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The ground state of two coupled Gross—Pitaevskii
equations in the Thomas—Fermi limit

Clément Gallo

Abstract

We prove existence and uniqueness of a positive solution to a system of two coupled Gross-Pitaevskii
equations. We give a full asymptotic expansion of this solution into powers of the semi classical
parameter ¢ in the Thomas—Fermi limit ¢ — 0.

1 Introduction

Recent experiments with Bose-Einstein condensates [PS] have stimulated new interest in the Gross—
Pitaevskii equation with a harmonic potential. This equation can be written as

icus + 2 Au+ (1 — [z[)u — [uPu=0, zeR? teRy, (1.1)

where u(¢, x) denotes the complex valued wave function of the Bose gas, and ¢ is a small parameter. The
limit € — 0 corresponds to the Thomas—Fermi approximation of a nearly compact atomic cloud [Fer],
[T]. At equilibrium and in the absence of rotation, the condensate is described by the ground-state,
which is a positive, time independent solution u(t,z) = n-(z) to (Il). The ground state minimizes
the Gross—Pitaevskii energy

Bo(u) = /Rd <52|Vu|2 + (2P = Dluf® + %|u|4> dz (1.2)

among functions with finite energy. The understanding of the profile of the ground state is particularily
important [A]. It is well known (see for instance [IM]) that in the Thomas—Fermi limit ¢ — 0, the
ground state 7. converges to the Thomas—Fermi’s compactly supported function

_f A—aP)? for fol <1,
mo(x) = { 0 for |z| > 1. (1.3)
The function no has a singularity at || = 1, whereas for € > 0, 7. is regular. The question of the
description of the behaviour of 7. close to the turning point || = 1 as e — 0 has been adressed by

Dalfovo, Pitaevskii and Stringari [DPS] and by Fetter and Feder [FF] on a formal level. Among other
reasons, this question is relevant because an important part of the kinetic energy is concentrated in
the region |z| ~ 1 (see also [(]). In particular, it is shown in [DPS] and that it is possible to
describe 7). close to |z] = 1 as € — 0 thanks to solutions of the Painlevé II equation. This analysis
has been made rigorous in [GP], where a full asymptotic expansion of 7. in terms of powers of g2/3
is calculated. The proof consists in introducing a new variable y = (1 — |z|?)/e*? that blows up the
solution close to the turning point || = 1, writing 7. (z) = £*/3v.(y) and solving the equation satisfied
by ve in terms of the variable y. It turns out that the variable y makes it possible to describe the
behaviour of 7. as € — 0 not only close to the turning point, but also globally for all z € R%. In [K9],
Karali and Sourdis have extended this result to more general potentials.

The purpose of this paper is to adapt the result obtained in [GP] to the case of a two—component
Bose-Einstein condensate. As we shall see, one of the new difficulties we are facing to is that the ground
state has now two turning points instead of one in the case of a scalar Gross-Pitaevskii equation. As
a matter of fact, it will be necessary to use three different variables to describe the ground state,
instead of one for the scalar equation. Then, denoting by 71 and 72 the wave functions of the two
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components, 11 and 72 solve the following system of two coupled Gross-Pitaevskii equations with
quadratic potentials,

2 Am + (1 — |z*) m — 2013 — 200m3m =0 14
{ e?Ana + (p2 — [@]?) m2 — 202m3 — 200min2 = 0, (14)
where ao, a1, aa > 0, p1, 2 > 0 are chemical potentials, € is a small parameter and z € R? where the
dimension d is 1,2 or 3. Ground states of this system have also been studied in the case d = 2 and
with different methods by Aftalion, Noris and Sourdis [ANS|]. They prove various estimates on the
difference between the Ground state and the Thomas-Fermi limit, which can be recovered by using
the full asymptotic expansion of the ground state we prove here.

For convenience, we define

2
N=1-22 pr,=1-2 p,=1_-_20

a1 (D) aias’

We will consider here only values of the parameters such that the two components of the Thomas—
Fermi limit (710,720) are supported and do not vanish on disks centered at = 0, in opposition with
other cases where one component is supported in an annulus and the other one in a disk. More specific
conditions are given below. Onme of the differences between this case and the one component case
is that, as we shall see in the next section, the Thomas—Fermi limit (710, 720) has now two turning
points. Thus, we have to introduce two different new variables. We will still be able to give a full
asymptotic expansion of (71, 72) into powers of € in the limit € — 0, but functions of each of these two
new variables will appear in every term of the expansion.

1.1 Calculation of the Thomas-Fermi limit

We are interested in solutions of (4]) which converge in the Thomas-Fermi limit ¢ — 0 to functions
mo and 7n20 which are both supported in a disk, with respective radii R1 and Re (for j = 1,2,
R; = inf {R > 0, Suppnjo C B(0,R)}), and such that (110, 720) solves (L4) with e = 0. Let us recall
the arguments leading to the expression of the Thomas—Fermi profile (10, 720) of the ground state, as
it has been done in [AMW]. Up to a change of the indices, we assume (see Remark below for the
case R1 = R»)

R1 < Ras.

From our definition of Ry and Rz, we have nio(z) = n20(z) = 0 for |z| > Rs. For R < |z| < Ra,
mo(z) = 0, and the second equation in (I4) implies

2 _ ,U2—|55|2

n20(z) s

Thus,
p2 = R3, (1.5)

and ng0(x) > 0 for |z| = Ri, which implies that nio(x) # 0 and n2(z) # 0 for |z| = Ry, |z| < R1. If
€ =0, m # 0 and 12 # 0, then (T4) can be rewritten into a non-homogeneous linear system in the
variables n?, ng. Solving this system (for the peculiar case I'12 = 0, see Remark [[.3] below), we get, for
|z| = R1 and |z| < R1,

2 1 (o7} 2

— =T 1.6

7710(37) 20nT12 (Hl a2ﬂ2 2|x| >7 ( )
2 1 (&7} 2

= - —wm =T . 1.7

7720(55) 20212 K2 al H1 1|5C| ( )

In particular, since 710 vanishes on the sphere |z| = R1 (or equivalently, using the continuity of 720 on
the same sphere), we deduce

o «
p1 = —O,LLQ + FQR% = —ORg + FQR%. (1.8)
[e%) a2



Moreover, we also infer from the positiveness of 73, and ([L8) that the condition
I2/Ti2 >0 (1.9)

has to be satisfied. Finally, (L7]) and the assumption of positiveness of 72 on the disk with radius Ra

(and not on an annulus) yields
1 (o7
—_— - — 0
T'0 (uz o u1> >0,
which can be rewritten in terms of R; and Rs as
R; > a——R%. (1.10)

As a result, provided that the parameters satisfy conditions (9] and (TI0),

1/2
I 2 2\1/2 -
7710($) = (2&1%12) (Rl - |:ZZ| ) / if |:ZZ| <R (1'11)
0 if |z > Ry
and
R2-R? /2
(B2 + s B —Jal) i Rl <R
n20(x) = (M)lﬂ £ R < ol < Bo (112)
2a9 X B
0 if |z > Re

define a solution for ¢ = 0 to the system (4], which, taking into account (LI) and (L)), can be
rewritten as

{ e2Am + (Z—g(RS — R} + R} - lez) m — 20an; — 200m5m =0 (1.13)

e2Am + (R% — |:c|2) N2 — 202m3 — 2a0n?n2 = 0.

Remark 1.1 From (I3) and {L38), ue — 1 = T'2(R3 — R?). Thus, under the extra assumption Ty > 0
(an assumption which will be made later), the assumption R1 < Ro implies p1 < pa.

Remark 1.2 IfRi = Ry = R andI'12 # 0, mo(x) and n20(x) are given by (L.06) and [I7) for |z| < R,
and they both vanish at |x| = R. We infer I's/T12 > 0, I'1/T12 > 0 (if I'1 = 0 or I'z = 0, then one
of the two components is identically equal to 0, and therefore we are brought back to the study of one
simple equation, like the one which was studuied in [GP]) and

1 _ % — R’ = 1 _>
I's s (6% o2 ) = o Iy H2 a1 A
which implies p1 = p2 = p. Then, for € > 0, if n denotes the ground state of
e?An+ (u— [a*)n — 2Tr2|n* = 0

(which, up to a rescaling, is the one which is described in [GP]), then
(mym2) = ((IPl/a0)*/*n, (P11 /a2) %)

solves (I7).

Remark 1.3 IfT'12 = 0, then an analysis similar to the one which is done above implies a1 = ag =
ap =« and g1 = p2 = u. Then,
(m1,m2) = (n,m)
solves (I7), where n is the ground state solution of
e2An+ (u — |z|*)n — dan® = 0,

which is described in [GP] (up to a rescaling).



1.2 Goal and strategy

Our goal is to construct a solution (n1,7n2) of (II3) for ¢ > 0 sufficiently small, and to describe its
convergence to (110,720) as € — 0. The first step consists in constructing aproximate solutions of
([LI3). Because of the singularities of 710 and 120 at |z| = R1 and |z| = Rz, (m(z),n2(z)) will be
described by functions of different variables, depending on the region of R? & belongs to. We write
R? = Dy U Dy U Do, where

Dy = {:c € R%||2> < R? —55}7

D) = {:c e RYR? — 2" < |2* < R? +255}
and
D2 = {.’1} S Rd“$|2 2 R% +€ﬁ},

where 8 € (0,2/3) is some number that will be fixed later (note that Do N Dy and D; N D2 are not
empty). Then, for x € Do, (1 (x),n2(z)) will be described as a function of the variable z = R} — |z,
whereas for j = 1,2 and = € Dy, it will be described as a function of the real variables y; given by

B2 — o

yj = 52/3 (114)

In order to be more specific, let us introduce the following truncation functions. Let ¢ be a C* function
on R wich is identically equal to 0 on R_ and identically equal to 1 on [1,400). Then, let us define

B
z—¢
Pe(2) = (m) ;
such that ®.(z) = 0 for z < €” and ®.(z) = 1 for z > 2¢°, which means (if ®.(z) = ®.(R? — |z|?) is

considered as a function of the variable z, also denoted ®. for convenience) that Supp®. C Do and
®. =1 for © € Do\D;. Similarly, we set

()= (1- 52/3311 — &P 62/3y1 + 2¢#
el P\ 2eF — 2P P\=eFr2e8 )0
such that x(y1) = 0 for y1 > 2¢°72/% and y; < —26°7%/3, whereas x(y1) = 1 for —?72/2 < 4y <

e#=2/3 which means (if x.(y1) = xe((R? — |x|?)/e%/®) is considered as a function of the variable z,
also denoted x.) that Suppx. C D1 and x. =1 for x € D1\(Do U D2). We also define

R} — R} -

qls(yz) :1—@(%_‘_2) :1_¢<_% +€2/3 By2—|—2),
€ €

such that U.(y2) =0 for y2 > % —&P72/3 and W_(y2) = 1 for ya < % —2¢#72/3 which means
(if We(y2) = We((R% — |2]?)/?/3) is considered as a function of z, also denoted W.) that Supp¥. C D>
and ¥, =1 for x € D;\D;. Formally, we look for (71, 72) under the form

{ m(x) = Pew(z) + £/ *xev(y1) (1.15)
n2(z) = Pe7(2) + /XA (1) 2 + 3o p(y2),

in such a way that

for x € Do, (m,m2)(x) = (w(2),7(2)), (1.16)
for x € Dy, (m,m2)(x) ~ /3 (u(yl), A(y1)1/2) (1.17)

and
for x € D2, (n1,m2)(z) = (0,51/3u(y2)) . (1.18)
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We look for approximate values of the functions w, 7, v, A and pu by using a multi-scale analysis.
Namely, we write

w=wo+e%wr +etwa +---
T:T0+E2T1 +5472+--~

v=vo+ePu 4+ + ... (1.19)
A=A 2B X +2BA + e300 4 -
=g+ +ePps+ -

The wj’s, 75’s, v;’s, Aj’s and p;’s in this expansions are e-independent functions, which are chosen in
such a way that (ILI6]), (LI7) and (II8) provide at least formally solutions to (LI3]) at any order.
Then, we prove rigorously that the truncation of the formal asymptotic expansions we have obtained
are indeed approximations of positive solutions to (IEED which converge to (110,720) as € — 0. For
this purpose, we use the ansatz

3
=
PN
8
Ny
Il

Dew(z) + /3 (xew(y) + 2N/ P(z))

1.20
Dr(2) + €/ (XA 2 + Wepnlye) + N HQ(@) ). e

3
V)
—~
8
NS
Il

where w, 7, v, A and p are now truncations up to some finite order (N € N for v, A, M = M(N) for
w, 7 and L = L(N) for u) of the formal series (II9), and P, @ are remainder terms. A fixed point
theorem provides the existence of P, Q as well as estimates which ensure that the remainder terms in

are indeed small. The better w, 7, v, A and p are chosen (that is, the larger is N), the smaller
is e2N+D/3(P Q). The functional space in which (P, Q) is obtained is H.(R%)?, where

HLRY) = {f € B'®') | min(|y], |y=)*f € L*(RY)}.

HY(R%? is endowed with the norm

1/2
Pl e = ([ (9P + [9QF) do+ [ max(t,min(nl lpaD)(IPE +1Q)ds )

Remark 1.4 Note that the set H_, (]Rd)2 does not depend on €, even though it’s norm does. Howewver,
this norm has been chosen in such a way that the norm of the continuous embedding of HL(R%)? into
HY(RH? is uniformly bounded in e.

Once we have constructed (n1,72), we would like to estimate in different norms the difference
between the exact solution (11,72) and its approximation

{ Mapp(2) = Pew(2) + EI/SXsy(yl)

1.21
N2app(x) = ©7(2) + ' Pxe A1)/ 2 + /2 p(y2), (121)

where w, 7, v, A and p are truncations of the formal series (.I9) up to some fixed orders My for w
and 7, Np for v and A and Lo for u. However, the estimates on P and @ provided by the fixed point
argument are not very good. So in order to get better estimates on n; — Mjapp (7 = 1,2), we proceed
as follows. We choose three large integers M > My, N > No and L > Lo and write 7; as in (I:I:ZII)
(with truncations of the formal power series at orders M, N and L instead of My, Ny and Lo). Then,
the estimate on 7; — 1japp is obtained thanks to estimates on £2™wy,, and ™7, for Mo+1 < m < M,
on €23y, and £2"/3\, for Ny +1 <n < N and on 52"/3un for Lo +1 < n < L. The estimates on P
and @ provided by the fixed point argument are good enough to ensure that g2N/3+1p and 52N/3+1Q
are negligible in comparison with the other terms in the expression of 1; — njapp-

In our main result below, we give estimates on the LP(R?) and H*(R?) norms of 1; — njapp for
j = 1,2. Note however that depending on the need of the reader, our strategy can give many other
informations on 7; — Njapp (see Remark [[.6] below).

Theorem 1.5 Let d € {1,2,3}, and ao,a1,a2 > 0, R2 > R1 > 0 such that I'2,T12 > 0 and such
that (LI0) is satisfied. Then, for e > 0 sufficiently small, (II13) has a unique solution (n1,7m2) €
Co(RY? such that the two components m and 12 are both positive. Moreover, if Mo, No, Lo € N, if



B€ (0,°\Q, if Wi = win(2), Ton = T (2) v = v (Y1), A = An(y2), i = pin(y2) are the functions
given by [Z0), (27, (ZI0), (Z19). Z30), 39, 3N, B and @Z3). then

I = maplly = O (£7®) and lnz = mappll = 0 (), (1.22)

where E can be either LP(R?) for any p € [2, +00] or H'(RY),

Mo No
2m 1/3 2n/3
Mapp =&, g e Wwm t+ € / Xe g £ / Vn,
m=0 n=0

Mo No 1/2 Lo
I Z 2o 4y, ( Z 52n/3)\n> RN Zgzn/sun
m=0

n=-—1 n=0

and for p € [2,400],

min ((2 — 38)Mo +2—58/2+ B/p, 1+2/(3p)) if No=0
(L7 (RY) = min ((2 —38)Mo +2—58/2+ 8/p, 5/3+2/(3p)) if No=1and p>2
m ) min((2-38)Mo+2—58/2+8/p, 2—4) if No=1andp=2
min ((2 —38)Mo+2—58/2+B/p, BNo+2—3B/2+ B/p) if No>2

where § > 0 is arbitrarily small, and

(LP(RY)) = min ((2—38)Mo+2—-28+8/p, 4/3+2/(3p) , 2Lo/3+1+2/(3p)) if No=0
V2 T | min((2-38)Mo+2—-238+8/p, BNo+2—B+8/p, 2Lo/3+1+2/(3p)) if No>1,

whereas min ((2 - 38)(Mo +1) , 2/3 if No=0
1mdyy ) min ((2—38)(Mo +1) , 4/3 if No=1
n(H(RY) = minE(2—3,8)(Mz+1) , 2-6) if NZ:2
min ((2 - 38)(Mo +1) , B(No —2)+2) if No >3
and
min ((2—38)(Mo + 1)+ 8/2, 1, 2Lo/3+2/3) if No =0
Y2 (H'(R")) = { min ((2—38)(Mo+1)+8/2, 5/3, 2Lo/3 +2/3) if No=1

min ((2 —38)(Mo +1) + /2, B(No—3/2) +2, 2Lo/3+2/3) if No > 2.

Remark 1.6 Depending on the value of Mo, No, Lo and p, the value of the parameter 8 € (0,2/3) can
be adjusted in such a way that the values of y1 and 2 are as large as possible. If we are only interested
in the approzimation of one of the two components n;, one can even choose B € (0,2/3) to optimize v;
without considering the other component. In some cases, one can be interested in estimations on the
norms of N1 — Mapp and N2 — N2app, N0t ON R as a whole, but only on a subdomain like Do, D1 or Ds.
In each minimum in the expressions of y1 and 2 in the statement of the theorem, the first argument
corresponds to the rate of convergence of the norm in Dy, the second one to the rate of convergence of
the norm in D1 and the third one (for n2) to the rate of convergence of the norm in Da. The LP and
H' norms of the restriction of m — Napp to D2 converge to 0 faster than any power of € as € — 0.

In the following corollary, we write more expicitely upper bounds on the rates of convergence of
N1 — Mapp and N2 — N2app to 0 in the particular and important case where Mo = No = Lo = 0 and
E=1L*L>or H
Corollary 1.7 If 8 € (0,1/3), we have

s OLQ(Rd)(E4/3)
m = Pewo +¢ / Xelo + OLOO(Rd)(E)
OHl(Rd)(52/3)
and
0L2(Rd)(54/3)
_ 1/3 A1 1/3
n2 = P10+ xe 7] +Xo ) +e " Wepo + OLm(Rd)(sz)
OHI(Rd)(E /3)



1.3 Organization of the paper

In Section[2] we calculate formally all the functions w;’s, 7;’s, v;’s, A;’s and p;’s appearing in the formal
series ((LT9), in such a way that truncations of these series provide at least formally, through the ansatz
([I6), (CI17) and ([TI8), solutions to (LI3) at any order. We also study asymptotic behaviours of
these functions. In Section [3] we study the functions obtained by truncations of the formal series. In
particular, if w, 7, v, A, u denote these truncations, we estimate the order at which (ILI6), (LI7) and
([II]) solve ([I3), respectively on Do, D1 and D2. We also check that (II6) and (IIT) are close one
from another on Do N D; and that (LIT) and ([II8) are close one from another on Dy N Dy. Section
[ is devoted to the proof of the main result.

Notations.

e If A and B are two quantities depending on a parameter = belonging to some set D, the claim
“for x € D, A(z) < B(x)” means “there exists C' > 0 such that for every z € D, A(x) < CB(z)”.

e Let F(z) be a function defined in a neighborhood of co. Given a € R, {fm }men € R, and v > 0,
the notation

— 00

F(zx) . ~ z° Z fmx™ ™™
m=0
means that for every M € N,
M
F(@)=a2® 3 fna ™™ = 0@ "™ asz - oo,
m=0

and, moreover, that the asymptotic series can be differentiated term by term. We use the same
notation if v < 0 and if F is defined in a neighborhood of 0.

e (o (]Rd) denotes the space of continuous functions on R¢ that converge to 0 at infinity.

o If (fo)o<e<s, s a sequence of functions such that for every e, f. belongs to some Banach space E.
that may depend on ¢, if @ € R, f. = Og,(e%) (respectively fo = og_(¢)) means that || f:| &, /e
remains bounded (respectively converges to 0) as e — 0.

2 Formal asymptotic expansions

2.1 Asymptotic behaviour of vy, 1o, A_1, Ao-

We are looking for a solution (n1,72) to (II3])) which converges to the Thomas-Fermi approximation
as ¢ — 0. Namely, for every z € R?,

m(z) —>mo(z),  n2(x) — m20(2). (2.1)

The convergence of (71,72) (expressed using the ansatz (L20)) to the Thomas-Fermi limit determines
the asymptotic behaviour of v(y1), u(y2), A(y1) as y1,y2 — Foo. We will construct the functions



Vo, o, A—1 and Ao in such a way that they capture entirely this asymptotic behaviour. More precisely,

for |z| > Ra, 61/3uo(y2) —0 yields ,uo(yz) — 0,
e—0 9——00
22\ 1/2 . 1/2
for Ry < |o < R, *po(y2) — (—Réa‘z‘ ) yields po(y2) =~~~ (%) ,
2
for Ry < |z| < Ra, &Y%uo(y1) — 0 yields wo(y1) — 0,
e—0 Y1 ——00
1/2 . 1/2
for |2] < R, () = (i (R = o)) yields woly)  ~ (5E2)
A 1/2 R2_(z(2) 1/2 RZ-R? 2y 1/2
o< () = () - (S
. R2_R?
yields  A—1(y1) y1:>oo 22a2 iy
~ L
)‘O(yl)yﬁfoo o
A 1/2 RZ_R2 1/2
for |z| < R, e'/? (% + )\O(yl)) = ( 2as L+ gazpm (R — |:c|2))
R3—RY
yields  A—1(y1) yljm T
r
Ao(y1) oo ﬁ

2.2 Expansions of w and 7 in D,

In the domain Dy, we look for (n1,72) solution of (LI3) under the form (LI6]). It follows that w(z)
and 7(z) have to solve for z € (0, R?) the following system of differential equations

—2de’w’ + 4(R; — 2)e*W” + <%(R§ — R+ z) w—201w® —2007°w = 0 (2.2)
—2der’ + 4(R} — 2)e%" + (R2 — RI + z) T — 2007° — 200w°T = 0. (2.3)

Then, we look for w and 7 under the form of formal power series in the parameter £2:

[eS) oo
2m 2m
w = g Wm, T = g Tm -

m=0 m=0

Plugging these expansions into (Z2)), we get
(oo} oo a oo
23D A = 0) S ok (2 R ) Y
m=1

oo oo
2m 2m
—2a E £ E Wrn, WingWmg — 200 E € E Wm,TmeTms = 0, (2.4)

m=0 mi+mot+maz=m m=0 mi1+mo+mz=m

whereas (2.3) yields

o0 oo
2 2 2 2 2
—2d§ e 1 +4(R: - 2) E e Mot + ( R2 Rl—i—z)g e Tm

m=1 m=1 m=0

oo o0
2m 2m
—2a E € E Ty Tma Tms — 2000 E € E Wiy Wmo Tmg = 0. (2.5)

m=0 mi+ma+mz=m m=0 m1+mo+mgz=m

At order m = 0, we deduce that w?, 7¢ have to solve in the domain z € (0, R%) (a range of values of z
for which they are expected not to vanish) the linear system

1
1w + apre = 3 <%(Rg —R}) + z>
2

1
ozowg + agrg 3 (Rg — R% + z) .



As already mentioned in (LII)) and ([TI2)), it follows that

2 I's
wy = z (2.6)
201M12
and
2 2
2 R2 - Rl Fl
T = + z (2.7)
20(2 2052F12
For m > 1, (24) and (23) imply that
2
2dw,,_1 + 4(z — RY)wyp_1 + 201 > Wiy Wy Wmsg + 200 > Wiy Tms Tms
my + mg +m3 =m my + mg + m3z =m
M Wm myp, mg, m3g < m my,mg, m3g < m
- / 2 "
Tm 2d7}, 1 +4(z — R) T/ 1 + 2a2 > Tmq Tma Tms + 200 > Winy Wiy Tmg
mq1 + mg +m3 =m mq + mg + mg =m
my1,mgy,mg < m mi,mg,mg < m
where
a1w2 aowWoTO
M = -4 0 9 (2.9)
QpWoTo Q2T)
Thus, the functions wy,, 7 for m > 1 can be calculated thanks to the recursion relation
w 1 ang —QoWoTo
m
=——>—> 2 X (2.10)
Tm arael’owiTs | —owoTo a1wy
d, ./ <51 g
—§wmo1 — (2= R)wp1 — % > Winy Wiy Wing — - > Wy Tma Tms
mq + mg +m3z =m mq + mg +mg3z =m
miy,mg,mgzg < m my,mg,m3 < m
_d _ _ a2 _ Qg
S Tm—1— (2 R4 5 > Tmy Tmy Tms — 5 > Wmq Wma Tmg
mq + mg +m3z =m mq1 + mg +mg3z =m
miy,mg,mgzg < m miy,mg,m3 < m

From this relation, we deduce useful informations about the behaviour of wy,, and 7, for z € (0, R%]

Lemma 2.1 For every m > 1, there exists (Wm,n)n>0, (tm,n)n>0 € RY such that

wm(2) =, L1323 Z Wm,n2" (2.11)
n=0
and
Tm (2) e 2 Z tmnz" (2.12)

In particular, there is a constant ¢, > 0 such that
Vz e (0,RY], |wm(2)] <emz?™™ and  |rm(2)| < cmz' ™.

Remark 2.2 Note that for m = 0, (211) is also true (with wo,n = 0 for n > 1), whereas (2.12) has
to be replaced by the Taylor expansion of 7o at z = 0, which can be written as

R:- RO\ & 1+

~ n

70(2) z:()( 20 ) Zoto,nz (2.13)
-

for some (to,n)nz0 € RY.
Proof. From (ZI0), wi and 71 can be explicitely expressed by

—dw} /2—(2— R%)wo +a0(d70/2+(z R2)r)

w1 _ all"lgwo ajagl’iawpTo (2 14)
el ag(dw)) /24 (2— R%)wo _ d‘ré/2+(sz?)‘ré’ :
ajazlliawoTo agTi27d

Then, it follows from (Z6), ZT7) and the expansions as ¢ — 0 of 7§, 74/, 1/70 and 1/7¢ that II)-
I2) hold for m = 1. Let m > 2 and assume that (ZII]) and (ZI2) are true for m replaced by any
integer between 1 and m — 1. Then (ZI1)-(2I2) also hold at order m thanks to (2I0)), the recursion

assumption, (26]) and (ZI3). "

,(2.8)



Remark 2.3 A consequence of Lemma 21l is that for every x € Do (which in terms of the variable
z, means R1 z = 5/8) for every m > 1,

|E2mwm(z)| < cmfsﬁ/ﬁm(%?’ﬁ)7 |E2m7'm(z)| < el Tm2=38)

In particular, since we have chosen 8 € (0,2/3), for every M > 1

M
M m — Wo —» 0 and Z e — o — 0,
e—0 e—=0
L°° (Do) m=0 L°° (Do)
and for a fixed value of M, the larger ism € {0,--- , M}, the smaller are the L*° (Do) norms of € wm

and €21, in the limit € — 0.

2.3 Expansion of p in D,

For x € D3, we look for a solution (n1,72) to (I3) under the form (LI8). Thus, x is constructed in
such a way that 7o () = £*/3u(y2) solves, for |z| > Ry,

2 Ang + (R% - |1:|2) N2 — 20213 = 0, (2.15)
which means that for y» < (R3 — R?)/e%/3,

Al (y2) — 2de® 1/ (y2) + y2p(y2) — 202u(y2)° = 0. (2.16)

Moreover, we are looking for a solution 72 that converges to 720 for |:c| > Ri. Thus, as already
discussed in Section 2] p has to satisfy the following asymptotics:

1/2
Y2
— 0 ~ (= .
M(yQ) ’ N(y2) y2—+00 ( )

ya2——00 209

We rescale to change the unknown function p into «y, defined by

Ry® Y2
u(yz)zi(mz)l/ﬂ 727 )
2

Then, it turns out that u solves (ZI6) if and only if v solves the differential equation

2 2
R; — Ri .oy
> € )

2

41 = &y (y) — 2d8°°y () + yr(y) —7(¥)* =0, —co<y< (2.17)

where & = ¢/R3. In [GP], we have constructed a solution v of this equation for y € (—007572/3] (v
was denoted vz in that paper). Moreover, this solution, for any N € N, can be expressed under the
form (see below for an explanation of the notations)

N
Z 2n/3 ~2(N+1)/3RNg(y).
n=0

Thus,

1/3 2 /3 Y2 2(N+1)/3 Ry/® Y2
2n - 2
m E + RN . 2.18
(v2) = 20‘2 (202)172 RY? ° (20i2)1/2 * RS/B ( )

2

In particular, the functions u, introduced in (II9]) are given for every n > 0 by

(y2) = Ré/g R74n/3 Y2 (2.19)
MUn\Y2) = (20(2)1/2 2 Tn R2/3 . .
2

The functions 7y, and Ry, mentioned above have been defined as follows in [GPJ.

10



e - is the Hastings-McLeod solution of the Painlevé-II equation, that is the unique solution of

4v0 (y) + yr0(y) —v(y)> =0, yeR, (2.20)

with the asymptotic behaviour

-~ 1/2
Yo(y) BoTNE A Y0(y) B 0.
e for 1 <n < N, v, is the unique solution of
— 4y (y) + Wo(y)1m(y) = Fu(y), yE€ER, (2.21)
which goes to 0 as y — Fo00, where
Wo(y) =37 (y) —y (2.22)
and
Fa@)=— D @)Y () Vs (y) = 271 (y) — dy7ii-1(y),
ny,ng,n3 < n
niy+mng +ng =n
o Ry :z solves
—4(1 = & y)RY - + 28**dRly s + WoRw.z = Fne(y, Rive), y € (—00,8 2%, (2.23)
where
2N—1
Fne(y,R) = —(dyvi +2dvy) — > &/? > Y Yz Y
n=0 ny+mng+ng=n+N+1
0< ny,ng,n3 < N
2N 2N+1
_|3 Z€2n/3 Z oy ng | R — <3 Z 52"/3’Yn(1v+1)> R2 _ MN+1/3 8
n=1 ny+mng =n n=N+1

0< ny,ng < N

The analysis below requires the precise knowledge of the behaviour of v,(y) as y — £oo. This
behaviour was already described in [GP], and it is summarized in the next two propositions:

Proposition 2.4  The behaviour of vo as y — —oo is described by

Yy—+—00

0) = <= e (—3 0 ) (14 00 ) | = o, (229

whereas as y — 400,

w@) =~ Yy any (2.25)

— 400
Y n=0

where ap = 1, and for n >0,

1 1
An+1 = 2 (9n2 - Z) an — 5 Z Any GnyQng -

ni+ng+nz=n+1
ni,nz,n3<n

Remark 2.5 The calculation of the first terms in (2.28) gives

/2 lyfs/z B Eyfu/z +O(y 1), (2.26)

Yo(y) = 3 3

1
Proposition 2.6 For everyn > 1,

Yn(y) y:\jroo y1/272n zjogn,myism for some {gn,m}meN7
m—

and Yn(y)

Moreover, if d =1, for everyn > 1, gn,0 =0.

For instance, v1(y) ~ 5(7Zd)y79/2 if d =1, whereas v1i(y) ~ = %973/2 ifd=2,3.
Yy—+oo Yy—+oo

0.

~
~
y——o00

11



2.4 Expansions of v and A in D,

For x € D1, we formally look for a solution (n1,72) to (I13)) under the form given in (LI7). Then, it
turns out that v and A have to solve

2/3 / 2 2/3 Qo Rz R% 3
— 2de + 4RV’ — 4e —&——Wu—i—yll/—Qalu —20Av = 0 (2.27)
Qa2
—de* AN — (R} — &2 yl))\’2—|—2(R1—5 SUNAN 4 y2A? — 2002% — 200020 = 0 (2.28)

Moreover, we are looking for solutions (71, 72) that converge to the Thomas-Fermi limit (710, 720) as
& — 0. As a result, according to Section 21l v and X have to satisfy the following asymptotics. On
the one side, if Ry < |z| < Rq is fixed, ¢ — 0 if and only if y1 — —oo, and

R — R? Y1 >

— 0, A ~ Lho— i Y1
V(yl) (yl) Y1—> —00 (2(1262/3 2052

Y1 ——00

On the other side, if |z| < Ry is fixed, ¢ — 0 if and only if y1 — +o0, and

V)  ~ Tay1 12 Ay)  ~ R2 - R? Ty
y Y1 —>+00 2(11F12 ’ v Y1 —>+00 20(262/3 2(12F12 ’
We formally develop v and A into powers of e2/3:
(oo} oo
Z ua(y), Am) = D (), (2:29)

n=0 n=-—1

and we plug these expansions of v and A into (Z27). We obtain

—2d252”/3 vl +4R? 252”/31/7’{ — 4 252”/3 vl —|— — R2 R}) Z Byt + 11 262"/3un

n=—1 n=0
oo oo
—201 Z g2n/3 Z UnyVnaVng — 2000 Z g2n/3 Z AnqVny = 0.
n=0 ni+ng+nz=n n=-—1 ny +ng =mn,
ny 2 —l,ng 20
At order n = —1, we get, in agreement with the asymptotics of A_; given in Section [2.1]
RS — R}
Aa() = 20y (2.30)

and therefore the equation can be simplified into

(oo}
_ 2dz&2n/3 / L+ 4R1 Z€2n/3 " 4y1 ZEQn/S //7 + Z€2n/3

n=1 n=1

—201 Z g2n/3 Z Vny VngVng — 200 Z g2n/3 Z AnyVng =0 (2.31)
n=0

ni+nst+ng=n n=0 ny+mng =n
ny =2 0,n2 20

At order n = 0, we obtain

4R%1/6’ + y1vo — 2a11/g — 2a00 o = 0. (2.32)

12



Similarly, plugging (Z29) into [228) and multiplying by £*/3, we get

>

ny+ng =n—3
ni,ng = —1

oo
—d Z €2n/3
n=1

S
—2y1 Z €2n/3 Z
n=1 ny+mng=n-—-3
ny,ng 2 —1
S
+11 Z g3 Z
n=1

niy+ng =n—3
ni,ng 2 —1

oo
Ay Any + 2RT D 2/

Ny g + (RS — RY) D7 ™

> Ay Ay

ny+ng =n-—2
ny,ng = —1

A2 Any — RY i g2n/3 >
n=0

ny+ng =mn-—2

ny,ng = —1
2

ny+mng =n-—1
ni,ng > —1

n=0

P

n2

o
Ans

n=-—1

oo (oo}
+yr Y e > Ay Any — 202 Y 53 > Ay Ay Ay
n=0 ny+mng=n-—2 n=-—1 ny+mng+ng=n-—2
ni,ng 2 —1 ni,ng,ng = —1
—200 »_*/? > Ay Any UngVny = 0 (2.33)
n=0 ny+mng+n3+ng=n-—2
ny,ng =2 —1, ng,ng =20
This equation at order n = —1 is satisfied thanks to (230). At order n = 0, we obtain
h Qo 2
A = - — . 2.34
o(y1) = 5o — o) (2.34)
From (232) and (234), we infer the equation satisfied by vq:
4R%I/(,), + Fzyll/o — 20(1F12Vg = 0. (2.35)
Moreover, according to Section [ZI] the asymptotic behaviour we need for vy is
/2
Doyr '
~ (=2 — 0.
i), o (o) ),
Looking for vy under the form
vo(y1) = R}/3|F2|1/3 v |F2|1/3y1
(201 )72|T12[1/2 Rf/g )
vo solves (2.38) if and only if « solves
4sign(T2)7"(y) +y7(y) —1(y)° =0, yeR, (2.36)
with the boundary conditions
W) oy VY ) 2 0 (2.37)

If the sign of 'y (which is the same as the sign of I'12 according to (IL9)) is negative, it can be easily
seen that (Z36) has no non-trivial solution with fast decay to 0 as y — —oo. Indeed, if «y solves (230])
with 7/ (y) — 0 and yy(y)?> — 0 as y — —oo0, then by integration between —co and vy, we get

2sign(T'2)7'(y)° = _y’Y(;/) +/y 7(;) dt + ’Y(i/) 7

—o0

which implies y =0 if I's < 0 and y < 0. Also, from now on, we assume

Iy > 0, I'i2 > 0. (2.38)

Under this condition, v has to be the Hastings-McLeod solution ~ of the Painlevé 11 equation (Z20)),

and
RVTY (1Y
(2a0)12174 © \ RY?®

I/o(yl) = (2.39)
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Thanks to (230), equation (Z31) at order n > 1 gives

2 1 2
4RIV, + Y1Vn — 61V5Vn — 2Q0A0Vn — 2000 An o (2.40)
/ 1’
= 2dv,_1 +4y1v,_1 + 200 E VniVnoVng + 200 E AniVng-
ny +ng+nz=n ni+ng =n,
0< ny,ng,n3 <n—1 1<ny,ng<n~—1

On the other side, equation ([2:33) at order n > 1 yields

/ 2 "
—d > Ay, Any + 2R3 > Al Ans
nyp+ng =n-—3 ny +mng=n-—2
ni,mg > —1 ny,ng > -1
" 2 / /
_2y1 § )\nl)\ng - Rl E )‘nl )‘ng
ny+ng =n—3 ny+ng =n—2
ni,ng = —1 ni,ng = —1
Any Ay + (RS — R} AnyAny +2(R3 — RH)A 1A
+y1 n1Any + (R2 — Ri) niAng + 2(R2 — Ri)A-1An
ny +ng =n-—3 ny+ng=n-—1
ny,ng = —1 ni,ng =0
2
+y1 g )\nl )\ng — 202 E )\nl >‘n2 >‘n3 — 62 A2 A\,
ny+ng =n-—2 ny+ng +ng=n-—2
ni,ng = —1 n—12>2mny,ny,n3 = —1
2
—2ap E Ani AngUngVny — 4aoXZ v, =0, (2.41)

niy+mng+ng+ng=n-—2
ni,ng =2 —1, n—12>=mn3,ng =0

therefore for n > 1,

22 (2.42)

(075}
)\n =-2— n ~ 759 oo 9ns
"t B -R)

on = > (=dA7y Ay = 201070 Ay + 510, Any )

niy+ng =n—3
ny,ng = —1

2 : 24/ 247 / 2 2 2 :
+ (2R1 )‘nl )‘nz - Rl)‘nl )\712 + yl)‘?u)‘nz) + (RZ - Rl) )‘nl)‘n2
ni+mng=n—2 ni+mng=mn—1
ny,mg > —1 ny,mg =0
—20i0 E Ani Ang Ang — 200 E Any Ang Vng Vn(i2.43)
ny+mng+ng=n-—2 niy+mng+ng+ng=n-—2
n—12mny,ng,n3 = —1 ni,mg = —1, n—12>mn3,ng =20

At this stage, we have constructed A_1, 1o and Ao, which are given respectively by (Z30), (Z339) and
(M). For n > 1, the A\,,’s and the v,,’s are constructed by induction as follows. Let n > 1, and
assume that the Ay’s and the v4’s are known for every k < n — 1. Then, plugging ([2:42]) and ([2Z34)
into (240), v, has to solve

Tv, = F, (2.44)
where

T = —4R19; +W(y1), W(y1) =6a1T1205 — Dam (2.45)
and

4a0a21/0
E, = _mgn — 2y, — Ay — 200 Y VnyUnyUng — 200 D AnyVn,(2.46)
2 1 ny+mng+ng=n nyp +ng =mn,
0< ny,ng,n3 <n—1 1<ny,ng <n—1

Note that only Ax’s and vi’s for k < n — 1 appear in ([2.46]) and (243). Once (2.44) has been solved,
An is given by (Z42). In order to invert T in (244]), one needs to understand the behaviour of F, (y1)
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as y1 — *oo. Thus, 0,, Fn, vy, and A\, will be constructed recursively in such a way that for every
n>l1,

—+oo

S ~ Y2 Doy ™, 6n o , 2.47

) =~ i O<m<§(n72)/3 my1 W) = v m§: v’ (2.47)
3/2 =

F, ~ 0, F, ~ oyl Frmy®™, 2.48

W)~ ) =~ § Y1 (2.48)

n ~ 0, v Nomyr ™, 2.49

valy) = 0 waly) E Y1 (2.49)

An ~ yr 2 Lomyl®™, A Lmyy ®™ 2.50

) =~ v > myr s Anyr) Y E v (2.50)

o<m<(n—2)/3

where the Dy m’s, Fnm's, Nnm’s, Lnm’s, ﬁnym’s and zn,m’s are some real coefficients. Note that
thanks to (239), (234), 24) and ([Z23), vo and Ao admit similar expansions. However, the power of
the leading term in the expansions they satisfy as y1 — +oo (and for Ao, also as y1 — —o0) is higher
of three units to the one which would be given by (249) and (2350) for n = 0. More precisely, we have

—+oo
N ~ 1/2 —3m
wly) = 0, wly) = v > Nomys (2.51)
and
e —
A ~ LA ~ L sm 2.52
o(y1) 0o 20y o(y1) i mZ:O omY1 s (2.52)
where
Iy 1/2 R% m
Nom = —— m 2.53
0 (2051F12> r,) (2:53)
and
1 Qo
LOO = 2052F12 and for m 2 1, LOm = _Oé_ Z N0m1 N0m2- (254)

Next, let us explain why &1, F1, v1 and A1 admit asymptotic expansions like the ones given in (247,
243), (Z49), 250) and let us calculate explicitely the first terms in these expansions. Thanks to

@43) for n =1 as well as (230), 234), 52), @53), Z54),we have

61 = 2mA_1do+2RIMA 1+ (R — RIS — 6aAgh_1 — 4apA_1hovg
3a0R1(R3 — R}) _4
——ae—W

2RINGA_, =
y1—>+oo a1a3l2

+ 0@y ). (2.55)

Thus, the asymptotics as y1 — 400 in (Z47) holds with

_ 3aoRi(R3 — Rz)

Dio=0 and D13
041052F12

(2.56)

From (Z.52)) and (Z353), we also infer that 1~ 0, which is the asymptotics as y1 — —oo in (247)).

Y1 ——00
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Then, (248) yields

4050052 o

F1 = —Wél — 2dVO — 4y1VO (2.57)
T2 1/2 172 R} 5 1203T2 R} —7/2 _13/2

= 1-d — [ =(7T—d) — O .
y1—+o00 <2a1F12> ( i (201 T2T'12)1/2 2( ) ajael12(R3 — R?) vi T+ 0 )

Thus, 31 and 247) for n =1 imply that (248) for n = 1 holds with

1/2 2 2. p2
Fio = L2 (1-d) and Fin= R > 120512 Ry
201 M2

(2051F2F12)1/2 5(7 o a alagl“lz (R% — R%)

In order to calculate v1 from (ZZ44]), let us first notice that the function W defined in (2.435)) coincides,
up to a rescaling, to the function Wo(y) = 3y0(y)? — y which was studied in [GP]. On the other side,
W can be expressed in terms of Ao thanks to (2.34). Namely,

Fl/3y1 31l 6ai sl
W(y) = TR Pw, | 2 = or — 22 B Ao (). 2.58
(1) =5 "Ry "W 27 o T2 m ” o(y1) (2.58)

In particular, there exists C' > 0 such that W (y1) > C for every y1 € R, and W admits the asymptotic
expansions

+oo
6ap a2l _
W) ~ —Toy, W) =~ wi|200— 23" Lomy; " (2.59)
Y1 —>—00 Y1 —>+00 QQ —1

In the case d = 1, since Fio = 0, F1 € L2(]R)7 and v1 is obtained by inversion of 7', which is a
Schrédinger operator on L?(R). Moreover, thanks to ([259) and the positiveness of W, Lemma 2.1 in
[GP] implies that the solution v to (2:44) admits asymptotic expansions like the ones given in (249,

with ) 5o
6R1 OéoRl 5
Nio=0, Nij=-— -2
1,0 ’ 11 (2a1F12F2)1/2 (Oqaz (R% —_ R%)Flz 4F2

In the cases d = 2,3, Fio # 0, and therefore Fy ¢ L? (R). We construct the solution v1 to (Z44]) by
using the same trick as in [GP]. Namely, we look for v1 under the form

Py 2

7 W (y1)

(P(yl) + /7717

where ® € C*°(R) is such that ®(y1) =0 for y1 < 1/2 and ®(y1) =1 for y1 > 1, in such a way that

Fioy ?

W (y1)

5 d°

(4RO, +W(p))n = Fi— Fioy; *®(p) + 4Rld_y2
1

Sly)|.  (2.60)

The right hand side of (ZB0) behaves now like O(y; /%) as y1 — 400, and its behaviour at —oo is
the same as the one of Fy, therefore the right hand side in (Z.60) belongs to L?(R), and (260) has a
unique solution 7 in L?(R). Moreover, again thanks to Lemma 2.1 in [GP], we deduce the existence

of asymptotic expansions for 7y as y1 — Foo, with 71 (y1) = O(y; o/ 2). These expansions for 71
y14> oo

imply that 11 has expansions like in ([2.49]), with

Ny o — Fio 1-d
10— 2F2 - 2(20511_‘21_‘12)1/2‘
Then, from (Z42)) and (2355,
(e 7)) 40(2R% "
AL = —2— ———535 - 2.61
1 a2l/oV1 + (R2 - R2)2 0 1 (2.61)
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and thanks to (235I), 55) and 249) for n = 1, A\; as asymptotic expansions like in (Z350) (in
particular, A\1(y1) =~ 0), with

Yyi——
ao(d—1) . 3a0 R} 4R} 5
Lio=20C" 2 andifd=1, L= 2.
1,0 2C¥1C¥2F127 and 1 1,1 2a1a2F12 (R% — R%)Flz Fz
For n = 2, (243)) and (240) give similarly (after simplifications involving also (Z30), (234 and 261]))
52 —dAOA 1 — 2P NG A1 — 2RZAG A0 — RING + 2RIN A1 — 20002 112 (2.62)
and
dag v
R = —ﬁég — 2dvy — 4y — 6arvort — 200111 (2.63)

which implies, thanks to the expansions calculated previously for Ao, vo, A1 and v that d2 and F»
satisfy respectively (247) and (248)) for n = 2, with

Iy (dl2(R3 — RY) +I1RY) ~ d(R% — R?) + R?
Dsog = — Dog=——"--"—"——+—— 2.64
20 402T2, rTR0 102 (2.64)
and
g0 (T \'? Ty (dlia(RE - RY) +T1RY)
207 s \2a0Ths i, (R3 — R?)?
In order to solve (2:44)) for n = 2, we look for v, under the form
Fao 12 ~
vo = : P + v 2.65
s = ) + (2:69)
Then v solves ([2:44) for n = 2 if and only if D> solves
~ d2 F2 oyl/2 —5/2
—ARIO;, +W = B — Fpoy/’0 AR~ | =20 = 0@y ).
(—4R10y, + W (y1))v2 > — Fo0y, " ®(y1) + 4R3 a7 | Wi |, 5.0

In particular, the right hand side in this equation belongs to L? (R). Thus by inversion of T like for
n =1 and d = 2,3, and coming back to (Z63)), v satisfies ([2.49) for n = 2, with

Fo _ ao 1 Ty (dl12(R3 — RY) + 1RY)
’ 2l Q2 (2a1F2F12)1/2 It 2(R3 — R?)?

As a result, from (242) for n = 2, \a satisfies (Z50) for n = 2, with

d(R3 — R?) + R}
202(R2 — R?)

I'y (drm(R% — R+ F1R%)
Lyo = —

and Log=—
’ 2(R3 — R7)* Ty =

(2.66)

Next, let us fix n > 3. We assume that we have constructed the v;’s for k € {1---n — 1}, and
that asymptotic expansions (247), (248), 249), [Z50) with n replaced by each of these k’s are
satisfied. Then it is clear from (Z43) and (246) that F,, =~ 0 as y1 — —oo as indicated in (248]).
In order to study the asymptotic expansion of 4, as y1 — +oo, let us first focus on the first sum
in the right hand side of (243). If ni,n2 > 1 and n1 + n2 = n — 3, then it follows from (Z50)

that Angn, (Y1) := —dA0, Any — 20120, Ano + Y1 A7, A7, admits an asymptotic expansions which can be
written as
—+o0
n—I1 —3m
Y1 Z Cm¥Y1 (2.67)
m=0

for some coefficients (¢m)men, with { = 8. Thus, we deduce that

+o0 too
~ n—=_8 - —3m __  n—2 - —3m
> s (1) A Y78 Damsayi " =980 Y Doy O,
y1—>+oo
m=0 m=2

ny+mng=n-—3
ni,ng 21
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for some coefficients (Dn,m)m>2. Similarly, An,n,(y1) has an asymptotic expansion which can be
written as (2.67) with { =5 ifn1 > 1 and n2 < 0 or n; <0 and ny > 1, and with [ = 2 if n1,n2 < 0.
As a result, the first sum in the right hand side of (2:43]) admits an asymptotic expansion as y1 — 400
like (Z67) with | = 2, and in order to calculate the leading term cyf”i2 in this expansion, one has
to consider only the terms of the sum corresponding to indices ni,n2 € {—1,0}. The same kind of
arguments applied to the other terms in the right hand side of (2:43)) yields the asymptotic expansion
of 6, as y1 — 400 given in (DZZI) Moreover, in order to express D0, the only terms of the right hand
side of (Z43)) which have to be considered are written in the calculation below, where we use (Z52)),

(E30), @50), Z51) and @79)
5" N (_d)‘z))\"*?’ - 21/1)\6/)\7%3 + y1)\6)\ln,3) 1{,”:3}

y1:+oo
+2y1 A1 01 + 2y1 X0 An—2 + 2(R3 — RY)AoAn—1 — 120X 120 -1 — 6a2 A An—2

—80(0)\71)\01/01/»,171 — 40(0)\71)\,1711/3 — 40(0)\3V0Vn72 — 4a0)\0)\n,2u§ =+ O(y{bis)

_ _d I 1 n I' I 1
Y1 —>+oo 202112 22112 y h 20112 20112 {n=3}

Rg - R% 1—‘1 n—4
—_ Y1 | y1  Ln-2p0
12

2052F

+211

y{hSLnfl,o + 2y1 <
2052

I n—
+2(R3 — RY) ( - y1> yr *Ln-1,0

2a21"12
R}—R} ([ Ty n—3 I, % ot
—12 Ly_ —6 _ Lon_
a2 202 2010 Y1 | Y1 n—1,0 Qa2 2019 Y1 Y1 1—2,0

R3—Ri ([ T T N2 10\ werss
8 Ny
o 202 2a2F12y1 201112 Y1 Y1 1,0
2
—4o M n=3r, Iy 1/2 1/2
0 203 Y1 n—1,0 51T Y1
Iy 2 I 1/2 12 /2
- Tro Noe
o (2a2F12y1> <(2061F12> Y Y1 1—2,0

2
Iy n_d I'> 1/2 1/2 n—5
—4 Lo— 0] °
ao <2a2F12 yl) h 20 <<2O¢1F12> %1 + (yl )

(1—ars n—2 (RS — R} ! 2 2y n—2 11
= AL, L,_ L,_ R; — R L—
y1—+o0 h 40312, {n=3} T U1 ao Lo+ a2 20) + (R Vv azl'12 e
3(R3 — ROT1 s 37 ., (R3 = ROATY*No1,0 oo
-_y L —1,0 — T /5 L7 —2,0 — 2050 -
a2l ! " 20@1—?2 ! ' ag (20[1)1/21“?42 '
(R3 — RHT2Ln_1,0 n o aOr%F;/ZNn*ZO n-2 _ @01l ln20 n-2 o(yr=>
oo r L T e Y T menry, W1 TOWT)
araal'o a2(2a1)1/2TY, aiazly,
T U Dao+ O ), (2.68)
with
(1—dr? (R3 — RO ri
Dno = = lp=3y ——F———Ln10— 57 Ln-
* 403T, =3 azl'12 e 202T'%, 0
R} — R TY> riry/?
_204()( 2 1) 13/22 Np_10— 0601725/2 n—2,0- (2.69)
a2(2a1)1/2TY, a3(2a1) /2T

The existence of an asymptotic expansion of d,(y1) as y1 — —oo like the one given in (Z47) follows
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from (2:43]) similarly as for the expansion at y; = +00. Moreover, like in (ZG8]), we obtain

Su = (=dA\Au—s + 1AM 5) 1nes

Yy1—+—00

F21 A1 An—1 + 2y1 XoAn—2 + 2(R§ - R%))\O)\nfl — 122X 1 A0An_1 — BazAiA,_2 + O(yilig))

= Duoyt P+ 0@ "), (2.70)
with
Dro=2"81, - <Zn1,o BB, E”“) : (2.71)
403 Qs 2a
Then, ([248) follows from (248]), (2351), (247) and the recursion assumption. Moreover,
1/2
Fno = —(Rgcf’cg%)Q <2£;12> Dyo. (2.72)

Then, using the same trick as for n = 2, we look for a solution v, of (Z:44)) under the form

Fno n-3/2
Y 0]
W (y1) 7!

Up = (y1) + vn.

vy solves (2:44)) if and only if v, solves

~ ~ 3/2 o d® | Faoyy *?
Tv, = F,, where F,=F,— F,oy; ““®(y1) +4Ri— | —=F—®(y1
! ) a7 | Wy W)

The function ﬁ’vn defined just above admits expansions as y1 — Foo which are similar to those satisfied
by F,, and given in (248]), except that in the expansion of F, as y1 — +oo, the power of y;1 in the
leading term is smaller from three units than the one of F;,. By iterating this process a finite number
of times, we are brought back to solve an equation like ([Z:44]), but with a right hand side which is
in L?(R). Thanks to Lemma 2.1 in [GP] and (Z59), it turns out that v, satisfies (249), where the
coefficient in the leading term as y1 — 40c0 is

Fn,o _ 20(00(2

Nn,O - = - Dn,(). 2.73
2F2 (R% — R%)Z (2&1F12F2)1/2 ( )

Finally, from (242), 2351), (Z49), 247) and ([Z73)), we deduce that A\, satisfies (250]), with

(&7} Fz 1/2 2a2 20(2
Ln = —2— Non + ——5=Dno = ———5—=—Dho, 2.74
© 2 (o) Mot e = R D @19
and
7 2a25n0
Ln = 2.75
°© T B-mpP (2.75)

which completes the recursion and proves that (247), (248), (249) and 250) hold for every n > 1.
In addition, one can compute explicitely the coefficients of the leading terms in the expansions of §,,

F,, v, and A, as y1 — +oo. Indeed, as y1 — +00, according to (269), (Z73) and (27), we have, for
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every n = 3,

D _ (1-ary _ (R} —RIIL 20z D 1 200 D
™o 10212, in=8 T2 (B2 —R3)M1a "7 20072, (B2 — R2)2Tyn " 2°
Oéo(Rg — R%)IHF;/Q 20(00(2
+2 3/2 1/2 Drn—1,0
a3(201)1/2T,° (RS — RY)? (200T12T)
aoriré/Q 20(00(2
2 5/2 (2 2\2 1/2 Dn—2,0

a3(200)1/2175° (RS — RY)? (20nT1212)

(1—d)713 2T, I?
= Oy Dot D,
10313, U TR -RDTL Y (W - m)TY,
202 adl?
D, Dy

ol (B3~ 1) T araaT (B — B2

(1—d)713 oI, I?
= =y -2 D io———L D, oo
10313, U T (R -RDT: Y (BRI,
Thus, defining for every n € N
2 p2 n
dn = <7(R2 FRl)F12> Dn07 (276)
1

we infer thanks to (Z56]) and (2.64)

2 drlz(R% — R%) —+ FlR%
405%F1

1+d)'12(R2 — R?) + oI R?
405%F1 ’

di =0, dy= (R R?) L dy = (R R2)2

and
Vn 2 4, dn = —2dn71 — dnfz.

It follows that for n > 2,
(-1)™(R5 — R?)? (T12(R3 — RY)(d+n —2) + (n— 1)1 RY)

dy = — ,
40(%F1

and therefore

Do -I " (R3 — R})? (T12(R3 — RY)(n+d —2) + (n — 1)T1RY)
"0 T T\ N2 (R2 — R?) 402T,

Coming back to [273) and (Z74)), we get, for n > 3,

N -T4 " ao(T12(R3 — RI)(n+d—2) + 1 Ri(n — 1))
n,0 = 2 _ p2 1/2 (277)
Fl?(RZ Rl) 200171 (20(1F12F2)
and
_ n 2 p2 _ 20
Ln,o _ _ < 2F1 _ ) F12(R2 Rl)(n +d 2) +I'1 R (n 1) ' (2.78)
F12 (R2 - Rl) 2a2F1F12
Similarly, as y1 — —oo, for n > 3, from (Z71]) and (270) we get
~ 1-d - 1 -
Dno=—=1n=3y — 559——55Dn-1,0 — 559555 Dn—2,0.
0T 4e3 U U RE-RETTMYY (R R

Since from (247) for n =1 and (Z64]), we have

d(R3 — R3) + R}

D=0, Dag=— 102 )
2

we deduce
d(R3 — R}) + R} + R3

53,0 =
4a3(R3 — R?)
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and for n > 4,
. _1 n+1
Dno = #272
4a3(R3 — RY)

and therefore thanks to (270, we obtain

((d—2+n)(R5 — R}) + (n — 1)RY),

_1)n+1

Lno= —((d—2+n)(R3 — RY) + (n— 1)RY).

202(R3 — RY)
The main results obtained in this section are summarized in the following proposition.

Proposition 2.7

A-1(y1) = R%#ZR%
1/3141/3 1/3 1o
)= e (5 ) e () row®
Vo(yl) ylfioo 0
Ao(y1) = ;le B Z_Zyo(yl)Q yitoo 205T12 " +0Wi)
Ao(y1) B 2%2
np) = T (—% — 2dv — 4y11/6')
1-d 1—3/2 I O(yfg/z) fd—23

2(20111“21“13)1/2 Yy
6R2

a2R? 5 —9/2 —15/2 . _
T (2aiT1aT2)1/2 (alag(R(éflR%)Fm - E) Y1 T+ Oy, ) ifd=1

1% (y1) ~ 0

Y1 —>—0Q
Qo day R?
)\1(1/1) = —2a—2V0V1 =+ W)\g)\71
ap(d—1)  —1 —4 . -
_ 2(;1(121;12 Y1+ 02(y1 ) if d=2,3
N 3agR 4R 5 —4 -7 . _
y1 =400 2&1221“112 ((Rng%)Fm - F_2) y;  + Oy ") ifd=1.

M(y) o~ 0

Yy1—>—00

and forn > 2,

I )n ao(T12(RE —R)(n+d=2)+T1RI(n—1)) . 52 no11/2
Vn = R +0
W) y1—=+oo <F12(R3 - R?) 201" (2a1F12F2)1/2 h (2 )

Un (yl) ~ 0

Y1 —+—0o0
-T1 "Ti2(R3—R)(n+d—2)+T1Ri(n—1) , nes
An = -
W 5. (o) ) v O )
(_1)n+1

Anl(yr) = ((d—2+n)(R; — R}) + (n — DRy~ + Oy 7).

y1——00 20(2(R% — Rf)”

3 Truncation of the asymptotic expansions

In section [2] we have explained how to calculate asymptotic expansions into powers of € of w, 7, v, A

and p in such a way that (CI5), (LI6), (TI7), (TI8) and (LI9) provide formally solutions to (LI3)

at any order. However, we have not said anything about the convergence of these formal series. In
this section, we prove that the truncations of the formal series at a finite order provide approximate
solutions to (ILI3)) at a arbitrarily high order in terms of powers of . More precisely, M, N and L are
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three fixed positive integers, and we set in all the section
M
wz) =Y eMwm(2),  T(z)= Y " Tm(2),

€2n/3)\n (yl )7

I
M=

m=0
N
vip) =D e Pua(y),  AMw)
n=0

L
wly2) = Y un(ya), (3.1)

where the wn’s, Tm’s, Vn’s, An’s and puy’s are the ones calculated in Section The way integers M,
N and L are chosen is explained in Sections and below.

3.1 Consistency of the ansatz

Ansatz (L20) requires the calculation of A(y1)1/2 for z € Suppxe. C Di1. So it makes sense to combine
(LI9) and @BJ) only if the function X given by (B.I)) satisfies A(y1) > 0 for & € Suppy.. We next show
that the last inequality indeed holds for x € D;.

Lemma 3.1 Let N > 0 and A given by (31). There exists C > 0 (which might depend on N) such
that for e € (0,1] sufficiently small, for every x € D1,
A1) = Ce=2/5,

Proof. Let x € Dy. Then y2 > (R% — R%)/E2/3 — 25572/37 —2e0-2/3 < y1 < 2{5‘372/37 and since 7o is
increasing and yo(y) ~ ./, we get on the one side

Yy—>+o0

2 p2 _p-2/3 R2 _ R?
~2/3 \ _ Y @ 2 R; —Ri ¢ o o 6-2/32 _ B L o(P-2/3
¢ -1t O(yl) 2ai2 Qa2 Vo(yl) - 205252/3 Qa2 (0% ( c ) 20(252/3 T (6 )7

whereas for n > 1, thanks to (2.50)

Pyl < g™ (pyaicny + 11" 211, 21y) < 6™ max(1, 677D 072
< Epmax(e2/3 P — 023, (3.2)
2 2
for some ¢, > 0 and &, = 2" %¢c,. As a result, for € sufficiently small, we have A(y1) > 5122;'?/13 for
every x € Dy. . n

3.2 Truncation of (w,7) in Dy

In this section, we prove that (1)) provides an approximate solution to (ILI3) in Do at an arbitrarily
high order. For convenience, we use the same notation w for the functions z — w(z) and z — w(z) =
w(RY —|z]*).

Lemma 3.2 Let M > 1 be an integer, 8 € (0,2/3) and w,T given by (31). Then

2 Aw + %(RS — Rw + 2w — 2010° — 2007w = (P 3AMF2-36/2)
a2

L= (Do)

and
HEZAT + (R} — R} 4 2)7 — 2as7° — 2a0w27HLOO(DO) = O(e @ 3RIMF2=28y
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Proof. Thanks to (Z0), 27) and (Z8), we have

e2Aw + %(RE — Rf)w + 2w — 200w — 2007w
Qa2

M+1 M M
2 Qo 2 2 2 2
= E € mAwm,1+a—(R2—R1) E e wm + 2 E e Wm.
m=1 2 m=0 m=0
3M

2m 2m
—201 E I3 E Wy WmsWms — 200 E I3
m=0

mq + mg +m3 =m

>

mq + mg +m3z =m
0 < my,mg,mg < M 0< my,mg,m3g < M
3M
2(M+1 2
= S2MEDAGY — 204 E e m E Winq WimaWimg
m=M+1 my + mo +mg =m
0 < myp,mg,mg < M
3M
2m
—2&() E 3 E Tmq TmoWmg - (33)
m=M+1 my + mo +mg =m
< mp,mg, m3 < M
From Lemma 2] (Z6), (27) and Remark 2:2] we infer that for every x € Do,
2 Qo 52 2 3 2
e"Aw + —(R; — RT)w + zw — 20nw” — 20007 w| (3.4)
Qa2
3M 3M
2(M+1) _—3/2—3M 2 2— 2m _5/2— 2-3B8)M+2-35/2
< L2(M+1)  —=3/2-3M | Z £2m ,3/2-3m | Z g2m 5/ 3m56( 36)M+2-35/2
m=M-+1 m=M-+1

Similarly,

2AT + (R% — R% +2)T — 207> — 200w T
M+1 M
= Z e AT_1 + (Rg — R+ 2) Z e

m=1 =0

3M 3M
2m 2m
—2ao € Tmi Tme Tmg — 200 I3
m=0 m=0

mq + mg +m3 =m

m1 + mg + m3
0 my,mg,m3g < M 0< mqy,mg, m3
3M
2(M+1 2
= S2MIAL — 200 E e E Tmq Tma Tms
m=M+1 my + mo +mg =m
0 < my,mg, m3g < M
3M
2 2m
— 20 3 Wmy Wmg Tmsz
m=M+1 my + mo + mg

thus for z € Do,

|e®AT 4 (R3 — R} + 2)7 — 2027° — 200w 7|

~

m=M++1

3.3 Truncation of ('/3v,¢'/3\1/2) in D,

Lemma 3.3 Let N > 4 be an integer, and v, \ given by (31). Then

3 2
2A (51/3y) + <%(R§ - R%) + z> Py — 20, (61/37/) — 2ap (51/3)\1/2) et/3y
2

23

3M
< (2-38)M2-5 | Z €2m2173m56(273ﬁ)M+272,8.

L (Dy)

(3.6)

_ 0PN/



and

3 2
S2A (61/3)\1/2) + (RS o Rf + 2)51/3)\1/2 — 20 (61/3)\1/2) — 200 (51/31/) c1/3)1/2 _ O(&’BN+27§).
Lo (Dy)
Proof. Using B31), (232) and Z40) for n € {1,--- , N}, we get
3 2
et <52A (EI/SV) + <%(R§ —- R} + z) Py — 20, (61/37/) — 200 (51/3)\1/2) 51/3y>
RS — R}
= BAp +a0 %V—i—yll/—QOﬂV?’—QOzo)\V
g2/3
R5 — R}
= 24?3 + 4R%V” 462/3 "4 %%V + y1v — 20411/3 — 200 AV
€
N+1 N41
- _9d Z e2/3y |+ AR? Zgznm "y, Z e2n/3,1 4 (R2 R?) Z e2n/3y, 1
n=—1
N
+11 Z 23y, — 204 Z g2n/3 Z Uny UnaVng — 200 Z g2n/3 Z AnyVngy
n=0 n=0 ni+ng+ng=n n=-—1 ny+mng =n
0< np,ngz,n3 <N —1<np <N
0< nyg <N
N+1 N+1
- _—92d Z E2n/3y7/1 ) +4R2 26271/3 " 4y1 Z E2n/3]/’:1/7
N 2N
+uy1 Z 3y, — 20y Z gn/3 Z Uny UnaVng — 200 Z gn/3 Z AnyVng
n=0 n=0 ny+ng+ng=n n=0 ny+mng =n
0< ny,ng,ny <N 0< ny, g <N

_ _2d€2(1\r+1)/3y5v —4y1€2(N+1)/31/Xr

3N 2N
—201 Z /3 Z VnyVnaVng — 200 Z g2n/3 Z AniVng (3.7)

n=N+1 ny+mng +ng=n n=N+1 ny+mng =n
0< nyp,ng,n3 < N 0< ny,ng <N
2N—-1
2(N+1)/3 / " 2n/3
= g2N+/ —2dvy — dy1vy — 20 E g2/ E VniVnoVng
n=0 ny+mng+ng=n+N+1

0< ny,ne,n3 < N

N-1
2n/3
—2ap E e/ E AnqVny
n=0

ny+mng =n+N+1
0< ny,ng < N

Thus, if we note that for x € D; = <x € ]Rd| _9gh—2/3 <y < 25372/3}7 |E2/3y1| < e? s50ase— 0,

we have thanks to (Z49), (250) and ([Z51)

R — R}
3 Av + @0 2271/ + v — 2a11/ — 200\
e2/3
2N—1
< 62N/3+5/3 max(l,yl)waz +€2N/3+5/3 Z 6211/3 maX(Lyl)n+N+175/275/2+1/2
n=0
N-1
+62N/3+o/3 Z 62n/3 ma‘x(lyyl)n+N+lf‘)/272
n=0
< £2N/3+5/3 max(1, yl)N—7/2 < £2N/3+5/3 max(176(ﬁ72/3)w*7/2)) = PANHA=TE/2 (3.8)
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where the last equality holds because N > 4. The first estimate of the lemma is proved. Similarly,

from (1), 230), (Z34) and 241), we deduce
e2A (51/3)\1/2) + (Rg . Rf + 2)61/3)\1/2 — 20 (51/3)\1/2)3 P (51/3]/)251/3)\1/2

— e [—da2/3,\A’ (R? — By )N 4 2(R2 — 23y AN 4 o) — 2000 — 2a0u2,\2]

2N+3 2N+2
—1/3y—-3/2 2n/3 ’ 2 2n/3 "
e A —d E e Ang Ang + 2R e Ang Ang
n=1 ny+mng=n-—3 n=0 ny+ng=n-—2
—1< ny,ng <N —1<ny,ng < N
2N+3 2N+2

2n/3 1" 2 2n/3 / ’
2y e > Xy An, — R Y e > Ay Ay
n=1 ny4+mng=n-—3 n=0 ny4+mng=n-—2

—1<mny,ng <N —1<mny,ng <N
2N+3 2N+1
2n/3 ’ / 2 2 2n/3
tyr Y e > Ay Ay + (B3 — RY) > & > Ay Ans
n=1 ny+mng=n-—3 n=-—1 ny+ng=n-—1
—1< ny,ng <N —1< ny,ng <N
2N+2 3N+2
2n/3 2n/3
1 Y e > AnyAny — 200 Y & > Ay Ang Ang
n=0 ny+ng=mn-—2 n=-—1 ny+ng+ng=mn-—2
—1< ny,ng <N -1 < ny,ng,n3 <N
4N+2
2n/3
—2a0 E g2/ E Ani Ao Vng Vny
n=0 ny+mng+ngt+ng=n-—2
—1< ny,ng <N
0< ng,ng <N
2N+3 2N+2
—1/3y-3/2 2n/3 / 2 2n/3 "
= e AT —d > 2 > AnyAn, +2RT D & > Aty Ans
n=N+1 niy+ng=mn-—23 n=N+1 ny+ng=n-—2
—1< ny,ng <N -1 < ny,ng <N
2N+3 2N+2
2n/3 " 2 2n/3 ! /
-2y e > Xoydny, —RE Y& > DYDY
n=N+1 ny+mng=n-—3 n=N+1 ny+mng=n-—2
—1<np,ng <N —1<ni,ng <N
2N+3 2N+1
2n/3 / ’ 2 2 2n/3
tyr y . e > Ay Ang + (B3 — RY) > &/ > Ay Ans
n=N+1 ny4+mng=n-—3 n=N+1 ny4+mng=n-—1
—1< ny,ng <N —1<ny,ng < N
2N+2 3N+2
2n/3 2n/3
1 Y e > Ay Ang — 200 2 > Ay Anp Ans
n=N+1 ny+ng=n-—2 n=N+1 ny+mng+ng=n-—2
—1< ny,ng <N —1< ny,ng,n3 < N
4N+2
2n/3
—2a0 E € E Ang AngVnaVny (3.9)
n=N-+1 ny+mng+ngt+ng=n-—2

—1< ny,ng <N

0< ng,ng <N
In order to estimate this quantity, we consider separately each sum appearing in the bracket in the
right hand side of [33). Let us focus for instance on the first one. If n > N 4+ 1, n1 + no =n — 3 and
ni,n2 > 1, then we infer from ([Z350) that for z € Dy (which implies |y1| < ¢?~2/3), we have

6211/3 6277,/37 €2n/3+(672/3)(n78)) — HlaX(Ezn/B, 6Bn+8(2/37ﬁ))

max(L, Jy1[)" " S max(

E2n/3|)\/n1)\n2| 5
< max(e2NTD/3 BINFDHE2/3-0)y
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If one of the two indices n1,n2 belongs to {—1,0}, whereas the other one is larger than or equal to 1,

we infer similarly thanks to (2.30), (234) and (2350) that

E2n/3|)\fnl)\n2| 5 maX(EQ(N+1)/37EB(N+1)+5(2/37[3))'

Finally, If N > 3, the conditions n1 +n2 = n — 3 > N — 2 excludes the case where both n1 and ng
belong to {—1,0}. Using similar arguments as well as Lemma [3.I] we deduce that for z € D; and N
large enough,

2A (51/3)\1/2) + (RS _R 4 z)51/3)\1/2 — 2a (51/3>\1/2)3 ~ 20 (51/3u)251/3)\1/2

—-1/3

52(N+1)/37EB(N+1)+2(2/375)) 5 EﬁN+27ﬁ. (3'10)

< e Pemax(

3.4 Truncation of (0,eY3y) in D,

Lemma 3.4 Let L > 1 be an integer and p be given by (31]). There exists C > 0 such that for z € R?
and € €]0, 1],

3 Cg2L/3+5/3

< T (3.11)

A (51/3u) + (R3 — R} 4+ 2)e"3 1 — 20 (51/3u)

where y2 = (R% — |x|?)/e*/3.
Corollary 3.5 Under the same assumptions, there is h € L*> N L* (Rd) such that for every x € R?
and € €]0, 1],

3
2A (51/3u) + (R% — R? + 2)e" 1 — 200 (El/su) < 2L (). (3.12)

Corollary 3.6 Under the same assumptions, there is C > 0 such that for x € D1 N Dy and ¢ €]0,1],

3
2A (51/3u) + (R — R? + 2)e"* 1 — 200 (El/su) ’ < et (3.13)

Proof of Lemma [3.4l Taking into account the equations satisfied by the u,’s, namely
ARG + yapto — 202415 = 0 (3.14)
for n = 0 and

ARSpm =200 oy Hngfhng + 2001 + Ay2pin 1 — Yapin (3.15)

nit+ng+ng=n

for n > 1, we infer

3
A (51/3u) + (RE = R}+2)e" 1 — 20 (51/3u)

= e(e"PAp+ yap — 2a0”)

3L
- ¢ _2d€2(L+1)/3‘u/L _ 4y2€2(L+1)/3,U4l[/, — 209 Z 62”/3 Z Ly o fims
n=L+1 ny+ng +ng=n

0< ny,ng,n3 < L

2L—-1
= I _odpy — dyopl — 200 Y 2P > Hny fina fing | - (3.16)
n=0 ny+not+ng=n+L+1

0< ny,ng,n3 < L
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Let us define for y € R

ho(y) = (1+ [yI** /%) max | |u% )], lyui (v)], max iy (1) tny () s (1)

0<n<2L -1
ny+ng+ng=n+L+1
0<ny,ng,n3 <L

Thanks to (2.19) and Propositions 2.4 and [2.6] ho is uniformly bounded on R. The lemma follows. =

Proof of Corollary For € R? and ¢ < 1, one has

1 if |z|? < 2R3
W if |x|® > 2R3
(=)

The corollary follows, since L > 1 and d < 3 imply h € L*(R?). "

: = 1 <h _
1+ |y2|2L+1/2 o RZ—|z|?) 2L+1/2 (x) -
1+ (ﬁ)

Proof of Corollary The corollary follows from Lemma [3.11] and from the inequality

1 < AL/3+1/3
1+ [yo|PEF172 ™ )

that holds for z € Dy N Ds. "

3.5 Comparison of (w, 7') and £'/3(v, \?) in Dy N D,

Lemma 3.7 Let N € N*, M > 2N, and w, 7 given by (31)). Then for everyl > 0,

Z 3= 3,8
1
o _ 2m d_( 1/273m+n) _ ( /J‘(N+1/2—l))
w Z e wmn o (2 S0l (3.17)
(m,n)€EN?
(2—3B)m+Bn<BN L (DgND1)
and
1
1) 1/2 2m d 1+n—3m _ B(N+1-1)
T = A L= — Z e tmm ] (2 ) = o(e ). (3.18)
(m,n)eN?
(2—-38)m+pn<BN Lo°(DoND1)
where the Wm,n’s and the tm,n’s are defined in Lemmal21] and (213).
Proof. From Lemma [Z1] for every [ > 0
M M 0o 4
(l) (l) ~ 2m « 1/2—3m+n
Z Z:O Z ¢ E:O d ( )
m=0 m=0 n=

dl
- 2m 1/24k
A E E e Win,n ] (z ) (3.19)

k=—3M (m, n)E{O M}XN

n—3m=k
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Thus, since € Do N Dy implies €® < 2 < 2e® = 0ase — 0,

N
wh(z) = Z ( Z Ezmwm,n)dd_;l(21/2+k)+0(21/2+N7l)

k=—3M (m, n)E{O -, M}xN
n—

3m=
dl
_ Z Ezmwmn_ (zl/2+n73m) +O(Zl/2+N—l)
z—0 ! le
(m,n)€{0,--- , M} xN
n—3m<N
d _ _
_ 2 1/2+4n—3 B(1/2+N—1)
250 Z € mwmm@ (Z G m) +0re (ponpy) (7 )
(m,n)€{0,--- ,M}xN
n—3m
2m+B(1/24n—3m—1)<B(1/24+N—1)
dl
_ 2 1/24n—3 B(1/2+N—1)
= Z € mwm,nw (z /2tn m) + 0p,00 (DyDy) (€7 ). (3.20)
(m,n)€N2

(2=3B)m+Bn<BN

Note that the assumption on M in the statement of the Lemma ensures that the set {(m,n) €
N?, (2 —38)m + Bn < BN} is a triangle included in the rectangle {0,--- , M} x {0,---, N}. Similarly,
we infer from Lemma 2] and (2I3) that

(l) 2m (l) —~ 1/2 2m 1 3m+n
ZE =, 110+Z€ Ztmndl )
1
~ 1/2 2m d_ 1+k
S Mihi=ot Z > 7 (#17)

k=—3M (m,n)e{0,---,M}xN

n—3m=k
d' ~
o AP0 + Z Z ™t = (zl+k) +o(ZN Y,
k=—3M (m,n)e{0,--- ,M}xN
n—3m=k
Thus,
m d n—3m _
T(l)(z) =, )\l/zll o+ Z &2 tom @(ZH 3 )+0Loo(DomD1)(€’B(NH z))
(m,n)€{0, -+ ,M}xN
2m+(14+n—3m—1)B<(N+1-1)8
1
= A7 2 d_(1+n=s B(N+1-1
= A= + ( z): 2 e tmn = (z n m)+0L°°(DoﬁD1)(5 ( ))' (3.21)
m,n)eN

(2-38)m+Bn<BN

]

Lemma 3.8 Let N > 1. We assume that B € (0,2/3)\Q. There exist two families of numbers
m

(nm,n)m>0,n30 and (Im,n)m>0,n>0 which do not depend on N such that if v and X are given by (1)),
then forl =0,1,2,

d m d' Sman _
w (51/3Z/(y1)) — Z 52 Tlmynw (21/2 Sm+ ) :0 o (Eﬁ(N+1/2 l)) (322)
e—
(m,n)EN2
(2—3B)m+Bn<BN L (DgND1)
and
d (i 1/2 1/2 2 d s B(N+1-1)
m mn—om _ —
] (E Aly1) )—)\ 1,— 0—( z): ] e lm,n ] ( ) o o(e (3.23)
m,n)€EN
(2—3B)m+Bn<BN Lo (DgNDy)
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Proof. For x € Dy N D1, we have 2e0-2/3 >3 = #2345 1o ase — 0. Thus, we infer from

249) and ZEI) that for every I > 0,
d' ( 1/3
o ()
dy
oo N oo
S D Mo (/2707) S N (377 )
y1—+oo — ’ dyi ! — = T dyt i

oo oo
1/3
=~ No,me
y1—+oo mz; " y

_ d [ s
(y}h 3m)+ Z Z N7L,m51/3+2n/3_l (111 5/2 k)

d
1 k=—N (n,m)e{l,-,N}xN Y1
3m—n=k

d 1/2— 3BN_
_ Z No, m51/3 (y1/2 Sm) +51/30(y1/ 2-38 )

y1—+o0 d l
osm \2735
d e —5/2-38N-2,3 4
+ Z Z N7%m51/3+2n/3d_z (111 5/2 k) + eoly, 5/2— 555" ).
_N<k<38N-2_ 35 (n,m)e{l,--,N}xN Y1
SN 2-3p 3m—n=k
Thus, for x € Do N D1, we have
d' 1/3 )
— (e v
o ()
VE Z 27 N, d (21/273m) 4 /3 Z N €2+2md_l (275/2+n73m)
Mzt m dz!
o<m<2f3ﬂ1v (n,m)e{1,- ,N}xN
3m—n< 2N323273
oL Dy (PN FDH@/3-B)
1 I
_ 213 2m d 1/2—3m 21/3 om d 1/24n—3m
= ¢ Z € No’m@ (z )—|—E Z *Nn,m,ls E(z )
0§m§2f}3ﬂN (n,m)e{1,-- szv}éN
3m— n< 5—35
_‘_OLDO(Dole)(EB(N+1/2)+(2/3*5)l)
1 I
20/3 2m d_ 1/2—3m 20/3 2md_ 1/24n—3m
AT o () T N ()
o<m< 5 N (n,m)eN*?
(2—-3B)m+pn<BN
+op00 (Do, (7N THRTEREAL), (3.24)

where in the last equality, we have neglected all the terms in the sum over (n,m) which can be
incorporated in the rest term, and we have used that the condition

(n,m) e N*?,  (2—38)m + fn < BN (3.25)

clearly implies n < N (even n < N, in fact), as well as

38N — 2
-n< ——-F. 2
3m—n 538 (3.26)
Indeed, (B28) can be rewritten as
1 1 3 BN
Ligm 1 < , 2
3(3m n)+n<3+2_3ﬂ) 5-35 (3.27)

which yields ([3:26) if we take into account that n > 1. The result follows from the change of variable
_ .23 ;
z = ¢e~/y1, with
No,m lf n=20
Nmyn = 0 if n>landm=0
Nnm—1 if n>1landm>1.
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Similarly as for /%, we have

% (52/3)\(311))

1

= d | gm N o3 o d | ogm
S Ao +2S Lowr (177) 4TS Ly (7)
n=1 m=0 1

o
y1—+o0 0 dy;

oS} 1 N oo 1
~ 2/3 d_ 1-3m 2/3 2n/3 d_ 14+n—3m
W Ailp—oy +¢ Z Lo,m ! (i °™) +e Zs Z Lnm—1 iy (1 )
m=0 1 n=1 m=1 1
N oo dl
~ Aqls_ 2(n+1)/3 L —— 1+n—3m 3.98
oo 11l=0} +;E mz::O T (y1 )7 ( )
with
LO,m if n=0
Lnm = 0 if n>landm=0
Lym—1 if m>1landm > 1.
Thus,
Ll (52/3)\@1))
dyt
~ Aqlior + i m62(n+1)/3_( l—k)
y1rteo e k;N (n m)E{%;- N}xN 7 dyi .
3m—n==k
= otz 4 ([ 1ok 23, 1—3255—1
j+00 )\711{1:0} + Z Z Ly,me d_l (y1 ) +e€ O(yl )
vi _N<k< 38BN (n,m)e{0,--- ,N} xN i
SR 2-38 3m—n==k
= 2(n+1)/3 d' 1—3m+ 2/3 1-28% 1
= Aoalg—g + > Lome™ " (77 ) + e oy, ). (3.29)
y1rteo (n,m)e{0,--- ,N}xN dyl
3m—n< 2353{\;3
Therefore for x € Do N D1,
d" [ a3
a4 \ )
A GREL)
I
_ 7 om 2173 d 1—3m+n 21/3 B(N+1—1)
y1;+oo )\711{1:0} + Z Ln,m5 € w (Z ) +e€ OL“’(DOI'WDI)(E )
(n,m)e{0,--- ,N} xN
3m—n< ;E?]’\g
1
_ 21/3 7 2m d 1—3m+n 21/3 B(N+1—1
e Ao1lg—oy +¢ Z ] Lp,me ] (z ) + €7/ 000 (pynpy) (€ )(}3.30)
(n,m)eN

(2-3B)m+Bn<BN
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thanks to the same remark as in (3:27). In particular, for I = 0, we get

BN (y1) V2 (3.31)
1/2
_ A1+ Z Ln,m52m2173m+n+0L°°(D00D1)(EB(N+1))
(n,m)€N2
(2=3B)m+pBn<BN
k
N+1
_ 1/2 + Z Ck Z Lny7n527nz173m+n + OLOO(DUle)(Eﬁ(NH))
(n,m)€N2
(2=3B)m+pBn<BN
N+1 k
1 2 ¥ - ” ” N
= \Y +Zcm Z HL njmy ( g2y Byt T 4 opee (D) (€ PN
k=1 ((n1,my), (g my)e(N)F J=1
Vi€{l,-- ,k}, (2=38)m;+Bn;<BN
N+1 k
1 2 2m _n—3m ' N+1
N +chz S e 3 [ L, +orponny (€73 Y)
(n,m)eN? ((n1,m1), (ng,my))€(N?)F 5=1
(2=3B)m+Bn<B(N+1—k) nytotng=n
mi+---+mp=m
n+1 k
_ )\1/2 + Z EQmanSerl ch Z HLnj,Mj +0L°°(D00D1)(EB(N+1))7
(n,m)eN? k=1 ((n1,m1),+,(ng,mg)) NP I=1
(2—38)m+Bn<BN ni+-4np=n—k+1

mi+---+mp=m

=:lm,n

where the c¢’s are some real coefficients. So, we have proved [3.23)) for I = 0. In order to prove ([B3.23))
for [ = 1, we first write

d;;jl (El/SA(yl)l/Z) _ %d;;l (52/3)\(1/1)) (52/3)\(1/1))71/2'

—1/2
Then, note that (62/ 3)\(y1)) has the same kind of asymptotic expansion as the one that appears

in the right hand side of (831]). Indeed, the same calculation can be done with the power 1/2 replaced
by —1/2, which only changes the values of the ¢;’s. Thus, for some coefficients (tm,n)m nen2, We have

~1/2 _
(52/3)\(y1)) = A 1/2 + Z M Iy + OLoo(Dole)(Eﬁ(N+1)) (3.32)

(n,m) eN?
(2=3B)m+pBn<BN
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From the product of this expansion with (330) for [ = 1, we infer that

d 1 7 m d —3m—+n
dys (61/3>\(y1)1/2) = 5" > Lnme™" == (2" 7274") + € oL (g, ) (€7)
dy1 2 dz
(n,m)€EN?

(2=3B)m+pBn<BN

« )\:}/2 + Z 62m2n73m+105m,n + OLm(Dole)(E,B(NJrl))
(n,m)€N2
(2=3B8)m+pBn<BN
)‘71/252/3 = 2 3
= —5— > Lnme™™ (1 —3m+mn)""""
(n,m)EN2
(2-3B)m+Bn<BN
g2/3 2 -3 7

+T Z e =z Z Lnl,ml(l —3ma +n1)am2,n2

(n,m)eN* xN ni,nz,mi,maEN

(2—-38)m+pn<BN nit+ng=n—1
mi+mo=m
+OL°°(D00D1)(5ﬁN+2/3)
= 82/3 Z l:n’nEszn73m + OLoo(DOmDI)(<‘;‘/BN+2/3)7 (3.33)
(m,n)€N2

(2—3B8)m+Bn<BN
for some coefficients [;,, , € R. In order to prove ([823), it is now sufficient to establish that for
every m,n > 0, the I, ,,’s and the L »’s, defined respectively in (333) and B3I, are related by
lUpn = (147 —3m)lm,,. For this purpose, we note, for z € [¢7,2¢7] 6(2) = €'/3A(y1)"/?, such that

according to (B3] and (B333)),

0(z) = )\1,/12 + Z L2273 OLoo(Dole)(EB(N+1)) (3.34)
(m,n)€N2
(2=3B)m+pBn<BN
and
0'(2) = > U n€™ 2" 3™ 4 000 (Do) (E77). (3.35)
(m,n)eN?

(2-38)m+Bn<BN
Then, we have on the one side from (3.34))

0(2¢") —0(c”) = > L (277371 ) @IOMEBAD) (PN H336)

(m,n)eN?
(2-3B)m+Bn<BN

whereas on the other side, thanks to (3:39),

2¢8

0(2¢") - 0(c”) = Z l;n7n62m/ A P oLm(Dole)(sﬁ(NH))
(m,n)€N2 e?
(2—3B)m+Bn<BN
l —3m+1 2-3
_ m,n n—3m -1 ( B)m~+pB(n+1)
Z n—3m+1 ( )e
(m,n)eN?
(2—38)m+pBn<BN
n—3m#—1
+1n(2) > U m€™ 4 0100 (pyrpy) (€7 TH). (3.37)
(m,n)eN?
(2736);71+_ﬁn1§ﬁN

Since (3 is not rational, the family of functions of the variable ¢, (52'”*‘3(”“73'”))(%“)61“2 is linearly

independent, and we deduce by comparison of (336) and B3T) that I, , = (n — 3m + 1)lm,n, in both
casesn—3m+1#0and n—3m+1=0. B23) for [ =1 follows. The proof for [ = 2 is similar. =
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Lemma 3.9 Let N > 2 be an integer, o > 0 and B € (0,2/3)\Q. Let (61,02)0<e<s, be a sequence of
pairs of reqular functions defined for z € [€°,2e?], such that

A0y + %(RS — R0y + 201 — 20103 — 200020,
2

—0 (s‘*(N“/z)) (3.38)
L (DoND1)

and

|€2A02 + (R — R?)02 + 202 — 202603 — 2006202 55“\’“)) (3.39)

HLOO(DoﬁDl) =0 (

are satisfied, where AO; refers to >¢_, 83722 (0;(RY — |z|?)) = —2d0)(z) + 4(R} — 2)07(2) (with z =
k

R} — |z?). We assume that there exists two families of real numbers Pm.n, Gm.n, defined for every

(m,n) € N? such that (2 — 38)m + fn < BN, such that

1
0 2 d [ 1/2-3m+ _ B(N+1/2-1)
vi € {0,1, 2}, 0" — E € mpm,n—dzl (z m ”) =,© (5 )3.40)

E—r
(m,n)eN?

(2=3B8)m+pn<BN L>°(DgNDy)

and

vie{0,1,2}, |6 -\ TP1pme - Y. €& qm,ny(z1+ sm)

(m,n)EN2
(2—3B8)m+pn<BN

= o(ePNT1Dp3.41)

e—0
L (DoND1)

Then, equations (340), (341), (3:38) and (3.39) entirely determine the values of the pm,n’s and the
Gmn’s for (2 —3B)m + Bn < B(N — 1). Moreover, these coefficients do not depend on N or (3.

Proof. For convenience, for every (m,n) € N?, we denote Pmn = (1/2 = 3m + n)pmn, P =
(—=1/2=3m+n)(1/2 = 3m+n)Pmn, Gmn = (L + 17 —3m)gm.n and g, , = (n —3m)(1 4+ n — 3m)gm,n-
For functions (61, 62) that satisfy ([340) and (34I), let us calculate the function that appears in the
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left hand side of (&3%), evaluated at z = €”. In the calculation below, implicitely, 8; = 6;(e?).

A0, + %(R% — R2)01 + 201 — 20167 — 200020,
2

e D R R e
m,n=0
(2—3B)m+Bn<BN
AR Z p%’ng(zfaﬁ)(m+1)+6(n+1)+6/2
m,n=0
(2—-38)m+pBn<BN
—s-@(RE _ Rf) Z P L e(2m3PmEBn+p/2 Z D L e2—38m+B(nt1)+5/2
Q2 ’ ’
m,n>=0 m,n20
(2—38)m+Bn<BN (2—38)m+pBn<BN
Y Z ( Z pm1,nlpmz,ngpmg,n3)€(273’8)m+6”+3’8/2
m,n=0 mi,ma,m3,ny,n2,n3=0
(2-38)m+Bn<BN mitmatmz=m
ni+ng+nz=n
— 2001 Z pm7n6(2736)m+ﬁn+5/2
m,n=0
(2—3B8)m+Bn<BN
1/2 2-3 36/2
_4050)‘—/1 Z ( Z qml:”lmevn2)E( et pmans
m,n>0 my,ma,ny,nz=0
(2—38)m+Bn<BN nitnz=n
mi+mo=m
900 Z ( Z qml,nlqmz,nzpmg,m)6(273’8)%5%5[3/2 +0(6/3N+,B/2)
m,n>0 mi,mga,m3,n1,n2,n3 20,
(2—38)m+pBn<BN ni+natng=n
mi+mao+maz=m
2-3 2
= -2 Z (dp'lmfl,n72 + 2p;-:1—1,n72)5( Armronrs/
m2>=21,n>2
(2=3B8)m+pn<BN
AR Z p%717n71€(273ﬁ)m+5n+ﬁ/2 + Z P12 30mBn+E/2
m,n>1 m>0,n>1
(2=3B)m+pBn<BN (2=3B8)m+pBn<BN
—2a1 Z ( Z pwn7n1pm2,n2pm3»n3)6(273ﬁ)m+ﬂn+ﬁ/2
m>0,n>1 my,ma,m3,n,nz,nz >0
(2-38)m+Bn<BN m1+mat+mg=m
ni+ngt+nz=n—1
_4050)\17/12 Z ( Z le,nlpmg,ng)5(2735)"&[37&5/2 (3.42)

m>0,n>1 ni,ng,my,mz 20,
(2—38)m+pBn<BN ni+ng=n—1
mi+mo=m

§ E (2—3B8)m+Bn+3/2 BN+B/2
—2ap ( qmq,nq QM2,n2pm37n3)5 + 0(5 ):
m>0,n2>2 ni,ng,ng,mi,mz,mg =0
(2—3B8)m+Bn<BN n1tngtng=n—2

m1+mg+mgz=m

where we have used (Z30)). Since § is not rational, the functions ((0, €0) D€ 6(2*35)7”*8") )
m,neN

are two by two distinct, and therefore linearly independent. According to ([B:38]), we deduce from ([3:42)):

e form=0and 1<n<N,

Po,n—1 — 201 E P0,n1P0,n3P0,n3

ni,ngz,ng =0
ny+nz+ng=n—1

1/2
—daoX] E q0,n,P0,ny — 2000 g 40,1, 90,n3P0,ng = 0,
ni,nz20 ni,ng,n320
ni+no=n—1 ni+no+nzg=n—2

which can be rewritten as

Po,0 — 2041;08,0 — 4040)\1,/12%,0;00,0 = 0 (3.43)
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forn =1, and

2 1/2 1/2
Po,n—1 (1 — 6a1py,0 — 4o\ Q0,0) — 40X\ po.0go,n—1 (3.44)
1/2
= 2m > PO PomsPons + 400X D" qonpom, 200 D GomyGomaPong
0<ny,na,nz3<n—1 og<ny ,na<n—1 ni,ng,n3 =0
ni+no+nzg=n—1 ni+ng=n—1 ni+ng+nz=n—2
for n > 2.
e for I<m<B(N—-1)/(2—-38) and n =1,
2 1/2
ARIPm—1,0 + Pm,o — 201 > P 0Pma,0Pms0 — 400X ST Gy opmao = 0,
my,mg,mg =0 my,m2 >0
mi+mat+mz=m mi+ma=m

which can be rewritten as

Pm,0 (1 — 6a1pg,o — 4060)\1,/12%,0) - 4a0>\1,/12p0,0qm,0

2 1 1/2
= —ARppm_10+ 21 > Py 0Pms.0Pmg 0 + 400X > G ,0Pm{B-45)
o<my,mg,mz<m o<my,ma<m
mi+ma+t+mgzg=m my+ma=m

e for m > 1 and n > 2 such that (2 — 38)m + On < BN,

_2(dplmfl,n72 + 2p'lrlrz71,n72) + 4R%P%71,n71 + Pm,n—1
—2m Z Pmy,nyPma,naPmz,ng

my,mgz,m3,ni,nz,nz =0
m1+mg+mz=m
ni+no+ng=n—1

1/2
e e E Gy niPma,ns — 200 E gmi nigmanaPma,ng = 0,
mi,ma,ni,ng >0 my,mz,m3,n1,n2,n320
ni+no=n—1 ni+ng+nz=n—2
my+ma=m mi+ma+mz=m

which can be rewritten as
(1 — 6a1pgo — 4ao>\1,/12qo,o) Pmn—1 — 40‘0)\1,/12170,0(]771,7171 (3.46)

= 2(dplmfl,n—2 + 2p/r;L71,n72) - 4R%pfr‘lrz71,n71 + 201 Z Pmi,niPma,ngPms,ng

my,mgz,m3,ni,ng,nz=0
mi+mg+mz=m
ni+ngtnz=n—1
vj€{1,2,3},(m;,n;)#(m,n—1)

1/2
+4oo ] E Gy ,n1Pma,ne + 200 E qmy,n1 gma,naPms,n3-
my,ma,ni,ng 20, my,m2,m3,ni,nz,n3,mz=0,
ni+no=n—1 ni4+ng+nzg=n—2
mi+ma=m m1+mmg+mg=m

vi€e{1,2},(my,n;)#(m,n—1)
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Next, we perform the same kind of calculations with the function that appears in the left hand side of

(B.39).
e2A0s + (R3 — R3)0s + 202 — 20265 — 2000702

= -2 Z (d%ln,n + 2q,’7’17n)5(2*35)(m+1)+5(n+2)+5
m,n=0
(2=3B8)m+pn<BN
+4R? > gl 2N mE DBt 1) 45
m,n=0
(2—3B)m+Bn<BN
1/2 _
+(R3 — ROANY? + (R3 — RY) Z G e 23 mA BB
m,n=0
(2—3B)m+Bn<BN
+eP A+ 3 Grane P 3OmEBE) 4
m=0,n=0
(2—3B)m+Bn<BN
—2052>\3,/12 — 6ao A1 Z qmyn5(2*35)7n+ﬁn+5
m=0,n>0
(2—38)m+pBn<BN
1/2 B
—6aa ] Z ( Z qml,nlqm2,n2)s(2 38)m+B(n+1)+5
m,n=0 mq,ma,n1,m220
(2—-38)m+pBn<BN mi+mo=m
nitnz=n
2-3 +B(n+2)+
—2as Z ( Z P P L
m20,n20 m1,mg,m3,n1,n2,n3>0,
(2—3B8)m+pn<BN ni+ng+ng=n
mj+mgo+mz=m
1/2 B
_2040)\7/1 Z ( Z pm1,n1pm2,n2)s(2 38)m+Bn+8
m,n>0 my,ma,n1,n2>0
(2—38)m+Bn<BN mi+mo=m
nitnz=n
2-3 1 N+1
—2ap > ( > D s P, g mg )€ SEHBEHD S 4 (BN+D))
m,n20 mi,mg,m3,n1,n2,n3 >0
(2—3B)m+Bn<BN mq+mo+ms=m

nit+nz+ng=n
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Thus, changing the indices and throwing away all the terms that can be incorporated in the rest,

2Ny 4 (R3 — R3)02 + 202 — 20265 — 20100762

2-3
= =2 3 (v 21 )@
m>=1,n>2
(2—3B8)m+pn<BN
HART Y qoanae® S
m,n>1
(2—3B)m+pBn<BN
R VNED DR AT
m,n=0
(2—38)m+Bn<BN
1/2 -
+e" A2+ > A
m>=0,n>1
(2—38)m+Bn<BN
—BasA_1 Z qm,ns(2*3ﬁ)m+5”+ﬁ
m=>0,n>0
(2—3B)m+pn<BN
1/2 -
—6062)\,/1 Z ( Z le,n1QM2yn2)5(2 oy pnss
m>0,n>1 my,ma,ni,ng >0

(2—38)m+Bn<BN mi1+mo=m
ni+no=n—1

(2=3B8)m+pBn+p3
—2a E ( Z thnlqmz»nzqms;ns)s
m>0,n>2 my,ma,m3,n1,n2,n3>0,
(2—38)m+Bn<BN n1tngtng=n-—2
mi+ma+mz=m
1/2 2—-38)m+pBn+
—2060)\7/1 E ( § pml,nlpm2»"2)€( ? prh (3'47)
m,n>0 my,ma,n1,n2>0
(2=3B8)m+pn<BN mi+ma=m
ni+nz=n
2—-38)m+pBn+ N+1
—20(0 E ( E Pmy,niPma,ng quvnS)E( ? ’ ? + O(Eﬁ( ))'
m>0,n>1 my,mgz,m3,ny,nz,n3 =0
(2—38)m+Bn<BN my+mytmg=m

ny+nz+ng=n—1

According to (339), the right hand side of (347 is equal to 0, up to the rest term o(e?™+V). Thus,
the linear independance of the family of functions of ¢, (5(2735 ym+5 ") yields:

m,n=0

e for m = 0, n = 0, thanks to (230)), we get
—2(R3 — RY)qo0 = A7 (2a0p3,0 — 1), (3.48)
e form=0and 1<n <N,

(R3 — BY)qon + qon—1 — 602X-1q0.n — 62 A/} Z 40,7190,

ni,n220,
ni+no=n—1
\1/2
—2a2 40,71 G0,n2G0,ng — 2000 A} P0,n1P0,ny — 2000 D0,n1P0,n2G0,n3
ni,n2,n320, ny,n220 ni,ng,nz=0
ny+ng+ng=n—2 ni+ng=n ni+ng+nzg=n—1
which, using ([2:30]), can be rewritten as
2 2 1/2
—2(R3 — Ri)qo,n — 4aopo,o A} po,n (3.49)
_ )\1/2
- —qo,n—1 + 60{2 1 qo,n1 q0,no + 20{2 qo,n190,n290,n3
ny,n220, ni,ngz,n320,
ni+no=n—1 ni1+no+nzg=n—2
200\ "/? 2
+200A 4 P0o,n1 Po,ny + 2000 Po,n1P0,n240,n3,
0gny,ne<n ni,ng,n320
nit+nz=n nit+na+ng=n—1
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e for 1 <m < BN/(2—-38) and n =0,

(R3 = RD)am,0 — 602A-1Gm0 = 200AY 3" Py 0pma0 = 0,

mi,ma 20,
mi1+mo=m

that is

— 2(R§ — R%)qm,o — 4a0p0,0)\17/12pm’0 = 2a0A£/12

Y. Pmopmeo. (350

o<my,ma<m,
mi+mo=m

e for m > 1 and n > 1 such that (2 — 38)m + n < BN,

_Q(dq;nfl,n72 + 2‘]7’7/171,7172)1{7122} + 4R%qg171,n71 + (Rg - R%)Qm,n + gmn—1

1/2
_6042)\71Qm,n - 6052>\,1 g dm1,n149mso,ny — 202 g dmq,n14mso,nyqms,n3
my,m2,n1,n2 >0 my,mg,mg,n1,n2,ng =0,
mi+mo=m, ni+ng+ng=n—2
ni+no=n—1 my+matmg=m
1/2
=200} E Py ny Pma,ng — 200 § Py ny Pma,naGmy,ng =0
mi,m2,n1,n220 my,mgz,m3,n1,ng2,n320
mit+mo=m mi+mga+mz=m
ni+ng=n ni+ng+nzg=n—1

which can be rewritten as

_2(Rg - R%)Qm,n - 4060)\1,/12p0,0pm,n

= Q(dq;nfl,n72 + 2q:7l171,n72)1{n>2} - 4R§q7’7/171,n71 —Gm,n—1+ 6042)\17/12 Z dmy,n1qma,no

0<my ,ma,ny,n2
ni+no=n—1
mi+mo=m

+2a2 E gmy,n1gma,naqms,ng (3.51)
my,mg,m3,ni,ngz,ng=0
nit+na+ng=n—2
my+mgtmg=m
+2a0A "/} +2
QoA_y Pmy,niPma,ng @o Pmy,ni1Pma,naqms,ng
my,ma,n,nz 20 m1,mz,m3,n1,n2,n320
m1+mo=m m1+mat+mgz=m

ni+nog=n
vie{1,2},(m;,n;)#(m,n)

ni+nzt+ng=n—1

Next, we show that the system of equations satisfied by the pm »’s and gm,»’s has a unique solution

such that po,0 > 0. First, plugging

1 — 2a0pj 0 \L/2

oo = m —1>
(which comes from ([B48])) into ([3:43)) and using also (230)), we get
B I, 1/2
DPoo = 2o1T12 )
and
— Fl
0 = 2IM12 (2&2 (R% - R%))1/2 '

(3.52)

(3.53)

(3.54)

Next, for 1 < n < N — 1, the go,»’s and the pon’s are constructed recursively thanks to (3:49) as
well as ([3.44]) with n replaced by n + 1. We solve the system obtained by combination of these two

equations by inverting the matrix

2 52 1/2
M- —2(R3 — R3) —4Ocop0,o>\1,/12 . —2(R3 — RY) —2a0 (%)
—4Oéop0,o)\17/12 1-— 6051pg 0— 40(0)\17/12%),0 % (R3—RIT» 1/2 _9Tly
? 0 ajaglio T2
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where we have used (Z30), 353) and (354). The determinant of M is
det M = 4(R3 — R})['s > 0,

therefore M is invertible, and there is a unique possible choice for (go,n,po,n) for 1 <n < N — 1 such
that the assumptions of the lemma are satisfied. Then, for 1 < m < (N —1)/(2—38), the gm,0’s and
the pm,o’s are constructed recursively thanks to ([B:45) and (B50) by inverting the same matrix M.
Finally, if m > 1, n > 1 and (2 — 38)m + fn < B(N — 1) and if the gx,;’s and the pr;’s are known for
every k < m, l < nand (k1) # (m,n), (gm,n,Pm,n) is entirely determined because the system made of
(B8) for n replaced by n + 1 and (B51]) has a unique solution thanks to the invertibility of M. This
way, we prove recursively that the assumptions of the lemma determine completely the values of the
coefficients gm,» and pm,n», provided (2 —38)m + fn < S(N — 1). "

Lemma 3.10 Let N > 3 be an integer, M > %N, and w, 7, v, X given by (3Z1). Then for
1 =0,1,2, we have

dl

’ — (w(z) - gl/sy(yl)) = o(ePV1/270) (3.55)
dz Lo (DoNDy)
and
dl
’ — (T(Z) - 61/3A(y1)1/2) = o(e"N7Y). (3.56)
dz Lo°(DoNDy)

Proof.  The assumptions (340) and (341 made on (01(z),602(z)) in Lemma [B0 are satisfied by
(w(2),7(2)) thanks to Lemma B and also by ('/3v(y1),e'/3A(y1)*/?) thanks to Lemma B8l As-
sumptions (B38) and (339) are satisfied by (w(z),7(z)) thanks to (34) and (B.6), and they are also
satisfied by (e'/2v(y1),e"3A(y1)"/?) thanks to Lemma B3l Therefore, Lemma [33] ensures that for
every (m,n) € N? such that (2 —38)m +8n < B(N — 1), Wm,n = Nm,n and tm.n = ln,n. In particular,

B358) and ([B50) are satisfied. "

3.6 Comparison of ¢'/3(v,\'/2) and (0,¢'/3y) in D; N D,
We first give an expansion of ésl/s(l/7 )\1/2) into powers of € in D1 N D3, as € — 0.

Lemma 3.11 Let N > 1 be an integer. There exist a family of numbers (’lvm,n)m;(),n% which does not
depend on N such that if v and X are given by (31, then for every a > 0,

dl (1/3 a
2 (e V(yl)) = o(c%) (3.57)
‘ dz! Loo(DinDy) 570
and
dl 1/3 1/2 1/2 2m7 dl 1+n—3 B(N+1-1)
] (E Ayr) ) — A= — E e lmn ] ( ) =, o(e (3.58)
(m,n)EN2
(2—3B)m+Bn<BN
14+n—3m2>=0 Lo°(D1ND>)

Proof. For x € D1 N D2, we have —2eB2/3 ¢ Y1 < —eP23 4 o ase — 0. Thus, BE7) follows
from (Z49) and (Z5I). As for (B58]), we proceed like in the proof of Lemma B8 First, from (250)
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and (252), we have

d" [ a3 N 23 d'
d_l 13 )\(yl) :700 )\711{120} + e d_l
Y1 v1 Y1 0<m<(n—2)/3

dl
7
n=1 1<m<(n+1)/3 dy;

N l

n T d n+1—3m
~ Ailyoy + E g2nt/3 E L"’md_l (y1+1 : )
n=0 o<m<(n+1)/3 Y

< dt B
S )\,11“:0} + Z 52("+1)/3Ln e (y’{L‘Fl Sm) 7

,m
yirmee 0<n<N,m>0 dy}
with
1/(2a2) if n=m=0
E _ 0 if n>landm=0orn=0and m=>1
o ﬂl,m,l if n>2landl<m<(n+1)/3
0 if n>landm>(n+1)/3.

Thus, for x € D1 N D2, throwing away the smallest terms,

N _ ]
(1 /Qaz) + 723 Lnm _di/l (P22
n=1 1

d' > 7 s
~ A-1lgi—o} +52/3—dyl (y1/(2az2)) +*/* E gn/® E Lnm—1 (yr %)
1

(3.59)

dl 2/3 21/3 2m T dl 1+n—3m B(N+1)+(2/3—B)1
d_yﬁ (5 / )\(yl)) = Acilg—oy +¢ / Z e“™L ( ) + 0rso(DynDy) (€ (N+1)+(2/ )).

n,my
(m,n)eN?
(2—3B)m+Bn<BN
At this point, the calculation becomes similar to the one which was performed for y1 — 400 in the
proof of Lemma [3.8 Indeed, we can deduce like in (331]) that for I =0,

1/3 1/2 1/2 2m _n—3m+17 N41
A y)Y o A2 4 Z S I, +OLm(DlﬁD2)(EB( ). (3.60)

(n,m)eN?
(2—3B8)m+Bn<BN

where
- n+1 k .
lnn = Z Ck Z H Lo m, (3.61)
k=1 ((n1,m1), (ng,my))e(N2)k =1

ni+-+ng=n—k+1
my+-+mp=m

for the same coefficients ¢y as in ([B30). Note in particular that Ly, = 0 if m > (n+ 1)/3. Indeed,
under this condition, for every k € {1,--- ,N + 1}, if nq,--- ,ng,m1, -+ ,my are indices like in the
second sum in (B61]), we have

n+l (m+D)+---+(mp+1)
3 3 ’

mi+---+mpg=m>

therefore at least for one of the indices j € {1,--- ,k}, we have m; > (n; 4+ 1)/3, which implies

koo
H Lnj,mj =0,
Jj=1

for every k € {1,---, N + 1}, and therefore ’lvm,n = 0. This is the reason why we can add without
changing the result the condition 1 +n — 3m > 0 in the sum that appears in (358) for [ = 0. The
proof of (358) for I = 1 and | = 2 is similar to the one which was done on Do N D; in the proof of
Lemma [3.8] n

The next lemma provides an asymptotic expansion of (0751/3u) into powers of € in D1 N D2 as
e — 0.
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Lemma 3.12 Let L > 1, and p given by (31]). Then there exists a family of numbers (Gm.,n)m,n>0
such that for every | € {0, 1,2},

d d _ _
- (El/su(yz)) — Mgy - > Q™" o (210 = 0(c2FP1)(3.62)
m,n>0
Bn+(2—38)m<2L—p3
1+n—3m=>0 Lo (D1ND3)

Proof. For 2 € DiN D2, (R3— R%)572/3 —P2B x>y > (R3 — R%)572/3 —2eP72/3 5 4ooase — 0.
Thus, for [ = 0,1,2, thanks to (219), (225) and Proposition Im using for convenience the notations
Jo,m = Gm, gflozn = Gn,m, gﬁ}Jn =(1/2 — 2n — 3m)gn,m and gn ) = =(-1/2—-2n— 3m)g7(1 2n7 we infer

dd—zll (El/su(yz))

= ¢ Z 52"/3 - (b (112))

= 2a2 i Zgzn/s Z g(L) R2m 721/3y1/2 2n—3m—I

el/3
_ 2n/3 1 m72l31/22n3ml c1/3 2(n—1)/3 1/24n—3L—1
= sz / Z ’SL)mR /y / Z (= 0Los(DyN D) (Yo )
2 m=0 n=0
el/3 2\1/2—2n—3m—1 1/2—2n—3m—1
_ 2n/3 (l) 2m 721/3 (Rz — R1) z 2L
= € nom R 1+ —5—— op €
(2a2) 1/2 Z g:o Lm cl1/3—4n/3—2m—21/3 + R% —R% +or (Dsz)( )
L L—n P 1/2—2n—3m—1
1/2 2(n+m 1 2m 2\ —2n—3m—1 2L
= A7/1 Z Z gt £L)7nR2 (R3 — RY) : <1+ m) + 0L (DynDy) (€7)
n=0m=0
= 1/22 TN gUnR (RS- R TN ckimon?” + onse (g (67F) (3.63)
m,n=0, k>0,
n+m—3 Bk+25<2L
_ )\1/12 (()%(RQ—R2 _’_)\1/2 Z Z (l) Rgm R2 R§)72n73M7le,l,m,nzk+0L°°(D1mD2)(52L)7
7,k=0 m,n=0,
Bk+2j<2L, n+m—3
(4,k)#(0,0)

for some coefficients (ck,i,m,n)k>0 (With co,i,m,n = 1, Vl,m,n). Then, we change the variable k in the
sum into p = 35 + k — 1. Note that p € N since (5, k) € N>\ {(0,0)}. Thus,

dl 1/2 (1 —
() = A2 g0 (5 - B (3.64)
FAM? > crip-s; Y. g R (RS — RY) TP TIERTI 4 6 e by pyy (E71).
7,20 m,n=0,
B(p+1)+(2-38)i<2L ndm=j
p=23j—1

The result follows for [ = 0, since go,0 = 1, with

1/2 (0) p2k 2 2\ —2i—3k

amn =N erinsm > g\ VRS(RS — RY) .
k,i>0,
k+7, m

For | = 1, (3:64) gives the existence of some coeflicients (@, »)m,» such that

d m d n—om
= (Muy)) = abo+ 3 O 182 L (779 10y (25),

m,n=0
B(n+1)+(2—38)m<2L
1+n—3m=>0
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Thus,

d 1/3 / 2 d 14+n—3 2L
E (E / M(y2)) - mzn;o Gm.n® mE (Z ! m) +0L°°(D1mD2)(E )
Bn+(2;3,§)m§2L
n—3m=0
m d n—oam —_
= Z a:n,ngz E(zl+ ’ )+0L°°(D1"7D2)(52L B)
m,n=0
B(n+1)+(2—38)m<2L
n—3mz=
d _ _
— Z oz;n,nswna (zH” Sm) + oLm(DlmDQ)(su B). (3.65)
m,n>0
B(n+1)+(2-38)m<2L
1+n—3m>0

where in the first equality, we have changed the index of summation n by n+ 1, in the second equality,
we have neglected some terms in the sum, and in the last equality, the extra term we write in the sum
is in fact equal to 0. In order to prove that ([3:62) also holds for I = 1, it remains to prove that for
every pair of indices (m,n) appearing in the sum in [B.62]) (except for 1 +n — 3m = 0, for which the
corresponding term in (Z62) for [ = 1 is anyway equal to 0), we have o, , = am,n. This can be done
by using the same trick as in the proof of Lemma 3.8l Namely, we have on the one side thanks to

B.62)

RZ - R? _ RZ - R? _
51/3u< 2 1_ B 2/3> —51/3H< 2 1 _op 2/3>

22/3 22/3
_ Z am7n€27n(_1)1+n73m€5(1+n73m) (1 _ 21+n73m) + OLOO(DIODQ)(52L)(;3-66)
m,n=0
Bn+(2-38)m<2L—-p
1+n—3m=0
and on the other side, by integration of (.63 between z = —2¢% and z = —£?, we have the same

equality with am,» replaced by a;, . Since 8 has been chosen irrational, the linear independance of
the functions & — £2738)m+8(n+1) implies that for all the indices (m,n) appearing in the sum (except
for 1 +n —3m = 0), we have am,n = &y, ,. The proof of B62) for | = 2 is similar. "

The next lemma shows that the expansions of £'/(1, A'/?) and (0,e'/2u) calculated respectively in
Lemmata [B.11] and [3.12] are in fact the same.

Lemma 3.13 Let N > 1 be an integer, eo > 0, and 8 € (0,2/3)\Q. Let (0)o<e<e, be a sequence of
regular functions defined for z € [—2¢?, —&P] such that

1£7280 + (13 = RO + 260 = 2026° | ey, 1y = 0 (£7N7Y). (3.67)

We assume that there exists a family of real numbers ¢m.n, defined for every (m,n) € N? such that
(2—38)m + fn < BN, such that for 1 € {0,1,2}, we have

d' _ _

1/2 m n m

00 — NP1y - " Gmm E(z” sm) = o(PN =Dy (3.68)
(m.n)EN?

(2—3B)m+Bn<BN L (D1ND3)

Then, equations (3.68) and (3.67) entirely determine the values of the gmn’s for (2 —38)m + Bn <
B(N — 1). Moreover, these coefficients do not depend on N or (3.

Proof. For convenience, for every (m,n) € N2, we denote dmn = (1 +n—3m)gmn and gy, ., =
(n —3m)(1 +n — 3m)gm,n. For a function @ that satisfies ([3.68]), let us calculate the function that

42



appears in the left hand side of (387, evaluated at z = —e”. We have
A0 + (R5 — R})0 + 20 — 2026°

- _9 Z (dq/ +2q" )(_1)n*3m6(2*3ﬁ)(m+1)+ﬁ(n+2)+ﬁ
m,n>0
(2=3B8)m+pBn<BN

+4R% Z qu(_1)n73m716(2735)(m+1)+5(n+1)+5

m,n=0
(2—3B8)m+Bn<BN
+(R3 — ROANY? + (R3 — RY) > Gn (—1)"T3MA L2 3B)mA Bt

m,n=0

(2-3B)m+Bn<BN

—EﬁA£/12 + Z qmyn(_1)n73m8(273,8)m+ﬁ(n+1)+ﬁ
m=>0,n>0
(2—3B)m+Bn<BN
_2052)\37/12 — GasA_s Z qmyn(_1)n73m+18(2736)m+ﬁn+5
m=>0,n>0
(2—3B)m+pn<BN

—6a2)\17/12 Z ( Z (Z'rnl,'rblq'm,2,n2)(—1)n73’ml5(2735)7’n+£(’nﬁkl)Jﬁﬁe

m,n=0 my,ma,ny,nz20
(2—3B)m+Bn<BN mi+ma=m
ni+no=n

—2052 Z ( Z dmy,ny qmz;anms»ns)(_1)n73m+16(273ﬁ)m+ﬁ(n+2)+5

m>0,n20 my,mz,m3,n1,nz,n3 =0,
(2—3B)m+Bn<BN ni+natnz=n
mi+matmg=m

Thus, changing the indices and throwing away all the terms that can be incorporated in the rest,

e2A0 + (R3 — R0 + 20 — 2a26® — 200670

= =2 3" (dgmoinn 21 a)(—1)" TSmO
m>1,n>2
(2=3B8)m+pBn<BN
+4R§ Z q// . 1(_1)n—3m+16(273ﬁ)m+,8n+ﬁ
m—1,n—
myn=1
(2—3B8)m+Bn<BN
HE-RD) Y gualclyiiee s
m,n=0
(2—38)m+pBn<BN
1/2 — _
_EﬁA7/1 + Z Gmn—1(—1)" 3m+1_(2-36)m+Bn+p
m=0,n=>1
(2=3B)m+pBn<BN
—6a2 A1 > G (— 1) 31 238 mt-An 45
m=0,n>0
(2=3B)m+pBn<BN
—6(12)\17/12 Z ( Z qmlynlqm2’n2)(_1)n73m+16(2—3ﬁ)m+5n+ﬁ
m2=20,n>1 mj,ma,ny,n2 20

(2—3B8)m+Bn<BN mi+mo=m
ni4ng=n—1

n—3m+1_(2—38)m+pBn+p
—2a § ( § gmy,n1gmo,ng qms»ns)(_l) € .
m>0,n2>2 my,mg,mg,n1,nz,ng =0,
(2—3B8)m+Bn<BN ni+ng+nz=n—2

mi+matmz=m

According to (B87), the right hand side of 3:69) is equal to 0, up to the rest term o(e® 1), Thus,

the linear independance of the family of functions of ¢, (5(2735)'”*5”) yields:
m,n =0
e for m =0, n = 0, thanks to (230)), we get
2(R3 — RY)qoo = A7, (3.69)
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e form=0and 1<n <N,

2 2 1/2
(Rz — R1)qo,n + qo,n—1 — 62A_1qo,n — 62X} E qo,n1qo,ny — 202 E q0,n1 90,n590,nz =0,
ni,n220, ni,ng,n320,
ni+no=n—1 nitng+nzg=n—2

which, using ([2.30)), can be rewritten as

2 2 1/2
— 2(R2 — Rl)qo,n = —qon-1-t 6062)\,/1 E q0,n190,n5 + 202 E q0,n1490,n5490,n3, (370)
ni,ng 20, ni,ng,n3 20,
ni4+ng=n—1 ni4+ng+nz=n—2

e for 1 <m < BN/(2—38) and n =0, we get
gmo = 0. (3.71)
e for m > 1 and n > 1 such that (2 — 38)m + n < BN,
—2(dqrn—1,n—2 + 20m—1,n—2)L{nso} + AR g 11 + (RS — R dmn + Gmun—1

1/2
—6azA_1Gm,n — 62 A} E Gmi,ny Gma o — 2002 § gmy n19ma,naqma,ny = 0,
my,mg,n1,nz 20 my,mg,mg,n1,n2,ng =0,
mi+ma=m, nit+nat+ng=n—
nit+nz=n—1 mi+ma+mg=m

which can be rewritten as

—2(R§ - Rf)‘lm,n = 2(dq:nfl,n72 + Qq':r,zfl,n72)1{n>2} - 4R§q':r,7,71,n71 — QGm,n—1

1/2
+6a2)‘—/1 Z gmy ni Gma,ns + 202 Z @i yn1 Gma na Qg3 T2)
0<my,ma,n1,n2 my,mg,m3,ni,n2,n320
ni4+ng=n—1 ni+ng+nz=n—2
m1+mo=m m1+mg+mgz=m
From (3:69)), B3.70), (371 and [B.72)), it clearly follows that all the ¢ »’s for indices (m,n) that satisfy
(2—-38)m + Bn < BN are completely determined. "

Finally, we show that (/21 (y1), "3 X(y1)"/?) and (0, '3 u(y=)) are close one from another on DN Ds.

Lemma 3.14 Let N > 1 be an integer, L > B(N + 1)/2 and v, A, p given by (31). Then for
1e{0,1,2},

= o(e”) (3.73)

Lo (D1ND2)

dl
Yo > 0, H_dzl (61/37/(1/1))
and

= o(ePNVF170), (3.74)

dl
HW (=A@ = ()
Lo (D1ND3)

Proof. (373) has already been proved in Lemma BTl 0 = /3 \(y1)*/? satisfies assumption (B68)
in Lemma [BI3] thanks to Lemma BII) (with gmn = 0if 1 +n —3m < 0). €'/3A'/? also satisfies
the assumption ([B.67) thanks to Lemma B3] and (873)). The two assumptions (B.68) and (B.67) of
Lemma [3.T3] are also satisfied by 6 = et/ 3u(y2), thanks respectively to Lemma [3.12] and Corollary

Therefore, thanks to Lemma B13] (B.58) and (3.62), we deduce (B.14). "

4 Proof of Theorem

4.1 Derivation of the equations

We look for solutions of (I3 under the form given by the ansatz (L20), where 8 € (0,2/3)\Q, N is
a large integer, M > max (1, BN/(2 — 35) and L > max(1, (N 4+ 1)/2. For the sake of simplicity, we
rewrite this ansatz as

mo o= el/3 (p1 + 52(N+1)/3P) , (4.1)

n = &3 (pz + EZ(NH)/BQ) , (4.2)
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where

P1 = (1)5571/3&1 + Xel,
p2 = e Vi 4 Xs)\l/z + U p.

—
q;)'.];
R

=z =

Implicitely, p1, p2, P and Q are functions of z € R?, w and 7 are functions of z = R? — |x|2, v and

A are functions of y; = 2/52/3

and p is a function of the variable yo = (R% — |z|?)/e%/3. V and

A refer to derivatives with respect to & € R?, whereas primes refer to derivatives with respect to
variables z, y1 or y2, depending on the function which is concerned. For instance, we note Vw for
Vw = —2zw' (R} — |z|?) = —22w’(2). Using this ansatz and these notations, the first equation in (T3]

becomes

4/3 5 2N/3+2 a0 R5 — R} 2(N+1)/3
€ p1+¢€ AP + a-w%-lﬂ (p1+e¢ P)
2

_20“ (pl + 62(N+1)/3P)3 _ 20(0 (p2 + E2(N+1)/3Q)2(p1 + 52(N+1)/3P) _

Reorganizing the different terms, we get

ag R2— R

2
e Ap1 + Tglpl +y1p1 — 20197 — 200p3p1

az

R — R}
+52(N+1)/3 (54/3AP + Z—z %P +y1 P — 6a1p¥P — anpgp — 4aop1p2Q>

—|—54(N+1)/3 (—6a1p1P2 — dapp2 PQ — 2a0p1Q2) + EZ(NH) (—2a1P3 - QaOPQZ)
Similarly, the second equation in (II3)) writes

"3 Apa + yap2 — 20293 — 2007 p2
+e2(NFD/3 <€4/3AQ + y2Q — 605203@ - 2Oéop%Q - 4Oéop1p2P)
+€4(N+1)/3 (—6a2p2Q2 —4app1 PQ — 2aop2P2) + g2(N+1) (—2a2Q3 - QaOPzQ)

Equations (3] and (6] can be rewritten as the system

A, [ ; } — £a)+ (2. P,Q) + (. P,Q),

where

4. = [ — A4 p(a) (@)

re(x) —e3A 4 qe(x) |7
(675} R% - R% 2 2
pe(z) = oy 23 » + 6a1p71 + 20002,
g-(z) = —ya + 6azp3 + 200p7,

re(z) = daop1pz,

2 p2
e3Ap + 22 20 ) 4y — 20093 — 200031

a2

O(.’I?) — 672(N+1)/3
3 Nps + yap2 — 200205 — 20007 p2

€

fix,P,Q) = —2*N /3 [ 3a1p1P? 4 200p2 PQ + aop1Q° } 7

302p2Q” + 2001 PQ + cop2 P?
O(1P3 + OéoPQ2 :|

3 _ o 4(N+1)/3
fs (.’L‘,P,Q) =—2 |: O(2Q3 +aOP2Q
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4.2 Estimate on the source term f?

Equation (1) will be solved thanks to a fixed point argument. For this purpose, we need to show
that the source term f2 is small if functions w, 7, v, A and y are given by BI). The first component
of f2 can be rewritten as

0 —2(N+1)/3 | 4/3 ao R2 — R? 5 )
[fsh = ¢ e/ Ap1 + Q—ZWM + y1p1 — 201p7 — 200201
= @ e ANHD/3 L |:€2Aw + %(RS — R%)w + 2w — 201w — 2a07—2w]
Q2

go

_ R? — R?
+Xe € 2AN+D)/3 |:E4/3AI/ + %%u +yiv — 2a11/3 — 2040)\1/}
2

g1

49T 2WV=1/3 [VQEV(.E*l/Sw) + VXEVI/] 4T HUNZD/B [A@s (Efl/gw) + AXSI/]

k1 k2

+ 2a1672(1\r+1)/3 [571<I>5w3 + Xsl/s _ Pﬂ + 2a0€72(1\r+1)/3 [571(1)57_20‘) Tyl — p1p§}(.4.8)

11 P
As for the second component of f2, we have

(7], = g2V [54/3AP2 + y2p2 — 2025 — 200;7?/)2]

= &, g TANH/3 -1 [EZAT + (RS — Rf +2)T — 2007 — 2aow27]

ho

(4.9)

e 2N +1)/3 [54/3A()\1/2) + yz)\l/Z _ 2a2A3/2 _ 20401/2)\1/2} o c2N+)/3 [54/3AM + oy — 2042MS]

h1 ha

+ g 2N=1/3 [A@ssfl/gr + Axg)\l/Q + A\IISM] + 2 ~HUN-D/3 [V<I>5571/3VT + VXSV)\UQ + V\I’EV/A}

k3 kq

+ 2ape 2NHD/3 [571CI>57—3 + Xs)\g/z + 0t — pg] + 20 HNFD/3 [671¢,sz7 + X€U2)\1/2 — ppr] .

I3 ly
Thanks to Lemma 3.2 for x € Supp®. C Do, we have

|go| 5 E(273,6‘)(1W+1/2)72N/372/3 and |h0| 5 6(273,6‘)(1\1+1/2)72N/372/376/2. (410)

From Lemma B3] for z € Suppx. C D1, we obtain

91| < o (2=3B)(N/3=7/6) 4 ha| < o~ (2-38)N/3+1/3-8 (4.11)
Lemma [3:4] yields, for x € Supp¥. C Da,
[ha| < EF N h(a), (4.12)

Next, let us estimate ki. Note that V®. is supported in Dy N D, whereas Vyx. is supported in
(Do N Dy) U (D1 N D2). Moreover, for € Do N D1, we have

B
_ _ —B z— €
V&, = —Vxe = -2z "¢ (725/3 —6/5') .

Thus,

| S 72N 9w — )| Lpgrp, + 222G b Tpias.

Lo°(DoNDy)
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Then, thanks to Lemma [3.10] and Lemma [3.14]

k1 = opeo((DonD1)U(D1ND2)) (67(273@]\[/3755/2“/3) . (4.13)
Similarly,
k4]l o= (DonD1)U(D1ND2)) (4.14)
_ _1/3— d _1/3— d
< e 2N/3+2/3 [ —~1/3-p — (T_El/s)\l/z) B Ve — (61/3)\1/2 —61/3,u)
4 L°°(DoND1) z L°°(D1ND3)

- 0 (E—(2—3B)N/3—2/3+1/3) 7 (4.15)

and we also get similar estimates for k2 and ks:

k2 = 0pe((DynD1)U(D1ND2)) (e BT3PIN/Z=58/241/3) (4.16)

ks = OLOO((DUﬁDl)U(DlﬁDg))(57(2735)N/372ﬁ+1/3)' (4.17)
Next, we estimate [;. Clearly, [; is supported in Do N D;. Moreover, Lemma [3.10] implies
1/3 BN-1/2))

3 l/:w—FOLoo(Dole)(E

and since £” < |z| < 267 for © € Do N Dy, it follows from the definition of w given by (&), [6) and
@II) and from the asymptotics of the wp,’s as z — 0 given in (Z6]) and (2.I1I)) that

2
[wll Lo (Dynpy) = O(E?).

Thus, on Do N D1, we get

5 _ 3
L= 20,8 VTR [<1>Ew3 + (1= ®2) (w0 + o pgapy (7N 7))

3
— (<I>5w +(1—®)(w+ OLao(Dole)(E’B(Nil/z))) :|

= 2a1672N/375/3oLm(D0mD1)(s’B(NH/z)) = 0pe(DynDy) (g*(2*3ﬁ)1\’/3+ﬁ/2*5/3) .(4.18)

As for 2, it is supported in (Do N D1) U (Dy N D3). Taking into account Lemma [3.10]and Lemma [314]
l> can be rewritten as

lp = g 2NVFN/31 H@J%z +(1-9) (7’ + O(EBN))2 (w + O(Eﬁ(N71/2)))
_ (<1>sw +(1—0)(w+ o(aWNfl/z)))) (@67- + (1= @) (T + O(EBN)))Z} 1pynD,

2
+e {Xs)\l/ - XeV (Xs)\l/2 +(1 - XE),“) } 1D1"7D2]

*(2*35)N/3*5/3*B/2)

= 0L (DynDy)(€ 1pgnDy + 0no(p1nDy) (€)LD Dy, (4.19)

where « is arbitrarily large. Similar calculations yield
Is = opse(ponpy) (e CT¥INETNIL apy 4 0pse(pyapyy (6 ETIINETAN 1 b, (4.20)
and

7(2736)N/375/3)

ly = OLQQ(DOQDI)(E 1DgﬁD1 +0L°°(D10D2)(5a)1D10D2- (421)

Combining all these inequalities and noting that the measure of D; is of the order of €, we deduce

0
H [f5]1HL2(Rd)
< RBANMA1/2)-2N/8-2/8 | —(2-3F)N/3+7/3-36 | —(2-38)N/3+1/3-28 | —(2=38)N/3=5(4 99

and
0 (2—3B8)(M+1/2)—2N/3-2/3—3/2 —(2—38)N/3+1/3—3/2
|Hf5}2HL2(Rd) Sf € +e
+62(L7N)/3 +6—(2—3,B)N/3+1/3—3/3/2 +6—(2—35)N/3—5/3+/3/2
5 6(2—3[—3)(M+1/2)—2N/372/37,8/2+E2(L—N)/3+E—(2—3ﬁ)N/375/3+ﬁ/2‘ (4'23)
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4.3 Estimate on the resolvent of A,

In order to solve equation (A7) with the choice of v, u, A given in (B1]), we have to invert A.. For this
purpose, we prove that A. is a positive self-adjoint operator on L> (Rd). It will be convenient to have
an idea about the size of the functions pe, ¢- and r. appearing in the expression of A., depending on
x. As a preliminary, let us first simplify the expressions of p? and p3, depending on whether z € Do,

x € Di\(Do U D2) or x € Dy. Thanks to Lemma [B10] (2:€) and 2II)), we have, for x € Do,

1 2
01 = =7 (@Ew—i—xgsl/gl/)

1 _ 2

= m (<I>gw+(1 — (I)g)(w+OLoo(DomD1)(EB(N 1/2))))
1 _ 2

e (w+°Lm<DomD1>(EB(N 1/2))1D00D1)

w2

= S5 o= oo ()

1pynD,

wz 1 2M
_ 0 2m BN—2/3)
=R + 22/3 Z € E: Wiy Wmy + 0L (DyD,y) (€ )1DonD,
m=1 mi+mo=m
0smy,ma<M

I'>z _
= ; + OL“’(DO)(€4/3 25) + OLoo(DoﬁDl)(E:

BN—2/3)
2001 12€2/3 )

1pynDy,

(4.24)

where for the last equality, we have used (ZII)) to infer that for m > 1, m1 + mo = m and z € Do,
Wy Wims < 2|1 73™ < €#738™ and that 2m + 8 — 38m > 2 — 2. The same kind of calculation yields,

still for x € Do,

1 2
o = o (0r (L= @7+ 0um i ()
7_2 1 2M
- 52(;3 e D" D TmTmy o menny () 1nyan,
m=1 mi+mo=m
o<my,mo<M
R} — R} iz - -
= 2ty . + O () (€"° ™) + 0o (gpy) (€7 ¥) 1pg,

2&262/3 2&2F1262/3

Next, we deduce from (239), (249), and (Z5I) that for z € D1\(Do U D),

2N
p% = VZ:V3+(V2—VS):V§+252”/3 Z Yy Vny
n=1 ni+na=n
0<ny,n2<N
R2/312/3 L »
= a0 @)+ 0=\ 0eupa) (€ %,

and using ([2:30)), (234), (250) and [252), we get (again for x € D1\(Do U D2))

_RE-Rt oy RIS

2 ~\2 2/3
= A=2” i o1 Gofh Cp Opee
P2 205262/3 + 2a2 2a1a2F12 o (yl) T L (Dl\(DOUD2))(E )7
where Us
i[/' _ 1—‘2/ Y1
1= .
R}?

For x € D2, we use Lemma [B.14] to obtain, for a > 0 arbitrarily large,

2 2 2 @
P = XV = 0poo(DinDy)(€7)1Loo(DinDy),
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as well as, using also (ZI9), ([2:25)) and Proposition [Z0]

1 2
p5 = Y] (‘1’561/3M + (1= P+ OLoo(Dng)(Eﬁ(NH))))

B(N+1)

1 2
= —62/3 (EI/SM+OL°°(D1FWD2)(5 )1L00(D1mD2))

2L
= up+ Z en/? Z finy Hing + 0150 (1) (€PN TV TN oo (b1 Apy)
n=1

ni+no=n
0<ny,n2<L

2/3

- 2;2 70(@'2)2 + OLOO(D?)(E2/3) + OLOO(D1FWD2)(E/B(N+1)72/3)1L00(D10D2)7
where y
~ 2
Y2 = —7=3-
RY®

(4.29)

From (@24), (£25), (@26), (@217), @E23), [@29) and the definitions of p. and ¢., we deduce the

following expressions of p. and ¢., depending on whether x € Do, € D1\(Do U D2) or « € D,. For
each of this cases, we also calculate r2 and —A. = p.q. — 2, a quantity which will play a key role in
the sequel. A large integer N been fixed, We assume that 8 € (0,2/3) satisfies BN — 2/3 > 4/3 — 28
and B(N+1) —2/3 > 2/3 (which are equivalent to 8 > 2/(N +2) if N is large). For z € Do, we obtain

AR _
ps(x) = F1§ —|—OLoo(D0)(E4/3 2/8)7

2(R3—R? _
Ge() = 2EEEL 4 B 4 Oy (197,

o 4aglay 2 2 I 2/3-28
"= e (B TR T ) F O T,

ATy 2 o It 2/3-28
—AE(:E) = 82/3 (RQ—R1+F—122> +OL°°(D0)(5 )
For xz € Dl\(Do U .D2)7
pe(z) = RYPTYPWo(Gh) + Onso(my\ (boupay (€27),
where
—~ 2
Wo(y) = <1 + F—) Y(®)* -y,
12
200R2/312/3
qs(x) =2y2 — a0a11F122 Wo(yl)z + OL“’(Dl\(DOUDﬂ)(gz/B):
/312/3 2/312/3
2 4adRYPT _ a0 RPT U
_ _ Opes 1
re() PR Yo(y1)” | vz oT0 Y0(H1)” | + OLee (Dy\(DouD,)) (1),
2/31.2/3
agR"°T - ~
—A. = 2RPTEP yp — =2 q0(1)° | Wo(@h) + Ores (0, \(Doupy)) (1)-
a1l'12
Finally, for z € D2,
(07 ~
pe(@) = —Tays+ 2RIVo() + Oree(py) (£77),

where
Vo(y) = )" —v,
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(4.37)
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g=(z) = Ry’ Wo(i2) + Opoe(py) (€7, (4.39)

rg(ac)2 = 0p00(Dy) (%), (4.40)

for a arbitrarily large, and
e . .
A = (—rm + £R5/3%<y2>> R3*Wo(#2) + O (pa) (1) (4.41)

Then, [@30), (£34) and ([@38) will provide us upper and lower bounds on p.. For this purpose, since

the function Wy appears in (£34]), we first prove a lemma which gives informations about the size of
this function.

Lemma 4.1 Fory e R,

Wo(y) < Wo(y) S Wo(y), (4.42)
and
max(1, [y]) < Wo(y) < max(1, |y|). (4.43)

Proof. We write

Wo(y) = Wo(y) +2 <FL12 - 1) v(y)?,

where 1/T'12 — 1 > 0, which directly provides the lower bound on WO. Moreover, the analysis of the
continuous functions o and Wy which was done in [GP] ensures that Wy(y) > 0 for every y € R,

Woly) o~ 29 Woly) ~ =9 %@ ~ yandy(y)® —— 0 We deduce (I3 and the

existence of Cp > 0 such that 72 /Wy < Co. Then, we obtain the upper bound
— 1
Wo < <1—|—2 <— —1> Co) Who.
T2

Then, we get lower and upper bounds on p. as stated in the lemma below.

Lemma 4.2 For z € R? and € > 0 sufficiently small,
max (1, [y1]) S pe(z) S max(1, [y1]).

Proof. On Dy, the two estimates directly follow from (@30)), since for = € Do, y1 > €2/ = 400
as € — 0, whereas /3728 — 0. On D;\(Do U Ds), they are consequences from ([34)) and Lemma FE11
On D», we deduce them from (438). Indeed, we know from the asymptotic expansion of o (2.20)

that Vo(y) = O(y™%), and Vo(y) ~ —y — oo, therefore V; is bounded from below. Then, we
y—+oo y——o00
have on the one side, for ¢ sufficiently small,
pe(x) = Z2RZinfVo(y) + Tofyn| — 1 = max(1, |y1]) 2 7% — o0, (4.44)
a2 yER e—0

On the other side, the properties of o stated in Proposition 2.4] imply
vy eR, Vo(y) < max(l,—y).
Thus, using also Lemma [£.J] and the inequalities y1 < 0 and y1 < y2, we get

pe(z) S max(1, —y2) + max(1, —y1) $ max(1, —y1) = max(1, [y1]). (4.45)

As for g, we infer similarly the next lemma from ([@31), (£35) and ([@39).
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Lemma 4.3 For z € R? and e > 0 sufficiently small,
max(1, [y2]) S ¢:(x) S max(1,[ya|).

Proof. In order to prove the two inequalities for x € Dy, we rewrite (£31]) as

0:(2) = g (RE— BE + f52) + Opoe(p) (£7°7%), (4.46)

As  describes Dy, z describes the interval [¢”, R?] C [0, RZ]. On this interval, G(z) = R% — R? + 1F—1122
reaches its extrema at z = 0 and at z = R?. Since G(0) = R3—R? > 0 and G(R?) = R3 — ;"10—1512212% >0
(thanks to (LI0)), and because —2/3 < 0 < 4/3 — 24, there exists a constant ¢ > 1 such that for every
T € .Do7

1572/3 < g (z) < ce2/3,
c

The inequality follows for x € Dy, since (R% — Rf)fsﬁ/3 <y2 < R%fsﬁ/3 on Dg. On Di\(D1 U D3),
the inequalities clearly follow from (Z35), since on that set, y» > ¢~ 2/3. Finally, on Ds, they are
consequences of ([{39) and Lemma [£T] "

We are now ready to prove positivity of the operator A.

Theorem 4.4 A. defines a positive self-adjoint operator on L*(R?)?, with form domain HL(R?)?,
where
H,(RY) = {P € H*(R?)| max(1, min(lya . lya]))/*P € L*(R") } .

Moreover, there exists C > 0 such that for every (P, Q) in the domain of A.,
A P P > 4/3 2 2 . 2 2
e ; ze (IVPF +|VQI") dz + C | max(1,min(|y1], [y2))(|1P]” + |Q|")dz.
Q Q Rd R4
Proof. For P,Q € C°(R?), we have

<A5 [ g ] , { g D = /Rd (54/3|VP|2 +"3VQ)? + p-P? + ¢.Q* +2rEPQ) da. (4.47)

Taking into account the positivity of p. and g. shown in Lemmata 2] and (43}

1 e(e — ? _As
PP’ +q:Q* +2r.PQ = — (p-P+7.Q)* + ELETeg? > 222,
De De De
where
A = 7’? — Peqe-
Symmetrically,
pP? +q:Q +2r-PQ > _qAE P2,
and thus
peP? +q-Q% +2r.PQ > % min (‘pAE , %) (P*+ Q). (4.48)
We shall see next that there exists ¢ > 0 such that for every z € R?,
— Ac(z) > cpe(2)ge (@), (4.49)
which is equivalent to
— Ac(z) = emax(1, |y1|) max(1, |y2|) (4.50)

thanks to Lemmata 2] and [£3] (up to a change of the constant ¢ > 0), and which implies

_As _As . . .
mm( : q—) > emin (pe (), g-(2)) 2 min (max(1, Jya]), max(1, |y21)) = max(1, min(lya], [y=1)).(4.51)
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For x € Dy, [@&Z4J) comes from (E33), because for such values of x, we have y1 > ?72/3 > 1 for ¢
sufficiently small (and therefore yi = max(1, |y1])), we also have R3e~2/® > yo > (R3 — R})e=%/3, and
therefore e 2/® > max(1, |y2|), and finally, the remark we have done to bound ¢. from below in the
proof of Lemma A3l implies that RS — R? + 1F—112z is bounded from below by a positive constant as
x € Do. For x € Di\(Do U D2) (£49) follows from (£37) and Lemma [41] since y2 = max(1, |y2|) on
that domain, and ~vo(71)2) < e°~2/3. For & € Da, note that Wo(72) = max(1, |y2|) thanks to Lemma
1] Then, using (£41) and the same arguments as to obtain (@44]), we complete the proof. "

We deduce classicaly from Theorem [£4] the following corollary.
Corollary 4.5 A is invertible, and

1 —4/3
1A | 22 ®ay2, v, Ry2) S € 2,

where Hy,(RY? is endowed by the norm

1/2
P @l e = ([ (VPP +9QF) dot [ max(t,min(nl lpa))(PE + Q) )

Remark 4.6 Note that the set H (]Rd)2 does not depend on €, even though it’s norm does. Howewver,
our choice of the HL(R?)?-norm ensures that the norm of the embedding of HL(R®)? into H'(R%)? is
uniformly bounded in €.

4.4 The fixed point argument

Let 1/3 > § > 0, and N a large integer. We fix 8 € (0,2/3) such that (2—338)N/3 < §, and then L and
M large enough such that (2—33)(M+1/2)—2N/3-2/3 > =2, (2—38)(M+1/2)—2N/3-2/3—-3/2 >
—2 and 2(L — N)/3 > —2, in such a way that ([£22]) and [@23) imply

0 -2
Hff HLZ(]Rd)? < e (4.52)
We are going to apply the Picard fix-point theorem to the map

©. : HL(RY)? — Hy(RY)?
(P.Q) — AZUI+AZ2(PQ)+ A E(P,Q),

in the ball Bgr of H,,(R%)? centered at the origin, with radius R = 2 HAglfS Note that it

iy maye-

follows from Corollary and (£52) that
R<e /3, (4.53)
From E&24), @25), @26), EZ0), @E28), @29), it follows that for = € RY,
il S and po| S0

Thus, the Sobolev embedding H,(R?) ¢ H*(RY) ¢ L*(R%) (d < 3) implies that for every (P,Q) €
HY(RY?, we have f2 € L*(R%)?, and

1£2(P, Q) z2gay: S N3P, Q)5 gaye- (4.54)
Then, Corollary yields
HA;lff(PvQ)HH},,(Rd)z < 2N (P, Q)”zb(RW' (4.55)

Similarly, thanks to the Sobolev embedding H(R%) ¢ HY(R%) C L8(R?) (d < 3), we get, for (P,Q) €
Hoy(RY)?,

1£2P. Q)1 gaye S ™, Qg oy (4.56)
and

[AZ1 2 (P Q)| g oy € €™ I(P, Q) e (4.57)
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From (@50) and ([@57) we deduce that if (P, Q) € Br, for some positive constants C2 and Cs,
R _ _
©4(P.Q)ll iy uoys < 2+ Cas™ 19/ R N0/,

Therefore, if N > 7 and ¢ is sufficiently small, Br is stable by ©.. Similar arguments prove that ©.
is a contraction on that ball. As a result, ©. has a unique fixed point in Bg.

4.5 Positivity of n; and ;.

This section is devoted to the proof of the positivity of the solution (71,72) to the system (LI3)) given
by (E1)-@2)-(E3)-(@4), which has just been constructed in the sections above. We proceed in three
steps. First, we prove that for j = 1,2, p; (given by ([@3]) or ([@4))) is bounded from below by a positive

constant on the set S; = {:c € R4, |a:|2 < RJQ» + 62/3}, provided ¢ is sufficiently small. Second, we prove

L estimates on P and @, which ensure that 7 and 7y are positive on Sy and Sz respectively. Finally,
we prove positivity of (n1,72) on R? thanks to the maximum principle.

1%¢ step. For some integers N, M, L > 1, let w, 7, v, X and p be the functions given by ([3I). Then,
we decompose the functions p1 and p2 given by (£3)-(Z4) as

po= e YPuwlpp, + (cbsgﬂ/% +X5u) 1p,np;, + v1p,\p, (4.58)
and
p2 = e Y3rip.p, + (<I>gafl/37' + xgkl/z) 1ponpy + A *1p,\(poubsy)
+ (XEA1/2 + ‘I’EM) 1p,npy + #lp,\Dy,s (4.59)

and we are going to bound from below w, 7, v, A and u separately on the different sets appearing in
the indicatrix functions above. According to Remark 23] w and 7 satisfy

w=wo + OLoo(Do)(s%s*B/z) and T =170+ OLoo(DD)(e%z*B). (4.60)

Moreover, thanks to the explicit expressions of wo and 7o (Z6) and ([27), we deduce that for x € Do,

I, 1/2 52 R% . R% 1/2 5
> > | —— . .
wo = <2a1F12> € and 7o > s + O0(e”) (4.61)

Since 8 < 2/3, we have 2 — 53/2 > /2 and 2 — 28 > 3, so we conclude that for z € Dy,

) 1z B/2 2-58/2 R} - R}\'? B
> 0(*7? d r> (22— O(e™). 4.62
w <20¢1F12) e+ 0(e ) and T < s > + O(e") (4.62)
We have already seen in the proof of Lemma 31l that for x € Ds,
RS — R} B—2/3
= W + 0(8 ) (463)

Using similar arguments, we infer from Proposition [2.7] that
v =104 Opes(py)(e¥?). (4.64)

Then, ([239)), the fact that v is an increasing function and Proposition [24] imply

(RuT)' ' p=2/3 2/3 Iy B/2-1/3 2/3
Z (2ail 1)1 /2 70 R2/35 +0(E"7) = Ws + O(e™?) for x € Do N D1(4.65)
1
whereas
(R1F2)1/3 Fé/s 2/3
Z a2\ R +0(e7) for xz € DN Sh. (4.66)
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From Proposition [2.6] we get in the same way
[t = o + Opoo(py)(€7?), (4.67)
which implies thanks to ([ZI9) for n =0

Ry® 1 23
M>(2a2)1/270 _R§/3 +0(””) forx e DN Ss. (4.68)

Combining ([@53)), (£62), (£65) and ([@66), we deduce that

> S (T2 \Y? 0(5/3-58/2) ) 1
p1 = € 20T, "+ 0(e ) | Log\o,

2a1'12 201 '12

RiTp)'/?
+ <W% <_p;/3/R§/3) N 0(52/3)> Loy,

1/2 1/2
n <<I>e€1/3< Ty ) 55/2+X6< I's ) 5’8/21/3—&—0(55/353/2)—1—0(52/3)) 1yD,

Iy 1/2 5/2-1)3 (R1F2)1/3 s ) s
0T 1p, + oo (—r R ) 1
<2a1F12> c Do + (2a11“12)1/270 ) /R $1\Dg

+O(65/375’3/2)1D0 + 0(52/3)181ﬂD1-
> clg, (4.69)

if ¢ < 1 is sufficientl 11, wh = Lmj ( Iy )1/2 (RyT)'/3 _n” On the oth.
I € 1S suliclen y sma. , W ere cp = 3 min Sailts , (2a11"12)1/2 'Y() R?/S . n e 0 er

side, using (£59), [@62), ([A63) and ([EG68), we have

RZ - R2\'? _ _
p2 2 <<#) € 1/3+O(56 1/3) 1(D0UD1)\D2

2(12
1/2
R: - R? /5,1/3 RY? -1
2002 " (202)172 0\ 27

+ <min

Ry*® —1 2/3
T\ Qa2 \ 273 +0(E7) | 15\,
2

> c2ls, (4.70)

+ 0(551/3)> 1p,np,

. 1. RrZ-R2\Y/2 RL/® 1
for £ < 1 sufficiently small, where cz = 5 min ( Soa ) ' (2ag)172 10 =27 )|

2nd step. Let N be a large integer, R > 0 as in Section @4 and (P, Q) € (H.)? the unique fixed
point of the map ©. constructed in that section. In order to control the L* norm of (P, @), we will use
the continuity of the embedding of H?(R?) into L°°(R?) (remember that d < 3). Because of Remark
and [@53), we know that the H' norms of P and @ are controled by

H(P7 (Q)H(Hl)2 5 6710/37
such that in order to control the H? norms of P and Q, we only need to control the L? norms of

AP and AQ. For this purpose, let us introduce a C°° function 6 on R?, which is radial, positive,
supported in {x € R% |z| < 2} and such that 6(x) = 1 for |z| < 1. We also define, for integers n > 1,
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0, (x) = 0(x/n). After integrations by parts, the (L?)? scalar product of @T) with (AP, AQ)&., yields
e'/? /d(|AP|2 +AQI)0n + /d(pE|VP|2 +¢:|VQ|* +2r-VP - VQ)0»
R R
= _/ (PVPE -VP+ QVg. - VQ)QTL - / (pEPVP + QEQVQ) - Vo,
R4 Re

- VrE.V(PQ)en—/ TEV(PQ)-wn—/ fe - (AP, AQ)0x
d Rd

R4 R
= % / (ApeP? + Ag:Q? + 2Ar.PQ)0,, + % / (pP? + q-Q* + 2r-PQ) A0,
R4 R4
+/ (VpeP? + V. Q* + 2Vr.PQ) - VO, — / f- - (AP, AQ)0,. (4.71)
Rd Rd

Thanks to Lemma [£2] for n > 1 and e < 1 sufficiently small,

1 2 1 x
< < _—_ — =
|pe A6, | max(1, [y1])|A0n] < = max(1, |z )n2 ’AH (n)’

~ 3

1 1 1
< g o (80l ol A0 ) £ (.12

Similarly, Lemma [£.3] yields
VAN B o (4.73)

22/3"7

and since A, < 0 thanks to (£49), [@72) and (7T3) also imply

1
rednl S =75 (4.74)
Next, we use the estimates
max(|Vpel, [V, |Vre]) S max(zs*‘l/?’7 |alc|/€2/3)7 max(|Ape|, |Age|, |Ar:]) < e 2, (4.75)

that will be proved later. Arguing like in [@72)), it follows from (@T5) that for n > 1,
|Vpe - VO, | < e 3, |Vge - VO, <3, |Vre - VO,| <e 3. (4.76)

Letting n — oo, and using the positivity of the quadratic form a(P, Q) = peP? +¢-Q?* +2r. PQ, shown

in ([A4]) and ([@49), we deduce from (@71), (E72), E13), E74), (ET5), [@706), the Young inequality
and (£53) that

0 [ (PP +IAQE) £ &7 (IPIEs +1QUE) + &~ el
< eI Y L, e, (4.77)
Thanks to @52), @54), @56) and @53), the L? norm of f. can estimated as
Hfs||L2(W)2 5 672 +E2N/3719/3 +E4N/3—26/3 5 572,
provided N is large enough. Thus, ({77) yields
||(AP7 ACQ)||L2(]Rd)2 5 6757

which combined with ([@53]), implies

(P, @)l oo gy S (P @)l g2y Se° (4.78)

In view of the ansatz (£I))-([@2) as well asthe estimates ([£69)), ([L710) and (78], we conclude that if
N is sufficiently large and if € is small enough, 71 and 72 are strictly positive respectively on S; and
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S. In order to complete the proof of this last statement, it remains to prove estimates (£75). This is
the issue we address now. First, we deduce from (2.6)), (27) and Lemma 2] that

[wllLoepg) S 1, IVWllLoo(py €%, AwllLe(py) S 7, (4.79)

[Tleoe0g) ST, IVTllLepg) S 1, ATl (ng) S 1, (4.80)
where for the estimates on V7o and A7, we have used assumption (II0). From [2351), 249), 252)
and (250), we infer
2-1/3 —2/3 —4/3
[Wllzoepyy S22 I VVllnoeny S €72, AV]Loony) S 77, (4.81)
. 1/2 ~ _—1/3 1/2 ~1/3 1/2 ~1/3 1/2 —1
xlen[f}l)‘/ 22 N psepyy STV IVl oy) ST AN ) |[Loepy) S €71(482)

Note that the first estimate in ([£82]) has already been proved in Lemma Bl (ZI9) and Propositions

24 and 2.6 imply
lptllzee gy S€°, IVl (s S22 1AulLo(py S e 2 (4.83)

Moreover, it follows from their definitions that the truncation functions ®., x. and W. satisfy the
estimates

IV@ellzoe, IVxellooe, [VEelie S8 AP, [Axelle, |AV: || S ™ (4.84)
Combining (£79), (£80), (£31), [E32)), ([483) and ([£84) and using Lemmata 310 and BI4] we obtain

o1l @y S €772, o2l gy S €7 '7%, (4.85)
(Vo1 poomay = [@ce 3V + xe Vv 4+ VO (e 3w — lpoomay S gmin(=1/3=8,-2/3) (4.86)
and
IVpollpoemay = ®ee™ /2T + X VAY?) 4+ WV + V(™07 = A?) + VL (1 = AV?)|| oo (ga)
< g3 (4.87)
provided N is large enough, as well as
1Ap1ll foo ey = @3 Aw + xAv 4 2V, (e /3Vw — V) + Ad (e /3w — V)| oo (ra)
< gmin(-1/3-26,-4/3) (4.88)
and
[Ap2llpoe@ay = [1®@ce™PAT + X AN?) + WA+ 2VE. V(e /P — AV2) 4 2V 8.V (1 — A7)
FAD (3 = AYP) £ AT (o — AP oo gay ST, (4.89)

where we assume again that N is sufficiently large. (@75) follows by differentiation of the definitions
of pe, g- and 7. given in Section [Z11

3rd step. First, note that the functions 7 and 72 we have constructed are radial. Indeed, p; and
p2 are functions of the variables z, y1 and y2, which all depend on z only through |z|. On the other
side, the equation (47 is radially symmetric, such that the uniqueness of its solution (P, Q) in the
ball Bgr, which was proved in Section [£4] ensures that both P and @ are radial. For convenience, we
consider 71 and 72 as functions of r = |z|. At this point, according to the conclusion of the second
step, we already know that for j = 1,2, n;(r) > 0 for r € [0, (R? + £**)!/2]. So it remains to prove
that n;(r) > 0 for r > (R} + £2/3)1/2 We shall see that it is a consequence of Hopf’s lemma (see for
instance [E]). Indeed, the system of equations (L.I3)) satisfied by (n1,72) can be rewritten as

(—A + ;—g) (=n;) =0 forj=12,
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where o
e1 = 200m] + 200m5 — 2 (B3 = B) + (o’ — RY)

and
ca = 20077 + 20215 + |z|* — R3.

Let us fix j € {1,2}. We shall see in Lemmata I7] and E8] below that ¢; > 0 for |z| > (RZ + %/?)/2,
Let us admit provisionnaly this fact. We know that —n;(r) < 0 for r < (R? + &*/*)"/2. Assume
by contradiction that there exists ro > (R? + €2/3)'/2 such that —n;(ro) = 0. Then, Hopf’s Lemma
applied on the ball of R? centered at the origin and with radius ro ensures that —nj(ro) > 0. In
particular, r — —n;(r) is strictly increasing in a neighborhood of 7o, in such a way that we can define
r1 € (ro, +00] by

r1 = sup{r > ro, —n; is stricly increasing on (rg,r1)}.
If 1 is finite, we can apply again Hopf’s Lemma on the ball centered at 0, with radius r1, and conclude
that —n); is increasing on a neighborhood of 71, which is a contradiction with the definition of 7;. Thus,
r1 = +oo. Thus, —n; is strictly increasing on [ro,+00), with —n;(ro) = 0. This is a contradiction
with the fact that n;(r) — 0 as r — +oo (which is itself a consequence of the decay of the pn, (y2)’s as
y2 — —oo and of (P,Q) € H*(R?)). Therefore —n;(r) < 0 for every r > 0.

Lemma 4.7 For e > 0 sufficiently small, c1(z) > 0 for every x € ]Rd\51.

Proof. Note first that for £ < 1, since 8 < 2/3, Rd\Sl is the disjoint union of the sets D1\S1 and
Dy\D;. We first consider the case where x € D1\S1. Starting from (@1]) and (&3], we have

51/3(

1/3

2(N+1)/3P)

m = XeV + €

2N/3-13/3
= - )

V + 0L (DynDy) (%) + Oree (Dy\sy) (€

v+ OLDO(DI\SI)(EZN/3713/3))

Y3 (g + Opee (py\ 51y (62%)), (4.90)

(
51/3(
e
where the first line holds because = ¢ Supp(®.), the second one because x. = 1 on D;\D2 and thanks
to Lemma [314] and ([@7]]), the third line holds provided « is chosen large enough, and the last line

is true for N large enough, since D1\S1 C {z,y1 < —1} and thanks to the asymptotics of the v,’s as
y1 — —oo given in Proposition 277l The same kind of arguments yield, still for x € D1\S1:

= 51/3(){5)\1/2+\IIEM+52(N+1)/3Q)

1/3,41/2 N+1)—1/3 2N/3-13/3
E/()\/ B( ) /) / /)

+ Oroo(py\s5y) (€
1/2

+ 0p00(DyNDy) (€

()\—1 + 62/3)\0 =+ OLOO(DI\SI)(E4/3))

As a result, thanks to (2:30), 234) and ([239)), for x € D1\S1, we have

. = 2a1€2/3(yo + Op (552/3))2 + 2aq ()\,1 + 52/3)\0 + O (54/3)) — %(R% — Rf) — 52/3y1
2
L 2
r /3111 2/3 4/3 2/3 4/3
= R?/3F§/3€2/3’YO ;2/3 — T2 y1 + O (e77) 2 T2e™" +0(e™7) > 0, (4.92)
1

for e sufficiently small, where the inequality holds because = ¢ S1, which implies y1 < —1. Let us now
consider the case where x € D2\D;. Then, using again ([@73),

m = €2N/3+1P _ OLoo(D2)(€2N/374) _ OLoo(D2)(€4/3)
and

o = &'/ 3(u+ 2VHVEQ) = 3o + Opoe (py) (622)). (4.93)

o7

+ OLOO(DI\SI)(54/3) = ()\71 + 62/3)\0 + OLDO(DI\SI)(€4/3))

(4.91)
1/2



We infer that

e
e = 200 — (RS~ ) 4 (af? — R+ Oy ) (1)
2 2 2 2 2
_ 23 @0 2/3 Y2 _ao Ry — Ry R> — Ry 4/3
- <062R2 7 <R§/3> an  g2/3 Y2t €2/3 +OLe(py) (€77)

2 2 2
a3 | @0 o3 Y2 Y2 R; — R{ > 4/3
- 23| Xp LI I O i i § Opooi (£Y3),(4.94
gy ? <70 <R§/3> R§/3> ’ ( g2/3 2 roe(p3) (677, (4:94)

N—— —

. >2e8-2/3
infyer [v0(y)2—y]>—o0 Z=e Sotee

and thus ¢1 > 0 on D2\ D1 if ¢ is sufficiently small. "
Lemma 4.8 c2(x) > 0 for every x € R*\Ss.

Proof. The lemma is a straightforward consequence of the definition of c2, since the assumption
x € R\ Sy can be rewritten as |z|? > R2 + /3. "

4.6 Uniqueness of the ground state

In this section, we prove that the solution of (II3]) constructed in the previous sections is the unique
ground state of the system, that is the unique solution of (ILI3]) with two positive components. Unique-
ness of the ground state of (II3) was proved in [ANS|. We recall the arguments for the sake of
completeness. First, the next lemma gives an a priori upper bound on positive solutions to (LI3)).

Lemma 4.9 Lete > 0, and let (n1,12) be a positive solution of (I13). Then, for every 6 € (0,1) and
z eRY, forj=1,2,

0
n;(z) < M; min {1,exp (—2— (|x|2 — r?))] , (4.95)
&
g 2 2 2 1/2 al al Ro
where ay = (a_g(R2_R1)+R1) 5 M1 = W’ rT = m, MQ = W and T2 =
R
(1,922)1/2‘

Proof. We first prove that n; is uniformly bounded from above by the constant M; defined in the
statement of the lemma. The proof follows an idea which is due to Farina [F]], and which is also used
in [IM] and [ANS]. Let us define

w1 = E ((2&1)1/2771 - al) , and w{ =max(0,wr).
g

Then, Kato’s inequality yields

Aw > gy, zopAwn

1 «
- %(2041)1/2771 (zamf + 200m3 — a—Z(RZ —R}) — (R} - |:c|2))

1
= %(Euﬂ +a1) ((ewr + ar)? — (a1)2)

1
= % (ew1 + a1)ew: (ewr + 2a1)

> (w)? (4.96)

From Lemma 2 in [Bl, it follows that w]” < 0, which means n; < M.
Next, like it was done in [ANS], we prove that n: decays at least as fast as a gaussian as |z| goes
to infinity. Easy calculations show that

0% Olz>\ _ do 0|z|?
(-8 + Gt oo (<50 ) = Lo (-55) >0 (497
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whereas

6> 1 200 2000
(‘A + E—2|x|2) m=— (af -1~ ‘92)|$|2) m— 5—277? - 5—2773771 <0 (4.98)
for £ > r1. Then, we set W1 = M; exp (—% — m. We know from the first part of the proof

that Wi(xz) > 0 for |z| = r1. Assume by contradiction that the inequality Wi > 0 does not hold for
every x € R? such that |x| > r1. Then, since Wi(z) — 0 as |z| — oo, Wi reaches a minimum at some
zo € R? such that |zo| > 1. In particular, AWi(zo) > 0 and Wi(xzo) < 0. This is in contradiction
with the difference between ([@97) multiplied by M; and (@98 evaluated at xo. The proof of the
estimate on 72 is similar. n

The next lemma states the uniqueness of the ground state of (I.I3]) and is also proved in [ANS].
We give here a proof which is slightly simpler.

Lemma 4.10 Let € > 0, and let (n1,1m2), (&1,&2) be two positive solutions of (II3). Then m = &
and N2 = &o.
Proof. Let v1 = & /m and va = &/n2. Since (n1,7m2) and (&1, &2) solve ([LI3), it follows that for
(3,7) = (1,2) or (2,1), we have

e2div (anv,-) = 20mivi(v; — 1) + 200min;vi(v] — 1). (4.99)

Let ¢ € C™(R?) be a non-negative function supported in {z € R?, |z| < 2} such that ¢(z) = 1 for
|| < 1. For n > 1, we also define ¢, = ¢(-/n). Next, let us multiply @39) by (v — 1)¢2 /v;, sum over
R? and use integration by parts. We obtain

1 2 2
/ 771-2|Vv1-|2 <1 + —2> Cdr + - / [ai (n?(v? — 1)) + aonf(v? — 1)77?-(1)]2» — 1)} Cdx
R4 (% 19 Rd

%

2 1 5
- s Vi [vi — — | V (() d
/R KA (v vi) (¢2) do
_2/ W?Uz‘vvz‘CnVCndm—&-Q/ n
Rd

Rd Vi

20V ada, (4.100)

Next, we estimate each integral in the right hand side of (£100) thanks to the Cauchy-Schwarz in-
equality. For the first one, we have

‘/ N7V Vinde| = ‘/ 1€V (n Vndx
R4 R4
1/2 1/2
< ( / n?|wi|2cidx) </ f?wcnﬁdx)
Rd R4
< 1/ nf|w,-|2gidx+/ & |V¢a | de, (4.101)
4 RA RA

whereas for the second one, we get

) 2 1/2 1/2
‘ [ St veds < ( [ e ci‘;dx) ( / n?IVCn|2dm>
Rd Vs R Ul- R4
2
< l/ 773'%;' gidm+/ N7 | Va2 da. (4.102)
4 Jra v Rd

Combining (£I00), (£101) and @I02]), we infer
1 1 2
= / n?|Vv¢|2 1+ = Cdr + —2/ [ai (n?(vf — 1))2 + aon?(v? — 1)77]2»(1)? — 1)] Cdx
2 Rd v; & R4

< zf (@GP (4.103)
Rd
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Finally, we sum the inequalities given by [@I03) for (i,7) = (1,2) and for (z,5) = (2,1). We deduce

1 2 2 1 2 1 2 2 1 2 2 2, 2 2, 2 2
- 14+ — d = 14+ — d — -1 -1 d
5 [ Eivnl (14 ) ot 5 [ Evul (145 ) daos 5 [ afrel - 0o - 1] s
< 2f (@+at+e+i)Ive an (1104)
R
where qui,u2] = alu% + 2apuius + agug. Note that the assumption I';12 > 0 can be rewritten as

a(z) — ai1ae < 0, which implies that there exists ¢ > 0 such that for every ui,uz € R, q[u17u2] >
c(u% + u%) As a result, in order to conclude that v; = v2 = 1, it is sufficient to prove that the right
hand side of (AI04) converges to 0 as n — oo. It is the case thanks to Lemma Indeed, for
n > max(r1,72), since V¢, is supported in {x € RY n < |z| < 2n}, we have

2 2 2
/ (E-+ni+E+m)I Ve do < 2 (M7 + ME"H) V|l |{o € RY 1 < Ja] < 23| %e /7,
R4

where the right hand side goes to 0 as n — oo. ]

4.7 End of the proof of Theorem

In section 4] we have constructed a solution (n1,72) to (ILI3]) that converges to 0 at infinity. In
section 5] we have checked that this solution is positive. In section L6l we have seen that (n:1,732) is
in fact the unique such solution of (II3]). So the first part of the statement of Theorem [[5] has already
been proved. Let us now fix three integers My, No and Lo, as well as 8 € (0, 62/3). According to our
construction of (n1,7n2) explained in sections 1l and [£4] provided M > Moy, N > max(No,2/8 — 2)
and L > Lo are large integers that satisfy the conditions listed at the beginning of sections 1] and
A4 (n1,m2) can be written like in the ansatz ([L20)-(BI). Thus, defining niapp and n2qpp as in the
statement of Theorem [[L5] we have

M N
M — Napp = Pe Z 2 wm + '3y Z e /3y, 4 2N/3Hp (4.105)
m=Mqy+1 n=Ng+1

and

M N 1/2 No 1/2
P P, Z E2m7'm +El/3XE <Z 52n/3)\n> _ < Z 52n/3>\n>

m=Mgo+1 n=—1 n=—1

L
+elPw ST e, + 2N, (4.106)

n=Lg+1

The next step consists in evaluating the L? and H' norms of each term in the right hand side of (&1035)
and (£I06]). Let us start with the L” norm of ®.w,, for m > 1 and p € [2, +00). Since Supp®. C Do,
we have

(Rf—P)1/2
H<I>gwm||ip(Rd) < / lwm (2)|Pdz = / / |wm(R% — T2)|p7ﬂd71drd9
|z|2<R? —ef sd—=1Jo

d—1 i 2 da/2—1dz
= [$% |/ Jwm (2)[P (R — 2)"*~ bR (4.107)
B

Since d/2 — 1 > —1/2, the integral converges at z = R3. Moreover, thanks to (Z11)), we deduce

7 2 d/2—-1 d—2 7 1/2—3 Rd72|wm0|p 3m—1/2)+1
[, P2 s~ Rl [0 g I8 Lol aaamoayzy,
o8 e—0 =0 p(3m —1/2) —1

]
As a result,
||<I)5Wm||Lp(Rd) — 0(6*35m+ﬁ/2+5/17). (4.108)
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Similarly, (212)) yields

[Pein | oy = O(e~ 2 FEFE/R), (4.109)
Note that ([@I08]) and ([@I09) also hold for p = +oo thanks to (ZI1]) and (2I2). Note also that (ZI08))
and [@I0J) are sharp. Indeed, since ®. = 1 for |z|? < R? — 2¢”, we deduce that ||¢5wm||’£p(Rd) can be

bounded from below by an integral similar to the one that appears in the right hand side of (@I07]).
Next, let us estimate the LP norm of x.vn, for n > 1 and p € [2,+00). Since Suppx. C D1, we get

(R3+2eP)1/2 R2 _ 2\ |7
el < [ e = [ f vn (7 )\ rdrdf
€ LP(RD) R2—2eB<|x|2<R3+268 sd—1J(R2—2:8)1/2 £2/3
2e8-2/3 2/3d
|s*~ 1I/ L [l (R§_52/3y1)d/271%' (4.110)

For y; € [—26672/3,26672/3], we have 1 < R? — 62/3y1 < 1, therefore according to the asymptotic

behaviour of v, (y1) as y1 — %00 given in Proposition 27 we obtain

O(e3r) ifn=1or (n=2andp>2)

IXevnllpo@ay = O(|Ine|zes) if n=2andp=2 (4.111)
O(e™ FABm-DT7+5 3) ifn>3.
Similarly,
O(37) ifn=1
g3p if n=

eAn - n 4.112
”X HLP(Rd) { O(E,%+5(n72)+%+%) if n > 9. ( )

Again, it easily follows from Proposition [Z7] that (ZI11)) and ([@I12) also hold for p = 400, and the
two estimates are sharp. Next, since SuppW. C D2, we infer
R% —r2\ " d—1
(W T drd@

v P < / pdm—/ /
I EMnHLp(Rd) X (e[23 RE 128 |1n (y2)] i1 R2+55)1/2
2/3
_ <2/3 _ d
= s / | (y2) P (R} — e2/yp)?/ 2 202 (4.113)
—o0

B3R oas
2

In order to estimate the integral in the right hand side of (ZI13]), we split the integral into two pieces.
First, for yo € (—R2/e%/3, (R — R?)/e%/® —#7%/3) we have 1 < R? + P < R3 — 2%y, < 2R3 < 1.
Therefore, according to (m and Proposition [Z.6]

8-2/3

—c —
o ln (g2 (RS — /Py0)™*“Hdys = O(1). (4.114)

,R§/52/3

Ifd=1,2 and y2 < —R2%/e%/3, we still have (R% — 62/3y2)d/271 < 1, therefore

R2/e2/3
/ | (y2) [P (R — €2/ Py) ¥ Ndys = 0O(1), (4.115)

0o e—0

whereas if d = 3 and y2 < —R%/Ez/37 then (R — 52/31/2)1/2 < \/561/3|y2|1/2 and since Proposition
implies pn(y2) =  O(y2|~%?), we deduce that @IIH) also holds. Combining @I13), @II4) and
y2*}700

[#I15), we deduce
2
19t o gty = OE3). (4.116)

Note again that ([@II6]) is sharp and that Proposition implies that it is also true for p = +oo.
We are now ready to estimate 171 — 1app and N2 — 2app in LP(R?). Remark first that since 8 < 2/3,
(EI08) and @I09) imply that the larger is m > 1, the smaller are €™ ®.w,, and 2™ ®. 7y, in LP(RY),
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in the limit € — 0. Similarly, since 8 > 0, it follows from (@III)) and (£II2) that the larger is n, the
smaller are 62"/3X5Vn and 52"/3X5)\n in LP (]Rd). Thus,

O 3) if No=0
5 2
_ 8.8 O(e373r) if No=1andp>2
—— ) €(2 38)(Mo+1)+5+45 +
I = mepell o g ( TN o meter) if No=1and p=2
OEP N0 D542y if Ny > 2
+[Pll o rayO(2/?H). (4.117)

Now, remember that in (78], the H?(R?) norm of P is controled by some power of ¢ (namely, £~°)
wich is independent of N. Thus, thanks to Sobolev embeddings, for fixed values of My, No and Lo, if
M, N and L are chosen sufficiently large (and such that they satisfy the conditions at the beginning
of sections ] and [£4)), for ¢ small, E2N/3+1HPHLP(Rd) becomes negligible in comparison with the
other terms in the right hand side of ([{II7). The estimate on 171 — Nrapp in (L22) follows in the case
E = LP(RY).

As for the second component, using the same arguments, we infer from (@I09), and [@II6) that

O(E<2—35><M0+1)+5+§)

N1 1/2 No+1 1/2
+Xe <)\1 + Z Ezn/?))\nl) — <)\1 + Z 52n/3)\n1>

n=1 n=1

llm2 — 772app||Lp(Rd) =

1, 2(Lot+1) | 2
O T 5 i) 4 [|Qll ey O ). (4.118)

In order to estimate the second term in the right hand side, note that thanks to the asymptotic
behaviour of A\g given in Proposition 27 and (@I12) for p = +o0, we have

N+1
Z E2n/3)\n71 — OLOO(DI)(EB)7

n=1

and the same property holds for N replaced by No. Thus, the mean value theorem applied to the
function square root close to A_1 and (@I12]) imply
(@3 Mo+ 1) +p+ £ O(es+r) if No =0
[ln2 — 772app||Lp(]Rd) = (e )+ (’)(52+B(N071)+%) it Np > 1
2(Lg+1)
FO(eSTT 5T, (4.119)
under the same condition of largeness on M, N, L than for the estimate on 11 —n14pp. We have proved
the estimate on 72 — n2app in (22 for E = LP(R?).
Next, let us prove (I22) for E = H'(R?). For this purpose, we have to estimate the L?(R%) norms
of V(®ewm), V(PeTm), V(Xetn), V(xeAn) and V(¥cpy) for m,n > 1. In view of the definitions of
®., xe and U, it is clear that the L>°(R?)? norms of their gradients are all O(¢~#). Thus, performing

calculations similar to the ones which were done to obtain (£I08), (EI09), (I11),(E112) and @EII6),

we obtain

Hv(q)s)WmHLz(Rd) = 0(5736771)7 (4.120)

Hv(q)s)TmHLQ(Rd) = 0(5736m+ﬁ/2)7 (4'121)
O(e3P) ifn=1

IV(xe)vallpogay = o1 e|% 37F) if n =2 (4.122)
(9(57%+ (n=3)+35 3) ifn>3

| oEsh ifn=1

||V(Xs))\n”L2(Rd) = { 0(6—27"758(71 5/2)+4 5) ifn>2 (4.123)
1_

IV pnllpp@e = O(377). (4.124)



By differentiation of (ZII) and (ZIZ), since V = —2z-L similar calculations as the ones that gave

(A108) and (EI09) yield
||<I>5Vwm||L2(Rd) = 0(5736771)7

||(I)EVTm||L2(]Rd) 0(8735771‘%3/2).

. _ -2 d . o e .
Next, since V = =7 50—, a calculation similar to I10) yields

26[372/3

v (1) P (RE — €*/y1) 2 dy,.

_9e68-2/3

2|Sd71|
IXeVvnllzeme, < =57

Then, after differentiation of ([2:49]), we deduce that
O(~1/?) ifn=1lorn=2
IXeVunllp2 ey, = ol lnsﬁafé) ifn=3
O(Ef2n/3+5(n73)+5/3) if n > 4.

Similarly, differentiation of (2.50) yields

A\ . O3 ifn=1lorn=2
||X5V nHLZ(Rd) - O(E—Zn/3+ﬁ(n—5/2)+4/3) if n > 3.

Using Proposition [2.19] like it was done to obtain (£I18]), we infer

(4.125)
(4.126)

(4.127)

(4.128)

(4.129)

(4.130)

H\IlsvﬂnHm(Rd) = 0(571/3)-
Like in ([@IT17), taking M, N and L large enough, we deduce from (Z120), (£122), ([EI25) and @I128)
that
0(52N0/3+2/3) if No=0or Ng =1
||V(771 - nlapp)HLQ(Rd) = 0(6(2—3ﬁ)(M0+1)) + O(| In E|%52) lf N() =2

O(PWNo=2+2) if Ny > 3.

Next, we write

M N 1/2 No
V(n2 —nN2app) = V <‘I>e Z 52m7'7n> + 3V y. Z 52"/3)\n> — < Z
m=Mo+1 n=-—1 n=—1

(4.131)

1/2
E2n/3)\n>

- ( ~
[

. N —1/2
+§€1/3X€ <Z 6277,/3)\”) _

n=-—1 n=—1

No -1/2 N
> 52”/3>\n> > VA,

1 No -2 N
1/3 2n/3 2n/3
—|—§€ Xe < Z € )\n> Z € Van
n
=:Ty

L
+€1/3v qjs Z 6211/3#” +€2N/3+IVQ.
———

n=Lg+1

=:Tg

=:T5

Thanks to (£121]) and ([@I120), we have

ITill 2 ey = O(PTHVMoTDTA2),
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T5 is estimated like the second term in the right hand side of (AII]) in (ZI19), using (@I23) instead
of ([EI12). We obtain

O(/37P) if No=0
||T2||L2(]Rd) = { O(Eﬁ(N073/2)+2) it Np > 1. (4.134)

In order to estimate T3, note that thanks to (252) and (Z350), A;, is uniformly bounded on R for
n=0,1,2,3, whereas for n > 4, \, = OLao(Dl)(sf(z/%ﬁ)("%)). Therefore, since A_; is constant,

N
. 2x
S S =, =75+ Ouion (1)
n=——1

Applying the mean value theorem to the inverse of the square root close to A_1, we use the same

arguments as to obtain (£I19) from (£II8) and we get thanks to ([LI12])

P P P S (1.135)
Lemma B and (£129) yield
1 Tall2ray = { 8&;713&2)”) E %Z ;g.or ! (4.136)
It follows from ([{I124)) and (AI30) that
I T5lL2@ay = OtV (4.137)

Finally, like in (@IT7), we deduce from (£53]) that if M, N and L are chosen large enough, Ts is
neglectible in comparison with the sum of the five other terms. Therefore, combining (ZI33), (AII34]),

#I35), @I36) and @I3T), we obtain

5/3-8 ; _
B (2-38)(Mo+1)+8/2 O(e ) if No=0
IV (12 = m2app)llz2@ay = Ole )+ { O(ePNo=3/212) i No > 1.
O(7/%) if No=0 O(e2No/3+1) if No=0or1l
0(6,3(1\7071/2)%) if No > 1. O(Eﬁ(N073/2)+2) if Ny > 2.
+O(€2(L0+1)/3).
0(5(27313)(1%0“)%/2) +0() + 0(62(Lo+1)/3) if Ngo=0
_ 0(5(27313)(1%0“)%/2) + (’)(55/3) + 0(52(L0+1)/3) if Ng=1

0(6(273,8)(M0+1)+,B/2) + O(E,e(N073/2)+2) + 0(62(L0+1)/3) it No > 2.

The estimate on 71 — Niapp in ([22) for E = H*(R?) follows from @IL7) and @I31), the estimate
on 72 — N2app comes from [@IIJ) and (EI38).
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