 2− 5β/2 + β/p , 2− δ

)
if N0 = 1 and p = 2

min
(
(2− 3β)M0 + 2− 5β/2 + β/p , βN0 + 2− 3β/2 + β/p

)
if N0 > 2

where δ > 0 is arbitrarily small, and

γ2(L
p(Rd)) =

{
min

(
(2− 3β)M0 + 2− 2β + β/p , 4/3 + 2/(3p) , 2L0/3 + 1 + 2/(3p)

)
if N0 = 0

min
(
(2− 3β)M0 + 2− 2β + β/p , βN0 + 2− β + β/p , 2L0/3 + 1 + 2/(3p)

)
if N0 > 1,

whereas

γ1(H
1(Rd)) =





min
(
(2− 3β)(M0 + 1) , 2/3

)
if N0 = 0

min
(
(2− 3β)(M0 + 1) , 4/3

)
if N0 = 1

min
(
(2− 3β)(M0 + 1) , 2− δ

)
if N0 = 2

min
(
(2− 3β)(M0 + 1) , β(N0 − 2) + 2

)
if N0 > 3

and

γ2(H
1(Rd)) =





min
(
(2− 3β)(M0 + 1) + β/2 , 1 , 2L0/3 + 2/3

)
if N0 = 0

min
(
(2− 3β)(M0 + 1) + β/2 , 5/3 , 2L0/3 + 2/3

)
if N0 = 1

min
(
(2− 3β)(M0 + 1) + β/2 , β(N0 − 3/2) + 2 , 2L0/3 + 2/3

)
if N0 > 2.

Remark 1.6 Depending on the value of M0, N0, L0 and p, the value of the parameter β ∈ (0, 2/3) can
be adjusted in such a way that the values of γ1 and γ2 are as large as possible. If we are only interested
in the approximation of one of the two components ηj , one can even choose β ∈ (0, 2/3) to optimize γj
without considering the other component. In some cases, one can be interested in estimations on the
norms of η1−η1app and η2 −η2app, not on Rd as a whole, but only on a subdomain like D0, D1 or D2.
In each minimum in the expressions of γ1 and γ2 in the statement of the theorem, the first argument
corresponds to the rate of convergence of the norm in D0, the second one to the rate of convergence of
the norm in D1 and the third one (for η2) to the rate of convergence of the norm in D2. The Lp and
H1 norms of the restriction of η1 − η1app to D2 converge to 0 faster than any power of ε as ε → 0.

In the following corollary, we write more expicitely upper bounds on the rates of convergence of
η1 − η1app and η2 − η2app to 0 in the particular and important case where M0 = N0 = L0 = 0 and
E = L2, L∞ or H1.

Corollary 1.7 If β ∈ (0, 1/3), we have

η1 = Φεω0 + ε1/3χεν0 +





OL2(Rd)(ε
4/3)

OL∞(Rd)(ε)

OH1(Rd)(ε
2/3)

and

η2 = Φετ0 + ε1/3χε

(
λ−1

ε2/3
+ λ0

)
+ ε1/3Ψεµ0 +





OL2(Rd)(ε
4/3)

OL∞(Rd)(ε)

OH1(Rd)(ε
2/3).
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1.3 Organization of the paper

In Section 2, we calculate formally all the functions ωj ’s, τj ’s, νj ’s, λj ’s and µj ’s appearing in the formal
series (1.19), in such a way that truncations of these series provide at least formally, through the ansatz
(1.16), (1.17) and (1.18), solutions to (1.13) at any order. We also study asymptotic behaviours of
these functions. In Section 3, we study the functions obtained by truncations of the formal series. In
particular, if ω, τ , ν, λ, µ denote these truncations, we estimate the order at which (1.16), (1.17) and
(1.18) solve (1.13), respectively on D0, D1 and D2. We also check that (1.16) and (1.17) are close one
from another on D0 ∩D1 and that (1.17) and (1.18) are close one from another on D1 ∩D2. Section
4 is devoted to the proof of the main result.

Notations.

• If A and B are two quantities depending on a parameter x belonging to some set D, the claim
“for x ∈ D, A(x) . B(x)” means “there exists C > 0 such that for every x ∈ D, A(x) 6 CB(x)”.

• Let F (x) be a function defined in a neighborhood of ∞. Given α ∈ R, {fm}m∈N ∈ R, and γ > 0,
the notation

F (x) ≈
x→∞

xα
∞∑

m=0

fmx−γm

means that for every M ∈ N,

F (x)− xα
M∑

m=0

fmx−γm = O(xα−γ(M+1)) as x → ∞,

and, moreover, that the asymptotic series can be differentiated term by term. We use the same
notation if γ < 0 and if F is defined in a neighborhood of 0.

• C0(R
d) denotes the space of continuous functions on Rd that converge to 0 at infinity.

• If (fε)0<ε<ε0 is a sequence of functions such that for every ε, fε belongs to some Banach space Eε

that may depend on ε, if α ∈ R, fε = OEε(ε
α) (respectively fε = oEε(ε

α)) means that ‖fε‖Eε/ε
α

remains bounded (respectively converges to 0) as ε → 0.

2 Formal asymptotic expansions

2.1 Asymptotic behaviour of ν0, µ0, λ−1, λ0.

We are looking for a solution (η1, η2) to (1.13) which converges to the Thomas-Fermi approximation
as ε → 0. Namely, for every x ∈ Rd,

η1(x) −→
ε→0

η10(x), η2(x) −→
ε→0

η20(x). (2.1)

The convergence of (η1, η2) (expressed using the ansatz (1.20)) to the Thomas-Fermi limit determines
the asymptotic behaviour of ν(y1), µ(y2), λ(y1) as y1, y2 → ±∞. We will construct the functions
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ν0, µ0, λ−1 and λ0 in such a way that they capture entirely this asymptotic behaviour. More precisely,

for |x| > R2, ε1/3µ0(y2) −→
ε→0

0 yields µ0(y2) −→
y2→−∞

0,

for R1 < |x| < R2, ε1/3µ0(y2) −→
ε→0

(
R2

2−|x|2

2α2

)1/2
yields µ0(y2) ∼

y2→+∞

(
y2
2α2

)1/2
,

for R1 < |x| < R2, ε1/3ν0(y1) −→
ε→0

0 yields ν0(y1) −→
y1→−∞

0,

for |x| < R1, ε1/3ν0(y1) −→
ε→0

(
Γ2

2α1Γ12
(R2

1 − |x|2)
)1/2

yields ν0(y1) ∼
y1→+∞

(
Γ2y1

2α1Γ12

)1/2

for R1 < |x| < R2, ε1/3
(

λ−1(y1)

ε2/3
+ λ0(y1)

)1/2
−→
ε→0

(
R2

2−|x|2

2α2

)1/2
=
(

R2
2−R2

1
2α2

+
R2

1−|x|2

2α2

)1/2

yields λ−1(y1) −→
y1→−∞

R2
2−R2

1
2α2

,

λ0(y1) ∼
y1→−∞

y1
2α2

,

for |x| < R1, ε1/3
(

λ−1(y1)

ε2/3
+ λ0(y1)

)1/2
−→
ε→0

(
R2

2−R2
1

2α2
+ Γ1

2α2Γ12
(R2

1 − |x|2)
)1/2

yields λ−1(y1) −→
y1→+∞

R2
2−R2

1
2α2

,

λ0(y1) ∼
y1→+∞

Γ1y1
2α2Γ12

.

2.2 Expansions of ω and τ in D0

In the domain D0, we look for (η1, η2) solution of (1.13) under the form (1.16). It follows that ω(z)
and τ (z) have to solve for z ∈ (0, R2

1) the following system of differential equations

− 2dε2ω′ + 4(R2
1 − z)ε2ω′′ +

(
α0

α2
(R2

2 −R2
1) + z

)
ω − 2α1ω

3 − 2α0τ
2ω = 0 (2.2)

−2dε2τ ′ + 4(R2
1 − z)ε2τ ′′ +

(
R2

2 −R2
1 + z

)
τ − 2α2τ

3 − 2α0ω
2τ = 0. (2.3)

Then, we look for ω and τ under the form of formal power series in the parameter ε2:

ω =
∞∑

m=0

ε2mωm, τ =
∞∑

m=0

ε2mτm.

Plugging these expansions into (2.2), we get

− 2d
∞∑

m=1

ε2mω′
m−1 + 4(R2

1 − z)
∞∑

m=1

ε2mω′′
m−1 +

(
α0

α2
(R2

2 −R2
1) + z

) ∞∑

m=0

ε2mωm

−2α1

∞∑

m=0

ε2m
∑

m1+m2+m3=m

ωm1ωm2ωm3 − 2α0

∞∑

m=0

ε2m
∑

m1+m2+m3=m

ωm1τm2τm3 = 0, (2.4)

whereas (2.3) yields

− 2d
∞∑

m=1

ε2mτ ′
m−1 + 4(R2

1 − z)
∞∑

m=1

ε2mτ ′′
m−1 +

(
R2

2 −R2
1 + z

) ∞∑

m=0

ε2mτm

−2α2

∞∑

m=0

ε2m
∑

m1+m2+m3=m

τm1τm2τm3 − 2α0

∞∑

m=0

ε2m
∑

m1+m2+m3=m

ωm1ωm2τm3 = 0. (2.5)

At order m = 0, we deduce that ω2
0 , τ

2
0 have to solve in the domain z ∈ (0, R2

1) (a range of values of z
for which they are expected not to vanish) the linear system

α1ω
2
0 + α0τ

2
0 =

1

2

(
α0

α2
(R2

2 −R2
1) + z

)

α0ω
2
0 + α2τ

2
0 =

1

2

(
R2

2 −R2
1 + z

)
.
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As already mentioned in (1.11) and (1.12), it follows that

ω2
0 =

Γ2

2α1Γ12
z (2.6)

and

τ 2
0 =

R2
2 −R2

1

2α2
+

Γ1

2α2Γ12
z. (2.7)

For m > 1, (2.4) and (2.5) imply that

M

[
ωm

τm

]
=




2dω′
m−1 + 4(z −R2

1)ω
′′
m−1 + 2α1

∑
m1 + m2 + m3 = m
m1,m2,m3 < m

ωm1ωm2ωm3 + 2α0

∑
m1 + m2 + m3 = m
m1,m2, m3 < m

ωm1τm2τm3

2dτ ′
m−1 + 4(z −R2

1)τ
′′
m−1 + 2α2

∑
m1 + m2 + m3 = m
m1,m2,m3 < m

τm1τm2τm3 + 2α0

∑
m1 + m2 + m3 = m
m1,m2,m3 < m

ωm1ωm2τm3


 ,(2.8)

where

M = −4

[
α1ω

2
0 α0ω0τ0

α0ω0τ0 α2τ
2
0

]
. (2.9)

Thus, the functions ωm, τm for m > 1 can be calculated thanks to the recursion relation
[

ωm

τm

]
=

1

α1α2Γ12ω2
0τ

2
0

[
α2τ

2
0 −α0ω0τ0

−α0ω0τ0 α1ω
2
0

]
× (2.10)




− d
2
ω′
m−1 − (z −R2

1)ω
′′
m−1 − α1

2

∑
m1 + m2 + m3 = m
m1,m2,m3 < m

ωm1ωm2ωm3 − α0
2

∑
m1 + m2 + m3 = m
m1, m2,m3 < m

ωm1τm2τm3

− d
2
τ ′
m−1 − (z −R2

1)τ
′′
m−1 − α2

2

∑
m1 + m2 + m3 = m
m1,m2,m3 < m

τm1τm2τm3 − α0
2

∑
m1 + m2 + m3 = m
m1, m2,m3 < m

ωm1ωm2τm3


 .

From this relation, we deduce useful informations about the behaviour of ωm and τm for z ∈ (0, R2
1].

Lemma 2.1 For every m > 1, there exists (wm,n)n>0, (tm,n)n>0 ∈ RN such that

ωm(z) ≈
z→0

z1/2−3m
∞∑

n=0

wm,nz
n (2.11)

and

τm(z) ≈
z→0

z1−3m
∞∑

n=0

tm,nz
n. (2.12)

In particular, there is a constant cm > 0 such that

∀z ∈ (0, R2
1], |ωm(z)| 6 cmz1/2−3m and |τm(z)| 6 cmz1−3m.

Remark 2.2 Note that for m = 0, (2.11) is also true (with w0,n = 0 for n > 1), whereas (2.12) has
to be replaced by the Taylor expansion of τ0 at z = 0, which can be written as

τ0(z) ≈
z→0

(
R2

2 −R2
1

2α2

)1/2

+
∞∑

n=0

t0,nz
1+n (2.13)

for some (t0,n)n>0 ∈ RN.

Proof. From (2.10), ω1 and τ1 can be explicitely expressed by

[
ω1

τ1

]
=




−dω′
0/2−(z−R2

1)ω
′′
0

α1Γ12ω
2
0

+
α0(dτ

′
0/2+(z−R2

1)τ
′′
0 )

α1α2Γ12ω0τ0
α0(dω

′
0/2+(z−R2

1)ω
′′
0 )

α1α2Γ12ω0τ0
− dτ ′

0/2+(z−R2
1)τ

′′
0

α2Γ12τ
2
0


 . (2.14)

Then, it follows from (2.6), (2.7) and the expansions as ε → 0 of τ ′
0, τ

′′
0 , 1/τ0 and 1/τ 2

0 that (2.11)-
(2.12) hold for m = 1. Let m > 2 and assume that (2.11) and (2.12) are true for m replaced by any
integer between 1 and m− 1. Then (2.11)-(2.12) also hold at order m thanks to (2.10), the recursion
assumption, (2.6) and (2.13).

9



Remark 2.3 A consequence of Lemma 2.1 is that for every x ∈ D0 (which in terms of the variable
z, means R2

1 > z > εβ), for every m > 1,

|ε2mωm(z)| 6 cmεβ/2+m(2−3β), |ε2mτm(z)| 6 cmεβ+m(2−3β).

In particular, since we have chosen β ∈ (0, 2/3), for every M > 1,

∥∥∥∥∥

M∑

m=0

ε2mωm − ω0

∥∥∥∥∥
L∞(D0)

−→
ε→0

0 and

∥∥∥∥∥

M∑

m=0

ε2mτm − τ0

∥∥∥∥∥
L∞(D0)

−→
ε→0

0,

and for a fixed value of M , the larger is m ∈ {0, · · · ,M}, the smaller are the L∞(D0) norms of ε2mωm

and ε2mτm in the limit ε → 0.

2.3 Expansion of µ in D2

For x ∈ D2, we look for a solution (η1, η2) to (1.13) under the form (1.18). Thus, µ is constructed in
such a way that η2(x) = ε1/3µ(y2) solves, for |x| > R1,

ε2∆η2 +
(
R2

2 − |x|2
)
η2 − 2α2η

3
2 = 0, (2.15)

which means that for y2 < (R2
2 −R2

1)/ε
2/3,

4|x|2µ′′(y2)− 2dε2/3µ′(y2) + y2µ(y2)− 2α2µ(y2)
3 = 0. (2.16)

Moreover, we are looking for a solution η2 that converges to η20 for |x| > R1. Thus, as already
discussed in Section 2.1, µ has to satisfy the following asymptotics:

µ(y2) −→
y2→−∞

0, µ(y2) ∼
y2→+∞

(
y2
2α2

)1/2

.

We rescale to change the unknown function µ into γ, defined by

µ(y2) =
R

1/3
2

(2α2)1/2
γ

(
y2

R
2/3
2

)
.

Then, it turns out that µ solves (2.16) if and only if γ solves the differential equation

4(1− ε̃2/3y)γ′′(y)− 2dε̃2/3γ′(y) + yγ(y)− γ(y)3 = 0, −∞ < y 6
R2

2 −R2
1

R2
2

ε̃−2/3, (2.17)

where ε̃ = ε/R2
2. In [GP], we have constructed a solution γ of this equation for y ∈ (−∞, ε̃−2/3] (γ

was denoted νε̃ in that paper). Moreover, this solution, for any N ∈ N, can be expressed under the
form (see below for an explanation of the notations)

γ(y) =
N∑

n=0

ε̃2n/3γn(y) + ε̃2(N+1)/3RN,ε̃(y).

Thus,

µ(y2) =
R

1/3
2

(2α2)1/2

N∑

n=0

ε̃2n/3γn

(
y2

R
2/3
2

)
+ ε̃2(N+1)/3 R

1/3
2

(2α2)1/2
RN,ε̃

(
y2

R
2/3
2

)
. (2.18)

In particular, the functions µn introduced in (1.19) are given for every n > 0 by

µn(y2) =
R

1/3
2

(2α2)1/2
R

−4n/3
2 γn

(
y2

R
2/3
2

)
. (2.19)

The functions γn and RN,ε mentioned above have been defined as follows in [GP].

10



• γ0 is the Hastings-McLeod solution of the Painlevé-II equation, that is the unique solution of

4γ′′
0 (y) + yγ0(y)− γ0(y)

3 = 0, y ∈ R, (2.20)

with the asymptotic behaviour

γ0(y) ∼
y→+∞

y1/2, γ0(y) −→
y→−∞

0.

• for 1 6 n 6 N , γn is the unique solution of

− 4γ′′
n(y) +W0(y)γn(y) = Fn(y), y ∈ R, (2.21)

which goes to 0 as y → ±∞, where

W0(y) = 3γ2
0(y)− y (2.22)

and
Fn(y) = −

∑

n1, n2, n3 < n
n1 + n2 + n3 = n

γn1(y)γn2(y)γn3(y)− 2dγ′
n−1(y)− 4yγ′′

n−1(y),

• RN,ε̃ solves

− 4(1− ε̃2/3y)R′′
N,ε̃ + 2ε̃2/3dR′

N,ε̃ +W0RN,ε̃ = FN,ε̃(y,RN,ε̃), y ∈ (−∞, ε̃−2/3], (2.23)

where

FN,ε̃(y,R) = −(4yν′′
N + 2dν′

N )−
2N−1∑

n=0

ε̃2n/3
∑

n1 + n2 + n3 = n + N + 1
0 6 n1, n2, n3 6 N

γn1γn2γn3

−


3

2N∑

n=1

ε̃2n/3
∑

n1 + n2 = n
0 6 n1, n2 6 N

γn1γn2


R −

(
3

2N+1∑

n=N+1

ε̃2n/3γn−(N+1)

)
R2 − ε̃4(N+1)/3R3.

The analysis below requires the precise knowledge of the behaviour of γn(y) as y → ±∞. This
behaviour was already described in [GP], and it is summarized in the next two propositions:

Proposition 2.4 The behaviour of γ0 as y → −∞ is described by

γ0(y) =
1√

π(−y)1/4
exp

(
−1

3
(−y)3/2

)(
1 +O(|y|−3/4)

)
≈

y→−∞
0, (2.24)

whereas as y → +∞,

γ0(y) ≈
y→+∞

y1/2
∞∑

n=0

any
−3n, (2.25)

where a0 = 1, and for n > 0,

an+1 = 2

(
9n2 − 1

4

)
an − 1

2

∑

n1+n2+n3=n+1
n1,n2,n36n

an1an2an3 .

Remark 2.5 The calculation of the first terms in (2.25) gives

γ0(y) = y1/2 − 1

2
y−5/2 − 73

8
y−11/2 +O(y−17/2). (2.26)

Proposition 2.6 For every n > 1,

γn(y) ≈
y→+∞

y1/2−2n
∞∑

m=0

gn,my−3m for some {gn,m}m∈N,

and γn(y) ≈
y→−∞

0.

Moreover, if d = 1, for every n > 1, gn,0 = 0.
For instance, γ1(y) ∼

y→+∞

5(7−d)
4

y−9/2 if d = 1, whereas γ1(y) ∼
y→+∞

= 1−d
2

y−3/2 if d = 2, 3.
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2.4 Expansions of ν and λ in D1

For x ∈ D1, we formally look for a solution (η1, η2) to (1.13) under the form given in (1.17). Then, it
turns out that ν and λ have to solve

− 2dε2/3ν′ + 4R2
1ν

′′ − 4ε2/3y1ν
′′ +

α0

α2

R2
2 −R2

1

ε2/3
ν + y1ν − 2α1ν

3 − 2α0λν = 0 (2.27)

−dε2/3λλ′ − (R2
1 − ε2/3y1)λ

′2 + 2(R2
1 − ε2/3y1)λλ

′′ + y2λ
2 − 2α2λ

3 − 2α0ν
2λ2 = 0 (2.28)

Moreover, we are looking for solutions (η1, η2) that converge to the Thomas-Fermi limit (η10, η20) as
ε → 0. As a result, according to Section 2.1, ν and λ have to satisfy the following asymptotics. On
the one side, if R1 < |x| < R2 is fixed, ε → 0 if and only if y1 → −∞, and

ν(y1) −→
y1→−∞

0, λ(y1) ∼
y1→−∞

(
R2

2 −R2
1

2α2ε2/3
+

y1
2α2

)
.

On the other side, if |x| < R1 is fixed, ε → 0 if and only if y1 → +∞, and

ν(y1) ∼
y1→+∞

(
Γ2y1

2α1Γ12

)1/2

, λ(y1) ∼
y1→+∞

R2
2 −R2

1

2α2ε2/3
+

Γ1y1
2α2Γ12

.

We formally develop ν and λ into powers of ε2/3:

ν(y1) =

∞∑

n=0

ε2n/3νn(y1), λ(y1) =

∞∑

n=−1

ε2n/3λn(y1), (2.29)

and we plug these expansions of ν and λ into (2.27). We obtain

−2d

∞∑

n=1

ε2n/3ν′
n−1 + 4R2

1

∞∑

n=0

ε2n/3ν′′
n − 4y1

∞∑

n=1

ε2n/3ν′′
n−1 +

α0

α2
(R2

2 −R2
1)

∞∑

n=−1

ε2n/3νn+1 + y1

∞∑

n=0

ε2n/3νn

−2α1

∞∑

n=0

ε2n/3
∑

n1+n2+n3=n

νn1νn2νn3 − 2α0

∞∑

n=−1

ε2n/3
∑

n1 + n2 = n,
n1 > −1, n2 > 0

λn1νn2 = 0.

At order n = −1, we get, in agreement with the asymptotics of λ−1 given in Section 2.1,

λ−1(y1) =
R2

2 −R2
1

2α2
, (2.30)

and therefore the equation can be simplified into

− 2d
∞∑

n=1

ε2n/3ν′
n−1 + 4R2

1

∞∑

n=0

ε2n/3ν′′
n − 4y1

∞∑

n=1

ε2n/3ν′′
n−1 + y1

∞∑

n=0

ε2n/3νn

−2α1

∞∑

n=0

ε2n/3
∑

n1+n2+n3=n

νn1νn2νn3 − 2α0

∞∑

n=0

ε2n/3
∑

n1 + n2 = n,
n1 > 0, n2 > 0

λn1νn2 = 0 (2.31)

At order n = 0, we obtain

4R2
1ν

′′
0 + y1ν0 − 2α1ν

3
0 − 2α0λ0ν0 = 0. (2.32)
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Similarly, plugging (2.29) into (2.28) and multiplying by ε4/3, we get

−d
∞∑

n=1

ε2n/3
∑

n1 + n2 = n − 3
n1, n2 > −1

λ′
n1
λn2 + 2R2

1

∞∑

n=0

ε2n/3
∑

n1 + n2 = n − 2
n1, n2 > −1

λ′′
n1

λn2

−2y1

∞∑

n=1

ε2n/3
∑

n1 + n2 = n − 3
n1, n2 > −1

λ′′
n1
λn2 −R2

1

∞∑

n=0

ε2n/3
∑

n1 + n2 = n − 2
n1, n2 > −1

λ′
n1

λ′
n2

+y1

∞∑

n=1

ε2n/3
∑

n1 + n2 = n − 3
n1, n2 > −1

λ′
n1

λ′
n2

+ (R2
2 −R2

1)
∞∑

n=−1

ε2n/3
∑

n1 + n2 = n − 1
n1, n2 > −1

λn1λn2

+y1

∞∑

n=0

ε2n/3
∑

n1 + n2 = n − 2
n1, n2 > −1

λn1λn2 − 2α2

∞∑

n=−1

ε2n/3
∑

n1 + n2 + n3 = n − 2
n1, n2, n3 > −1

λn1λn2λn3

−2α0

∞∑

n=0

ε2n/3
∑

n1 + n2 + n3 + n4 = n − 2
n1, n2 > −1, n3, n4 > 0

λn1λn2νn3νn4 = 0 (2.33)

This equation at order n = −1 is satisfied thanks to (2.30). At order n = 0, we obtain

λ0(y1) =
y1
2α2

− α0

α2
ν0(y1)

2. (2.34)

From (2.32) and (2.34), we infer the equation satisfied by ν0:

4R2
1ν

′′
0 + Γ2y1ν0 − 2α1Γ12ν

3
0 = 0. (2.35)

Moreover, according to Section 2.1, the asymptotic behaviour we need for ν0 is

ν0(y1) ∼
y1→+∞

(
Γ2y1

2α1Γ12

)1/2

, ν0(y1) →
y1→−∞

0.

Looking for ν0 under the form

ν0(y1) =
R

1/3
1 |Γ2|1/3

(2α1)1/2|Γ12|1/2
γ

(
|Γ2|1/3y1
R

2/3
1

)
,

ν0 solves (2.35) if and only if γ solves

4sign(Γ2)γ
′′(y) + yγ(y)− γ(y)3 = 0, y ∈ R, (2.36)

with the boundary conditions

γ(y) ∼
y→+∞

√
y, γ(y) →

y→−∞
0. (2.37)

If the sign of Γ2 (which is the same as the sign of Γ12 according to (1.9)) is negative, it can be easily
seen that (2.36) has no non-trivial solution with fast decay to 0 as y → −∞. Indeed, if γ solves (2.36)
with γ′(y) → 0 and yγ(y)2 → 0 as y → −∞, then by integration between −∞ and y, we get

2sign(Γ2)γ
′(y)2 = −y

γ(y)2

2
+

∫ y

−∞

γ(t)2

2
dt+

γ(y)4

4
,

which implies γ ≡ 0 if Γ2 < 0 and y < 0. Also, from now on, we assume

Γ2 > 0, Γ12 > 0. (2.38)

Under this condition, γ has to be the Hastings-McLeod solution γ0 of the Painlevé II equation (2.20),
and

ν0(y1) =
R

1/3
1 Γ

1/3
2

(2α1)1/2Γ
1/2
12

γ0

(
Γ
1/3
2 y1

R
2/3
1

)
. (2.39)
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Thanks to (2.30), equation (2.31) at order n > 1 gives

4R2
1ν

′′
n + y1νn − 6α1ν

2
0νn − 2α0λ0νn − 2α0λnν0 (2.40)

= 2dν′
n−1 + 4y1ν

′′
n−1 + 2α1

∑

n1 + n2 + n3 = n
0 6 n1, n2, n3 6 n − 1

νn1νn2νn3 + 2α0

∑

n1 + n2 = n,
1 6 n1, n2 6 n − 1

λn1νn2 .

On the other side, equation (2.33) at order n > 1 yields

−d
∑

n1 + n2 = n − 3
n1, n2 > −1

λ′
n1
λn2 + 2R2

1

∑

n1 + n2 = n − 2
n1, n2 > −1

λ′′
n1

λn2

−2y1
∑

n1 + n2 = n − 3
n1, n2 > −1

λ′′
n1
λn2 −R2

1

∑

n1 + n2 = n − 2
n1, n2 > −1

λ′
n1

λ′
n2

+y1
∑

n1 + n2 = n − 3
n1, n2 > −1

λ′
n1

λ′
n2

+ (R2
2 −R2

1)
∑

n1 + n2 = n − 1
n1, n2 > 0

λn1λn2 + 2(R2
2 −R2

1)λ−1λn

+y1
∑

n1 + n2 = n − 2
n1, n2 > −1

λn1λn2 − 2α2

∑

n1 + n2 + n3 = n − 2
n − 1 > n1, n2, n3 > −1

λn1λn2λn3 − 6α2λ
2
−1λn

−2α0

∑

n1 + n2 + n3 + n4 = n − 2
n1, n2 > −1, n − 1 > n3, n4 > 0

λn1λn2νn3νn4 − 4α0λ
2
−1ν0νn = 0, (2.41)

therefore for n > 1,

λn = −2
α0

α2
ν0νn +

2α2

(R2
2 −R2

1)
2
δn, (2.42)

where

δn =
∑

n1 + n2 = n − 3
n1, n2 > −1

(
−dλ′

n1
λn2 − 2y1λ

′′
n1

λn2 + y1λ
′
n1

λ′
n2

)

+
∑

n1 + n2 = n − 2
n1, n2 > −1

(
2R2

1λ
′′
n1

λn2 −R2
1λ

′
n1

λ′
n2

+ y1λn1λn2

)
+ (R2

2 −R2
1)

∑

n1 + n2 = n − 1
n1, n2 > 0

λn1λn2

−2α2

∑

n1 + n2 + n3 = n − 2
n − 1 > n1, n2, n3 > −1

λn1λn2λn3 − 2α0

∑

n1 + n2 + n3 + n4 = n − 2
n1, n2 > −1, n − 1 > n3, n4 > 0

λn1λn2νn3νn4 .(2.43)

At this stage, we have constructed λ−1, ν0 and λ0, which are given respectively by (2.30), (2.39) and
(2.34). For n > 1, the λn’s and the νn’s are constructed by induction as follows. Let n > 1, and
assume that the λk’s and the νk’s are known for every k 6 n − 1. Then, plugging (2.42) and (2.34)
into (2.40), νn has to solve

Tνn = Fn, (2.44)

where

T = −4R2
1∂

2
y1 +W (y1), W (y1) = 6α1Γ12ν

2
0 − Γ2y1 (2.45)

and

Fn = − 4α0α2ν0
(R2

2 −R2
1)

2
δn − 2dν′

n−1 − 4y1ν
′′
n−1 − 2α1

∑

n1 + n2 + n3 = n
0 6 n1, n2, n3 6 n − 1

νn1νn2νn3 − 2α0

∑

n1 + n2 = n,
1 6 n1, n2 6 n − 1

λn1νn2 .(2.46)

Note that only λk’s and νk’s for k 6 n− 1 appear in (2.46) and (2.43). Once (2.44) has been solved,
λn is given by (2.42). In order to invert T in (2.44), one needs to understand the behaviour of Fn(y1)
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as y1 → ±∞. Thus, δn, Fn, νn and λn will be constructed recursively in such a way that for every
n > 1,

δn(y1) ≈
y1→−∞

yn−2
1

∑

06m6(n−2)/3

D̃n,my−3m
1 , δn(y1) ≈

y1→+∞
yn−2
1

+∞∑

m=0

Dn,my−3m
1 , (2.47)

Fn(y1) ≈
y1→−∞

0, Fn(y1) ≈
y1→+∞

y
n−3/2
1

+∞∑

m=0

Fn,my−3m
1 , (2.48)

νn(y1) ≈
y1→−∞

0, νn(y1) ≈
y1→+∞

y
n−5/2
1

+∞∑

m=0

Nn,my−3m
1 , (2.49)

λn(y1) ≈
y1→−∞

yn−2
1

∑

06m6(n−2)/3

L̃n,my−3m
1 , λn(y1) ≈

y1→+∞
yn−2
1

+∞∑

m=0

Ln,my−3m
1 , (2.50)

where the Dn,m’s, Fn,m’s, Nn,m’s, Ln,m’s, D̃n,m’s and L̃n,m’s are some real coefficients. Note that
thanks to (2.39), (2.34), (2.24) and (2.25), ν0 and λ0 admit similar expansions. However, the power of
the leading term in the expansions they satisfy as y1 → +∞ (and for λ0, also as y1 → −∞) is higher
of three units to the one which would be given by (2.49) and (2.50) for n = 0. More precisely, we have

ν0(y1) ≈
y1→−∞

0, ν0(y1) ≈
y1→+∞

y
1/2
1

+∞∑

m=0

N0,my−3m
1 (2.51)

and

λ0(y1) ≈
y1→−∞

y1
2α2

, λ0(y1) ≈
y1→+∞

y1

+∞∑

m=0

L0,my−3m
1 , (2.52)

where

N0m =

(
Γ2

2α1Γ12

)1/2 (
R2

1

Γ2

)m

am (2.53)

and

L00 =
Γ1

2α2Γ12
and for m > 1, L0m = −α0

α2

∑

m1+m2=m

N0m1N0m2 . (2.54)

Next, let us explain why δ1, F1, ν1 and λ1 admit asymptotic expansions like the ones given in (2.47),
(2.48), (2.49), (2.50) and let us calculate explicitely the first terms in these expansions. Thanks to
(2.43) for n = 1 as well as (2.30), (2.34), (2.52), (2.53), (2.54),we have

δ1 = 2y1λ−1λ0 + 2R2
1λ

′′
0λ−1 + (R2

2 −R2
1)λ

2
0 − 6α2λ

2
0λ−1 − 4α0λ−1λ0ν

2
0

= 2R2
1λ

′′
0λ−1 =

y1→+∞

3α0R
4
1(R

2
2 −R2

1)

α1α2
2Γ12

y−4
1 +O(y−7

1 ). (2.55)

Thus, the asymptotics as y1 → +∞ in (2.47) holds with

D10 = 0 and D11 =
3α0R

4
1(R

2
2 −R2

1)

α1α2
2Γ12

. (2.56)

From (2.52) and (2.55), we also infer that δ1 ≈
y1→−∞

0, which is the asymptotics as y1 → −∞ in (2.47).

15



Then, (2.46) yields

F1 = − 4α0α2ν0
(R2

2 −R2
1)

2
δ1 − 2dν′

0 − 4y1ν
′′
0 (2.57)

=
y1→+∞

(
Γ2

2α1Γ12

)1/2

(1− d)y
−1/2
1 +

R2
1

(2α1Γ2Γ12)1/2

(
5

2
(7− d)− 12α2

0Γ2R
2
1

α1α2Γ12(R2
2 −R2

1)

)
y
−7/2
1 +O(y

−13/2
1 ).

Thus, (2.51) and (2.47) for n = 1 imply that (2.48) for n = 1 holds with

F10 =

(
Γ2

2α1Γ12

)1/2

(1− d) and F11 =
R2

1

(2α1Γ2Γ12)1/2

(
5

2
(7− d)− 12α2

0Γ2R
2
1

α1α2Γ12(R2
2 −R2

1)

)
.

In order to calculate ν1 from (2.44), let us first notice that the function W defined in (2.45) coincides,
up to a rescaling, to the function W0(y) = 3γ0(y)

2 − y which was studied in [GP]. On the other side,
W can be expressed in terms of λ0 thanks to (2.34). Namely,

W (y1) = Γ
2/3
2 R

2/3
1 W0

(
Γ
1/3
2 y1

R
2/3
1

)
=

(
3α1Γ1

α0
+ 2Γ2

)
y1 −

6α1α2Γ12

α0
λ0(y1). (2.58)

In particular, there exists C > 0 such that W (y1) > C for every y1 ∈ R, and W admits the asymptotic
expansions

W (y1) ≈
y1→−∞

−Γ2y1, W (y1) ≈
y1→+∞

y1

(
2Γ2 − 6α1α2Γ12

α0

+∞∑

m=1

L0,my−3m
1

)
(2.59)

In the case d = 1, since F10 = 0, F1 ∈ L2(R), and ν1 is obtained by inversion of T , which is a
Schrödinger operator on L2(R). Moreover, thanks to (2.59) and the positiveness of W , Lemma 2.1 in
[GP] implies that the solution ν1 to (2.44) admits asymptotic expansions like the ones given in (2.49),
with

N1,0 = 0, N1,1 = − 6R2
1

(2α1Γ12Γ2)1/2

(
α2
0R

2
1

α1α2(R2
2 −R2

1)Γ12
− 5

4Γ2

)
.

In the cases d = 2, 3, F10 6= 0, and therefore F1 6∈ L2(R). We construct the solution ν1 to (2.44) by
using the same trick as in [GP]. Namely, we look for ν1 under the form

ν1 =
F1,0y

−1/2
1

W (y1)
Φ(y1) + ν̃1,

where Φ ∈ C∞(R) is such that Φ(y1) ≡ 0 for y1 6 1/2 and Φ(y1) ≡ 1 for y1 > 1, in such a way that

(−4R2
1∂

2
y1 +W (y1))ν̃1 = F1 − F1,0y

−1/2
1 Φ(y1) + 4R2

1
d2

dy2
1

[
F1,0y

−1/2
1

W (y1)
Φ(y1)

]
. (2.60)

The right hand side of (2.60) behaves now like O(y
−7/2
1 ) as y1 → +∞, and its behaviour at −∞ is

the same as the one of F1, therefore the right hand side in (2.60) belongs to L2(R), and (2.60) has a
unique solution ν̃1 in L2(R). Moreover, again thanks to Lemma 2.1 in [GP], we deduce the existence

of asymptotic expansions for ν̃1 as y1 → ±∞, with ν̃1(y1) =
y1→+∞

O(y
−9/2
1 ). These expansions for ν̃1

imply that ν1 has expansions like in (2.49), with

N1,0 =
F1,0

2Γ2
=

1− d

2(2α1Γ2Γ12)1/2
.

Then, from (2.42) and (2.55),

λ1 = −2
α0

α2
ν0ν1 +

4α2R
2
1

(R2
2 −R2

1)
2
λ′′
0λ−1 (2.61)
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and thanks to (2.51), (2.55) and (2.49) for n = 1, λ1 as asymptotic expansions like in (2.50) (in
particular, λ1(y1) ≈

y1→−∞
0), with

L1,0 =
α0(d− 1)

2α1α2Γ12
, and if d = 1, L1,1 =

3α0R
2
1

2α1α2Γ12

(
4R2

1

(R2
2 −R2

1)Γ12
− 5

Γ2

)
.

For n = 2, (2.43) and (2.46) give similarly (after simplifications involving also (2.30), (2.34) and (2.61))

δ2 = −dλ′
0λ−1 − 2y1λ

′′
0λ−1 − 2R2

1λ
′′
0λ0 −R2

1λ
′2
0 + 2R2

1λ
′′
1λ−1 − 2α0λ

2
−1ν

2
1 (2.62)

and

F2 = − 4α0α2ν0
(R2

2 −R2
1)

2
δ2 − 2dν′

1 − 4y1ν
′′
1 − 6α1ν0ν

2
1 − 2α0λ1ν1 (2.63)

which implies, thanks to the expansions calculated previously for λ0, ν0, λ1 and ν1 that δ2 and F2

satisfy respectively (2.47) and (2.48) for n = 2, with

D2,0 = −Γ1

(
dΓ12(R

2
2 −R2

1) + Γ1R
2
1

)

4α2
2Γ

2
12

, D̃2,0 = −d(R2
2 −R2

1) +R2
1

4α2
2

(2.64)

and

F2,0 =
α0

α2

(
Γ2

2α1Γ12

)1/2
Γ1

Γ2
12

(dΓ12(R
2
2 −R2

1) + Γ1R
2
1)

(R2
2 −R2

1)
2

.

In order to solve (2.44) for n = 2, we look for ν2 under the form

ν2 =
F2,0

W (y1)
y
1/2
1 Φ(y1) + ν̃2 (2.65)

Then ν2 solves (2.44) for n = 2 if and only if ν̃2 solves

(−4R2
1∂

2
y1 +W (y1))ν̃2 = F2 − F2,0y

1/2
1 Φ(y1) + 4R2

1
d2

dy2
1

[
F2,0y

1/2
1

W (y1)
Φ(y1)

]
=

y1→+∞
O(y

−5/2
1 ).

In particular, the right hand side in this equation belongs to L2(R). Thus by inversion of T like for
n = 1 and d = 2, 3, and coming back to (2.65), ν2 satisfies (2.49) for n = 2, with

N2,0 =
F2,0

2Γ2
=

α0

α2

1

(2α1Γ2Γ12)
1/2

Γ1

Γ2
12

(dΓ12(R
2
2 −R2

1) + Γ1R
2
1)

2(R2
2 −R2

1)
2

.

As a result, from (2.42) for n = 2, λ2 satisfies (2.50) for n = 2, with

L2,0 = −Γ1

(
dΓ12(R

2
2 −R2

1) + Γ1R
2
1

)

2(R2
2 −R2

1)
2Γ3

12α2
and L̃2,0 = −d(R2

2 −R2
1) +R2

1

2α2(R2
2 −R2

1)
. (2.66)

Next, let us fix n > 3. We assume that we have constructed the νk’s for k ∈ {1 · · ·n − 1}, and
that asymptotic expansions (2.47), (2.48), (2.49), (2.50) with n replaced by each of these k’s are
satisfied. Then it is clear from (2.43) and (2.46) that Fn ≈ 0 as y1 → −∞ as indicated in (2.48).
In order to study the asymptotic expansion of δn as y1 → +∞, let us first focus on the first sum
in the right hand side of (2.43). If n1, n2 > 1 and n1 + n2 = n − 3, then it follows from (2.50)
that hn1n2(y1) := −dλ′

n1
λn2 − 2y1λ

′′
n1

λn2 + y1λ
′
n1
λ′
n2

admits an asymptotic expansions which can be
written as

yn−l
1

+∞∑

m=0

cmy−3m
1 , (2.67)

for some coefficients (cm)m∈N, with l = 8. Thus, we deduce that

∑

n1 + n2 = n − 3
n1, n2 > 1

hn1n2(y1) ≈
y1→+∞

yn−8
1

+∞∑

m=0

Ďn,m+2y
−3m
1 = yn−2

1

+∞∑

m=2

Ďn,my−3m
1 ,
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for some coefficients (Ďn,m)m>2. Similarly, hn1n2(y1) has an asymptotic expansion which can be
written as (2.67) with l = 5 if n1 > 1 and n2 6 0 or n1 6 0 and n2 > 1, and with l = 2 if n1, n2 6 0.
As a result, the first sum in the right hand side of (2.43) admits an asymptotic expansion as y1 → +∞
like (2.67) with l = 2, and in order to calculate the leading term cyn−2

1 in this expansion, one has
to consider only the terms of the sum corresponding to indices n1, n2 ∈ {−1, 0}. The same kind of
arguments applied to the other terms in the right hand side of (2.43) yields the asymptotic expansion
of δn as y1 → +∞ given in (2.47). Moreover, in order to express Dn0, the only terms of the right hand
side of (2.43) which have to be considered are written in the calculation below, where we use (2.52),
(2.30), (2.50), (2.51) and (2.49)

δn =
y1→+∞

(
−dλ′

0λn−3 − 2y1λ
′′
0λn−3 + y1λ

′
0λ

′
n−3

)
1{n=3}

+2y1λ−1λn−1 + 2y1λ0λn−2 + 2(R2
2 −R2

1)λ0λn−1 − 12α2λ−1λ0λn−1 − 6α2λ
2
0λn−2

−8α0λ−1λ0ν0νn−1 − 4α0λ−1λn−1ν
2
0 − 4α0λ

2
0ν0νn−2 − 4α0λ0λn−2ν

2
0 +O(yn−5

1 )

=
y1→+∞

(
−d

Γ1

2α2Γ12

Γ1

2α2Γ12
y1 + y1

Γ1

2α2Γ12

Γ1

2α2Γ12

)
1{n=3}

+2y1
R2

2 −R2
1

2α2
yn−3
1 Ln−1,0 + 2y1

(
Γ1

2α2Γ12
y1

)
yn−4
1 Ln−2,0

+2(R2
2 −R2

1)

(
Γ1

2α2Γ12
y1

)
yn−3
1 Ln−1,0

−12α2
R2

2 −R2
1

2α2

(
Γ1

2α2Γ12
y1

)
yn−3
1 Ln−1,0 − 6α2

(
Γ1

2α2Γ12
y1

)2

yn−4
1 Ln−2,0

−8α0
R2

2 −R2
1

2α2

(
Γ1

2α2Γ12
y1

)((
Γ2

2α1Γ12

)1/2

y
1/2
1

)
y
n−7/2
1 Nn−1,0

−4α0
R2

2 −R2
1

2α2
yn−3
1 Ln−1,0

((
Γ2

2α1Γ12

)1/2

y
1/2
1

)2

−4α0

(
Γ1

2α2Γ12
y1

)2
((

Γ2

2α1Γ12

)1/2

y
1/2
1

)
y
n−9/2
1 Nn−2,0

−4α0

(
Γ1

2α2Γ12
y1

)
yn−4
1 Ln−2,0

((
Γ2

2α1Γ12

)1/2

y
1/2
1

)2

+O(yn−5
1 )

=
y1→+∞

y1
(1− d)Γ2

1

4α2
2Γ

2
12

1{n=3} + yn−2
1

(
R2

2 −R2
1

α2
Ln−1,0 +

Γ1

α2Γ12
Ln−2,0

)
+ (R2

2 −R2
1)y

n−2
1

Γ1

α2Γ12
Ln−1,0

−3(R2
2 −R2

1)Γ1

α2Γ12
yn−2
1 Ln−1,0 − 3Γ2

1

2α2Γ2
12

yn−2
1 Ln−2,0 − 2α0

(R2
2 −R2

1)Γ1Γ
1/2
2 Nn−1,0

α2
2(2α1)1/2Γ

3/2
12

yn−2
1

−α0
(R2

2 −R2
1)Γ2Ln−1,0

α1α2Γ12
yn−2
1 − α0Γ

2
1Γ

1/2
2 Nn−2,0

α2
2(2α1)1/2Γ

5/2
12

yn−2
1 − α0Γ1Γ2Ln−2,0

α1α2Γ2
12

yn−2
1 +O(yn−5

1 )

=
y1→+∞

yn−2
1 Dn,0 +O(yn−5

1 ), (2.68)

with

Dn,0 =
(1− d)Γ2

1

4α2
2Γ

2
12

1{n=3} − (R2
2 −R2

1)Γ1

α2Γ12
Ln−1,0 − Γ2

1

2α2Γ2
12

Ln−2,0

−2
α0(R

2
2 −R2

1)Γ1Γ
1/2
2

α2
2(2α1)1/2Γ

3/2
12

Nn−1,0 −
α0Γ

2
1Γ

1/2
2

α2
2(2α1)1/2Γ

5/2
12

Nn−2,0. (2.69)

The existence of an asymptotic expansion of δn(y1) as y1 → −∞ like the one given in (2.47) follows

18



from (2.43) similarly as for the expansion at y1 = +∞. Moreover, like in (2.68), we obtain

δn =
y1→−∞

(
−dλ′

0λn−3 + y1λ
′
0λ

′
n−3

)
1{n=3}

+2y1λ−1λn−1 + 2y1λ0λn−2 + 2(R2
2 −R2

1)λ0λn−1 − 12α2λ−1λ0λn−1 − 6α2λ
2
0λn−2 +O(yn−5

1 )

= D̃n,0y
n−2
1 +O(yn−5

1 ), (2.70)

with

D̃n,0 =
1− d

4α2
2

1{n=3} −
(
L̃n−1,0

R2
2 −R2

1

α2
+

L̃n−2,0

2α2

)
. (2.71)

Then, (2.48) follows from (2.46), (2.51), (2.47) and the recursion assumption. Moreover,

Fn,0 = − 4α0α2

(R2
2 −R2

1)
2

(
Γ2

2α1Γ12

)1/2

Dn,0. (2.72)

Then, using the same trick as for n = 2, we look for a solution νn of (2.44) under the form

νn =
Fn,0

W (y1)
y
n−3/2
1 Φ(y1) + ν̃n.

νn solves (2.44) if and only if ν̃n solves

T ν̃n = F̃n, where F̃n = Fn − Fn,0y
n−3/2
1 Φ(y1) + 4R2

1
d2

dy2
1

[
Fn,0y

n−3/2
1

W (y1)
Φ(y1)

]
.

The function F̃n defined just above admits expansions as y1 → ±∞ which are similar to those satisfied
by Fn and given in (2.48), except that in the expansion of F̃n as y1 → +∞, the power of y1 in the
leading term is smaller from three units than the one of Fn. By iterating this process a finite number
of times, we are brought back to solve an equation like (2.44), but with a right hand side which is
in L2(R). Thanks to Lemma 2.1 in [GP] and (2.59), it turns out that νn satisfies (2.49), where the
coefficient in the leading term as y1 → +∞ is

Nn,0 =
Fn,0

2Γ2
= − 2α0α2

(R2
2 −R2

1)
2 (2α1Γ12Γ2)

1/2
Dn,0. (2.73)

Finally, from (2.42), (2.51), (2.49), (2.47) and (2.73), we deduce that λn satisfies (2.50), with

Ln,0 = −2
α0

α2

(
Γ2

2α1Γ12

)1/2

N0,n +
2α2

(R2
2 −R2

1)
2
Dn0 =

2α2

(R2
2 −R2

1)
2Γ12

Dn0, (2.74)

and

L̃n,0 =
2α2D̃n,0

(R2
2 −R2

1)
2
, (2.75)

which completes the recursion and proves that (2.47), (2.48), (2.49) and (2.50) hold for every n > 1.
In addition, one can compute explicitely the coefficients of the leading terms in the expansions of δn,
Fn, νn and λn as y1 → ±∞. Indeed, as y1 → +∞, according to (2.69), (2.73) and (2.74), we have, for
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every n > 3,

Dn,0 =
(1− d)Γ2

1

4α2
2Γ

2
12

1{n=3} − (R2
2 −R2

1)Γ1

α2Γ12

2α2

(R2
2 −R2

1)
2Γ12

Dn−1,0 − Γ2
1

2α2Γ2
12

2α2

(R2
2 −R2

1)
2Γ12

Dn−2,0

+2
α0(R

2
2 −R2

1)Γ1Γ
1/2
2

α2
2(2α1)1/2Γ

3/2
12

2α0α2

(R2
2 −R2

1)
2 (2α1Γ12Γ2)

1/2
Dn−1,0

+
α0Γ

2
1Γ

1/2
2

α2
2(2α1)1/2Γ

5/2
12

2α0α2

(R2
2 −R2

1)
2 (2α1Γ12Γ2)

1/2
Dn−2,0

=
(1− d)Γ2

1

4α2
2Γ

2
12

1{n=3} − 2Γ1

(R2
2 −R2

1)Γ
2
12

Dn−1,0 − Γ2
1

(R2
2 −R2

1)
2Γ3

12

Dn−2,0

+
2α2

0Γ1

α1α2Γ2
12(R

2
2 −R2

1)
Dn−1,0 +

α2
0Γ

2
1

α1α2Γ3
12(R

2
2 −R2

1)
2
Dn−2,0

=
(1− d)Γ2

1

4α2
2Γ

2
12

1{n=3} − 2Γ1

(R2
2 −R2

1)Γ12
Dn−1,0 − Γ2

1

(R2
2 −R2

1)
2Γ2

12

Dn−2,0.

Thus, defining for every n ∈ N

dn =

(
(R2

2 −R2
1)Γ12

Γ1

)n

Dn0, (2.76)

we infer thanks to (2.56) and (2.64)

d1 = 0, d2 = −(R2
2 −R2

1)
2 dΓ12(R

2
2 −R2

1) + Γ1R
2
1

4α2
2Γ1

, d3 = (R2
2 −R2

1)
2 (1 + d)Γ12(R

2
2 −R2

1) + 2Γ1R
2
1

4α2
2Γ1

,

and
∀n > 4, dn = −2dn−1 − dn−2.

It follows that for n > 2,

dn = − (−1)n(R2
2 −R2

1)
2
(
Γ12(R

2
2 −R2

1)(d+ n− 2) + (n− 1)Γ1R
2
1

)

4α2
2Γ1

,

and therefore

Dn0 = −
(

−Γ1

Γ12(R2
2 −R2

1)

)n (R2
2 −R2

1)
2
(
Γ12(R

2
2 −R2

1)(n+ d− 2) + (n− 1)Γ1R
2
1

)

4α2
2Γ1

.

Coming back to (2.73) and (2.74), we get, for n > 3,

Nn,0 =

(
−Γ1

Γ12(R2
2 −R2

1)

)n
α0(Γ12(R

2
2 −R2

1)(n+ d− 2) + Γ1R
2
1(n− 1))

2α2Γ1 (2α1Γ12Γ2)
1/2

(2.77)

and

Ln,0 = −
(

−Γ1

Γ12(R2
2 −R2

1)

)n
Γ12(R

2
2 −R2

1)(n+ d− 2) + Γ1R
2
1(n− 1)

2α2Γ1Γ12
. (2.78)

Similarly, as y1 → −∞, for n > 3, from (2.71) and (2.75) we get

D̃n,0 =
1− d

4α2
2

1{n=3} − 2

R2
2 −R2

1

D̃n−1,0 − 1

(R2
2 −R2

1)
2
D̃n−2,0.

Since from (2.47) for n = 1 and (2.64), we have

D̃1,0 = 0, D̃2,0 = −d(R2
2 −R2

1) +R2
1

4α2
2

,

we deduce

D̃3,0 =
d(R2

2 −R2
1) +R2

1 +R2
2

4α2
2(R

2
2 −R2

1)
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and for n > 4,

D̃n,0 =
(−1)n+1

4α2
2(R

2
2 −R2

1)
n−2

((d− 2 + n)(R2
2 −R2

1) + (n− 1)R2
1),

and therefore thanks to (2.75), we obtain

L̃n,0 =
(−1)n+1

2α2(R2
2 −R2

1)
n
((d− 2 + n)(R2

2 −R2
1) + (n− 1)R2

1).

The main results obtained in this section are summarized in the following proposition.

Proposition 2.7

λ−1(y1) =
R2

2 −R2
1

2α2

ν0(y1) =
R

1/3
1 Γ

1/3
2

(2α1)1/2Γ
1/2
12

γ0

(
Γ
1/3
2 y1

R
2/3
1

)
=

y1→+∞

(
Γ2

2α1Γ12

)1/2

y
1/2
1 +O(y

−5/2
1 )

ν0(y1) ≈
y1→−∞

0

λ0(y1) =
y1
2α2

− α0

α2
ν0(y1)

2 =
y1→+∞

Γ1

2α2Γ12
y1 +O(y−2

1 )

λ0(y1) ≈
y1→−∞

y1
2α2

ν1(y1) = T−1

(
−8α0α2R

2
1λ

′′
0λ−1ν0

(R2
2 −R2

1)
2

− 2dν′
0 − 4y1ν

′′
0

)

=
y1→+∞





1−d

2(2α1Γ2Γ12)
1/2 y

−3/2
1 +O(y

−9/2
1 ) if d = 2, 3

− 6R2
1

(2α1Γ12Γ2)
1/2

(
α2
0R

2
1

α1α2(R
2
2−R2

1)Γ12
− 5

4Γ2

)
y
−9/2
1 +O(y

−15/2
1 ) if d = 1

ν1(y1) ≈
y1→−∞

0

λ1(y1) = −2
α0

α2
ν0ν1 +

4α2R
2
1

(R2
2 −R2

1)
2
λ′′
0λ−1

=
y1→+∞

{ α0(d−1)
2α1α2Γ12

y−1
1 +O(y−4

1 ) if d = 2, 3
3α0R

2
1

2α1α2Γ12

(
4R2

1

(R2
2−R2

1)Γ12
− 5

Γ2

)
y−4
1 +O(y−7

1 ) if d = 1.

λ1(y1) ≈
y1→−∞

0

and for n > 2,

νn(y1) =
y1→+∞

(
−Γ1

Γ12(R2
2 −R2

1)

)n
α0(Γ12(R

2
2 −R2

1)(n+ d− 2) + Γ1R
2
1(n− 1))

2α2Γ1 (2α1Γ12Γ2)
1/2

y
n−5/2
1 +O(y

n−11/2
1 )

νn(y1) ≈
y1→−∞

0

λn(y1) =
y1→+∞

−
(

−Γ1

Γ12(R2
2 −R2

1)

)n
Γ12(R

2
2 −R2

1)(n+ d− 2) + Γ1R
2
1(n− 1)

2α2Γ1Γ12
yn−2
1 +O(yn−5

1 )

λn(y1) =
y1→−∞

(−1)n+1

2α2(R2
2 −R2

1)
n
((d− 2 + n)(R2

2 −R2
1) + (n− 1)R2

1)y
n−2
1 +O(yn−5

1 ).

3 Truncation of the asymptotic expansions

In section 2, we have explained how to calculate asymptotic expansions into powers of ε of ω, τ , ν, λ
and µ in such a way that (1.15), (1.16), (1.17), (1.18) and (1.19) provide formally solutions to (1.13)
at any order. However, we have not said anything about the convergence of these formal series. In
this section, we prove that the truncations of the formal series at a finite order provide approximate
solutions to (1.13) at a arbitrarily high order in terms of powers of ε. More precisely, M , N and L are
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three fixed positive integers, and we set in all the section

ω(z) =
M∑

m=0

ε2mωm(z), τ (z) =
M∑

m=0

ε2mτm(z),

ν(y1) =

N∑

n=0

ε2n/3νn(y1), λ(y1) =

N∑

n=−1

ε2n/3λn(y1),

µ(y2) =
L∑

n=0

ε2n/3µn(y2), (3.1)

where the ωm’s, τm’s, νn’s, λn’s and µn’s are the ones calculated in Section 2. The way integers M ,
N and L are chosen is explained in Sections 3.5 and 3.6 below.

3.1 Consistency of the ansatz

Ansatz (1.20) requires the calculation of λ(y1)
1/2 for x ∈ Suppχε ⊂ D1. So it makes sense to combine

(1.19) and (3.1) only if the function λ given by (3.1) satisfies λ(y1) > 0 for x ∈ Suppχε. We next show
that the last inequality indeed holds for x ∈ D1.

Lemma 3.1 Let N > 0 and λ given by (3.1). There exists C > 0 (which might depend on N) such
that for ε ∈ (0, 1] sufficiently small, for every x ∈ D1,

λ(y1) > Cε−2/3.

Proof. Let x ∈ D1. Then y2 > (R2
2 −R2

1)/ε
2/3 − 2εβ−2/3, −2εβ−2/3 6 y1 6 2εβ−2/3, and since γ0 is

increasing and γ0(y) ∼
y→+∞

√
y, we get on the one side

ε−2/3λ−1+λ0(y1) =
y2
2α2

− α0

α2
ν0(y1)

2
>

R2
2 −R2

1

2α2ε2/3
− εβ−2/3

α2
− α0

α2
ν0(2ε

β−2/3)2 =
R2

2 −R2
1

2α2ε2/3
+O(εβ−2/3),

whereas for n > 1, thanks to (2.50)

|ε2n/3λn(y1)| 6 cnε
2n/3 (

1{|y1|61} + |y1|n−2
1{|y1|>1}

)
6 c̃nε

2n/3 max(1, ε(β−2/3)(n−2))

6 c̃n max(ε2n/3, εβ(n−2)+4/3) = O(ε2/3), (3.2)

for some cn > 0 and c̃n = 2n−2cn. As a result, for ε sufficiently small, we have λ(y1) >
R2

2−R2
1

4α2ε
2/3 for

every x ∈ D1. .

3.2 Truncation of (ω, τ) in D0

In this section, we prove that (3.1) provides an approximate solution to (1.13) in D0 at an arbitrarily
high order. For convenience, we use the same notation ω for the functions z 7→ ω(z) and x 7→ ω(z) =
ω(R2

1 − |x|2).
Lemma 3.2 Let M > 1 be an integer, β ∈ (0, 2/3) and ω, τ given by (3.1). Then

∥∥∥∥ε
2∆ω +

α0

α2
(R2

2 −R2
1)ω + zω − 2α1ω

3 − 2α0τ
2ω

∥∥∥∥
L∞(D0)

= O(ε(2−3β)M+2−3β/2)

and ∥∥ε2∆τ + (R2
2 −R2

1 + z)τ − 2α2τ
3 − 2α0ω

2τ
∥∥
L∞(D0)

= O(ε(2−3β)M+2−2β).
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Proof. Thanks to (2.6), (2.7) and (2.8), we have

ε2∆ω +
α0

α2
(R2

2 −R2
1)ω + zω − 2α1ω

3 − 2α0τ
2ω

=
M+1∑

m=1

ε2m∆ωm−1 +
α0

α2
(R2

2 −R2
1)

M∑

m=0

ε2mωm + z
M∑

m=0

ε2mωm.

−2α1

3M∑

m=0

ε2m
∑

m1 + m2 + m3 = m
0 6 m1,m2,m3 6 M

ωm1ωm2ωm3 − 2α0

3M∑

m=0

ε2m
∑

m1 + m2 + m3 = m
0 6 m1, m2,m3 6 M

τm1τm2ωm3

= ε2(M+1)∆ωM − 2α1

3M∑

m=M+1

ε2m
∑

m1 + m2 + m3 = m
0 6 m1,m2,m3 6 M

ωm1ωm2ωm3

−2α0

3M∑

m=M+1

ε2m
∑

m1 + m2 + m3 = m
0 6 m1,m2, m3 6 M

τm1τm2ωm3 . (3.3)

From Lemma 2.1, (2.6), (2.7) and Remark 2.2, we infer that for every x ∈ D0,

|ε2∆ω +
α0

α2
(R2

2 −R2
1)ω + zω − 2α1ω

3 − 2α0τ
2ω| (3.4)

. ε2(M+1)z−3/2−3M +
3M∑

m=M+1

ε2mz3/2−3m +
3M∑

m=M+1

ε2mz5/2−3m
. ε(2−3β)M+2−3β/2.

Similarly,

ε2∆τ + (R2
2 −R2

1 + z)τ − 2α2τ
3 − 2α0ω

2τ

=
M+1∑

m=1

ε2m∆τm−1 + (R2
2 −R2

1 + z)
M∑

m=0

ε2mτm

−2α2

3M∑

m=0

ε2m
∑

m1 + m2 + m3 = m
0 6 m1,m2,m3 6 M

τm1τm2τm3 − 2α0

3M∑

m=0

ε2m
∑

m1 + m2 + m3 = m
0 6 m1,m2,m3 6 M

ωm1ωm2τm3

= ε2(M+1)∆τM − 2α2

3M∑

m=M+1

ε2m
∑

m1 + m2 + m3 = m
0 6 m1,m2,m3 6 M

τm1τm2τm3

−2α0

3M∑

m=M+1

ε2m
∑

m1 + m2 + m3 = m
0 6 m1,m2, m3 6 M

ωm1ωm2τm3 , (3.5)

thus for x ∈ D0,

|ε2∆τ + (R2
2 −R2

1 + z)τ − 2α2τ
3 − 2α0ω

2τ |

. ε(2−3β)M+2−β +

3M∑

m=M+1

ε2mz1−3m
. ε(2−3β)M+2−2β . (3.6)

3.3 Truncation of (ε1/3ν, ε1/3λ1/2) in D1

Lemma 3.3 Let N > 4 be an integer, and ν, λ given by (3.1). Then

∥∥∥∥ε
2∆
(
ε1/3ν

)
+

(
α0

α2
(R2

2 −R2
1) + z

)
ε1/3ν − 2α1

(
ε1/3ν

)3
− 2α0

(
ε1/3λ1/2

)2
ε1/3ν

∥∥∥∥
L∞(D1)

= O(εβN+4−7β/2)
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and
∥∥∥∥ε

2∆
(
ε1/3λ1/2

)
+ (R2

2 −R2
1 + z)ε1/3λ1/2 − 2α2

(
ε1/3λ1/2

)3
− 2α0

(
ε1/3ν

)2
ε1/3λ1/2

∥∥∥∥
L∞(D1)

= O(εβN+2−β).

Proof. Using (3.1), (2.32) and (2.40) for n ∈ {1, · · · , N}, we get

ε−1

(
ε2∆

(
ε1/3ν

)
+

(
α0

α2
(R2

2 −R2
1) + z

)
ε1/3ν − 2α1

(
ε1/3ν

)3
− 2α0

(
ε1/3λ1/2

)2
ε1/3ν

)

= ε4/3∆ν +
α0

α2

R2
2 −R2

1

ε2/3
ν + y1ν − 2α1ν

3 − 2α0λν

= −2dε2/3ν′ + 4R2
1ν

′′ − 4ε2/3y1ν
′′ +

α0

α2

R2
2 −R2

1

ε2/3
ν + y1ν − 2α1ν

3 − 2α0λν

= −2d

N+1∑

n=1

ε2n/3ν′
n−1 + 4R2

1

N∑

n=0

ε2n/3ν′′
n − 4y1

N+1∑

n=1

ε2n/3ν′′
n−1 +

α0

α2
(R2

2 −R2
1)

N−1∑

n=−1

ε2n/3νn+1

+y1

N∑

n=0

ε2n/3νn − 2α1

3N∑

n=0

ε2n/3
∑

n1 + n2 + n3 = n
0 6 n1, n2, n3 6 N

νn1νn2νn3 − 2α0

2N∑

n=−1

ε2n/3
∑

n1 + n2 = n
−1 6 n1 6 N
0 6 n2 6 N

λn1νn2

= −2d

N+1∑

n=1

ε2n/3ν′
n−1 + 4R2

1

N∑

n=0

ε2n/3ν′′
n − 4y1

N+1∑

n=1

ε2n/3ν′′
n−1

+y1

N∑

n=0

ε2n/3νn − 2α1

3N∑

n=0

ε2n/3
∑

n1 + n2 + n3 = n
0 6 n1, n2, n3 6 N

νn1νn2νn3 − 2α0

2N∑

n=0

ε2n/3
∑

n1 + n2 = n
0 6 n1, n2 6 N

λn1νn2

= −2dε2(N+1)/3ν′
N − 4y1ε

2(N+1)/3ν′′
N

−2α1

3N∑

n=N+1

ε2n/3
∑

n1 + n2 + n3 = n
0 6 n1, n2, n3 6 N

νn1νn2νn3 − 2α0

2N∑

n=N+1

ε2n/3
∑

n1 + n2 = n
0 6 n1, n2 6 N

λn1νn2 (3.7)

= ε2(N+1)/3


−2dν′

N − 4y1ν
′′
N − 2α1

2N−1∑

n=0

ε2n/3
∑

n1 + n2 + n3 = n + N + 1
0 6 n1, n2, n3 6 N

νn1νn2νn3

−2α0

N−1∑

n=0

ε2n/3
∑

n1 + n2 = n + N + 1
0 6 n1, n2 6 N

λn1νn2


 .

Thus, if we note that for x ∈ D1 =
{
x ∈ Rd| − 2εβ−2/3 6 y1 6 2εβ−2/3

}
, |ε2/3y1| . εβ → 0 as ε → 0,

we have thanks to (2.49), (2.50) and (2.51)

ε

∣∣∣∣ε
4/3∆ν +

α0

α2

R2
2 −R2

1

ε2/3
ν + y1ν − 2α1ν

3 − 2α0λν

∣∣∣∣

. ε2N/3+5/3 max(1, y1)
N−7/2 + ε2N/3+5/3

2N−1∑

n=0

ε2n/3 max(1, y1)
n+N+1−5/2−5/2+1/2

+ε2N/3+5/3
N−1∑

n=0

ε2n/3 max(1, y1)
n+N+1−5/2−2

. ε2N/3+5/3 max(1, y1)
N−7/2

. ε2N/3+5/3 max(1, ε(β−2/3)(N−7/2)) = εβN+4−7β/2, (3.8)
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where the last equality holds because N > 4. The first estimate of the lemma is proved. Similarly,
from (3.1), (2.30), (2.34) and (2.41), we deduce

ε2∆
(
ε1/3λ1/2

)
+ (R2

2 −R2
1 + z)ε1/3λ1/2 − 2α2

(
ε1/3λ1/2

)3
− 2α0

(
ε1/3ν

)2
ε1/3λ1/2

= ελ−3/2
[
−dε2/3λλ′ − (R2

1 − ε2/3y1)λ
′2 + 2(R2

1 − ε2/3y1)λλ
′′ + y2λ

2 − 2α2λ
3 − 2α0ν

2λ2
]

= ε−1/3λ−3/2


−d

2N+3∑

n=1

ε2n/3
∑

n1 + n2 = n − 3
−1 6 n1, n2 6 N

λ′
n1

λn2 + 2R2
1

2N+2∑

n=0

ε2n/3
∑

n1 + n2 = n − 2
−1 6 n1, n2 6 N

λ′′
n1

λn2

−2y1

2N+3∑

n=1

ε2n/3
∑

n1 + n2 = n − 3
−1 6 n1, n2 6 N

λ′′
n1
λn2 −R2

1

2N+2∑

n=0

ε2n/3
∑

n1 + n2 = n − 2
−1 6 n1, n2 6 N

λ′
n1
λ′
n2

+y1

2N+3∑

n=1

ε2n/3
∑

n1 + n2 = n − 3
−1 6 n1, n2 6 N

λ′
n1

λ′
n2

+ (R2
2 −R2

1)
2N+1∑

n=−1

ε2n/3
∑

n1 + n2 = n − 1
−1 6 n1, n2 6 N

λn1λn2

+y1

2N+2∑

n=0

ε2n/3
∑

n1 + n2 = n − 2
−1 6 n1, n2 6 N

λn1λn2 − 2α2

3N+2∑

n=−1

ε2n/3
∑

n1 + n2 + n3 = n − 2
−1 6 n1, n2, n3 6 N

λn1λn2λn3

−2α0

4N+2∑

n=0

ε2n/3
∑

n1 + n2 + n3 + n4 = n − 2
−1 6 n1, n2 6 N
0 6 n3, n4 6 N

λn1λn2νn3νn4




= ε−1/3λ−3/2


−d

2N+3∑

n=N+1

ε2n/3
∑

n1 + n2 = n − 3
−1 6 n1, n2 6 N

λ′
n1

λn2 + 2R2
1

2N+2∑

n=N+1

ε2n/3
∑

n1 + n2 = n − 2
−1 6 n1, n2 6 N

λ′′
n1

λn2

−2y1

2N+3∑

n=N+1

ε2n/3
∑

n1 + n2 = n − 3
−1 6 n1, n2 6 N

λ′′
n1

λn2 −R2
1

2N+2∑

n=N+1

ε2n/3
∑

n1 + n2 = n − 2
−1 6 n1, n2 6 N

λ′
n1
λ′
n2

+y1

2N+3∑

n=N+1

ε2n/3
∑

n1 + n2 = n − 3
−1 6 n1, n2 6 N

λ′
n1

λ′
n2

+ (R2
2 −R2

1)
2N+1∑

n=N+1

ε2n/3
∑

n1 + n2 = n − 1
−1 6 n1, n2 6 N

λn1λn2

+y1

2N+2∑

n=N+1

ε2n/3
∑

n1 + n2 = n − 2
−1 6 n1, n2 6 N

λn1λn2 − 2α2

3N+2∑

n=N+1

ε2n/3
∑

n1 + n2 + n3 = n − 2
−1 6 n1, n2, n3 6 N

λn1λn2λn3

−2α0

4N+2∑

n=N+1

ε2n/3
∑

n1 + n2 + n3 + n4 = n − 2
−1 6 n1, n2 6 N
0 6 n3, n4 6 N

λn1λn2νn3νn4




(3.9)

In order to estimate this quantity, we consider separately each sum appearing in the bracket in the
right hand side of (3.9). Let us focus for instance on the first one. If n > N + 1, n1 + n2 = n− 3 and
n1, n2 > 1, then we infer from (2.50) that for x ∈ D1 (which implies |y1| . εβ−2/3), we have

ε2n/3|λ′
n1

λn2 | . ε2n/3 max(1, |y1|)n−8
. max(ε2n/3, ε2n/3+(β−2/3)(n−8)) = max(ε2n/3, εβn+8(2/3−β))

. max(ε2(N+1)/3, εβ(N+1)+8(2/3−β)).
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If one of the two indices n1, n2 belongs to {−1, 0}, whereas the other one is larger than or equal to 1,
we infer similarly thanks to (2.30), (2.34) and (2.50) that

ε2n/3|λ′
n1

λn2 | . max(ε2(N+1)/3, εβ(N+1)+5(2/3−β)).

Finally, If N > 3, the conditions n1 + n2 = n − 3 > N − 2 excludes the case where both n1 and n2

belong to {−1, 0}. Using similar arguments as well as Lemma 3.1, we deduce that for x ∈ D1 and N
large enough,

∣∣∣∣ε
2∆
(
ε1/3λ1/2

)
+ (R2

2 −R2
1 + z)ε1/3λ1/2 − 2α2

(
ε1/3λ1/2

)3
− 2α0

(
ε1/3ν

)2
ε1/3λ1/2

∣∣∣∣

. ε−1/3εmax(ε2(N+1)/3, εβ(N+1)+2(2/3−β)) . εβN+2−β. (3.10)

3.4 Truncation of (0, ε1/3µ) in D2

Lemma 3.4 Let L > 1 be an integer and µ be given by (3.1). There exists C > 0 such that for x ∈ Rd

and ε ∈]0, 1],
∣∣∣∣ε

2∆
(
ε1/3µ

)
+ (R2

2 −R2
1 + z)ε1/3µ− 2α2

(
ε1/3µ

)3
∣∣∣∣ 6

Cε2L/3+5/3

1 + |y2|2L+1/2
, (3.11)

where y2 = (R2
2 − |x|2)/ε2/3.

Corollary 3.5 Under the same assumptions, there is h ∈ L2 ∩ L∞(Rd) such that for every x ∈ Rd

and ε ∈]0, 1],
∣∣∣∣ε

2∆
(
ε1/3µ

)
+ (R2

2 −R2
1 + z)ε1/3µ− 2α2

(
ε1/3µ

)3∣∣∣∣ 6 ε2L/3+5/3h(x). (3.12)

Corollary 3.6 Under the same assumptions, there is C > 0 such that for x ∈ D1 ∩D2 and ε ∈]0, 1],
∣∣∣∣ε

2∆
(
ε1/3µ

)
+ (R2

2 −R2
1 + z)ε1/3µ− 2α2

(
ε1/3µ

)3∣∣∣∣ 6 Cε2L+2. (3.13)

Proof of Lemma 3.4. Taking into account the equations satisfied by the µn’s, namely

4R2
2µ

′′
0 + y2µ0 − 2α2µ

3
0 = 0 (3.14)

for n = 0 and

4R2
2µ

′′
n = 2α2

∑

n1+n2+n3=n

µn1µn2µn3 + 2dµ′
n−1 + 4y2µ

′′
n−1 − y2µn (3.15)

for n > 1, we infer

ε2∆
(
ε1/3µ

)
+ (R2

2 −R2
1 + z)ε1/3µ− 2α2

(
ε1/3µ

)3

= ε(ε4/3∆µ+ y2µ− 2α2µ
3)

= ε


−2dε2(L+1)/3µ′

L − 4y2ε
2(L+1)/3µ′′

L − 2α2

3L∑

n=L+1

ε2n/3
∑

n1 + n2 + n3 = n
0 6 n1, n2, n3 6 L

µn1µn2µn3




= ε2L/3+5/3


−2dµ′

L − 4y2µ
′′
L − 2α2

2L−1∑

n=0

ε2n/3
∑

n1 + n2 + n3 = n + L + 1
0 6 n1, n2, n3 6 L

µn1µn2µn3


 . (3.16)
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Let us define for y ∈ R

h0(y) = (1 + |y|2L+1/2)max


|µ′

L(y)|, |yµ′′
L(y)|, max

0 6 n 6 2L − 1
n1 + n2 + n3 = n + L + 1

0 6 n1, n2, n3 6 L

|µn1 (y)µn2(y)µn3(y)|


 .

Thanks to (2.19) and Propositions 2.4 and 2.6, h0 is uniformly bounded on R. The lemma follows.

Proof of Corollary 3.5. For x ∈ Rd and ε 6 1, one has

1

1 + |y2|2L+1/2
=

1

1 +
(

R2
2−|x|2)

ε2/3

)2L+1/2
6 h(x) =





1 if |x|2 6 2R2
2

1

1+

(

|x|2

2

)2L+1/2 if |x|2 > 2R2
2

The corollary follows, since L > 1 and d 6 3 imply h ∈ L2(Rd).

Proof of Corollary 3.6. The corollary follows from Lemma 3.11 and from the inequality

1

1 + |y2|2L+1/2
. ε4L/3+1/3,

that holds for x ∈ D1 ∩D2.

3.5 Comparison of (ω, τ) and ε1/3(ν, λ1/2) in D0 ∩D1

Lemma 3.7 Let N ∈ N∗, M > β
2−3β

N , and ω, τ given by (3.1). Then for every l > 0,

∥∥∥∥∥∥∥∥
ω(l) −

∑

(m,n)∈N
2

(2−3β)m+βn6βN

ε2mwm,n
dl

dzl

(
z1/2−3m+n

)
∥∥∥∥∥∥∥∥
L∞(D0∩D1)

=
ε→0

o
(
εβ(N+1/2−l)

)
(3.17)

and
∥∥∥∥∥∥∥∥
τ (l) − λ

1/2
−1 1l=0 −

∑

(m,n)∈N
2

(2−3β)m+βn6βN

ε2mtm,n
dl

dzl
(
z1+n−3m

)
∥∥∥∥∥∥∥∥
L∞(D0∩D1)

=
ε→0

o(εβ(N+1−l)). (3.18)

where the wm,n’s and the tm,n’s are defined in Lemma 2.1 and (2.13).

Proof. From Lemma 2.1, for every l > 0,

ω(l)(z) =
M∑

m=0

ε2mω(l)
m (z) ≈

z→0

M∑

m=0

ε2m
∞∑

n=0

wm,n
dl

dzl

(
z1/2−3m+n

)

≈
z→0

∞∑

k=−3M

∑

(m,n)∈{0,··· ,M}×N

n−3m=k

ε2mwm,n
dl

dzl

(
z1/2+k

)
. (3.19)
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Thus, since x ∈ D0 ∩D1 implies εβ 6 z 6 2εβ → 0 as ε → 0,

ω(l)(z) =
z→0

N∑

k=−3M

( ∑

(m,n)∈{0,··· ,M}×N

n−3m=k

ε2mwm,n

) dl

dzl

(
z1/2+k

)
+ o(z1/2+N−l)

=
z→0

∑

(m,n)∈{0,··· ,M}×N

n−3m6N

ε2mwm,n
dl

dzl

(
z1/2+n−3m

)
+ o(z1/2+N−l)

=
z→0

∑

(m,n)∈{0,··· ,M}×N

n−3m6N
2m+β(1/2+n−3m−l)6β(1/2+N−l)

ε2mwm,n
dl

dzl

(
z1/2+n−3m

)
+ oL∞(D0∩D1)(ε

β(1/2+N−l))

=
z→0

∑

(m,n)∈N
2

(2−3β)m+βn6βN

ε2mwm,n
dl

dzl

(
z1/2+n−3m

)
+ oL∞(D0∩D1)(ε

β(1/2+N−l)). (3.20)

Note that the assumption on M in the statement of the Lemma ensures that the set {(m,n) ∈
N2, (2− 3β)m+ βn 6 βN} is a triangle included in the rectangle {0, · · · ,M}× {0, · · · , N}. Similarly,
we infer from Lemma 2.1 and (2.13) that

τ (l)(z) =

M∑

m=0

ε2mτ (l)
m (z) ≈

z→0
λ
1/2
−1 1l=0 +

M∑

m=0

ε2m
∞∑

n=0

tm,n
dl

dzl
(
z1−3m+n

)

≈
z→0

λ
1/2
−1 1l=0 +

∞∑

k=−3M

∑

(m,n)∈{0,··· ,M}×N

n−3m=k

ε2mtm,n
dl

dzl

(
z1+k

)
.

=
z→0

λ
1/2
−1 1l=0 +

N∑

k=−3M

∑

(m,n)∈{0,··· ,M}×N

n−3m=k

ε2mtm,n
dl

dzl

(
z1+k

)
+ o(zN+1−l).

Thus,

τ (l)(z) =
ε→0

λ
1/2
−1 1l=0 +

∑

(m,n)∈{0,··· ,M}×N

2m+(1+n−3m−l)β6(N+1−l)β

ε2mtm,n
dl

dzl
(
z1+n−3m)+ oL∞(D0∩D1)(ε

β(N+1−l))

=
ε→0

λ
1/2
−1 1l=0 +

∑

(m,n)∈N
2

(2−3β)m+βn6βN

ε2mtm,n
dl

dzl
(
z1+n−3m

)
+ oL∞(D0∩D1)(ε

β(N+1−l)). (3.21)

Lemma 3.8 Let N > 1. We assume that β ∈ (0, 2/3)\Q. There exist two families of numbers
(nm,n)m>0,n>0 and (lm,n)m>0,n>0 which do not depend on N such that if ν and λ are given by (3.1),
then for l = 0, 1, 2,

∥∥∥∥∥∥∥∥

dl

dzl

(
ε1/3ν(y1)

)
−

∑

(m,n)∈N
2

(2−3β)m+βn6βN

ε2mnm,n
dl

dzl

(
z1/2−3m+n

)
∥∥∥∥∥∥∥∥
L∞(D0∩D1)

=
ε→0

o
(
εβ(N+1/2−l)

)
(3.22)

and
∥∥∥∥∥∥∥∥

dl

dzl

(
ε1/3λ(y1)

1/2
)
− λ

1/2
−1 1l=0 −

∑

(m,n)∈N
2

(2−3β)m+βn6βN

ε2mlm,n
dl

dzl
(
z1+n−3m)

∥∥∥∥∥∥∥∥
L∞(D0∩D1)

=
ε→0

o(εβ(N+1−l)).(3.23)
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Proof. For x ∈ D0 ∩ D1, we have 2εβ−2/3 > y1 > εβ−2/3 → +∞ as ε → 0. Thus, we infer from
(2.49) and (2.51) that for every l > 0,

dl

dyl
1

(
ε1/3ν(y1)

)

≈
y1→+∞

ε1/3
∞∑

m=0

N0,m
dl

dyl
1

(
y
1/2−3m
1

)
+ ε1/3

N∑

n=1

ε2n/3
∞∑

m=0

Nn,m
dl

dyl
1

(
y
n−5/2−3m
1

)

≈
y1→+∞

∞∑

m=0

N0,mε1/3
dl

dyl
1

(
y
1/2−3m
1

)
+

∞∑

k=−N

∑

(n,m)∈{1,··· ,N}×N

3m−n=k

Nn,mε1/3+2n/3 dl

dyl
1

(
y
−5/2−k
1

)

=
y1→+∞

∑

06m6
βN

2−3β

N0,mε1/3
dl

dyl
1

(
y
1/2−3m
1

)
+ ε1/3o(y

1/2− 3βN
2−3β

−l

1 )

+
∑

−N6k6 3βN−2
2−3β

−3

∑

(n,m)∈{1,··· ,N}×N

3m−n=k

Nn,mε1/3+2n/3 dl

dyl
1

(
y
−5/2−k
1

)
+ εo(y

−5/2− 3βN−2
2−3β

+3−l

1 ).

Thus, for x ∈ D0 ∩D1, we have

dl

dyl
1

(
ε1/3ν(y1)

)

= ε2l/3
∑

06m6
β

2−3β
N

ε2mN0,m
dl

dzl

(
z1/2−3m

)
+ ε2l/3

∑

(n,m)∈{1,··· ,N}×N

3m−n6
3βN−2
2−3β

−3

Nn,mε2+2m dl

dzl

(
z−5/2+n−3m

)

+oL∞(D0∩D1)(ε
β(N+1/2)+(2/3−β)l)

= ε2l/3
∑

06m6
β

2−3β
N

ε2mN0,m
dl

dzl

(
z1/2−3m

)
+ ε2l/3

∑

(n,m)∈{1,··· ,N}×N
∗

3m−n6
3βN−2
2−3β

Nn,m−1ε
2m dl

dzl

(
z1/2+n−3m

)

+oL∞(D0∩D1)(ε
β(N+1/2)+(2/3−β)l)

= ε2l/3
∑

06m6
β

2−3β
N

ε2mN0,m
dl

dzl

(
z1/2−3m

)
+ ε2l/3

∑

(n,m)∈N
∗2

(2−3β)m+βn6βN

Nn,m−1ε
2m dl

dzl

(
z1/2+n−3m

)

+oL∞(D0∩D1)(ε
β(N+1/2)+(2/3−β)l), (3.24)

where in the last equality, we have neglected all the terms in the sum over (n,m) which can be
incorporated in the rest term, and we have used that the condition

(n,m) ∈ N
∗2, (2− 3β)m+ βn 6 βN (3.25)

clearly implies n 6 N (even n < N , in fact), as well as

3m− n 6
3βN − 2

2− 3β
. (3.26)

Indeed, (3.25) can be rewritten as

1

3
(3m− n) + n

(
1

3
+

β

2− 3β

)
6

βN

2− 3β
, (3.27)

which yields (3.26) if we take into account that n > 1. The result follows from the change of variable
z = ε2/3y1, with

nm,n =





N0,m if n = 0
0 if n > 1 and m = 0
Nn,m−1 if n > 1 and m > 1.
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Similarly as for ε1/3ν, we have

dl

dyl
1

(
ε2/3λ(y1)

)

≈
y1→+∞

λ−11{l=0} + ε2/3
∞∑

m=0

L0,m
dl

dyl
1

(
y1−3m
1

)
+ ε2/3

N∑

n=1

ε2n/3
∞∑

m=0

Ln,m
dl

dyl
1

(
yn−2−3m
1

)

≈
y1→+∞

λ−11{l=0} + ε2/3
∞∑

m=0

L0,m
dl

dyl
1

(
y1−3m
1

)
+ ε2/3

N∑

n=1

ε2n/3
∞∑

m=1

Ln,m−1
dl

dyl
1

(
y1+n−3m
1

)

≈
y1→+∞

λ−11{l=0} +

N∑

n=0

ε2(n+1)/3
∞∑

m=0

Ľn,m
dl

dyl
1

(
y1+n−3m
1

)
, (3.28)

with

Ľn,m =





L0,m if n = 0
0 if n > 1 and m = 0
Ln,m−1 if n > 1 and m > 1.

Thus,

dl

dyl
1

(
ε2/3λ(y1)

)

≈
y1→+∞

λ−11{l=0} +
∞∑

k=−N

∑

(n,m)∈{0,··· ,N}×N

3m−n=k

Ľn,mε2(n+1)/3 dl

dyl
1

(
y1−k
1

)

=
y1→+∞

λ−11{l=0} +
∑

−N6k6 3βN
2−3β

∑

(n,m)∈{0,··· ,N}×N

3m−n=k

Ľn,mε2(n+1)/3 dl

dyl
1

(
y1−k
1

)
+ ε2/3o(y

1− 3βN
2−3β

−l

1 )

=
y1→+∞

λ−11{l=0} +
∑

(n,m)∈{0,··· ,N}×N

3m−n6
3βN
2−3β

Ľn,mε2(n+1)/3 dl

dyl
1

(
y1−3m+n
1

)
+ ε2/3o(y

1− 3βN
2−3β

−l

1 ). (3.29)

Therefore for x ∈ D0 ∩D1,

dl

dyl
1

(
ε2/3λ(y1)

)

=
y1→+∞

λ−11{l=0} +
∑

(n,m)∈{0,··· ,N}×N

3m−n6
3βN
2−3β

Ľn,mε2mε2l/3
dl

dzl
(
z1−3m+n)+ ε2l/3oL∞(D0∩D1)(ε

β(N+1−l)).

=
y1→+∞

λ−11{l=0} + ε2l/3
∑

(n,m)∈N
2

(2−3β)m+βn6βN

Ľn,mε2m
dl

dzl
(
z1−3m+n

)
+ ε2l/3oL∞(D0∩D1)(ε

β(N+1−l)),(3.30)
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thanks to the same remark as in (3.27). In particular, for l = 0, we get

ε1/3λ(y1)
1/2 (3.31)

=


λ−1 +

∑

(n,m)∈N
2

(2−3β)m+βn6βN

Ľn,mε2mz1−3m+n + oL∞(D0∩D1)(ε
β(N+1))




1/2

= λ
1/2
−1 +

N+1∑

k=1

ck




∑

(n,m)∈N
2

(2−3β)m+βn6βN

Ľn,mε2mz1−3m+n




k

+ oL∞(D0∩D1)(ε
β(N+1))

= λ
1/2
−1 +

N+1∑

k=1

ckz
k

∑

((n1,m1),··· ,(nk,mk))∈(N2)k

∀j∈{1,··· ,k}, (2−3β)mj+βnj6βN

k∏

j=1

Ľnj ,mj (ε
2z−3)m1+···+mkzn1+···+nk + oL∞(D0∩D1)(ε

β(N+1))

= λ
1/2
−1 +

N+1∑

k=1

ckz
k

∑

(n,m)∈N
2

(2−3β)m+βn6β(N+1−k)

ε2mzn−3m
∑

((n1,m1),··· ,(nk,mk))∈(N2)k

n1+···+nk=n
m1+···+mk=m

k∏

j=1

Ľnj ,mj + oL∞(D0∩D1)(ε
β(N+1))

= λ
1/2
−1 +

∑

(n,m)∈N
2

(2−3β)m+βn6βN

ε2mzn−3m+1
n+1∑

k=1

ck
∑

((n1,m1),··· ,(nk,mk))∈(N2)k

n1+···+nk=n−k+1
m1+···+mk=m

k∏

j=1

Ľnj ,mj

︸ ︷︷ ︸
=:lm,n

+oL∞(D0∩D1)(ε
β(N+1)),

where the ck’s are some real coefficients. So, we have proved (3.23) for l = 0. In order to prove (3.23)
for l = 1, we first write

d

dy1

(
ε1/3λ(y1)

1/2
)
=

1

2

d

dy1

(
ε2/3λ(y1)

)(
ε2/3λ(y1)

)−1/2

.

Then, note that
(
ε2/3λ(y1)

)−1/2

has the same kind of asymptotic expansion as the one that appears

in the right hand side of (3.31). Indeed, the same calculation can be done with the power 1/2 replaced
by −1/2, which only changes the values of the ck’s. Thus, for some coefficients (αm,n)m,n∈N2 , we have

(
ε2/3λ(y1)

)−1/2

= λ
−1/2
−1 +

∑

(n,m)∈N
2

(2−3β)m+βn6βN

ε2mzn−3m+1αm,n + oL∞(D0∩D1)(ε
β(N+1)) (3.32)
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From the product of this expansion with (3.30) for l = 1, we infer that

d

dy1

(
ε1/3λ(y1)

1/2
)

=
1

2


ε2/3

∑

(n,m)∈N
2

(2−3β)m+βn6βN

Ľn,mε2m
d

dz

(
z1−3m+n)+ ε2/3oL∞(D0∩D1)(ε

βN)




×


λ

−1/2
−1 +

∑

(n,m)∈N
2

(2−3β)m+βn6βN

ε2mzn−3m+1αm,n + oL∞(D0∩D1)(ε
β(N+1))




=
λ
−1/2
−1 ε2/3

2

∑

(n,m)∈N
2

(2−3β)m+βn6βN

Ľn,mε2m(1− 3m+ n)zn−3m

+
ε2/3

2

∑

(n,m)∈N
∗×N

(2−3β)m+βn6βN

ε2mzn−3m
∑

n1,n2,m1,m2∈N

n1+n2=n−1
m1+m2=m

Ľn1,m1(1− 3m1 + n1)αm2,n2

+oL∞(D0∩D1)(ε
βN+2/3)

= ε2/3
∑

(m,n)∈N
2

(2−3β)m+βn6βN

l′m,nε
2mzn−3m + oL∞(D0∩D1)(ε

βN+2/3), (3.33)

for some coefficients l′m,n ∈ R. In order to prove (3.23), it is now sufficient to establish that for
every m,n > 0, the l′m,n’s and the lm,n’s, defined respectively in (3.33) and (3.31), are related by

l′m,n = (1 + n − 3m)lm,n. For this purpose, we note, for z ∈ [εβ, 2εβ ] θ(z) = ε1/3λ(y1)
1/2, such that

according to (3.31) and (3.33),

θ(z) = λ
1/2
−1 +

∑

(m,n)∈N
2

(2−3β)m+βn6βN

lm,nε
2mzn−3m+1 + oL∞(D0∩D1)(ε

β(N+1)) (3.34)

and

θ′(z) =
∑

(m,n)∈N
2

(2−3β)m+βn6βN

l′m,nε
2mzn−3m + oL∞(D0∩D1)(ε

βN). (3.35)

Then, we have on the one side from (3.34)

θ(2εβ)− θ(εβ) =
∑

(m,n)∈N
2

(2−3β)m+βn6βN

lm,n(2
n−3m+1 − 1)ε(2−3β)m+β(n+1) + oL∞(D0∩D1)(ε

β(N+1)),(3.36)

whereas on the other side, thanks to (3.35),

θ(2εβ)− θ(εβ) =
∑

(m,n)∈N
2

(2−3β)m+βn6βN

l′m,nε
2m

∫ 2εβ

εβ
zn−3mdz + oL∞(D0∩D1)(ε

β(N+1))

=
∑

(m,n)∈N
2

(2−3β)m+βn6βN
n−3m6=−1

l′m,n

n− 3m+ 1
(2n−3m+1 − 1)ε(2−3β)m+β(n+1)

+ ln(2)
∑

(m,n)∈N
2

(2−3β)m+βn6βN
n−3m=−1

l′m,nε
2m + oL∞(D0∩D1)(ε

β(N+1)). (3.37)

Since β is not rational, the family of functions of the variable ε, (ε2m+β(n+1−3m))(m,n)∈N2 is linearly
independent, and we deduce by comparison of (3.36) and (3.37) that l′m,n = (n− 3m+1)lm,n, in both
cases n− 3m+ 1 6= 0 and n− 3m+ 1 = 0. (3.23) for l = 1 follows. The proof for l = 2 is similar.

32



Lemma 3.9 Let N > 2 be an integer, ε0 > 0 and β ∈ (0, 2/3)\Q. Let (θ1, θ2)0<ε6ε0 be a sequence of
pairs of regular functions defined for z ∈ [εβ , 2εβ ], such that

∥∥∥∥ε
2∆θ1 +

α0

α2
(R2

2 −R2
1)θ1 + zθ1 − 2α1θ

3
1 − 2α0θ

2
2θ1

∥∥∥∥
L∞(D0∩D1)

= o
(
εβ(N+1/2)

)
(3.38)

and

∥∥ε2∆θ2 + (R2
2 −R2

1)θ2 + zθ2 − 2α2θ
3
2 − 2α0θ

2
1θ2
∥∥
L∞(D0∩D1)

= o
(
εβ(N+1)

)
(3.39)

are satisfied, where ∆θj refers to
∑d

k=1
∂2

∂x2
k

(
θj(R

2
1 − |x|2)

)
= −2dθ′j(z) + 4(R2

1 − z)θ′′j (z) (with z =

R2
1 − |x|2). We assume that there exists two families of real numbers pm,n, qm,n, defined for every

(m,n) ∈ N2 such that (2− 3β)m+ βn 6 βN , such that

∀l ∈ {0, 1, 2},

∥∥∥∥∥∥∥∥
θ
(l)
1 −

∑

(m,n)∈N
2

(2−3β)m+βn6βN

ε2mpm,n
dl

dzl

(
z1/2−3m+n

)
∥∥∥∥∥∥∥∥
L∞(D0∩D1)

=
ε→0

o
(
εβ(N+1/2−l)

)
(3.40)

and

∀l ∈ {0, 1, 2},

∥∥∥∥∥∥∥∥
θ
(l)
2 − λ

1/2
−1 1{l=0} −

∑

(m,n)∈N
2

(2−3β)m+βn6βN

ε2mqm,n
dl

dzl
(
z1+n−3m

)
∥∥∥∥∥∥∥∥
L∞(D0∩D1)

=
ε→0

o(εβ(N+1−l)).(3.41)

Then, equations (3.40), (3.41), (3.38) and (3.39) entirely determine the values of the pm,n’s and the
qm,n’s for (2− 3β)m+ βn 6 β(N − 1). Moreover, these coefficients do not depend on N or β.

Proof. For convenience, for every (m,n) ∈ N2, we denote p′m,n = (1/2 − 3m + n)pm,n, p
′′
m,n =

(−1/2− 3m+n)(1/2− 3m+n)pm,n, q
′
m,n = (1+ n− 3m)qm,n and q′′m,n = (n− 3m)(1+n− 3m)qm,n.

For functions (θ1, θ2) that satisfy (3.40) and (3.41), let us calculate the function that appears in the
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left hand side of (3.38), evaluated at z = εβ. In the calculation below, implicitely, θj = θj(ε
β).

ε2∆θ1 +
α0

α2
(R2

2 −R2
1)θ1 + zθ1 − 2α1θ

3
1 − 2α0θ

2
2θ1

= −2
∑

m,n>0
(2−3β)m+βn6βN

(dp′m,n + 2p′′m,n)ε
(2−3β)(m+1)+β(n+2)+β/2

+4R2
1

∑

m,n>0
(2−3β)m+βn6βN

p′′m,nε
(2−3β)(m+1)+β(n+1)+β/2

+
α0

α2
(R2

2 −R2
1)

∑

m,n>0
(2−3β)m+βn6βN

pm,nε
(2−3β)m+βn+β/2 +

∑

m,n>0
(2−3β)m+βn6βN

pm,nε
(2−3β)m+β(n+1)+β/2

−2α1

∑

m,n>0
(2−3β)m+βn6βN

( ∑

m1,m2,m3,n1,n2,n3>0
m1+m2+m3=m
n1+n2+n3=n

pm1,n1pm2,n2pm3,n3

)
ε(2−3β)m+βn+3β/2

−2α0λ−1

∑

m,n>0
(2−3β)m+βn6βN

pm,nε
(2−3β)m+βn+β/2

−4α0λ
1/2
−1

∑

m,n>0
(2−3β)m+βn6βN

( ∑

m1,m2,n1,n2>0
n1+n2=n
m1+m2=m

qm1,n1pm2,n2

)
ε(2−3β)m+βn+3β/2

−2α0

∑

m,n>0
(2−3β)m+βn6βN

( ∑

m1,m2,m3,n1,n2,n3>0,
n1+n2+n3=n

m1+m2+m3=m

qm1,n1qm2,n2pm3,n3

)
ε(2−3β)m+βn+5β/2 + o(εβN+β/2)

= −2
∑

m>1,n>2
(2−3β)m+βn6βN

(dp′m−1,n−2 + 2p′′m−1,n−2)ε
(2−3β)m+βn+β/2

+4R2
1

∑

m,n>1
(2−3β)m+βn6βN

p′′m−1,n−1ε
(2−3β)m+βn+β/2 +

∑

m>0,n>1
(2−3β)m+βn6βN

pm,n−1ε
(2−3β)m+βn+β/2

−2α1

∑

m>0,n>1
(2−3β)m+βn6βN

( ∑

m1,m2,m3,n1,n2,n3>0
m1+m2+m3=m
n1+n2+n3=n−1

pm1,n1pm2,n2pm3,n3

)
ε(2−3β)m+βn+β/2

−4α0λ
1/2
−1

∑

m>0,n>1
(2−3β)m+βn6βN

( ∑

n1,n2,m1,m2>0,
n1+n2=n−1
m1+m2=m

qm1,n1pm2,n2

)
ε(2−3β)m+βn+β/2 (3.42)

−2α0

∑

m>0,n>2
(2−3β)m+βn6βN

( ∑

n1,n2,n3,m1,m2,m3>0
n1+n2+n3=n−2
m1+m2+m3=m

qm1,n1qm2,n2pm3,n3

)
ε(2−3β)m+βn+β/2 + o(εβN+β/2),

where we have used (2.30). Since β is not rational, the functions
(
(0, ε0) ∋ ε 7→ ε(2−3β)m+βn

)
m,n∈N2

are two by two distinct, and therefore linearly independent. According to (3.38), we deduce from (3.42):

• for m = 0 and 1 6 n 6 N ,

p0,n−1 − 2α1

∑

n1,n2,n3>0
n1+n2+n3=n−1

p0,n1p0,n2p0,n3

−4α0λ
1/2
−1

∑

n1,n2>0
n1+n2=n−1

q0,n1p0,n2 − 2α0

∑

n1,n2,n3>0
n1+n2+n3=n−2

q0,n1q0,n2p0,n3 = 0,

which can be rewritten as

p0,0 − 2α1p
3
0,0 − 4α0λ

1/2
−1 q0,0p0,0 = 0 (3.43)
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for n = 1, and

p0,n−1

(
1− 6α1p

2
0,0 − 4α0λ

1/2
−1 q0,0

)
− 4α0λ

1/2
−1 p0,0q0,n−1 (3.44)

= 2α1

∑

06n1 ,n2,n3<n−1
n1+n2+n3=n−1

p0,n1p0,n2p0,n3 + 4α0λ
1/2
−1

∑

06n1 ,n2<n−1
n1+n2=n−1

q0,n1p0,n2 + 2α0

∑

n1,n2,n3>0
n1+n2+n3=n−2

q0,n1q0,n2p0,n3

for n > 2.

• for 1 6 m 6 β(N − 1)/(2− 3β) and n = 1,

4R2
1p

′′
m−1,0 + pm,0 − 2α1

∑

m1,m2,m3>0
m1+m2+m3=m

pm1,0pm2,0pm3,0 − 4α0λ
1/2
−1

∑

m1,m2>0
m1+m2=m

qm1,0pm2,0 = 0,

which can be rewritten as

pm,0

(
1− 6α1p

2
0,0 − 4α0λ

1/2
−1 q0,0

)
− 4α0λ

1/2
−1 p0,0qm,0

= −4R2
1p

′′
m−1,0 + 2α1

∑

06m1 ,m2,m3<m
m1+m2+m3=m

pm1,0pm2,0pm3,0 + 4α0λ
1/2
−1

∑

06m1 ,m2<m
m1+m2=m

qm1,0pm2,0.(3.45)

• for m > 1 and n > 2 such that (2− 3β)m+ βn 6 βN ,

−2(dp′m−1,n−2 + 2p′′m−1,n−2) + 4R2
1p

′′
m−1,n−1 + pm,n−1

−2α1

∑

m1,m2,m3,n1,n2,n3>0
m1+m2+m3=m
n1+n2+n3=n−1

pm1,n1pm2,n2pm3,n3

−4α0λ
1/2
−1

∑

m1,m2,n1,n2>0
n1+n2=n−1
m1+m2=m

qm1,n1pm2,n2 − 2α0

∑

m1,m2,m3,n1,n2,n3>0
n1+n2+n3=n−2
m1+m2+m3=m

qm1,n1qm2,n2pm3,n3 = 0,

which can be rewritten as
(
1− 6α1p

2
0,0 − 4α0λ

1/2
−1 q0,0

)
pm,n−1 − 4α0λ

1/2
−1 p0,0qm,n−1 (3.46)

= 2(dp′m−1,n−2 + 2p′′m−1,n−2)− 4R2
1p

′′
m−1,n−1 + 2α1

∑

m1,m2,m3,n1,n2,n3>0
m1+m2+m3=m
n1+n2+n3=n−1

∀j∈{1,2,3},(mj ,nj) 6=(m,n−1)

pm1,n1pm2,n2pm3,n3

+4α0λ
1/2
−1

∑

m1,m2,n1,n2>0,
n1+n2=n−1
m1+m2=m

∀j∈{1,2},(mj ,nj) 6=(m,n−1)

qm1 ,n1pm2,n2 + 2α0

∑

m1,m2,m3,n1,n2,n3,m3>0,
n1+n2+n3=n−2
m1+m2+m3=m

qm1,n1qm2,n2pm3,n3 .

35



Next, we perform the same kind of calculations with the function that appears in the left hand side of
(3.39).

ε2∆θ2 + (R2
2 −R2

1)θ2 + zθ2 − 2α2θ
3
2 − 2α0θ

2
1θ2

= −2
∑

m,n>0
(2−3β)m+βn6βN

(dq′m,n + 2q′′m,n)ε
(2−3β)(m+1)+β(n+2)+β

+4R2
1

∑

m,n>0
(2−3β)m+βn6βN

q′′m,nε
(2−3β)(m+1)+β(n+1)+β

+(R2
2 −R2

1)λ
1/2
−1 + (R2

2 −R2
1)

∑

m,n>0
(2−3β)m+βn6βN

qm,nε
(2−3β)m+βn+β

+εβλ
1/2
−1 +

∑

m>0,n>0
(2−3β)m+βn6βN

qm,nε
(2−3β)m+β(n+1)+β

−2α2λ
3/2
−1 − 6α2λ−1

∑

m>0,n>0
(2−3β)m+βn6βN

qm,nε
(2−3β)m+βn+β

−6α2λ
1/2
−1

∑

m,n>0
(2−3β)m+βn6βN

( ∑

m1,m2,n1,n2>0
m1+m2=m
n1+n2=n

qm1,n1qm2,n2

)
ε(2−3β)m+β(n+1)+β

−2α2

∑

m>0,n>0
(2−3β)m+βn6βN

( ∑

m1,m2,m3,n1,n2,n3>0,
n1+n2+n3=n

m1+m2+m3=m

qm1,n1qm2,n2qm3,n3

)
ε(2−3β)m+β(n+2)+β

−2α0λ
1/2
−1

∑

m,n>0
(2−3β)m+βn6βN

( ∑

m1,m2,n1,n2>0
m1+m2=m
n1+n2=n

pm1,n1pm2,n2

)
ε(2−3β)m+βn+β

−2α0

∑

m,n>0
(2−3β)m+βn6βN

( ∑

m1,m2,m3,n1,n2,n3>0
m1+m2+m3=m
n1+n2+n3=n

pm1,n1pm2,n2qm3,n3

)
ε(2−3β)m+β(n+1)+β + o(εβ(N+1)).
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Thus, changing the indices and throwing away all the terms that can be incorporated in the rest,

ε2∆θ2 + (R2
2 −R2

1)θ2 + zθ2 − 2α2θ
3
2 − 2α0θ

2
1θ2

= −2
∑

m>1,n>2
(2−3β)m+βn6βN

(dq′m−1,n−2 + 2q′′m−1,n−2)ε
(2−3β)m+βn+β

+4R2
1

∑

m,n>1
(2−3β)m+βn6βN

q′′m−1,n−1ε
(2−3β)m+βn+β

+(R2
2 −R2

1)
∑

m,n>0
(2−3β)m+βn6βN

qm,nε
(2−3β)m+βn+β

+εβλ
1/2
−1 +

∑

m>0,n>1
(2−3β)m+βn6βN

qm,n−1ε
(2−3β)m+βn+β

−6α2λ−1

∑

m>0,n>0
(2−3β)m+βn6βN

qm,nε
(2−3β)m+βn+β

−6α2λ
1/2
−1

∑

m>0,n>1
(2−3β)m+βn6βN

( ∑

m1,m2,n1,n2>0
m1+m2=m
n1+n2=n−1

qm1,n1qm2,n2

)
ε(2−3β)m+βn+β

−2α2

∑

m>0,n>2
(2−3β)m+βn6βN

( ∑

m1,m2,m3,n1,n2,n3>0,
n1+n2+n3=n−2
m1+m2+m3=m

qm1,n1qm2,n2qm3,n3

)
ε(2−3β)m+βn+β

−2α0λ
1/2
−1

∑

m,n>0
(2−3β)m+βn6βN

( ∑

m1,m2,n1,n2>0
m1+m2=m
n1+n2=n

pm1,n1pm2,n2

)
ε(2−3β)m+βn+β (3.47)

−2α0

∑

m>0,n>1
(2−3β)m+βn6βN

( ∑

m1,m2,m3,n1,n2,n3>0
m1+m2+m3=m
n1+n2+n3=n−1

pm1,n1pm2,n2qm3,n3

)
ε(2−3β)m+βn+β + o(εβ(N+1)).

According to (3.39), the right hand side of (3.47) is equal to 0, up to the rest term o(εβ(N+1)). Thus,

the linear independance of the family of functions of ε,
(
ε(2−3β)m+βn

)
m,n>0

yields:

• for m = 0, n = 0, thanks to (2.30), we get

− 2(R2
2 −R2

1)q0,0 = λ
1/2
−1 (2α0p

2
0,0 − 1), (3.48)

• for m = 0 and 1 6 n 6 N ,

(R2
2 −R2

1)q0,n + q0,n−1 − 6α2λ−1q0,n − 6α2λ
1/2
−1

∑

n1,n2>0,
n1+n2=n−1

q0,n1q0,n2

−2α2

∑

n1,n2,n3>0,
n1+n2+n3=n−2

q0,n1q0,n2q0,n3 − 2α0λ
1/2
−1

∑

n1,n2>0
n1+n2=n

p0,n1p0,n2 − 2α0

∑

n1,n2,n3>0
n1+n2+n3=n−1

p0,n1p0,n2q0,n3 = 0,

which, using (2.30), can be rewritten as

−2(R2
2 −R2

1)q0,n − 4α0p0,0λ
1/2
−1 p0,n (3.49)

= −q0,n−1 + 6α2λ
1/2
−1

∑

n1,n2>0,
n1+n2=n−1

q0,n1q0,n2 + 2α2

∑

n1,n2,n3>0,
n1+n2+n3=n−2

q0,n1q0,n2q0,n3

+2α0λ
1/2
−1

∑

06n1 ,n2<n
n1+n2=n

p0,n1p0,n2 + 2α0

∑

n1,n2,n3>0
n1+n2+n3=n−1

p0,n1p0,n2q0,n3 ,
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• for 1 6 m 6 βN/(2− 3β) and n = 0,

(R2
2 −R2

1)qm,0 − 6α2λ−1qm,0 − 2α0λ
1/2
−1

∑

m1,m2>0,
m1+m2=m

pm1,0pm2,0 = 0,

that is

− 2(R2
2 −R2

1)qm,0 − 4α0p0,0λ
1/2
−1 pm,0 = 2α0λ

1/2
−1

∑

06m1,m2<m,
m1+m2=m

pm1,0pm2,0. (3.50)

• for m > 1 and n > 1 such that (2− 3β)m+ βn 6 βN ,

−2(dq′m−1,n−2 + 2q′′m−1,n−2)1{n>2} + 4R2
1q

′′
m−1,n−1 + (R2

2 −R2
1)qm,n + qm,n−1

−6α2λ−1qm,n − 6α2λ
1/2
−1

∑

m1,m2,n1,n2>0
m1+m2=m,
n1+n2=n−1

qm1 ,n1qm2 ,n2 − 2α2

∑

m1,m2,m3,n1,n2,n3>0,
n1+n2+n3=n−2
m1+m2+m3=m

qm1,n1qm2,n2qm3,n3

−2α0λ
1/2
−1

∑

m1,m2,n1,n2>0
m1+m2=m
n1+n2=n

pm1,n1pm2,n2 − 2α0

∑

m1,m2,m3,n1,n2,n3>0
m1+m2+m3=m
n1+n2+n3=n−1

pm1,n1pm2,n2qm3 ,n3 = 0

which can be rewritten as

−2(R2
2 −R2

1)qm,n − 4α0λ
1/2
−1 p0,0pm,n

= 2(dq′m−1,n−2 + 2q′′m−1,n−2)1{n>2} − 4R2
1q

′′
m−1,n−1 − qm,n−1 + 6α2λ

1/2
−1

∑

06m1 ,m2,n1,n2
n1+n2=n−1
m1+m2=m

qm1,n1qm2,n2

+2α2

∑

m1,m2,m3,n1,n2,n3>0
n1+n2+n3=n−2
m1+m2+m3=m

qm1,n1qm2,n2qm3,n3 (3.51)

+2α0λ
1/2
−1

∑

m1,m2,n1,n2>0
m1+m2=m
n1+n2=n

∀j∈{1,2},(mj ,nj) 6=(m,n)

pm1,n1pm2,n2 + 2α0

∑

m1,m2,m3,n1,n2,n3>0
m1+m2+m3=m
n1+n2+n3=n−1

pm1,n1pm2,n2qm3,n3

Next, we show that the system of equations satisfied by the pm,n’s and qm,n’s has a unique solution
such that p0,0 > 0. First, plugging

q0,0 =
1− 2α0p

2
0,0

2(R2
2 −R2

1)
λ
1/2
−1 , (3.52)

(which comes from (3.48)) into (3.43) and using also (2.30), we get

p0,0 =

(
Γ2

2α1Γ12

)1/2

, (3.53)

and

q0,0 =
Γ1

2Γ12(2α2(R2
2 −R2

1))
1/2

. (3.54)

Next, for 1 6 n 6 N − 1, the q0,n’s and the p0,n’s are constructed recursively thanks to (3.49) as
well as (3.44) with n replaced by n + 1. We solve the system obtained by combination of these two
equations by inverting the matrix

M =

[
−2(R2

2 −R2
1) −4α0p0,0λ

1/2
−1

−4α0p0,0λ
1/2
−1 1− 6α1p

2
0,0 − 4α0λ

1/2
−1 q0,0

]
=




−2(R2
2 −R2

1) −2α0

(
(R2

2−R2
1)Γ2

α1α2Γ12

)1/2

−2α0

(
(R2

2−R2
1)Γ2

α1α2Γ12

)1/2
−2 Γ2

Γ12


 ,
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where we have used (2.30), (3.53) and (3.54). The determinant of M is

detM = 4(R2
2 −R2

1)Γ2 > 0,

therefore M is invertible, and there is a unique possible choice for (q0,n, p0,n) for 1 6 n 6 N − 1 such
that the assumptions of the lemma are satisfied. Then, for 1 6 m 6 β(N − 1)/(2− 3β), the qm,0’s and
the pm,0’s are constructed recursively thanks to (3.45) and (3.50) by inverting the same matrix M .
Finally, if m > 1, n > 1 and (2− 3β)m+ βn 6 β(N − 1) and if the qk,l’s and the pk,l’s are known for
every k 6 m, l 6 n and (k, l) 6= (m,n), (qm,n, pm,n) is entirely determined because the system made of
(3.46) for n replaced by n+ 1 and (3.51) has a unique solution thanks to the invertibility of M . This
way, we prove recursively that the assumptions of the lemma determine completely the values of the
coefficients qm,n and pm,n, provided (2− 3β)m+ βn 6 β(N − 1).

Lemma 3.10 Let N > 3 be an integer, M > β
2−3β

N , and ω, τ , ν, λ given by (3.1). Then for
l = 0, 1, 2, we have

∥∥∥∥
dl

dzl

(
ω(z)− ε1/3ν(y1)

)∥∥∥∥
L∞(D0∩D1)

= o(εβ(N−1/2−l)) (3.55)

and
∥∥∥∥
dl

dzl

(
τ (z)− ε1/3λ(y1)

1/2
)∥∥∥∥

L∞(D0∩D1)

= o(εβ(N−l)). (3.56)

Proof. The assumptions (3.40) and (3.41) made on (θ1(z), θ2(z)) in Lemma 3.9 are satisfied by
(ω(z), τ (z)) thanks to Lemma 3.7, and also by (ε1/3ν(y1), ε

1/3λ(y1)
1/2) thanks to Lemma 3.8. As-

sumptions (3.38) and (3.39) are satisfied by (ω(z), τ (z)) thanks to (3.4) and (3.6), and they are also
satisfied by (ε1/3ν(y1), ε

1/3λ(y1)
1/2) thanks to Lemma 3.3. Therefore, Lemma 3.9 ensures that for

every (m,n) ∈ N2 such that (2− 3β)m+βn 6 β(N − 1), wm,n = nm,n and tm,n = lm,n. In particular,
(3.55) and (3.56) are satisfied.

3.6 Comparison of ε1/3(ν, λ1/2) and (0, ε1/3µ) in D1 ∩D2

We first give an expansion of ε1/3(ν, λ1/2) into powers of ε in D1 ∩D2, as ε → 0.

Lemma 3.11 Let N > 1 be an integer. There exist a family of numbers (l̃m,n)m>0,n>0 which does not
depend on N such that if ν and λ are given by (3.1), then for every α > 0,

∥∥∥∥
dl

dzl

(
ε1/3ν(y1)

)∥∥∥∥
L∞(D1∩D2)

=
ε→0

o (εα) (3.57)

and
∥∥∥∥∥∥∥∥∥∥∥

dl

dzl

(
ε1/3λ(y1)

1/2
)
− λ

1/2
−1 1l=0 −

∑

(m,n)∈N
2

(2−3β)m+βn6βN
1+n−3m>0

ε2m l̃m,n
dl

dzl
(
z1+n−3m

)

∥∥∥∥∥∥∥∥∥∥∥
L∞(D1∩D2)

=
ε→0

o(εβ(N+1−l)).(3.58)

Proof. For x ∈ D1 ∩D2, we have −2εβ−2/3 6 y1 6 −εβ−2/3 → −∞ as ε → 0. Thus, (3.57) follows
from (2.49) and (2.51). As for (3.58), we proceed like in the proof of Lemma 3.8. First, from (2.50)
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and (2.52), we have

dl

dyl
1

(
ε2/3λ(y1)

)
≈

y1→−∞
λ−11{l=0} + ε2/3

dl

dyl
1

(y1/(2α2)) + ε2/3
N∑

n=1

ε2n/3
∑

06m6(n−2)/3

L̃n,m
dl

dyl
1

(
yn−2−3m
1

)

≈
y1→−∞

λ−11{l=0} + ε2/3
dl

dyl
1

(y1/(2α2)) + ε2/3
N∑

n=1

ε2n/3
∑

16m6(n+1)/3

L̃n,m−1
dl

dyl
1

(
yn+1−3m
1

)

≈
y1→−∞

λ−11{l=0} +

N∑

n=0

ε2(n+1)/3
∑

06m6(n+1)/3

ˇ̃
Ln,m

dl

dyl
1

(
yn+1−3m
1

)

≈
y1→−∞

λ−11{l=0} +
∑

06n6N,m>0

ε2(n+1)/3 ˇ̃Ln,m
dl

dyl
1

(
yn+1−3m
1

)
, (3.59)

with

ˇ̃
Ln,m =





1/(2α2) if n = m = 0
0 if n > 1 and m = 0 or n = 0 and m > 1

L̃n,m−1 if n > 1 and 1 6 m 6 (n+ 1)/3
0 if n > 1 and m > (n+ 1)/3.

Thus, for x ∈ D1 ∩D2, throwing away the smallest terms,

dl

dyl
1

(
ε2/3λ(y1)

)
=

ε→0
λ−11{l=0} + ε2l/3

∑

(m,n)∈N
2

(2−3β)m+βn6βN

ε2m
ˇ̃
Ln,m

dl

dzl
(
z1+n−3m

)
+ oL∞(D1∩D2)(ε

β(N+1)+(2/3−β)l).

At this point, the calculation becomes similar to the one which was performed for y1 → +∞ in the
proof of Lemma 3.8. Indeed, we can deduce like in (3.31) that for l = 0,

ε1/3λ(y1)
1/2 =

ε→0
λ
1/2
−1 +

∑

(n,m)∈N
2

(2−3β)m+βn6βN

ε2mzn−3m+1 l̃m,n + oL∞(D1∩D2)(ε
β(N+1)), (3.60)

where

l̃m,n =

n+1∑

k=1

ck
∑

((n1,m1),··· ,(nk,mk))∈(N2)k

n1+···+nk=n−k+1
m1+···+mk=m

k∏

j=1

ˇ̃
Lnj ,mj (3.61)

for the same coefficients ck as in (3.30). Note in particular that l̃m,n = 0 if m > (n + 1)/3. Indeed,
under this condition, for every k ∈ {1, · · · , N + 1}, if n1, · · · , nk,m1, · · · ,mk are indices like in the
second sum in (3.61), we have

m1 + · · ·+mk = m >
n+ 1

3
=

(n1 + 1) + · · ·+ (nk + 1)

3
,

therefore at least for one of the indices j ∈ {1, · · · , k}, we have mj > (nj + 1)/3, which implies

k∏

j=1

ˇ̃
Lnj ,mj = 0,

for every k ∈ {1, · · · , N + 1}, and therefore l̃m,n = 0. This is the reason why we can add without
changing the result the condition 1 + n − 3m > 0 in the sum that appears in (3.58) for l = 0. The
proof of (3.58) for l = 1 and l = 2 is similar to the one which was done on D0 ∩ D1 in the proof of
Lemma 3.8.

The next lemma provides an asymptotic expansion of (0, ε1/3µ) into powers of ε in D1 ∩ D2 as
ε → 0.
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Lemma 3.12 Let L > 1, and µ given by (3.1). Then there exists a family of numbers (αm,n)m,n>0

such that for every l ∈ {0, 1, 2},
∥∥∥∥∥∥∥∥∥∥

dl

dzl

(
ε1/3µ(y2)

)
− λ

1/2
−1 1{l=0} −

∑

m,n>0
βn+(2−3β)m62L−β

1+n−3m>0

αm,nε
2m dl

dzl
(
z1+n−3m

)

∥∥∥∥∥∥∥∥∥∥
L∞(D1∩D2)

= o(ε2L−βl).(3.62)

Proof. For x ∈ D1 ∩D2, (R
2
2−R2

1)ε
−2/3− εβ−2/3 > y2 > (R2

2−R2
1)ε

−2/3−2εβ−2/3 → +∞ as ε → 0.
Thus, for l = 0, 1, 2, thanks to (2.19), (2.25) and Proposition 2.6, using for convenience the notations

g0,m = am, g
(0)
n,m = gn,m, g

(1)
n,m = (1/2 − 2n− 3m)gn,m and g

(2)
n,m = (−1/2− 2n− 3m)g

(1)
n,m, we infer

dl

dzl

(
ε1/3µ(y2)

)

= ε1/3
L∑

n=0

ε2n/3 dl

dzl
(µn(y2))

=
ε1/3

(2α2)1/2

L∑

n=0

ε2n/3
∞∑

m=0

g(l)n,mR2m
2 ε−2l/3y

1/2−2n−3m−l
2

=
ε1/3

(2α2)1/2

L∑

n=0

ε2n/3
L−n∑

m=0

g(l)n,mR2m
2 ε−2l/3y

1/2−2n−3m−l
2 + ε1/3

L∑

n=0

ε2(n−l)/3oL∞(D1∩D2)(y
1/2+n−3L−l
2 )

=
ε1/3

(2α2)1/2

L∑

n=0

ε2n/3
L−n∑

m=0

g(l)n,mR2m
2 ε−2l/3 (R

2
2 −R2

1)
1/2−2n−3m−l

ε1/3−4n/3−2m−2l/3

(
1 +

z

R2
2 −R2

1

)1/2−2n−3m−l

+ oL∞(D1∩D2)(ε
2L)

= λ
1/2
−1

L∑

n=0

L−n∑

m=0

ε2(n+m)g(l)n,mR2m
2 (R2

2 −R2
1)

−2n−3m−l

(
1 +

z

R2
2 −R2

1

)1/2−2n−3m−l

+ oL∞(D1∩D2)(ε
2L)

= λ
1/2
−1

L∑

j=0

ε2j
∑

m,n>0,
n+m=j

g(l)n,mR2m
2 (R2

2 −R2
1)

−2n−3m−l
∑

k>0,
βk+2j62L

ck,l,m,nz
k + oL∞(D1∩D2)(ε

2L) (3.63)

= λ
1/2
−1 g

(l)
0,0(R

2
2 −R2

1)
−l + λ

1/2
−1

∑

j,k>0
βk+2j62L,
(j,k) 6=(0,0)

ε2j
∑

m,n>0,
n+m=j

g(l)n,mR2m
2 (R2

2 −R2
1)

−2n−3m−lck,l,m,nz
k + oL∞(D1∩D2)(ε

2L),

for some coefficients (ck,l,m,n)k>0 (with c0,l,m,n = 1, ∀l,m, n). Then, we change the variable k in the
sum into p = 3j + k − 1. Note that p ∈ N since (j, k) ∈ N2\{(0, 0)}. Thus,

dl

dzl

(
ε1/3µ(y2)

)
= λ

1/2
−1 g

(l)
0,0(R

2
2 −R2

1)
−l (3.64)

+λ
1/2
−1

∑

j,p>0
β(p+1)+(2−3β)j62L

p>3j−1

c1+p−3j

∑

m,n>0,
n+m=j

g(l)n,mR2m
2 (R2

2 −R2
1)

−2n−3m−lε2jz1+p−3j + oL∞(D1∩D2)(ε
2L).

The result follows for l = 0, since g0,0 = 1, with

αm,n = λ
1/2
−1 c1+n−3m

∑

k,i>0,
k+i=m

g
(0)
i,kR

2k
2 (R2

2 −R2
1)

−2i−3k.

For l = 1, (3.64) gives the existence of some coefficients (α′
m,n)m,n such that

d

dz

(
ε1/3µ(y2)

)
= α′

0,0 +
∑

m,n>0
β(n+1)+(2−3β)m62L

1+n−3m>0

α′
m,n+1ε

2m d

dz

(
z2+n−3m

)
+ oL∞(D1∩D2)(ε

2L).
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Thus,

d

dz

(
ε1/3µ(y2)

)
=

∑

m,n>0
βn+(2−3β)m62L

n−3m>0

α′
m,nε

2m d

dz

(
z1+n−3m

)
+ oL∞(D1∩D2)(ε

2L)

=
∑

m,n>0
β(n+1)+(2−3β)m62L

n−3m>0

α′
m,nε

2m d

dz

(
z1+n−3m)+ oL∞(D1∩D2)(ε

2L−β)

=
∑

m,n>0
β(n+1)+(2−3β)m62L

1+n−3m>0

α′
m,nε

2m d

dz

(
z1+n−3m)+ oL∞(D1∩D2)(ε

2L−β). (3.65)

where in the first equality, we have changed the index of summation n by n+1, in the second equality,
we have neglected some terms in the sum, and in the last equality, the extra term we write in the sum
is in fact equal to 0. In order to prove that (3.62) also holds for l = 1, it remains to prove that for
every pair of indices (m,n) appearing in the sum in (3.62) (except for 1 + n− 3m = 0, for which the
corresponding term in (3.62) for l = 1 is anyway equal to 0), we have α′

m,n = αm,n. This can be done
by using the same trick as in the proof of Lemma 3.8. Namely, we have on the one side thanks to
(3.62)

ε1/3µ

(
R2

2 −R2
1

ε2/3
− εβ−2/3

)
− ε1/3µ

(
R2

2 −R2
1

ε2/3
− 2εβ−2/3

)

=
∑

m,n>0
βn+(2−3β)m62L−β

1+n−3m>0

αm,nε
2m(−1)1+n−3mεβ(1+n−3m)

(
1− 21+n−3m

)
+ oL∞(D1∩D2)(ε

2L),(3.66)

and on the other side, by integration of (3.65) between z = −2εβ and z = −εβ, we have the same
equality with αm,n replaced by α′

m,n. Since β has been chosen irrational, the linear independance of

the functions ε 7→ ε(2−3β)m+β(n+1) implies that for all the indices (m,n) appearing in the sum (except
for 1 + n− 3m = 0), we have αm,n = α′

m,n. The proof of (3.62) for l = 2 is similar.

The next lemma shows that the expansions of ε1/3(ν, λ1/2) and (0, ε1/3µ) calculated respectively in
Lemmata 3.11 and 3.12 are in fact the same.

Lemma 3.13 Let N > 1 be an integer, ε0 > 0, and β ∈ (0, 2/3)\Q. Let (θ)0<ε6ε0 be a sequence of
regular functions defined for z ∈ [−2εβ ,−εβ] such that

∥∥ε2∆θ + (R2
2 −R2

1)θ + zθ − 2α2θ
3
∥∥
L∞(D1∩D2)

= o
(
εβ(N+1)

)
. (3.67)

We assume that there exists a family of real numbers qm,n, defined for every (m,n) ∈ N2 such that
(2− 3β)m+ βn 6 βN , such that for l ∈ {0, 1, 2}, we have

∥∥∥∥∥∥∥∥
θ(l) − λ

1/2
−1 1{l=0} −

∑

(m,n)∈N
2

(2−3β)m+βn6βN

ε2mqm,n
dl

dzl
(
z1+n−3m)

∥∥∥∥∥∥∥∥
L∞(D1∩D2)

=
ε→0

o(εβ(N+1−l)). (3.68)

Then, equations (3.68) and (3.67) entirely determine the values of the qm,n’s for (2 − 3β)m + βn 6

β(N − 1). Moreover, these coefficients do not depend on N or β.

Proof. For convenience, for every (m,n) ∈ N2, we denote q′m,n = (1 + n − 3m)qm,n and q′′m,n =
(n − 3m)(1 + n − 3m)qm,n. For a function θ that satisfies (3.68), let us calculate the function that
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appears in the left hand side of (3.67), evaluated at z = −εβ. We have

ε2∆θ + (R2
2 −R2

1)θ + zθ − 2α2θ
3

= −2
∑

m,n>0
(2−3β)m+βn6βN

(dq′m,n + 2q′′m,n)(−1)n−3mε(2−3β)(m+1)+β(n+2)+β

+4R2
1

∑

m,n>0
(2−3β)m+βn6βN

q′′m,n(−1)n−3m−1ε(2−3β)(m+1)+β(n+1)+β

+(R2
2 −R2

1)λ
1/2
−1 + (R2

2 −R2
1)

∑

m,n>0
(2−3β)m+βn6βN

qm,n(−1)n−3m+1ε(2−3β)m+βn+β

−εβλ
1/2
−1 +

∑

m>0,n>0
(2−3β)m+βn6βN

qm,n(−1)n−3mε(2−3β)m+β(n+1)+β

−2α2λ
3/2
−1 − 6α2λ−1

∑

m>0,n>0
(2−3β)m+βn6βN

qm,n(−1)n−3m+1ε(2−3β)m+βn+β

−6α2λ
1/2
−1

∑

m,n>0
(2−3β)m+βn6βN

( ∑

m1,m2,n1,n2>0
m1+m2=m
n1+n2=n

qm1,n1qm2,n2

)
(−1)n−3mε(2−3β)m+β(n+1)+β

−2α2

∑

m>0,n>0
(2−3β)m+βn6βN

( ∑

m1,m2,m3,n1,n2,n3>0,
n1+n2+n3=n

m1+m2+m3=m

qm1,n1qm2,n2qm3,n3

)
(−1)n−3m+1ε(2−3β)m+β(n+2)+β

Thus, changing the indices and throwing away all the terms that can be incorporated in the rest,

ε2∆θ + (R2
2 −R2

1)θ + zθ − 2α2θ
3 − 2α0θ

2
1θ

= −2
∑

m>1,n>2
(2−3β)m+βn6βN

(dq′m−1,n−2 + 2q′′m−1,n−2)(−1)n−3m+1ε(2−3β)m+βn+β

+4R2
1

∑

m,n>1
(2−3β)m+βn6βN

q′′m−1,n−1(−1)n−3m+1ε(2−3β)m+βn+β

+(R2
2 −R2

1)
∑

m,n>0
(2−3β)m+βn6βN

qm,n(−1)n−3m+1ε(2−3β)m+βn+β

−εβλ
1/2
−1 +

∑

m>0,n>1
(2−3β)m+βn6βN

qm,n−1(−1)n−3m+1ε(2−3β)m+βn+β

−6α2λ−1

∑

m>0,n>0
(2−3β)m+βn6βN

qm,n(−1)n−3m+1ε(2−3β)m+βn+β

−6α2λ
1/2
−1

∑

m>0,n>1
(2−3β)m+βn6βN

( ∑

m1,m2,n1,n2>0
m1+m2=m
n1+n2=n−1

qm1,n1qm2,n2

)
(−1)n−3m+1ε(2−3β)m+βn+β

−2α2

∑

m>0,n>2
(2−3β)m+βn6βN

( ∑

m1,m2,m3,n1,n2,n3>0,
n1+n2+n3=n−2
m1+m2+m3=m

qm1,n1qm2,n2qm3,n3

)
(−1)n−3m+1ε(2−3β)m+βn+β.

According to (3.67), the right hand side of (3.69) is equal to 0, up to the rest term o(εβ(N+1)). Thus,

the linear independance of the family of functions of ε,
(
ε(2−3β)m+βn

)
m,n>0

yields:

• for m = 0, n = 0, thanks to (2.30), we get

2(R2
2 −R2

1)q0,0 = λ
1/2
−1 , (3.69)
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• for m = 0 and 1 6 n 6 N ,

(R2
2 −R2

1)q0,n + q0,n−1 − 6α2λ−1q0,n − 6α2λ
1/2
−1

∑

n1,n2>0,
n1+n2=n−1

q0,n1q0,n2 − 2α2

∑

n1,n2,n3>0,
n1+n2+n3=n−2

q0,n1q0,n2q0,n3 = 0,

which, using (2.30), can be rewritten as

− 2(R2
2 −R2

1)q0,n = −q0,n−1 + 6α2λ
1/2
−1

∑

n1,n2>0,
n1+n2=n−1

q0,n1q0,n2 + 2α2

∑

n1,n2,n3>0,
n1+n2+n3=n−2

q0,n1q0,n2q0,n3 ,(3.70)

• for 1 6 m 6 βN/(2− 3β) and n = 0, we get

qm,0 = 0. (3.71)

• for m > 1 and n > 1 such that (2− 3β)m+ βn 6 βN ,

−2(dq′m−1,n−2 + 2q′′m−1,n−2)1{n>2} + 4R2
1q

′′
m−1,n−1 + (R2

2 −R2
1)qm,n + qm,n−1

−6α2λ−1qm,n − 6α2λ
1/2
−1

∑

m1,m2,n1,n2>0
m1+m2=m,
n1+n2=n−1

qm1 ,n1qm2 ,n2 − 2α2

∑

m1,m2,m3,n1,n2,n3>0,
n1+n2+n3=n−2
m1+m2+m3=m

qm1,n1qm2,n2qm3,n3 = 0,

which can be rewritten as

−2(R2
2 −R2

1)qm,n = 2(dq′m−1,n−2 + 2q′′m−1,n−2)1{n>2} − 4R2
1q

′′
m−1,n−1 − qm,n−1

+6α2λ
1/2
−1

∑

06m1 ,m2,n1,n2
n1+n2=n−1
m1+m2=m

qm1,n1qm2,n2 + 2α2

∑

m1,m2,m3,n1,n2,n3>0
n1+n2+n3=n−2
m1+m2+m3=m

qm1,n1qm2,n2qm3,n3(3.72)

From (3.69), (3.70), (3.71) and (3.72), it clearly follows that all the qm,n’s for indices (m,n) that satisfy
(2− 3β)m+ βn 6 βN are completely determined.

Finally, we show that (ε1/3ν(y1), ε
1/3λ(y1)

1/2) and (0, ε1/3µ(y2)) are close one from another on D1∩D2.

Lemma 3.14 Let N > 1 be an integer, L > β(N + 1)/2 and ν, λ, µ given by (3.1). Then for
l ∈ {0, 1, 2},

∀α > 0,

∥∥∥∥
dl

dzl

(
ε1/3ν(y1)

)∥∥∥∥
L∞(D1∩D2)

= o(εα) (3.73)

and
∥∥∥∥
dl

dzl

(
ε1/3λ(y1)

1/2 − ε1/3µ(y2)
)∥∥∥∥

L∞(D1∩D2)

= o(εβ(N+1−l)). (3.74)

Proof. (3.73) has already been proved in Lemma 3.11. θ = ε1/3λ(y1)
1/2 satisfies assumption (3.68)

in Lemma 3.13 thanks to Lemma (3.11) (with qm,n = 0 if 1 + n − 3m < 0). ε1/3λ1/2 also satisfies
the assumption (3.67) thanks to Lemma 3.3 and (3.73). The two assumptions (3.68) and (3.67) of
Lemma 3.13 are also satisfied by θ = ε1/3µ(y2), thanks respectively to Lemma 3.12 and Corollary 3.6.
Therefore, thanks to Lemma 3.13, (3.58) and (3.62), we deduce (3.74).

4 Proof of Theorem 1.5

4.1 Derivation of the equations

We look for solutions of (1.13) under the form given by the ansatz (1.20), where β ∈ (0, 2/3)\Q, N is
a large integer, M > max(1, βN/(2− 3β) and L > max(1, β(N + 1)/2. For the sake of simplicity, we
rewrite this ansatz as

η1 = ε1/3
(
ρ1 + ε2(N+1)/3P

)
, (4.1)

η2 = ε1/3
(
ρ2 + ε2(N+1)/3Q

)
, (4.2)
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where

ρ1 = Φεε
−1/3ω + χεν, (4.3)

ρ2 = Φεε
−1/3τ + χελ

1/2 +Ψεµ. (4.4)

Implicitely, ρ1, ρ2, P and Q are functions of x ∈ Rd, ω and τ are functions of z = R2
1 − |x|2, ν and

λ are functions of y1 = z/ε2/3 and µ is a function of the variable y2 = (R2
2 − |x|2)/ε2/3. ∇ and

∆ refer to derivatives with respect to x ∈ Rd, whereas primes refer to derivatives with respect to
variables z, y1 or y2, depending on the function which is concerned. For instance, we note ∇ω for
∇ω = −2xω′(R2

1−|x|2) = −2xω′(z). Using this ansatz and these notations, the first equation in (1.13)
becomes

ε4/3∆ρ1 + ε2N/3+2∆P +

(
α0

α2

R2
2 −R2

1

ε2/3
+ y1

)
(ρ1 + ε2(N+1)/3P )

−2α1(ρ1 + ε2(N+1)/3P )3 − 2α0(ρ2 + ε2(N+1)/3Q)2(ρ1 + ε2(N+1)/3P ) = 0.

Reorganizing the different terms, we get

ε4/3∆ρ1 +
α0

α2

R2
2 −R2

1

ε2/3
ρ1 + y1ρ1 − 2α1ρ

3
1 − 2α0ρ

2
2ρ1

+ε2(N+1)/3

(
ε4/3∆P +

α0

α2

R2
2 −R2

1

ε2/3
P + y1P − 6α1ρ

2
1P − 2α0ρ

2
2P − 4α0ρ1ρ2Q

)

+ε4(N+1)/3 (−6α1ρ1P
2 − 4α0ρ2PQ− 2α0ρ1Q

2)+ ε2(N+1) (−2α1P
3 − 2α0PQ2) = 0. (4.5)

Similarly, the second equation in (1.13) writes

ε4/3∆ρ2 + y2ρ2 − 2α2ρ
3
2 − 2α0ρ

2
1ρ2

+ε2(N+1)/3
(
ε4/3∆Q+ y2Q− 6α2ρ

2
2Q− 2α0ρ

2
1Q− 4α0ρ1ρ2P

)

+ε4(N+1)/3
(
−6α2ρ2Q

2 − 4α0ρ1PQ− 2α0ρ2P
2
)
+ ε2(N+1)

(
−2α2Q

3 − 2α0P
2Q
)

= 0. (4.6)

Equations (4.5) and (4.6) can be rewritten as the system

Aε

[
P
Q

]
= f0

ε (x) + f2
ε (x, P,Q) + f3

ε (x, P,Q), (4.7)

where

Aε =

[
−ε4/3∆+ pε(x) rε(x)

rε(x) −ε4/3∆+ qε(x)

]
,

pε(x) = −α0

α2

R2
2 −R2

1

ε2/3
− y1 + 6α1ρ

2
1 + 2α0ρ

2
2,

qε(x) = −y2 + 6α2ρ
2
2 + 2α0ρ

2
1,

rε(x) = 4α0ρ1ρ2,

f0
ε (x) = ε−2(N+1)/3

[
ε4/3∆ρ1 +

α0
α2

R2
2−R2

1

ε2/3
ρ1 + y1ρ1 − 2α1ρ

3
1 − 2α0ρ

2
2ρ1

ε4/3∆ρ2 + y2ρ2 − 2α2ρ
3
2 − 2α0ρ

2
1ρ2

]
,

f2
ε (x,P,Q) = −2ε2(N+1)/3

[
3α1ρ1P

2 + 2α0ρ2PQ+ α0ρ1Q
2

3α2ρ2Q
2 + 2α0ρ1PQ+ α0ρ2P

2

]
,

f3
ε (x, P,Q) = −2ε4(N+1)/3

[
α1P

3 + α0PQ2

α2Q
3 + α0P

2Q

]
.
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4.2 Estimate on the source term f 0

ε

Equation (4.7) will be solved thanks to a fixed point argument. For this purpose, we need to show
that the source term f0

ε is small if functions ω, τ , ν, λ and µ are given by (3.1). The first component
of f0

ε can be rewritten as

[
f0
ε

]
1

= ε−2(N+1)/3

[
ε4/3∆ρ1 +

α0

α2

R2
2 −R2

1

ε2/3
ρ1 + y1ρ1 − 2α1ρ

3
1 − 2α0ρ

2
2ρ1

]

= Φε ε
−2(N+1)/3ε−1

[
ε2∆ω +

α0

α2
(R2

2 −R2
1)ω + zω − 2α1ω

3 − 2α0τ
2ω

]

︸ ︷︷ ︸
g0

+χε ε
−2(N+1)/3

[
ε4/3∆ν +

α0

α2

R2
2 −R2

1

ε2/3
ν + y1ν − 2α1ν

3 − 2α0λν

]

︸ ︷︷ ︸
g1

+2ε−2(N−1)/3
[
∇Φε∇(ε−1/3ω) +∇χε∇ν

]

︸ ︷︷ ︸
k1

+ ε−2(N−1)/3
[
∆Φε(ε

−1/3ω) + ∆χεν
]

︸ ︷︷ ︸
k2

+2α1ε
−2(N+1)/3

[
ε−1Φεω

3 + χεν
3 − ρ31

]
︸ ︷︷ ︸

l1

+2α0ε
−2(N+1)/3

[
ε−1Φετ

2ω + χελν − ρ1ρ
2
2

]
︸ ︷︷ ︸

l2

.(4.8)

As for the second component of f0
ε , we have

[
f0
ε

]
2
= ε−2(N+1)/3

[
ε4/3∆ρ2 + y2ρ2 − 2α2ρ

3
2 − 2α0ρ

2
1ρ2
]

= Φε ε
−2(N+1)/3ε−1 [ε2∆τ + (R2

2 −R2
1 + z)τ − 2α2τ

3 − 2α0ω
2τ
]

︸ ︷︷ ︸
h0

(4.9)

+χε ε
−2(N+1)/3

[
ε4/3∆(λ1/2) + y2λ

1/2 − 2α2λ
3/2 − 2α0ν

2λ1/2
]

︸ ︷︷ ︸
h1

+Ψε ε
−2(N+1)/3

[
ε4/3∆µ+ y2µ− 2α2µ

3
]

︸ ︷︷ ︸
h2

+ ε−2(N−1)/3
[
∆Φεε

−1/3τ +∆χελ
1/2 +∆Ψεµ

]

︸ ︷︷ ︸
k3

+2ε−2(N−1)/3
[
∇Φεε

−1/3∇τ +∇χε∇λ1/2 +∇Ψε∇µ
]

︸ ︷︷ ︸
k4

+2α2ε
−2(N+1)/3

[
ε−1Φετ

3 + χελ
3/2 +Ψεµ

3 − ρ32

]

︸ ︷︷ ︸
l3

+2α0ε
−2(N+1)/3

[
ε−1Φεω

2τ + χεν
2λ1/2 − ρ21ρ2

]

︸ ︷︷ ︸
l4

.

Thanks to Lemma 3.2, for x ∈ SuppΦε ⊂ D0, we have

|g0| . ε(2−3β)(M+1/2)−2N/3−2/3 and |h0| . ε(2−3β)(M+1/2)−2N/3−2/3−β/2. (4.10)

From Lemma 3.3, for x ∈ Suppχε ⊂ D1, we obtain

|g1| . ε−(2−3β)(N/3−7/6) and |h1| . ε−(2−3β)N/3+1/3−β . (4.11)

Lemma 3.4 yields, for x ∈ SuppΨε ⊂ D2,

|h2| . ε2(L−N)/3h(x). (4.12)

Next, let us estimate k1. Note that ∇Φε is supported in D0 ∩ D1, whereas ∇χε is supported in
(D0 ∩D1) ∪ (D1 ∩D2). Moreover, for x ∈ D0 ∩D1, we have

∇Φε = −∇χε = −2xε−βϕ′

(
z − εβ

2εβ − εβ

)
.

Thus,

|k1| . ε−2N/3+1/3−β
∥∥∥∇(ω − ε1/3ν)

∥∥∥
L∞(D0∩D1)

1D0∩D1 + ε−2N/3+2/3−β ‖∇ν‖L∞(D1∩D2)
1D1∩D2 .
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Then, thanks to Lemma 3.10 and Lemma 3.14,

k1 = oL∞((D0∩D1)∪(D1∩D2))

(
ε−(2−3β)N/3−5β/2+1/3

)
. (4.13)

Similarly,

‖k4‖L∞((D0∩D1)∪(D1∩D2)) (4.14)

. ε−2N/3+2/3

(
ε−1/3−β

∥∥∥∥
d

dz

(
τ − ε1/3λ1/2

)∥∥∥∥
L∞(D0∩D1)

+ ε−1/3−β

∥∥∥∥
d

dz

(
ε1/3λ1/2 − ε1/3µ

)∥∥∥∥
L∞(D1∩D2)

)

= o
(
ε−(2−3β)N/3−2β+1/3

)
, (4.15)

and we also get similar estimates for k2 and k3:

k2 = oL∞((D0∩D1)∪(D1∩D2))(ε
−(2−3β)N/3−5β/2+1/3), (4.16)

k3 = oL∞((D0∩D1)∪(D1∩D2))(ε
−(2−3β)N/3−2β+1/3). (4.17)

Next, we estimate l1. Clearly, l1 is supported in D0 ∩D1. Moreover, Lemma 3.10 implies

ε1/3ν = ω + oL∞(D0∩D1)(ε
β(N−1/2)),

and since εβ 6 |z| 6 2εβ for x ∈ D0 ∩D1, it follows from the definition of ω given by (3.1), (2.6) and
(2.11) and from the asymptotics of the ωm’s as z → 0 given in (2.6) and (2.11) that

‖ω‖L∞(D0∩D1) = O(εβ/2).

Thus, on D0 ∩D1, we get

l1 = 2α1ε
−2N/3−5/3

[
Φεω

3 + (1− Φε)
(
ω + oL∞(D0∩D1)(ε

β(N−1/2))
)3

−
(
Φεω + (1− Φε)(ω + oL∞(D0∩D1)(ε

β(N−1/2))
)3]

= 2α1ε
−2N/3−5/3oL∞(D0∩D1)(ε

β(N+1/2)) = oL∞(D0∩D1)

(
ε−(2−3β)N/3+β/2−5/3

)
.(4.18)

As for l2, it is supported in (D0 ∩D1)∪ (D1 ∩D2). Taking into account Lemma 3.10 and Lemma 3.14,
l2 can be rewritten as

l2 = ε−2(N+1)/3ε−1

[{
Φετ

2ω + (1− Φε)
(
τ + o(εβN)

)2 (
ω + o(εβ(N−1/2))

)

−
(
Φεω + (1− Φε)(ω + o(εβ(N−1/2)))

)(
Φετ + (1− Φε)(τ + o(εβN))

)2}
1D0∩D1

+ε

{
χελν − χεν

(
χελ

1/2 + (1− χε)µ
)2}

1D1∩D2

]

= oL∞(D0∩D1)(ε
−(2−3β)N/3−5/3−β/2)1D0∩D1 + oL∞(D1∩D2)(ε

α)1D1∩D2 , (4.19)

where α is arbitrarily large. Similar calculations yield

l3 = oL∞(D0∩D1)(ε
−(2−3β)N/3−5/3)1D0∩D1 + oL∞(D1∩D2)(ε

−(2−3β)N/3−5/3+β)1D1∩D2 (4.20)

and

l4 = oL∞(D0∩D1)(ε
−(2−3β)N/3−5/3)1D0∩D1 + oL∞(D1∩D2)(ε

α)1D1∩D2 . (4.21)

Combining all these inequalities and noting that the measure of D1 is of the order of εβ, we deduce
∥∥[f0

ε

]
1

∥∥
L2(Rd)

. ε(2−3β)(M+1/2)−2N/3−2/3 + ε−(2−3β)N/3+7/3−3β + ε−(2−3β)N/3+1/3−2β + ε−(2−3β)N/3−5/3(4.22)

and
∥∥[f0

ε

]
2

∥∥
L2(Rd)

. ε(2−3β)(M+1/2)−2N/3−2/3−β/2 + ε−(2−3β)N/3+1/3−β/2

+ε2(L−N)/3 + ε−(2−3β)N/3+1/3−3β/2 + ε−(2−3β)N/3−5/3+β/2

. ε(2−3β)(M+1/2)−2N/3−2/3−β/2 + ε2(L−N)/3 + ε−(2−3β)N/3−5/3+β/2. (4.23)
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4.3 Estimate on the resolvent of Aε

In order to solve equation (4.7) with the choice of ν, µ, λ given in (3.1), we have to invert Aε. For this
purpose, we prove that Aε is a positive self-adjoint operator on L2(Rd). It will be convenient to have
an idea about the size of the functions pε, qε and rε appearing in the expression of Aε, depending on
x. As a preliminary, let us first simplify the expressions of ρ21 and ρ22, depending on whether x ∈ D0,
x ∈ D1\(D0 ∪D2) or x ∈ D2. Thanks to Lemma 3.10, (2.6) and (2.11), we have, for x ∈ D0,

ρ21 =
1

ε2/3

(
Φεω + χεε

1/3ν
)2

=
1

ε2/3

(
Φεω + (1− Φε)(ω + oL∞(D0∩D1)(ε

β(N−1/2)))
)2

=
1

ε2/3

(
ω + oL∞(D0∩D1)(ε

β(N−1/2))1D0∩D1

)2

=
ω2

ε2/3
+ oL∞(D0∩D1)(ε

βN−2/3))1D0∩D1

=
ω2
0

ε2/3
+

1

ε2/3

2M∑

m=1

ε2m
∑

m1+m2=m
06m1 ,m26M

ωm1ωm2 + oL∞(D0∩D1)(ε
βN−2/3))1D0∩D1

=
Γ2z

2α1Γ12ε2/3
+OL∞(D0)(ε

4/3−2β) + oL∞(D0∩D1)(ε
βN−2/3))1D0∩D1 , (4.24)

where for the last equality, we have used (2.11) to infer that for m > 1, m1 + m2 = m and x ∈ D0,
ωm1ωm2 . |z|1−3m 6 εβ−3βm, and that 2m+ β − 3βm > 2− 2β. The same kind of calculation yields,
still for x ∈ D0,

ρ22 =
1

ε2/3

(
Φετ + (1− Φε)(τ + oL∞(D0∩D1)(ε

βN))
)2

=
τ 2
0

ε2/3
+

1

ε2/3

2M∑

m=1

ε2m
∑

m1+m2=m
06m1,m26M

τm1τm2 + oL∞(D0∩D1)(ε
βN−2/3))1D0∩D1

=
R2

2 −R2
1

2α2ε2/3
+

Γ1z

2α2Γ12ε2/3
+OL∞(D0)(ε

4/3−2β) + oL∞(D0∩D1)(ε
βN−2/3))1D0∩D1 . (4.25)

Next, we deduce from (2.39), (2.49), and (2.51) that for x ∈ D1\(D0 ∪D2),

ρ21 = ν2 = ν2
0 + (ν2 − ν2

0) = ν2
0 +

2N∑

n=1

ε2n/3
∑

n1+n2=n
06n1 ,n26N

νn1νn2

=
R

2/3
1 Γ

2/3
2

2α1Γ12
γ0 (ỹ1)

2 +OL∞(D1\(D0∪D2))(ε
2/3), (4.26)

and using (2.30), (2.34), (2.50) and (2.52), we get (again for x ∈ D1\(D0 ∪D2))

ρ22 = λ =
R2

2 −R2
1

2α2ε2/3
+

y1
2α2

− α0R
2/3
1 Γ

2/3
2

2α1α2Γ12
γ0 (ỹ1)

2 +OL∞(D1\(D0∪D2))(ε
2/3), (4.27)

where

ỹ1 =
Γ
1/3
2 y1

R
2/3
1

.

For x ∈ D2, we use Lemma 3.14 to obtain, for α > 0 arbitrarily large,

ρ21 = χ2
εν

2 = oL∞(D1∩D2)(ε
α)1L∞(D1∩D2), (4.28)
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as well as, using also (2.19), (2.25) and Proposition 2.6,

ρ22 =
1

ε2/3

(
Ψεε

1/3µ+ (1−Ψε)(ε
1/3µ+ oL∞(D1∩D2)(ε

β(N+1)))
)2

=
1

ε2/3

(
ε1/3µ+ oL∞(D1∩D2)(ε

β(N+1))1L∞(D1∩D2)

)2

= µ2
0 +

2L∑

n=1

ε2n/3
∑

n1+n2=n
06n1 ,n26L

µn1µn2 + oL∞(D1∩D2)(ε
β(N+1)−2/3)1L∞(D1∩D2)

=
R

2/3
2

2α2
γ0(ỹ2)

2 +OL∞(D2)(ε
2/3) + oL∞(D1∩D2)(ε

β(N+1)−2/3)1L∞(D1∩D2), (4.29)

where
ỹ2 =

y2

R
2/3
2

.

From (4.24), (4.25), (4.26), (4.27), (4.28), (4.29) and the definitions of pε and qε, we deduce the
following expressions of pε and qε, depending on whether x ∈ D0, x ∈ D1\(D0 ∪D2) or x ∈ D2. For
each of this cases, we also calculate r2ε and −∆ε = pεqε − r2ε , a quantity which will play a key role in
the sequel. A large integer N been fixed, We assume that β ∈ (0, 2/3) satisfies βN − 2/3 > 4/3 − 2β
and β(N+1)−2/3 > 2/3 (which are equivalent to β > 2/(N +2) if N is large). For x ∈ D0, we obtain

pε(x) =
2Γ2y1
Γ12

+OL∞(D0)(ε
4/3−2β), (4.30)

qε(x) =
2(R2

2−R2
1)

ε2/3
+ 2Γ1y1

Γ12
+OL∞(D0)(ε

4/3−2β), (4.31)

rε(x)
2 =

4α2
0Γ2y1

α1α2Γ12ε2/3

(
R2

2 −R2
1 +

Γ1

Γ12
z

)
+OL∞(D0)(ε

2/3−2β), (4.32)

−∆ε(x) =
4Γ2y1
ε2/3

(
R2

2 −R2
1 +

Γ1

Γ12
z

)
+OL∞(D0)(ε

2/3−2β). (4.33)

For x ∈ D1\(D0 ∪D2),

pε(x) = R
2/3
1 Γ

2/3
2 W̃0(ỹ1) +OL∞(D1\(D0∪D2))(ε

2/3), (4.34)

where

W̃0(y) =

(
1 +

2

Γ12

)
γ0(y)

2 − y,

qε(x) = 2y2 − 2α0R
2/3
1 Γ

2/3
2

α1Γ12
γ0(ỹ1)

2 +OL∞(D1\(D0∪D2))(ε
2/3), (4.35)

rε(x)
2 =

4α2
0R

2/3
1 Γ

2/3
2

α1α2Γ12
γ0(ỹ1)

2

(
y2 − α0R

2/3
1 Γ

2/3
2

α1Γ12
γ0(ỹ1)

2

)
+OL∞(D1\(D0∪D2))(1), (4.36)

−∆ε = 2R
2/3
1 Γ

2/3
2

(
y2 −

α0R
2/3
1 Γ

2/3
2

α1Γ12
γ0(ỹ1)

2

)
W0(ỹ1) +OL∞(D1\(D0∪D2))(1). (4.37)

Finally, for x ∈ D2,

pε(x) = −Γ2y1 +
α0

α2
R

2/3
2 V0(ỹ2) +OL∞(D2)(ε

2/3), (4.38)

where
V0(y) = γ0(y)

2 − y,
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qε(x) = R
2/3
2 W0(ỹ2) +OL∞(D2)(ε

2/3), (4.39)

rε(x)
2 = oL∞(D2)(ε

α), (4.40)

for α arbitrarily large, and

−∆ε =

(
−Γ2y1 +

α0

α2
R

2/3
2 V0(ỹ2)

)
R

2/3
2 W0(ỹ2) +OL∞(D2)(1). (4.41)

Then, (4.30), (4.34) and (4.38) will provide us upper and lower bounds on pε. For this purpose, since

the function W̃0 appears in (4.34), we first prove a lemma which gives informations about the size of
this function.

Lemma 4.1 For y ∈ R,

W0(y) 6 W̃0(y) . W0(y), (4.42)

and

max(1, |y|) . W0(y) . max(1, |y|). (4.43)

Proof. We write

W̃0(y) = W0(y) + 2

(
1

Γ12
− 1

)
γ(y)2,

where 1/Γ12 − 1 > 0, which directly provides the lower bound on W̃0. Moreover, the analysis of the
continuous functions γ0 and W0 which was done in [GP] ensures that W0(y) > 0 for every y ∈ R,
W0(y) ∼

y→+∞
2y, W0(y) ∼

y→−∞
−y, γ0(y)

2 ∼
y→+∞

y and γ(y)2 −→
y→−∞

0. We deduce (4.43) and the

existence of C0 > 0 such that γ2
0/W0 6 C0. Then, we obtain the upper bound

W̃0 6

(
1 + 2

(
1

Γ12
− 1

)
C0

)
W0.

Then, we get lower and upper bounds on pε as stated in the lemma below.

Lemma 4.2 For x ∈ Rd and ε > 0 sufficiently small,

max(1, |y1|) . pε(x) . max(1, |y1|).

Proof. On D0, the two estimates directly follow from (4.30), since for x ∈ D0, y1 > εβ−2/3 → +∞
as ε → 0, whereas ε4/3−2β → 0. On D1\(D0 ∪D2), they are consequences from (4.34) and Lemma 4.1.
On D2, we deduce them from (4.38). Indeed, we know from the asymptotic expansion of γ0 (2.26)
that V0(y) =

y→+∞
O(y−2), and V0(y) ∼

y→−∞
−y → +∞, therefore V0 is bounded from below. Then, we

have on the one side, for ε sufficiently small,

pε(x) >
α0

α2
R

2/3
2 inf

y∈R

V0(y) + Γ2|y1| − 1 & max(1, |y1|) & εβ−2/3 −→
ε→0

+∞. (4.44)

On the other side, the properties of γ0 stated in Proposition 2.4 imply

∀y ∈ R, V0(y) . max(1,−y).

Thus, using also Lemma 4.1 and the inequalities y1 < 0 and y1 < y2, we get

pε(x) . max(1,−y2) + max(1,−y1) . max(1,−y1) = max(1, |y1|). (4.45)

As for qε, we infer similarly the next lemma from (4.31), (4.35) and (4.39).
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Lemma 4.3 For x ∈ Rd and ε > 0 sufficiently small,

max(1, |y2|) . qε(x) . max(1, |y2|).

Proof. In order to prove the two inequalities for x ∈ D0, we rewrite (4.31) as

qε(x) = 2

ε2/3

(
R2

2 −R2
1 +

Γ1
Γ12

z
)
+OL∞(D0)(ε

4/3−2β). (4.46)

As x describes D0, z describes the interval [εβ , R2
1] ⊂ [0, R2

1]. On this interval, G(z) = R2
2 −R2

1 +
Γ1
Γ12

z

reaches its extrema at z = 0 and at z = R2
1. Since G(0) = R2

2−R2
1 > 0 and G(R2

1) = R2
2− α0Γ2

α1Γ12
R2

1 > 0
(thanks to (1.10)), and because −2/3 < 0 < 4/3−2β, there exists a constant c > 1 such that for every
x ∈ D0,

1

c
ε−2/3

6 qε(x) 6 cε−2/3.

The inequality follows for x ∈ D0, since (R2
2 − R2

1)ε
−2/3 6 y2 6 R2

2ε
−2/3 on D0. On D1\(D1 ∪ D2),

the inequalities clearly follow from (4.35), since on that set, y2 & ε−2/3. Finally, on D2, they are
consequences of (4.39) and Lemma 4.1.

We are now ready to prove positivity of the operator Aε

Theorem 4.4 Aε defines a positive self-adjoint operator on L2(Rd)2, with form domain H1
w(R

d)2,
where

H1
w(R

d) =
{
P ∈ H1(Rd)

∣∣max(1,min(|y1|, |y2|))1/2P ∈ L2(Rd)
}
.

Moreover, there exists C > 0 such that for every (P,Q) in the domain of Aε,

〈
Aε

[
P
Q

]
,

[
P
Q

]〉
> ε4/3

∫

Rd

(
|∇P |2 + |∇Q|2

)
dx+ C

∫

Rd

max(1,min(|y1|, |y2|))(|P |2 + |Q|2)dx.

Proof. For P,Q ∈ C∞
c (Rd), we have

〈
Aε

[
P
Q

]
,

[
P
Q

]〉
=

∫

Rd

(
ε4/3|∇P |2 + ε4/3|∇Q|2 + pεP

2 + qεQ
2 + 2rεPQ

)
dx. (4.47)

Taking into account the positivity of pε and qε shown in Lemmata 4.2 and 4.3,

pεP
2 + qεQ

2 + 2rεPQ =
1

pε
(pεP + rεQ)2 +

pεqε − r2ε
pε

Q2
>

−∆ε

pε
Q2,

where
∆ε = r2ε − pεqε.

Symmetrically,

pεP
2 + qεQ

2 + 2rεPQ >
−∆ε

qε
P 2,

and thus

pεP
2 + qεQ

2 + 2rεPQ >
1

2
min

(
−∆ε

pε
,
−∆ε

qε

)
(P 2 +Q2). (4.48)

We shall see next that there exists c > 0 such that for every x ∈ Rd,

−∆ε(x) > cpε(x)qε(x), (4.49)

which is equivalent to

−∆ε(x) > cmax(1, |y1|)max(1, |y2|) (4.50)

thanks to Lemmata 4.2 and 4.3 (up to a change of the constant c > 0), and which implies

min

(
−∆ε

pε
,
−∆ε

qε

)
> cmin (pε(x), qε(x)) & min (max(1, |y1|),max(1, |y2|)) = max(1,min(|y1|, |y2|)).(4.51)
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For x ∈ D0, (4.49) comes from (4.33), because for such values of x, we have y1 & εβ−2/3 > 1 for ε
sufficiently small (and therefore y1 = max(1, |y1|)), we also have R2

2ε
−2/3 > y2 > (R2

2 −R2
1)ε

−2/3, and
therefore ε−2/3 & max(1, |y2|), and finally, the remark we have done to bound qε from below in the
proof of Lemma 4.3 implies that R2

2 − R2
1 + Γ1

Γ12
z is bounded from below by a positive constant as

x ∈ D0. For x ∈ D1\(D0 ∪D2) (4.49) follows from (4.37) and Lemma 4.1, since y2 = max(1, |y2|) on
that domain, and γ0(ỹ1)

2) . εβ−2/3. For x ∈ D2, note that W0(ỹ2) & max(1, |y2|) thanks to Lemma
4.1. Then, using (4.41) and the same arguments as to obtain (4.44), we complete the proof.

We deduce classicaly from Theorem 4.4 the following corollary.

Corollary 4.5 Aε is invertible, and

‖A−1
ε ‖L(L2(Rd)2,H1

w(Rd)2) . ε−4/3,

where H1
w(R

d)2 is endowed by the norm

‖(P,Q)‖H1
w(Rd)2 =

(∫

Rd

(
|∇P |2 + |∇Q|2

)
dx+

∫

Rd

max(1,min(|y1|, |y2|))(|P |2 + |Q|2)dx
)1/2

.

Remark 4.6 Note that the set H1
w(R

d)2 does not depend on ε, even though it’s norm does. However,
our choice of the H1

w(R
d)2-norm ensures that the norm of the embedding of H1

w(R
d)2 into H1(Rd)2 is

uniformly bounded in ε.

4.4 The fixed point argument

Let 1/3 > δ > 0, and N a large integer. We fix β ∈ (0, 2/3) such that (2−3β)N/3 < δ, and then L and
M large enough such that (2−3β)(M+1/2)−2N/3−2/3 > −2, (2−3β)(M+1/2)−2N/3−2/3−β/2 >
−2 and 2(L−N)/3 > −2, in such a way that (4.22) and (4.23) imply

∥∥f0
ε

∥∥
L2(Rd)2

. ε−2. (4.52)

We are going to apply the Picard fix-point theorem to the map

Θε : H1
w(R

d)2 −→ H1
w(R

d)2

(P,Q) −→ A−1
ε f0

ε + A−1
ε f2

ε (P,Q) + A−1
ε f3

ε (P,Q),

in the ball BR of H1
w(R

d)2 centered at the origin, with radius R = 2
∥∥A−1

ε f0
ε

∥∥
H1

w(Rd)2
. Note that it

follows from Corollary 4.5 and (4.52) that

R . ε−10/3. (4.53)

From (4.24), (4.25), (4.26), (4.27), (4.28), (4.29), it follows that for x ∈ Rd,

|ρ1| . ε−1/3 and |ρ2| . ε−1/3.

Thus, the Sobolev embedding H1
w(R

d) ⊂ H1(Rd) ⊂ L4(Rd) (d 6 3) implies that for every (P,Q) ∈
H1

w(R
d)2, we have f2

ε ∈ L2(Rd)2, and

‖f2
ε (P,Q)‖L2(Rd)2 . ε2N/3+1/3‖(P,Q)‖2H1

w(Rd)2 . (4.54)

Then, Corollary 4.5 yields
∥∥A−1

ε f2
ε (P,Q)

∥∥
H1

w(Rd)2
. ε2N/3−1‖(P,Q)‖2H1

w(Rd)2 . (4.55)

Similarly, thanks to the Sobolev embedding H1
w(R

d) ⊂ H1(Rd) ⊂ L6(Rd) (d 6 3), we get, for (P,Q) ∈
H1

w(R
d)2,

∥∥f3
ε (P,Q)

∥∥
H1

w(Rd)2
. ε4N/3+4/3‖(P,Q)‖3H1

w(Rd)2 (4.56)

and
∥∥A−1

ε f3
ε (P,Q)

∥∥
H1

w(Rd)2
. ε4N/3‖(P,Q)‖3H1

w(Rd)2 . (4.57)
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From (4.55) and (4.57) we deduce that if (P,Q) ∈ BR, for some positive constants C2 and C3,

‖Θε(P,Q)‖H1
w(Rd)2 6

R

2
+C2ε

2N/3−13/3R + C3ε
4N/3−20/3R.

Therefore, if N > 7 and ε is sufficiently small, BR is stable by Θε. Similar arguments prove that Θε

is a contraction on that ball. As a result, Θε has a unique fixed point in BR.

4.5 Positivity of η1 and η2.

This section is devoted to the proof of the positivity of the solution (η1, η2) to the system (1.13) given
by (4.1)-(4.2)-(4.3)-(4.4), which has just been constructed in the sections above. We proceed in three
steps. First, we prove that for j = 1, 2, ρj (given by (4.3) or (4.4)) is bounded from below by a positive

constant on the set Sj =
{
x ∈ Rd, |x|2 6 R2

j + ε2/3
}
, provided ε is sufficiently small. Second, we prove

L∞ estimates on P and Q, which ensure that η1 and η2 are positive on S1 and S2 respectively. Finally,
we prove positivity of (η1, η2) on Rd thanks to the maximum principle.

1st step. For some integers N,M,L > 1, let ω, τ , ν, λ and µ be the functions given by (3.1). Then,
we decompose the functions ρ1 and ρ2 given by (4.3)-(4.4) as

ρ1 = ε−1/3ω1D0\D1
+
(
Φεε

−1/3ω + χεν
)
1D0∩D1 + ν1D1\D0

(4.58)

and

ρ2 = ε−1/3τ1D0\D1
+
(
Φεε

−1/3τ + χελ
1/2
)
1D0∩D1 + λ1/2

1D1\(D0∪D2)

+
(
χελ

1/2 +Ψεµ
)
1D1∩D2 + µ1D2\D1

, (4.59)

and we are going to bound from below ω, τ , ν, λ and µ separately on the different sets appearing in
the indicatrix functions above. According to Remark 2.3, ω and τ satisfy

ω = ω0 +OL∞(D0)(ε
2−5β/2) and τ = τ0 +OL∞(D0)(ε

2−2β). (4.60)

Moreover, thanks to the explicit expressions of ω0 and τ0 (2.6) and (2.7), we deduce that for x ∈ D0,

ω0 >

(
Γ2

2α1Γ12

)1/2

εβ/2 and τ0 >

(
R2

2 −R2
1

2α2

)1/2

+O(εβ). (4.61)

Since β < 2/3, we have 2− 5β/2 > β/2 and 2− 2β > β, so we conclude that for x ∈ D0,

ω >

(
Γ2

2α1Γ12

)1/2

εβ/2 +O(ε2−5β/2) and τ >

(
R2

2 −R2
1

2α2

)1/2

+O(εβ). (4.62)

We have already seen in the proof of Lemma 3.1 that for x ∈ D1,

λ >
R2

2 −R2
1

2α2ε2/3
+O(εβ−2/3). (4.63)

Using similar arguments, we infer from Proposition 2.7 that

ν = ν0 +OL∞(D1)(ε
2/3). (4.64)

Then, (2.39), the fact that γ0 is an increasing function and Proposition 2.4 imply

ν >
(R1Γ2)

1/3

(2α1Γ12)1/2
γ0

(
Γ
1/3
2

R
2/3
1

εβ−2/3

)
+O(ε2/3) =

Γ
1/2
2

(2α1Γ12)1/2
εβ/2−1/3 +O(ε2/3) for x ∈ D0 ∩D1,(4.65)

whereas

ν >
(R1Γ2)

1/3

(2α1Γ12)1/2
γ0

(
− Γ

1/3
2

R
2/3
1

)
+O(ε2/3) for x ∈ D1 ∩ S1. (4.66)
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From Proposition 2.6, we get in the same way

µ = µ0 +OL∞(D2)(ε
2/3), (4.67)

which implies thanks to (2.19) for n = 0

µ >
R

1/3
2

(2α2)1/2
γ0

(
− 1

R
2/3
2

)
+O(ε2/3) for x ∈ D2 ∩ S2. (4.68)

Combining (4.58), (4.62), (4.65) and (4.66), we deduce that

ρ1 >

(
ε−1/3

(
Γ2

2α1Γ12

)1/2

εβ/2 +O(ε5/3−5β/2)

)
1D0\D1

+

(
Φεε

−1/3

(
Γ2

2α1Γ12

)1/2

εβ/2 + χε

(
Γ2

2α1Γ12

)1/2

εβ/2−1/3 +O(ε5/3−5β/2) +O(ε2/3)

)
1D0∩D1

+

(
(R1Γ2)

1/3

(2α1Γ12)1/2
γ0
(
−Γ

1/3
2 /R

2/3
1

)
+O(ε2/3)

)
1S1\D0

.

>

(
Γ2

2α1Γ12

)1/2

εβ/2−1/3
1D0 +

(R1Γ2)
1/3

(2α1Γ12)1/2
γ0
(
−Γ

1/3
2 /R

2/3
1

)
1S1\D0

+O(ε5/3−5β/2)1D0 +O(ε2/3)1S1∩D1 .

> c11S1 , (4.69)

if ε 6 1 is sufficiently small, where c1 = 1
2
min

[(
Γ2

2α1Γ12

)1/2
, (R1Γ2)

1/3

(2α1Γ12)
1/2 γ0

(
− Γ

1/3
2

R
2/3
1

)]
. On the other

side, using (4.59), (4.62), (4.63) and (4.68), we have

ρ2 >

((
R2

2 −R2
1

2α2

)1/2

ε−1/3 +O(εβ−1/3)

)
1(D0∪D1)\D2

+

(
min

[(
R2

2 −R2
1

2α2

)1/2

ε−1/3,
R

1/3
2

(2α2)1/2
γ0

(
−1

R
2/3
2

)]
+O(εβ−1/3)

)
1D1∩D2

+

(
R

1/3
2

(2α2)1/2
γ0

(
−1

R
2/3
2

)
+O(ε2/3)

)
1S2\D1

> c21S2 (4.70)

for ε 6 1 sufficiently small, where c2 = 1
2
min

[(
R2

2−R2
1

2α2

)1/2
,

R
1/3
2

(2α2)
1/2 γ0

(
−1

R
2/3
2

)]
.

2nd step. Let N be a large integer, R > 0 as in Section 4.4 and (P,Q) ∈ (H1
w)

2 the unique fixed
point of the map Θε constructed in that section. In order to control the L∞ norm of (P,Q), we will use
the continuity of the embedding of H2(Rd) into L∞(Rd) (remember that d 6 3). Because of Remark
4.6 and (4.53), we know that the H1 norms of P and Q are controled by

‖(P,Q)‖(H1)2 . ε−10/3,

such that in order to control the H2 norms of P and Q, we only need to control the L2 norms of
∆P and ∆Q. For this purpose, let us introduce a C∞ function θ on Rd, which is radial, positive,
supported in {x ∈ Rd, |x| 6 2} and such that θ(x) ≡ 1 for |x| 6 1. We also define, for integers n > 1,
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θn(x) = θ(x/n). After integrations by parts, the (L2)2 scalar product of (4.7) with (∆P,∆Q)θn yields

ε4/3
∫

Rd

(|∆P |2 + |∆Q|2)θn +

∫

Rd

(pε|∇P |2 + qε|∇Q|2 + 2rε∇P · ∇Q)θn

= −
∫

Rd

(P∇pε · ∇P +Q∇qε · ∇Q)θn −
∫

Rd

(pεP∇P + qεQ∇Q) · ∇θn

−
∫

Rd

∇rε · ∇(PQ)θn −
∫

Rd

rε∇(PQ) · ∇θn −
∫

Rd

fε · (∆P,∆Q)θn

=
1

2

∫

Rd

(∆pεP
2 +∆qεQ

2 + 2∆rεPQ)θn +
1

2

∫

Rd

(pεP
2 + qεQ

2 + 2rεPQ)∆θn

+

∫

Rd

(∇pεP
2 +∇qεQ

2 + 2∇rεPQ) · ∇θn −
∫

Rd

fε · (∆P,∆Q)θn. (4.71)

Thanks to Lemma 4.2, for n > 1 and ε 6 1 sufficiently small,

|pε∆θn| . max(1, |y1|)|∆θn| . 1

ε2/3
max(1, |x|2) 1

n2

∣∣∣∆θ
(x
n

)∣∣∣

.
1

ε2/3
max

(
1

n2
‖∆θ‖L∞ , ‖|x|2∆θ‖L∞

)
.

1

ε2/3
. (4.72)

Similarly, Lemma 4.3 yields

|qε∆θn| .
1

ε2/3
, (4.73)

and since ∆ε 6 0 thanks to (4.49), (4.72) and (4.73) also imply

|rε∆θn| .
1

ε2/3
. (4.74)

Next, we use the estimates

max(|∇pε|, |∇qε|, |∇rε|) . max(ε−4/3, |x|/ε2/3), max(|∆pε|, |∆qε|, |∆rε|) . ε−2, (4.75)

that will be proved later. Arguing like in (4.72), it follows from (4.75) that for n > 1,

|∇pε · ∇θn| . ε−4/3, |∇qε · ∇θn| . ε−4/3, |∇rε · ∇θn| . ε−4/3. (4.76)

Letting n → ∞, and using the positivity of the quadratic form a(P,Q) = pεP
2+qεQ

2+2rεPQ, shown
in (4.48) and (4.49), we deduce from (4.71), (4.72), (4.73), (4.74), (4.75), (4.76), the Young inequality
and (4.53) that

ε4/3
∫

Rd

(|∆P |2 + |∆Q|2) . ε−2
(
‖P‖2L2 + ‖Q‖2L2

)
+ ε−4/3‖fε‖2(L2)2

. ε−26/3 + ε−4/3‖fε‖2L2(Rd)2 . (4.77)

Thanks to (4.52), (4.54), (4.56) and (4.53), the L2 norm of fε can estimated as

‖fε‖L2(Rd)2 . ε−2 + ε2N/3−19/3 + ε4N/3−26/3
. ε−2,

provided N is large enough. Thus, (4.77) yields

‖(∆P,∆Q)‖L2(Rd)2 . ε−5,

which combined with (4.53), implies

‖(P,Q)‖L∞(Rd)2 . ‖(P,Q)‖H2(Rd)2 . ε−5. (4.78)

In view of the ansatz (4.1)-(4.2) as well asthe estimates (4.69), (4.70) and (4.78), we conclude that if
N is sufficiently large and if ε is small enough, η1 and η2 are strictly positive respectively on S1 and
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S2. In order to complete the proof of this last statement, it remains to prove estimates (4.75). This is
the issue we address now. First, we deduce from (2.6), (2.7) and Lemma 2.1 that

‖ω‖L∞(D0) . 1, ‖∇ω‖L∞(D0) . ε−β, ‖∆ω‖L∞(D0) . ε−2β, (4.79)

‖τ‖L∞(D0) . 1, ‖∇τ‖L∞(D0) . 1, ‖∆τ‖L∞(D0) . 1, (4.80)

where for the estimates on ∇τ0 and ∆τ0, we have used assumption (1.10). From (2.51), (2.49), (2.52)
and (2.50), we infer

‖ν‖L∞(D1) . εβ/2−1/3, ‖∇ν‖L∞(D1) . ε−2/3, ‖∆ν‖L∞(D1) . ε−4/3, (4.81)

inf
x∈D1

λ1/2
& ε−1/3, ‖λ1/2‖L∞(D1) . ε−1/3, ‖∇(λ1/2)‖L∞(D1) . ε−1/3, ‖∆(λ1/2)‖L∞(D1) . ε−1.(4.82)

Note that the first estimate in (4.82) has already been proved in Lemma 3.1. (2.19) and Propositions
2.4 and 2.6 imply

‖µ‖L∞(D2) . ε−1/3, ‖∇µ‖L∞(D2) . ε−2/3, ‖∆µ‖L∞(D2) . ε−4/3. (4.83)

Moreover, it follows from their definitions that the truncation functions Φε, χε and Ψε satisfy the
estimates

‖∇Φε‖L∞ , ‖∇χε‖L∞ , ‖∇Ψε‖L∞ . ε−β, ‖∆Φε‖L∞ , ‖∆χε‖L∞ , ‖∆Ψε‖L∞ . ε−2β (4.84)

Combining (4.79), (4.80), (4.81), (4.82), (4.83) and (4.84) and using Lemmata 3.10 and 3.14, we obtain

‖ρ1‖L∞(Rd) . ε−1/3, ‖ρ2‖L∞(Rd) . ε−1/3, (4.85)

‖∇ρ1‖L∞(Rd) = ‖Φεε
−1/3∇ω + χε∇ν +∇Φε(ε

−1/3ω − ν)‖L∞(Rd) . εmin(−1/3−β,−2/3), (4.86)

and

‖∇ρ2‖L∞(Rd) = ‖Φεε
−1/3∇τ + χε∇(λ1/2) + Ψε∇µ+∇Φε(ε

−1/3τ − λ1/2) +∇Ψε(µ− λ1/2)‖L∞(Rd)

. ε−2/3 (4.87)

provided N is large enough, as well as

‖∆ρ1‖L∞(Rd) = ‖Φεε
−1/3∆ω + χε∆ν + 2∇Φε(ε

−1/3∇ω −∇ν) + ∆Φε(ε
−1/3ω − ν)‖L∞(Rd)

. εmin(−1/3−2β,−4/3), (4.88)

and

‖∆ρ2‖L∞(Rd) = ‖Φεε
−1/3∆τ + χε∆(λ1/2) + Ψε∆µ+ 2∇Φε∇(ε−1/3τ − λ1/2) + 2∇Ψε∇(µ− λ1/2)

+∆Φε(ε
−1/3τ − λ1/2) + ∆Ψε(µ− λ1/2)‖L∞(Rd) . ε−4/3, (4.89)

where we assume again that N is sufficiently large. (4.75) follows by differentiation of the definitions
of pε, qε and rε given in Section 4.1.

3rd step. First, note that the functions η1 and η2 we have constructed are radial. Indeed, ρ1 and
ρ2 are functions of the variables z, y1 and y2, which all depend on x only through |x|. On the other
side, the equation (4.7) is radially symmetric, such that the uniqueness of its solution (P,Q) in the
ball BR, which was proved in Section 4.4, ensures that both P and Q are radial. For convenience, we
consider η1 and η2 as functions of r = |x|. At this point, according to the conclusion of the second
step, we already know that for j = 1, 2, ηj(r) > 0 for r ∈ [0, (R2

j + ε2/3)1/2]. So it remains to prove

that ηj(r) > 0 for r > (R2
j + ε2/3)1/2. We shall see that it is a consequence of Hopf’s lemma (see for

instance [E]). Indeed, the system of equations (1.13) satisfied by (η1, η2) can be rewritten as
(
−∆+

cj
ε2

)
(−ηj) = 0 for j = 1, 2,
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where
c1 = 2α1η

2
1 + 2α0η

2
2 − α0

α2
(R2

2 −R2
1) + (|x|2 −R2

1)

and
c2 = 2α0η

2
1 + 2α2η

2
2 + |x|2 −R2

2.

Let us fix j ∈ {1, 2}. We shall see in Lemmata 4.7 and 4.8 below that cj > 0 for |x| > (R2
j + ε2/3)1/2.

Let us admit provisionnaly this fact. We know that −ηj(r) < 0 for r < (R2
j + ε2/3)1/2. Assume

by contradiction that there exists r0 > (R2
j + ε2/3)1/2 such that −ηj(r0) = 0. Then, Hopf’s Lemma

applied on the ball of Rd centered at the origin and with radius r0 ensures that −η′
j(r0) > 0. In

particular, r 7→ −ηj(r) is strictly increasing in a neighborhood of r0, in such a way that we can define
r1 ∈ (r0,+∞] by

r1 = sup{r > r0,−ηj is stricly increasing on (r0, r1)}.
If r1 is finite, we can apply again Hopf’s Lemma on the ball centered at 0, with radius r1, and conclude
that −ηj is increasing on a neighborhood of r1, which is a contradiction with the definition of r1. Thus,
r1 = +∞. Thus, −ηj is strictly increasing on [r0,+∞), with −ηj(r0) = 0. This is a contradiction
with the fact that ηj(r) → 0 as r → +∞ (which is itself a consequence of the decay of the µn(y2)’s as
y2 → −∞ and of (P,Q) ∈ H2(Rd)). Therefore −ηj(r) < 0 for every r > 0.

Lemma 4.7 For ε > 0 sufficiently small, c1(x) > 0 for every x ∈ Rd\S1.

Proof. Note first that for ε 6 1, since β < 2/3, Rd\S1 is the disjoint union of the sets D1\S1 and
D2\D1. We first consider the case where x ∈ D1\S1. Starting from (4.1) and (4.3), we have

η1 = ε1/3(χεν + ε2(N+1)/3P )

= ε1/3(ν + oL∞(D1∩D2)(ε
α) +OL∞(D1\S1)(ε

2N/3−13/3))

= ε1/3(ν +OL∞(D1\S1)(ε
2N/3−13/3))

= ε1/3(ν0 +OL∞(D1\S1)(ε
2/3)), (4.90)

where the first line holds because x 6∈ Supp(Φε), the second one because χε ≡ 1 on D1\D2 and thanks
to Lemma 3.14 and (4.78), the third line holds provided α is chosen large enough, and the last line
is true for N large enough, since D1\S1 ⊂ {x, y1 6 −1} and thanks to the asymptotics of the νn’s as
y1 → −∞ given in Proposition 2.7. The same kind of arguments yield, still for x ∈ D1\S1:

η2 = ε1/3(χελ
1/2 +Ψεµ+ ε2(N+1)/3Q)

= ε1/3(λ1/2 + oL∞(D1∩D2)(ε
β(N+1)−1/3) +OL∞(D1\S1)(ε

2N/3−13/3) (4.91)

=
(
λ−1 + ε2/3λ0 +OL∞(D1\S1)(ε

4/3)
)1/2

+OL∞(D1\S1)(ε
4/3) =

(
λ−1 + ε2/3λ0 +OL∞(D1\S1)(ε

4/3)
)1/2

.

As a result, thanks to (2.30), (2.34) and (2.39), for x ∈ D1\S1, we have

c1 = 2α1ε
2/3(ν0 +OL∞ (ε2/3))2 + 2α0

(
λ−1 + ε2/3λ0 +OL∞ (ε4/3)

)
− α0

α2
(R2

2 −R2
1)− ε2/3y1

= R
2/3
1 Γ

2/3
2 ε2/3γ0

(
Γ
1/3
2 y1

R
2/3
1

)2

− Γ2ε
2/3y1 +OL∞(ε4/3) > Γ2ε

2/3 +O(ε4/3) > 0, (4.92)

for ε sufficiently small, where the inequality holds because x 6∈ S1, which implies y1 6 −1. Let us now
consider the case where x ∈ D2\D1. Then, using again (4.78),

η1 = ε2N/3+1P = OL∞(D2)(ε
2N/3−4) = OL∞(D2)(ε

4/3)

and

η2 = ε1/3(µ+ ε2(N+1)/3Q) = ε1/3(µ0 +OL∞(D2)(ε
2/3)). (4.93)
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We infer that

c1 = 2α0ε
2/3µ2

0 −
α0

α2
(R2

2 −R2
1) + (|x|2 −R2

1) +OL∞(D2)(ε
4/3)

= ε2/3
(
α0

α2
R

2/3
2 γ0

(
y2

R
2/3
2

)2

− α0

α2

R2
2 −R2

1

ε2/3
− y2 +

R2
2 −R2

1

ε2/3

)
+OL∞(D2)(ε

4/3)

= ε2/3




α0

α2
R

2/3
2

(
γ0

(
y2

R
2/3
2

)2

− y2

R
2/3
2

)

︸ ︷︷ ︸
>infy∈R[γ0(y)2−y]>−∞

+Γ2

(
R2

2 −R2
1

ε2/3
− y2

)

︸ ︷︷ ︸
>2εβ−2/3 −→

ε→0
+∞




+OL∞(D2)(ε
4/3),(4.94)

and thus c1 > 0 on D2\D1 if ε is sufficiently small.

Lemma 4.8 c2(x) > 0 for every x ∈ Rd\S2.

Proof. The lemma is a straightforward consequence of the definition of c2, since the assumption
x ∈ Rd\S2 can be rewritten as |x|2 > R2

2 + ε2/3.

4.6 Uniqueness of the ground state

In this section, we prove that the solution of (1.13) constructed in the previous sections is the unique
ground state of the system, that is the unique solution of (1.13) with two positive components. Unique-
ness of the ground state of (1.13) was proved in [ANS]. We recall the arguments for the sake of
completeness. First, the next lemma gives an a priori upper bound on positive solutions to (1.13).

Lemma 4.9 Let ε > 0, and let (η1, η2) be a positive solution of (1.13). Then, for every θ ∈ (0, 1) and
x ∈ Rd, for j = 1, 2,

ηj(x) 6 Mj min

[
1, exp

(
− θ

2ε

(
|x|2 − r2j

))]
, (4.95)

where a1 =
(

α0
α2

(R2
2 −R2

1) +R2
1

)1/2
, M1 = a1

(2α1)
1/2 , r1 = a1

(1−θ2)1/2
, M2 = R2

(2α2)
1/2 and r2 =

R2

(1−θ2)1/2
.

Proof. We first prove that η1 is uniformly bounded from above by the constant M1 defined in the
statement of the lemma. The proof follows an idea which is due to Farina [F], and which is also used
in [IM] and [ANS]. Let us define

w1 =
1

ε

(
(2α1)

1/2η1 − a1

)
, and w+

1 = max(0, w1).

Then, Kato’s inequality yields

∆w+
1 > 1{w1>0}∆w1

=
1{w1>0}

ε3
(2α1)

1/2η1

(
2α1η

2
1 + 2α0η

2
2 − α0

α2
(R2

2 −R2
1)− (R2

1 − |x|2)
)

>
1{w1>0}

ε3
(εw1 + a1)

(
(εw1 + a1)

2 − (a1)
2
)

=
1{w1>0}

ε3
(εw1 + a1)εw1(εw1 + 2a1)

> (w+
1 )3. (4.96)

From Lemma 2 in [B], it follows that w+
1 6 0, which means η1 6 M1.

Next, like it was done in [ANS], we prove that η1 decays at least as fast as a gaussian as |x| goes
to infinity. Easy calculations show that

(
−∆+

θ2

ε2
|x|2
)
exp

(
−θ|x|2

2ε

)
=

dθ

ε
exp

(
−θ|x|2

2ε

)
> 0, (4.97)
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whereas
(
−∆+

θ2

ε2
|x|2
)
η1 =

1

ε2
(
a2
1 − (1− θ2)|x|2

)
η1 − 2α1

ε2
η3
1 − 2α0

ε2
η2
2η1 < 0 (4.98)

for x > r1. Then, we set W1 = M1 exp
(
− θ(|x|2−r21)

2ε

)
− η1. We know from the first part of the proof

that W1(x) > 0 for |x| = r1. Assume by contradiction that the inequality W1 > 0 does not hold for
every x ∈ Rd such that |x| > r1. Then, since W1(x) → 0 as |x| → ∞, W1 reaches a minimum at some
x0 ∈ Rd such that |x0| > r1. In particular, ∆W1(x0) > 0 and W1(x0) < 0. This is in contradiction
with the difference between (4.97) multiplied by M1 and (4.98) evaluated at x0. The proof of the
estimate on η2 is similar.

The next lemma states the uniqueness of the ground state of (1.13) and is also proved in [ANS].
We give here a proof which is slightly simpler.

Lemma 4.10 Let ε > 0, and let (η1, η2), (ξ1, ξ2) be two positive solutions of (1.13). Then η1 = ξ1
and η2 = ξ2.

Proof. Let v1 = ξ1/η1 and v2 = ξ2/η2. Since (η1, η2) and (ξ1, ξ2) solve (1.13), it follows that for
(i, j) = (1, 2) or (2, 1), we have

ε2div
(
η2
i ∇vi

)
= 2αiη

4
i vi(v

2
i − 1) + 2α0η

2
i η

2
j vi(v

2
j − 1). (4.99)

Let ζ ∈ C∞(Rd) be a non-negative function supported in {x ∈ Rd, |x| 6 2} such that ζ(x) = 1 for
|x| 6 1. For n > 1, we also define ζn = ζ(·/n). Next, let us multiply (4.99) by (v2i − 1)ζ2n/vi, sum over
Rd and use integration by parts. We obtain

∫

Rd

η2
i |∇vi|2

(
1 +

1

v2i

)
ζ2ndx+

2

ε2

∫

Rd

[
αi

(
η2
i (v

2
i − 1)

)2
+ α0η

2
i (v

2
i − 1)η2

j (v
2
j − 1)

]
ζ2ndx

= −
∫

Rd

η2
i ∇vi

(
vi − 1

vi

)
∇
(
ζ2n
)
dx

= −2

∫

Rd

η2
i vi∇viζn∇ζndx+ 2

∫

Rd

η2
i
∇vi
vi

ζn∇ζndx. (4.100)

Next, we estimate each integral in the right hand side of (4.100) thanks to the Cauchy-Schwarz in-
equality. For the first one, we have

∣∣∣∣
∫

Rd

η2
i vi∇viζn∇ζndx

∣∣∣∣ =

∣∣∣∣
∫

Rd

ηiξi∇viζn∇ζndx

∣∣∣∣

6

(∫

Rd

η2
i |∇vi|2ζ2ndx

)1/2(∫

Rd

ξ2i |∇ζn|2dx
)1/2

6
1

4

∫

Rd

η2
i |∇vi|2ζ2ndx+

∫

Rd

ξ2i |∇ζn|2dx, (4.101)

whereas for the second one, we get

∣∣∣∣
∫

Rd

η2
i
∇vi
vi

ζn∇ζndx

∣∣∣∣ 6

(∫

Rd

η2
i
|∇vi|2
v2i

ζ2ndx

)1/2(∫

Rd

η2
i |∇ζn|2dx

)1/2

6
1

4

∫

Rd

η2
i
|∇vi|2
v2i

ζ2ndx+

∫

Rd

η2
i |∇ζn|2dx. (4.102)

Combining (4.100), (4.101) and (4.102), we infer

1

2

∫

Rd

η2
i |∇vi|2

(
1 +

1

v2i

)
ζ2ndx+

2

ε2

∫

Rd

[
αi

(
η2
i (v

2
i − 1)

)2
+ α0η

2
i (v

2
i − 1)η2

j (v
2
j − 1)

]
ζ2ndx

6 2

∫

Rd

(ξ2i + η2
i )|∇ζn|2dx. (4.103)

59



Finally, we sum the inequalities given by (4.103) for (i, j) = (1, 2) and for (i, j) = (2, 1). We deduce

1

2

∫

Rd

η2
1 |∇v1|2

(
1 +

1

v21

)
ζ2ndx+

1

2

∫

Rd

η2
2 |∇v2|2

(
1 +

1

v22

)
ζ2ndx+

2

ε2

∫

Rd

q
[
η2
1(v

2
1 − 1), η2

2(v
2
2 − 1)

]
ζ2ndx

6 2

∫

Rd

(ξ21 + η2
1 + ξ22 + η2

2)|∇ζn|2dx, (4.104)

where q[u1, u2] = α1u
2
1 + 2α0u1u2 + α2u

2
2. Note that the assumption Γ12 > 0 can be rewritten as

α2
0 − α1α2 < 0, which implies that there exists c > 0 such that for every u1, u2 ∈ R, q[u1, u2] >

c(u2
1 + u2

2). As a result, in order to conclude that v1 ≡ v2 ≡ 1, it is sufficient to prove that the right
hand side of (4.104) converges to 0 as n → ∞. It is the case thanks to Lemma 4.9. Indeed, for
n > max(r1, r2), since ∇ζn is supported in {x ∈ Rd, n 6 |x| 6 2n}, we have

∫

Rd

(ξ21+η2
1+ξ22+η2

2)|∇ζn|2dx 6 2
(
M2

1 e
θr21/ε +M2

2 e
θr22/ε

)
‖∇ζ‖2L∞

∣∣∣{x ∈ R
d, 1 6 |x| 6 2}

∣∣∣nd−2e−n2θ/ε,

where the right hand side goes to 0 as n → ∞.

4.7 End of the proof of Theorem 1.5

In section 4.4, we have constructed a solution (η1, η2) to (1.13) that converges to 0 at infinity. In
section 4.5, we have checked that this solution is positive. In section 4.6, we have seen that (η1, η2) is
in fact the unique such solution of (1.13). So the first part of the statement of Theorem 1.5 has already
been proved. Let us now fix three integers M0, N0 and L0, as well as β ∈ (0, ε2/3). According to our
construction of (η1, η2) explained in sections 4.1 and 4.4, provided M > M0, N > max(N0, 2/β − 2)
and L > L0 are large integers that satisfy the conditions listed at the beginning of sections 4.1 and
4.4, (η1, η2) can be written like in the ansatz (1.20)-(3.1). Thus, defining η1app and η2app as in the
statement of Theorem 1.5, we have

η1 − η1app = Φε

M∑

m=M0+1

ε2mωm + ε1/3χε

N∑

n=N0+1

ε2n/3νn + ε2N/3+1P (4.105)

and

η2 − η2app = Φε

M∑

m=M0+1

ε2mτm + ε1/3χε



(

N∑

n=−1

ε2n/3λn

)1/2

−
(

N0∑

n=−1

ε2n/3λn

)1/2



+ε1/3Ψε

L∑

n=L0+1

ε2n/3µn + ε2N/3+1Q. (4.106)

The next step consists in evaluating the Lp and H1 norms of each term in the right hand side of (4.105)
and (4.106). Let us start with the Lp norm of Φεωm, for m > 1 and p ∈ [2,+∞). Since SuppΦε ⊂ D0,
we have

‖Φεωm‖p
Lp(Rd)

6

∫

|x|26R2
1−εβ

|ωm(z)|pdx =

∫

Sd−1

∫ (R2
1−εβ )1/2

0

|ωm(R2
1 − r2)|prd−1drdθ

= |Sd−1|
∫ R2

1

εβ
|ωm(z)|p(R2

1 − z)d/2−1 dz

2
. (4.107)

Since d/2− 1 > −1/2, the integral converges at z = R2
1. Moreover, thanks to (2.11), we deduce

∫ R2
1

εβ
|ωm(z)|p(R2

1−z)d/2−1dz ∼
ε→0

Rd−2
1 |ωm0|p

∫ R2
1

εβ
zp(1/2−3m)dz ∼

ε→0

Rd−2
1 |ωm0|p

p(3m− 1/2) − 1
εβ(−p(3m−1/2)+1).

As a result,

‖Φεωm‖Lp(Rd) = O(ε−3βm+β/2+β/p). (4.108)
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Similarly, (2.12) yields

‖Φετm‖Lp(Rd) = O(ε−3βm+β+β/p). (4.109)

Note that (4.108) and (4.109) also hold for p = +∞ thanks to (2.11) and (2.12). Note also that (4.108)
and (4.109) are sharp. Indeed, since Φε ≡ 1 for |x|2 6 R2

1 − 2εβ, we deduce that ‖Φεωm‖p
Lp(Rd)

can be

bounded from below by an integral similar to the one that appears in the right hand side of (4.107).
Next, let us estimate the Lp norm of χενn, for n > 1 and p ∈ [2,+∞). Since Suppχε ⊂ D1, we get

‖χενn‖pLp(Rd)
6

∫

R2
1−2εβ6|x|26R2

1+2εβ
|νn(y1)|pdx =

∫

Sd−1

∫ (R2
1+2εβ)1/2

(R2
1−2εβ )1/2

∣∣∣∣νn
(
R2

1 − r2

ε2/3

)∣∣∣∣
p

rd−1drdθ

= |Sd−1|
∫ 2εβ−2/3

−2εβ−2/3

|νn(y1)|p(R2
1 − ε2/3y1)

d/2−1 ε
2/3dy1
2

. (4.110)

For y1 ∈ [−2εβ−2/3, 2εβ−2/3], we have 1 . R2
1 − ε2/3y1 . 1, therefore according to the asymptotic

behaviour of νn(y1) as y1 → ±∞ given in Proposition 2.7, we obtain

‖χενn‖Lp(Rd) =





O(ε
2
3p ) if n = 1 or (n = 2 and p > 2)

O(| ln ε| 12 ε 1
3 ) if n = 2 and p = 2

O(ε−
2n
3

+β(n− 5
2
)+

β
p
+ 5

3 ) if n > 3.

(4.111)

Similarly,

‖χελn‖Lp(Rd) =

{
O(ε

2
3p ) if n = 1

O(ε−
2n
3

+β(n−2)+β
p
+ 4

3 ) if n > 2.
(4.112)

Again, it easily follows from Proposition 2.7 that (4.111) and (4.112) also hold for p = +∞, and the
two estimates are sharp. Next, since SuppΨε ⊂ D2, we infer

‖Ψεµn‖pLp(Rd)
6

∫

|x|2>R2
1+εβ

|µn(y2)|pdx =

∫

Sd−1

∫ +∞

(R2
1+εβ)1/2

∣∣∣∣µn

(
R2

2 − r2

ε2/3

)∣∣∣∣
p

rd−1drdθ

= |Sd−1|
∫ R2

2−R2
1

ε2/3
−εβ−2/3

−∞

|µn(y2)|p(R2
2 − ε2/3y2)

d/2−1 ε
2/3dy2
2

. (4.113)

In order to estimate the integral in the right hand side of (4.113), we split the integral into two pieces.
First, for y2 ∈ (−R2

2/ε
2/3, (R2

2 −R2
1)/ε

2/3 − εβ−2/3), we have 1 . R2
1 + εβ 6 R2

2 − ε2/3y2 6 2R2
2 . 1.

Therefore, according to (2.19) and Proposition 2.6,

∫ R2
2−R2

1

ε2/3
−εβ−2/3

−R2
2/ε

2/3

|µn(y2)|p(R2
2 − ε2/3y2)

d/2−1dy2 =
ε→0

O(1). (4.114)

If d = 1, 2 and y2 6 −R2
2/ε

2/3, we still have (R2
2 − ε2/3y2)

d/2−1 . 1, therefore

∫ −R2
2/ε

2/3

−∞

|µn(y2)|p(R2
2 − ε2/3y2)

d/2−1dy2 =
ε→0

O(1), (4.115)

whereas if d = 3 and y2 6 −R2
2/ε

2/3, then (R2
2 − ε2/3y2)

1/2 6
√
2ε1/3|y2|1/2 and since Proposition 2.6

implies µn(y2) =
y2→−∞

O(|y2|−5/2), we deduce that (4.115) also holds. Combining (4.113), (4.114) and

(4.115), we deduce

‖Ψεµn‖Lp(Rd) = O(ε
2
3p ). (4.116)

Note again that (4.116) is sharp and that Proposition 2.6 implies that it is also true for p = +∞.
We are now ready to estimate η1−η1app and η2−η2app in Lp(Rd). Remark first that since β < 2/3,

(4.108) and (4.109) imply that the larger is m > 1, the smaller are ε2mΦεωm and ε2mΦετm in Lp(Rd),
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in the limit ε → 0. Similarly, since β > 0, it follows from (4.111) and (4.112) that the larger is n, the
smaller are ε2n/3χενn and ε2n/3χελn in Lp(Rd). Thus,

‖η1 − η1app‖Lp(Rd) = O(ε(2−3β)(M0+1)+ β
2
+ β

p ) +





O(ε
1+ 2

3p ) if N0 = 0

O(ε
5
3
+ 2

3p ) if N0 = 1 and p > 2

O(| ln ε| 12 ε2) if N0 = 1 and p = 2

O(εβ(N0−
3
2
)+ β

p
+2) if N0 > 2.





+‖P‖Lp(Rd)O(ε2N/3+1). (4.117)

Now, remember that in (4.78), the H2(Rd) norm of P is controled by some power of ε (namely, ε−5)
wich is independent of N . Thus, thanks to Sobolev embeddings, for fixed values of M0, N0 and L0, if
M,N and L are chosen sufficiently large (and such that they satisfy the conditions at the beginning
of sections 4.1 and 4.4), for ε small, ε2N/3+1‖P‖Lp(Rd) becomes negligible in comparison with the
other terms in the right hand side of (4.117). The estimate on η1 − η1app in (1.22) follows in the case
E = Lp(Rd).

As for the second component, using the same arguments, we infer from (4.109), and (4.116) that

‖η2 − η2app‖Lp(Rd) = O(ε
(2−3β)(M0+1)+β+β

p )

+χε



(
λ−1 +

N+1∑

n=1

ε2n/3λn−1

)1/2

−
(
λ−1 +

N0+1∑

n=1

ε2n/3λn−1

)1/2



+O(ε
1
3
+

2(L0+1)
3

+ 2
3p ) + ‖Q‖Lp(Rd)O(ε2N/3+1). (4.118)

In order to estimate the second term in the right hand side, note that thanks to the asymptotic
behaviour of λ0 given in Proposition 2.7 and (4.112) for p = +∞, we have

N+1∑

n=1

ε2n/3λn−1 = OL∞(D1)(ε
β),

and the same property holds for N replaced by N0. Thus, the mean value theorem applied to the
function square root close to λ−1 and (4.112) imply

‖η2 − η2app‖Lp(Rd) = O(ε
(2−3β)(M0+1)+β+β

p ) +

{
O(ε

4
3
+ 2

3p ) if N0 = 0

O(ε
2+β(N0−1)+ β

p ) if N0 > 1.

+O(ε
1
3
+

2(L0+1)
3

+ 2
3p ), (4.119)

under the same condition of largeness on M,N,L than for the estimate on η1 −η1app. We have proved
the estimate on η2 − η2app in (1.22) for E = Lp(Rd).

Next, let us prove (1.22) for E = H1(Rd). For this purpose, we have to estimate the L2(Rd) norms
of ∇(Φεωm), ∇(Φετm), ∇(χενn), ∇(χελn) and ∇(Ψεµn) for m,n > 1. In view of the definitions of
Φε, χε and Ψε, it is clear that the L∞(Rd)d norms of their gradients are all O(ε−β). Thus, performing
calculations similar to the ones which were done to obtain (4.108), (4.109), (4.111),(4.112) and (4.116),
we obtain

‖∇(Φε)ωm‖L2(Rd) = O(ε−3βm), (4.120)

‖∇(Φε)τm‖L2(Rd) = O(ε−3βm+β/2), (4.121)

‖∇(χε)νn‖L2(Rd) =





O(ε
1
3
−β) if n = 1

O(| ln ε| 12 ε 1
3
−β) if n = 2

O(ε−
2n
3

+β(n−3)+ 5
3 ) if n > 3

(4.122)

‖∇(χε)λn‖L2(Rd) =

{
O(ε

1
3
−β) if n = 1

O(ε−
2n
3

+β(n−5/2)+ 4
3 ) if n > 2

(4.123)

‖∇(Ψε)µn‖L2(Rd) = O(ε
1
3
−β). (4.124)
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By differentiation of (2.11) and (2.12), since ∇ = −2x d
dz
, similar calculations as the ones that gave

(4.108) and (4.109) yield

‖Φε∇ωm‖L2(Rd) = O(ε−3βm), (4.125)

‖Φε∇τm‖L2(Rd) = O(ε−3βm+β/2). (4.126)

Next, since ∇ = −2x

ε2/3
d

dy1
, a calculation similar to (4.110) yields

‖χε∇νn‖2L2(Rd) 6
2|Sd−1|
ε2/3

∫ 2εβ−2/3

−2εβ−2/3

|ν′
n(y1)|2(R2

1 − ε2/3y1)
d/2dy1. (4.127)

Then, after differentiation of (2.49), we deduce that

‖χε∇νn‖L2(Rd) =





O(ε−1/3) if n = 1 or n = 2

O(| ln ε| 12 ε− 1
3 ) if n = 3

O(ε−2n/3+β(n−3)+5/3) if n > 4.

(4.128)

Similarly, differentiation of (2.50) yields

‖χε∇λn‖L2(Rd) =

{
O(ε−1/3) if n = 1 or n = 2

O(ε−2n/3+β(n−5/2)+4/3) if n > 3.
(4.129)

Using Proposition 2.19 like it was done to obtain (4.116), we infer

‖Ψε∇µn‖L2(Rd) = O(ε−1/3). (4.130)

Like in (4.117), taking M,N and L large enough, we deduce from (4.120), (4.122), (4.125) and (4.128)
that

‖∇(η1 − η1app)‖L2(Rd) = O(ε(2−3β)(M0+1)) +





O(ε2N0/3+2/3) if N0 = 0 or N0 = 1

O(| ln ε| 12 ε2) if N0 = 2

O(εβ(N0−2)+2) if N0 > 3.

(4.131)

Next, we write

∇(η2 − η2app) = ∇
(
Φε

M∑

m=M0+1

ε2mτm

)

︸ ︷︷ ︸
=:T1

+ ε1/3∇χε



(

N∑

n=−1

ε2n/3λn

)1/2

−
(

N0∑

n=−1

ε2n/3λn

)1/2



︸ ︷︷ ︸
=:T2

+
1

2
ε1/3χε



(

N∑

n=−1

ε2n/3λn

)−1/2

−
(

N0∑

n=−1

ε2n/3λn

)−1/2



N∑

n=−1

ε2n/3∇λn

︸ ︷︷ ︸
=:T3

+
1

2
ε1/3χε

(
N0∑

n=−1

ε2n/3λn

)−1/2 N∑

n=N0+1

ε2n/3∇λn

︸ ︷︷ ︸
=:T4

+ ε1/3∇
(
Ψε

L∑

n=L0+1

ε2n/3µn

)

︸ ︷︷ ︸
=:T5

+ ε2N/3+1∇Q︸ ︷︷ ︸
=:T6

. (4.132)

Thanks to (4.121) and (4.126), we have

‖T1‖L2(Rd) = O(ε(2−3β)(M0+1)+β/2). (4.133)
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T2 is estimated like the second term in the right hand side of (4.118) in (4.119), using (4.123) instead
of (4.112). We obtain

‖T2‖L2(Rd) =

{
O(ε5/3−β) if N0 = 0

O(εβ(N0−3/2)+2) if N0 > 1.
(4.134)

In order to estimate T3, note that thanks to (2.52) and (2.50), λ′
n is uniformly bounded on R for

n = 0, 1, 2, 3, whereas for n > 4, λ′
n = OL∞(D1)(ε

−(2/3−β)(n−3)). Therefore, since λ−1 is constant,

N∑

n=−1

ε2n/3∇λn =
ε→0

− 2x

ε2/3
λ′
0 +OL∞(D1)(1).

Applying the mean value theorem to the inverse of the square root close to λ−1, we use the same
arguments as to obtain (4.119) from (4.118) and we get thanks to (4.112)

‖T3‖L2(Rd) =

{
O(ε5/3) if N0 = 0

O(εβ(N0−1/2)+2) if N0 > 1.
(4.135)

Lemma 3.1 and (4.129) yield

‖T4‖L2(Rd) =

{
O(ε2N0/3+1) if N0 = 0 or 1

O(εβ(N0−3/2)+2) if N0 > 2.
(4.136)

It follows from (4.124) and (4.130) that

‖T5‖L2(Rd) = O(ε2(L0+1)/3). (4.137)

Finally, like in (4.117), we deduce from (4.53) that if M , N and L are chosen large enough, T6 is
neglectible in comparison with the sum of the five other terms. Therefore, combining (4.133), (4.134),
(4.135), (4.136) and (4.137), we obtain

‖∇(η2 − η2app)‖L2(Rd) = O(ε(2−3β)(M0+1)+β/2) +

{
O(ε5/3−β) if N0 = 0

O(εβ(N0−3/2)+2) if N0 > 1.

+

{
O(ε5/3) if N0 = 0

O(εβ(N0−1/2)+2) if N0 > 1.
+

{
O(ε2N0/3+1) if N0 = 0 or 1

O(εβ(N0−3/2)+2) if N0 > 2.

+O(ε2(L0+1)/3).

=





O(ε(2−3β)(M0+1)+β/2) +O(ε) +O(ε2(L0+1)/3) if N0 = 0

O(ε(2−3β)(M0+1)+β/2) +O(ε5/3) +O(ε2(L0+1)/3) if N0 = 1

O(ε(2−3β)(M0+1)+β/2) +O(εβ(N0−3/2)+2) +O(ε2(L0+1)/3) if N0 > 2.

(4.138)

The estimate on η1 − η1app in (1.22) for E = H1(Rd) follows from (4.117) and (4.131), the estimate
on η2 − η2app comes from (4.119) and (4.138).
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