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ENTROPY IN GEODESIC FLOWS OF SURFACES
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Abstract. We consider the geodesic flow of reversible Finsler met-
rics on the 2-sphere and the 2-torus, whose geodesic flow has vanishing
topological entropy. Following a construction of A. Katok, we discuss
examples of Finsler metrics on both surfaces, which have large ergodic
components for the geodesic flow in the unit tangent bundle. On the
other hand, using results of J. Franks and M. Handel, we prove that
ergodicity and dense orbits cannot occur in the full unit tangent bundle
of the 2-sphere, if the Finsler metric has positive flag curvatures and
at least two closed geodesics. In the case of the 2-torus, we show that
ergodicity is restricted to strict subsets of tubes between flow-invariant
tori in the unit tangent bundle of the 2-torus.

1. Introduction and main results

We recall the definitions of Finsler metrics and topological entropy.

Definition 1.1. Let X be a manifold with zero section 0X ⊂ TX. A func-
tion F : TX → [0,∞) is called a Finsler metric on X, if

(1) F is C∞ in TX − 0X ,
(2) F is positively homogeneous, i.e. F (av) = aF (v) for all v ∈ TX and

all a ≥ 0 and
(3) F 2 is strongly convex in the fibers, i.e. for all x ∈ X, v ∈ TxX−{0},

the square F 2|TxX has a positive definite Hessian at v.

We denote by

SX := {v ∈ TX : F (v) = 1}
the unit tangent bundle with respect to F . The geodesic flow of F (defined

by the critical curves of the energy functional
∫ b
a F

2(ċ)dt) is denoted by

φtF : SX → SX.

F is called reversible, if F (−v) = F (v) for all v and Riemannian, if F (v) =√
g(v, v) for some Riemannian metric g on X and all v ∈ TX.
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In order to characterize the dynamical complexity of flows or homeomor-
phisms, one can use topological entropy, which measures the exponential
orbit growth.

Definition 1.2. Let (X, d) be a compact metric space and φt : X → X be a
continuous or discrete dynamical system (i.e. a group action of homeomor-
phisms on X by R,Z, respectively). For T ≥ 0, ε > 0 define

s(T, ε) := sup cardS,

where the supremum is taken over all subsets S ⊂ X with the property, that

∀x, y ∈ S, x 6= y : max
0≤t≤T

d(φtx, φty) > ε.

The topological entropy of φt : X → X is defined by

htop(φt) = htop(φt, X) = lim
ε→0

lim sup
T→∞

log s(T, ε)

T
.

Remark 1.3. In the following, we will use that the entropy of flows bounds
the entropies of its first-return maps to Poincaré sections, provided the
return-times are uniformly bounded (which will be the case in our appli-
cations), cf. the arguments in the proof of Proposition 2.1 in [BL14]. Hence,
if the flow φt has zero entropy, the same is true for the first-return maps to
Poincaré sections occurring below.

In this paper, we consider Finsler metrics on orientable, closed surfaces X,
whose geodesic flow has vanishing topological entropy. This last condition
implies that the surface has to be the sphere X = S2 or the torus X = T2

(cf. Corollary 4.2 in [Din71]).

1.1. The 2-sphere. In [Kat73], A. Katok gave the following two examples
of Finsler metrics on the 2-sphere. In what follows, ergodicity of the geodesic
flow φtF is always meant with respect to the canonical Liouville measure in
SS2, induced by the pullback of the canonical symplectic form in T ∗S2 under
the Legendre transform associated to 1

2F
2.

Theorem 1.4 (Katok). (1) There exist non-reversible Finsler metrics
on S2, arbitrarily close to the standard round metric, with only
two closed geodesics and in particular vanishing topological entropy,
whose geodesic flow is ergodic in the whole unit tangent bundle.

(2) There exist reversible Finsler metrics on S2, arbitrarily close to the
standard round metric, whose geodesic flow has vanishing topological
entropy and which admits two ergodic components E0, E1, such that
E1 = {−v : v ∈ E0} and such that E0 ∪E1 is arbitrarily large in the
unit tangent bundle.

Note that the closeness of the Finsler metric to the round metric implies
that the flag curvatures of F are positive and in particular, any geodesic
in the examples in Theorem 1.4 possesses conjugate points. Recall that, if
c : R → S2 is an F -geodesic, then for t0 < t1 the points c(t0), c(t1) are said
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to be conjugate along c, if writing π : SS2 → S2 for the bundle projection
and Vv = ker dπ(v) ⊂ TvSS2 for the vertical line bundle, we have for the
geodesic flow

dφt1−t0F (ċ(t0))Vċ(t0) = Vċ(t1).

We will prove the following theorem in Section 4, which shows that example
(2) of a reversible Finsler metric in Theorem 1.4 is in some sense optimal.

Theorem 1.5. Let F be a reversible Finsler metric on S2, possessing at
least two closed geodesics (non-equal images in S2). Assume moreover, that
every geodesic in (S2, F ) has a pair of conjugate points along itself. Then,
if φtF has a dense geodesic in SS2, we have

htop(φtF , SS2) > 0.

Hence, under the condition on conjugate points and as long as we have
enough closed geodesics, dense geodesics – and in particular ergodicity of the
geodesic flow in SS2 – imply the existence of hyperbolicity in the dynamical
system φtF : SS2 → SS2, cf. Corollary 4.3 in [Kat80].

Note that, in order to prove Theorem 1.5, we will use the Birkhoff annulus
map. Hence our condition on the existence of at least two closed geodesics in
SS2 implies by the celebrated result of J. Franks [Fra92], that we have in fact
infinitely many closed geodesics, as in the unit tangent bundle the second
closed geodesic becomes an interior periodic point in the Birkhoff annulus.
Moreover, we remark that due to the results of J. Franks and M. Handel
[FH12], which we apply in order to prove Theorem 1.5, there will under our
assumptions be much more structure of φtF : SS2 → SS2, cf. Sections 3, 4.

It is well-known, that in Riemannian 2-spheres there always exist at least
three (simple) closed geodesics [Gra89], called the Lusternik-Schnirelmann
geodesics. Hence, we obtain the following corollary of Theorem 1.5.

Corollary 1.6. If (S2, g) is a Riemannian 2-sphere with strictly positive
curvature, then the existence of a dense geodesic in SS2 implies

htop(φtg, SS2) > 0

and in particular the existence of a hyperbolic invariant set.

Note that it is an open problem, whether there exist positively curved
Riemannian 2-spheres with an ergodic geodesic flow. In this sense, Corollary
1.6 shows that such examples would necessarily have chaotic behavior arising
from hyperbolicity.

By the results of V. J. Donnay [Don88], there exist Riemannian metrics
on S2 whose geodesic flow is ergodic in SS2 with a lot of negative curvature –
but these examples also have positive topological entropy. It is thus possible
that Corollary 1.6 also holds without the assumption of positive curvature,
which, however, is a topic for future research.
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1.2. The 2-torus. In this subsection we discuss the 2-torus T2 = R2/Z2.
The following theorem on geodesic flows on T2 with vanishing topological
entropy is due to E. Glasmachers and G. Knieper [GK10], [GK11] with an
earlier version for monotone twist maps given by S. Angenent in [Ang92].
The letter π stands in this paper for the canonical projections of tangent
bundles, e.g. π : TT2 → T2. We write cv(t) = πφtF v for the unique geodesic
with ċv(0) = v. Note that then ċv(t) = φtF v.

Theorem 1.7 (Glasmachers, Knieper). Let F be a reversible Finsler metric
on T2. If htop(φtF ) = 0, then for all ρ ∈ S1 there exist φtF -invariant Lipschitz
graphs Γ−ρ ,Γ

+
ρ ⊂ ST2 over T2 (meaning that π|Γ±ρ : Γ±ρ → T2 is a bi-Lipschitz

homeomorphism) with the following properties.

(1) There exists a constant D ≥ 0 depending only on F , such that for
v ∈ Γ±ρ , the lifted geodesics c̃v(t) ∈ R2 lie at distance at most D
from the straight euclidean line through c̃v(0) with direction ρ and
escape to infinity along this line (c̃v(t) moves in the direction ±ρ, as
t→ ±∞).

(2) If ρ has irrational slope, then Γ−ρ = Γ+
ρ =: Γρ.

(3) If ρ has rational slope, then the intersection ∩−,+Γ±ρ consists pre-
cisely of the velocities of the shortest closed geodesics in the prime
homotopy class in R>0ρ ∩ Z2. In particular, ∩Γ±ρ 6= ∅. Moreover,

each orbit in ∪Γ±ρ − ∩Γ±ρ is heteroclinic between the two closest pe-

riodic geodesics in ∩Γ±ρ . Here Γ+
ρ is chosen in such a way that c̃v(t)

with v ∈ Γ+
ρ is asymptotic in R2 to the right periodic geodesic as

t→ −∞ and to the left periodic geodesic as t→∞ (with respect to
the orientation given by ρ); Γ−ρ has the opposite behavior.

(4) All orbits in ST2 − (∪ρ∈S1 ∪−,+ Γ±ρ ) are enclosed between the two

graphs Γ±ρ with the same rational direction ρ and when lifted to R2

tend to ±∞ along straight lines of direction ±ρ, as t→ ±∞.

For intuition about the invariant sets in Theorem 1.7, cf. Figure 1.
The following terminology is motivated by the often found presence of

elliptic closed geodesics in the complement of the graphs in Theorem 1.7.

Definition 1.8. Let F be a reversible Finsler metric on T2 with htop(φtF ) =
0. If E is a connected component of ST2− (∪ρ∈S1 ∪−,+ Γ±ρ ), enclosed by two

graphs Γ±ρ of some rational direction ρ ∈ S1, then we call E an elliptic tube
(of direction ρ).

What remains open in Theorem 1.7 is any description of the dynamics of
φtF in the elliptic tubes E ⊂ ST2, besides the fact that they move to ±∞ in
bounded distance from euclidean lines. Our first theorem shows that, even
if htop(φtF ) = 0, elliptic tubes can contain complicated dynamical behavior
of φtF . The example relies on the construction due to A. Katok [Kat73],
which also led to the examples in Theorem 1.4. Recall that ergodicity is
meant with respect to the Liouville measure in ST2.
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Figure 1. The invariant graphs in the unit tangent bundle
ST2 ∼= T3 occurring in Theorem 1.7. The horizontal plane
can be thought of as the base T2, π being the vertical pro-
jection. Moreover, one can see an elliptic tube E enclosed
by two graphs Γ±ρ of direction ρ = (1, 0), containing a φtF -

invariant subtube U , where φtF |U might be ergodic.

Theorem 1.9. There exist reversible Finsler metrics F on T2 with van-
ishing topological entropy htop(φtF ) = 0, having an elliptic tube E ⊂ ST2

containing a φtF -invariant, open subtube U ⊂ E, such that φtF |U is ergodic.
Moreover, the measure of E − U can be made arbitrarily small.

On the other hand, our next theorem shows that complicated behavior in
all of E is excluded. Philosophically speaking, the example in Theorem 1.9
is very degenerate in the center of the elliptic tube, while at its boundary
the heteroclinics make up for a “twist”, prohibiting ergodicity. We write
O(φtF , v) = {φtF v : t ∈ R} ⊂ ST2 for the orbit of v and ClosA for the
closure of a set A.

Theorem 1.10. Let F be a reversible Finsler metric on T2 with htop(φtF ) =
0 and suppose that E ⊂ ST2 is an elliptic tube. Then we have the following.

(1) The set of vectors v ∈ E with ClosO(φtF , v) ∩ ∂E 6= ∅ has zero
Liouville measure.

(2) There exists no orbit of φtF , which is dense in E. In particular, the
restriction φtF |E is not ergodic with respect to the Liouville measure
in E ⊂ ST2.
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Item (1) shows that almost every orbit in E is bounded away from ∂E
by a positive constant. This indicates that there are large invariant sets in
the interior of E, not touching the boundary ∂E. A possible picture would
be a sequence of nested, invariant, closed tubes sitting inside the interior of
the elliptic tube E. In general, we see by item (1), that for the Liouville
measure µL in ST2 we have

lim
ε→0

µL(E −Aε) = 0, where Aε := {v ∈ ST2 : d(O(φtF , v), ∂E) ≥ ε}.

However, the sets Aε might a priori be quite exotic, opposed to the smoothly
bounded invariant tubes, which we will find in the example in Theorem 1.9.

Remark 1.11. Our results about geodesic flows in T2 are stated in terms
of reversible Finsler metrics. However, it might well be that Theorem 1.10
holds also in the non-reversible case. Apart from the fact that orbits outside
the invariant graphs Γ±ρ tend to ±∞, Theorem 1.7 has been generalized to
non-reversible Finsler metrics by the author in [Sch14]. The reversibility of
F is then only used to construct the Poincaré sections in Section 5. Note
that general Finsler metrics can be used to describe the dynamics of Tonelli
Lagrangian systems, cf. [CIPP98].

Remark 1.12. The above results about geodesic flows in T2 remain true
for monotone twist maps of the compact annulus. One can easily see that
the example in Theorem 1.9 can be boiled down to a twist map. Moreover,
for the proof of Theorem 1.10 we work with first-return maps to annuli, so
we could have done the same with monotone twist maps.

Structure of this paper. In Section 2, we study rotational metrics
on S2 and T2 and apply a result due to A. Katok from [Kat73] to prove
Theorem 1.9. The main ingredient to prove Theorems 1.5 and 1.10 are the
results of J. Franks and M. Handel from [FH12], which we recall in Section
3. In Sections 4 and 5 we prove Theorems 1.5 and 1.10, respectively.

2. Examples with large ergodic components

It will be convenient to work in the symplectic setting, as we are working
with more than one Finsler metric. Let X be a manifold with cotangent bun-
dle (T ∗X,ω) endowed with its canonical symplectic form. Given a Finsler
metric F : TX → [0,∞), its Legendre transform L : TX − 0X → T ∗X − 0∗X
defined by L(v) = 1

2
∂F 2

∂v (v) is a diffeomorphism. We can define the dual
Finsler metric associated to F by

H := F ◦ L−1 : T ∗X → [0,∞),

which has the same properties as a Finsler metric in Definition 1.1. The
Hamiltonian flow of 1

2H
2 is conjugated via L to the geodesic flow of F .

Conversely, given a dual Finsler metric H : T ∗X → [0,∞), the analogously
defined dual Legendre transform L∗ conjugates the Hamiltonian flow of 1

2H
2
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to the geodesic flow of the Finsler metric H ◦ (L∗)−1 and if H was the dual
Finsler metric associated to F as above, then H ◦ (L∗)−1 = F .

The origin of the examples in Theorems 1.4 and 1.9 lies in the following
special case of Theorem A from [Kat73].

Theorem 2.1 (Katok). Let X be a manifold with cotangent bundle T ∗X and
H0, H1 : T ∗X → R be commuting Hamiltonians (i.e. the Poisson bracket
{H0, H1} = 0), which are positively homogeneous of degree one. Let more-
over H0 be a dual Finsler metric. Assume that there exists an open subset
U ⊂ T ∗X − 0∗X , which is a fiberwise cone, i.e. aξ ∈ U if ξ ∈ U, a > 0,
invariant under both Hamiltonian flows φtHi and suppose that φtHi |U are pe-

riodic flows, i.e. φTH0
|U = φSH1

|U = idU for some T, S > 0. Write XH for
the Hamiltonian vector field of a function H and

U0 := {ξ ∈ U : XH0(ξ), XH1(ξ) linearly dependent}.

Then for any ε > 0, k ∈ N and any compact subset K ⊂ T ∗X there exists a
function H : U → [0,∞), such that the following conditions are satisfied:

(1) H is positively homogeneous and fiberwise strongly convex in the
sense of Definition 1.1,

(2) ‖H −H0‖Ck(K∩U) ≤ ε,
(3) in ∂U ∪U0, the function H coincides together with all its derivatives

with a function of the form H0 + α ·H1 with |α| ≤ ε.
(4) the Hamiltionian flow of H is ergodic in each level set

H−1(c) ∩ (U − U0), c > 0

with respect to the volume defined by ∧dimXω,
(5) φtH has no closed orbits in U − U0.

Note that, if ψt : X → X is a flow of isometries with respect to a Rie-
mannian metric g on X, then the lifted flow dψt : TX → TX commutes
with the geodesic flow φtg. Under the Legendre transform L : TX → T ∗X

associated to g as above, the flow L ◦ dψt ◦ L−1 is the Hamiltonian flow of

H1 : T ∗X → R, H1(ξ) := ξ(Xψ(πξ)) = g(Xψ(πv), v),

where

ξ = L(v) = g(v, .), Xψ = d
dt

∣∣
t=0

ψt.

Hence, if H0 is the dual Finsler metric comming from
√
g, then H2

0/2, H1 are
commuting Hamiltonians. Recall also that H0 ·XH0 = XH2

0/2
and hence, the

Hamiltionian flows of H0 and H2
0/2 are reparametrisartions of each other,

while due to homogeneity we have φH0(aξ) = aφtH0
(ξ) for ξ ∈ T ∗X, a > 0.

One immediately infers example (1) in Theorem 1.4 by letting H0 be
the dual Finsler metric comming from the standard round metric on S2,
U = T ∗S2 − 0∗S2 and ψt being the periodic rotation of S2 ⊂ R3 about the
x3-axis.
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The goal of the rest of this section is to explain example (2) in Theorem
1.4 and the example in Theorem 1.9. Both can be studied in the setting of
rotational metrics on the cylinder

C := R/2πZ× R.
Suppose c = (c1, c2, c3) : I → R3 is a smooth curve, parametrized by eu-
clidean arc-length and such that c2 ≡ 0 and c1 > 0, defined on an interval
I ⊂ R. Then c defines an immersed surface of revolution in R3 by

ϕ : R/2πZ× I → R3, ϕ(x1, x2) = (c1(x2) cosx1, c1(x2) sinx1, c3(x2)).

The euclidean metric of R3 induces a Riemannian metric on R/2πZ× I by

(ϕ∗〈., .〉R3)x(v, w) = 〈 v,G0(x2)w 〉R2 , G0(x2) :=

(
c2

1(x2) 0
0 |ċ(x2)|2R3

)
.

We solve h′ = c1 ◦ h for a function h : J → I. By |ċ|R3 = 1 we obtain for
ϕ̃(x) := ϕ(x1, h(x2)) that

(ϕ̃∗〈., .〉R3)x = f2(x2) · 〈., .〉R2 , f := c1 ◦ h > 0

on R/2πZ× J (note that h′ > 0 due to c1 > 0, so ϕ̃ is again an immersion).
Such a metric f2(x2) · 〈., .〉R2 is called a rotational metric. In the following
we write 〈., .〉, |.| for the euclidean metric and its norm on R2, also defined in
standard coordinates on (R2)∗. Note that, if f2〈., .〉 is a rotational metric,
its dual Finsler metric is given by

H0 : T ∗C → R, H0(ξ) :=
1

f((πξ)2)
· |ξ|.

A 2π-periodic flow of isometries with respect to a rotational metric on C is
given by ψtx = (x1 + t, x2). Hence, as described above, the Hamiltonian

H1 : T ∗C → R, H1(ξ) := ξ(Xψ(πξ)) = ξ1

commutes with H0. Here we wrote ξ = ξ1dx1 + ξ2dx2 ∈ (R2)∗ ∼= T ∗πξC.
For the case of the 2-sphere, we take the half circle c(t) = (cos t, 0, sin t)

with t ∈ (−π/2, π/2). One can easily check that one obtains

h : R→ (−π/2, π/2), h(t) = 2 arctan(et)− π/2
and as a function f = cos ◦h

f0(t) :=
2et

1 + e2t
, f0 : R→ (0,∞).

Hence, the 2π-periodic geodesic flow of the round sphere minus the north
and south pole can be described by the rotational metric f2

0 · 〈., .〉 on the
cylinder C. Note that f0(−t) = f0(t) and that in [0,∞), the function f0 is
strictly decreasing.

In order to obtain examples for the 2-torus, we can choose any periodic
function f : R → (0,∞). Then the so obtained rotational metric descends
to a metric on a torus. In what follows, we will take for the torus-case a
function f of some period L > 0 and assume that for a small ε > 0 the
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function f coincides on [−L/2 + ε, L/2 − ε] with the function f0 obtained
from the round 2-sphere.

Lemma 2.2. Consider a rotational metric f2〈., .〉 on the cylinder C =
R/2πZ× R and assume that

∃ b > 0 : f |[−b,b] = f0|[−b,b].

For a ∈ (0, b), letting H0 = 1
f |.|, H1 = ξ1 as above, set

Ua :=
{
ξ ∈ T ∗C : |(πξ)2| ≤ a, H1(ξ)

H0(ξ) ≥ f0(a)
}
.

Then the sets Ua are invariant under both φtHi , i = 0, 1 and φtHi |Ua are 2π-
periodic flows. Choose 0 < a0 < a1 < b and two functions χ : C → R, η :
R→ R, where η is smooth, with

χ(x1, x2) =

{
0 : |x2| > b

1 : |x2| ≤ b
, η(t) =

{
0 : t ≤ f0(a1)

1 : t ≥ f0(a0)

and set

ψ : T ∗C → R, ψ(ξ) := χ(πξ) · η
(
H1(ξ)
H0(ξ)

)
·H1(ξ).

Then ψ is smooth in T ∗C−0∗C. For |α| small consider the dual Finsler metric

Hα(ξ) := H0(ξ) + α · ψ(ξ)

on C. Then the Hamiltonian flow of Hα is completely integrable and

Hα(ξ) = H0(ξ) ∀ξ ∈ T ∗C − Ua1 ,(1)

Hα(ξ) = H0(ξ) + αH1(ξ) ∀ξ ∈ Ua0 .

Proof. The invariance of Ua under φtH1
is trivial. For invariance under φtH0

we only have to check that |(πφtH0
ξ)2| ≤ a for all t ∈ R, if ξ ∈ Ua. But for

this, observe that for ξ ∈ Ua by f0(t) = f0(|t|)

f0(a) ≤
H1(φtH0

ξ)

H0(φtH0
ξ)

= f0((πφtH0
ξ)2)

(φtH0
ξ)1√

(φtH0
ξ)21+(φtH0

ξ)22
≤ f0(|(πφtH0

ξ)2|).

As f0 is strictly decreasing in [0,∞) we have |(πφtH0
ξ)2| ≤ a for all t. The

periodicity of φtH1
is again trivial and for φtH0

|Ua this follows, since the
geodesic flow of the round 2-sphere is 2π-periodic in its unit tangent bundle.

The equations (1) are obvious from the definition of Ua. To see that ψ is

smooth, just observe that η
(
H1(ξ)
H0(ξ)

)
= 0 for |(πξ)2| ∈ (a1, b):

H1(ξ)
H0(ξ) = f0((πξ)2) ξ1√

ξ21+ξ22
≤ f0((πξ)2) ≤ f0(a1)

due to the monotonicity of f0. For the integrability of φtHα just observe
that Hα is defined in terms of the commuting integrals H0, H1, which are
well-known to be independent almost everywhere. �
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Remark 2.3. The set Ua is a cone around dx1 in each T ∗xC. For |x2| > a
the cone is empty, while for |x2| = a it is a line and for x2 = 0 the cone is
opened the widest. If f = f0, then for a→∞ the complement

T ∗S2 − {−ξ, ξ : ξ ∈ Ua}
becomes arbitrarily small by f0(a) → 0 for |a| → ∞. If f is periodic with
period L and if a = L/2 − ε, then in the quotient T 2

L = R2/(2πZ ⊕ LZ),
the set Ua becomes arbitrarily large for ε → 0 in the dual elliptic tube
E∗ ⊂ S∗T 2

L of direction e1 given by the connected component of Ua in

{ξ ∈ T ∗T 2
L : H0(ξ) = 1, H1(ξ) > min f}.

We can now readily apply Theorem 2.1 to prove the existence of the
reversible Finsler metrics in Theorems 1.4 (2) and 1.9.

Proof of Theorems 1.4 (2) and 1.9. Step 1 (existence of a non-reversible
dual Finsler metric H). We work in the setting described above, i.e. we
are given a rotational metric f2〈., .〉 on C, which coincides with f2

0 〈., .〉 in
R/2πZ× [−L/2+ε, L/2−ε] for some L > 0 and a small ε > 0. By Theorem
2.1 applied to the set Ua0 in Lemma 2.2 with a0 ∈ (L/2 − 2ε, L/2 − ε), we
find a dual Finsler metric H : Ua0 → [0,∞) with only one periodic orbit in
Ua0 (the “equator” R/2πZ × {0}) and having an ergodic Hamiltonian flow
in each level set Ua0 ∩H−1(c). In particular, the topological entropy of the
Hamiltonian flow of H in Ua0 ∩H−1(c) vanishes, as there is only subexpo-
nential growth of closed orbits, cf. Corollary 4.4 in [Kat80]. Moreover, H
coincides with a dual Finsler metric of the form H0 +αH1 in ∂Ua0 together
with all its derivatives, which by Lemma 2.2 can be extended to a dual
Finsler metric defined in all of T ∗C. This dual Finsler metric, denoted again
by H has a Hamiltonian flow with vanishing topological entropy: In Ua0 this
was observed before and in T ∗C − Ua0 this follows from the integrability of
the Hamiltonian flow of Hα in Lemma 2.2, cf. Theorem 1 in [Pat91].

Step 2 (make H reversible). By Lemma 2.2 we have H = H0 in the
neighborhood T ∗C − Ua1 of Rdx2 in each T ∗xC. Hence we can define a new
dual Finsler metric

H ′(ξ) :=

{
H(ξ) : H1(ξ) ≥ 0

H(−ξ) : H1(ξ) < 0

on C, which is now a reversible dual Finsler metric. The metric is unchanged
in the φtH -invariant set {H1(ξ) ≥ 0} and in {H1(ξ) ≤ 0} the Hamiltionian
flow of H ′ is just the reversed flow of H from {H1(ξ) ≥ 0}. Hence, this dual
Finsler metric has all the desired properties. Translating into the Lagrangian
setting in TC as described at the beginning of this section, we obtain a Finsler
metric F on C. �

3. The results of J. Franks and M. Handel

In this section we recall (and slightly adjust) results of J. Franks and M.
Handel from [FH12]. Let us review the setting of [FH12].
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Let µ be a measure on the 2-sphere S2 topologically conjugate to the
Lebesgue measure (i.e. there exists a homeomorphism of S2 conjugating
µ to the Lebesgue measure). Let N be a surface diffeomorphic to S2

with n disjoint, smoothly bounded, open discs removed. Collapsing each
boundary circle ∂iN of N into a point pi ∈ S2 defines a C0 quotient map
πN : N → S2, whose restriction IntN → S2 − P is a C∞ diffeomorphism,
where P = {p1, ..., pn}. If φ : N → N is an orientation-preserving C∞

diffeomorphism, leaving each boundary component ∂iN invariant, we can
define a homeomorphism ψ : S2 → S2 by ψ ◦ πN = πN ◦ φ, such that
P ⊂ Fix(ψ). We denote by Diff(S2, P, µ) the set of all so obtained homeo-
morphisms ψ : S2 → S2, that in addition preserve the measure µ.

For ψ ∈ Diff(S2, P, µ) set

M := S2 − Fix(ψ), f := ψ|M

Definition 3.1 (free disc recurrence, cf. Definition 1.1 in [FH12]). A (topo-
logical) open disc B ⊂ M is a free disc for f , if f(B) ∩ B = ∅. A point
x ∈ M is called free disc recurrent for f , written x ∈ W , if there exists
n ∈ Z − {0} and a free disc B for f with x, fn(x) ∈ B. A point is called
weakly free disc recurrent, written x ∈ W, if x ∈ IntM (ClosM (W0)) for
some connected component W0 of W .

Note that W contains the full-measure set of birecurrent points for f in
M , and that W is open and dense in M .

We write

A := R/Z× [0, 1], Ã := R× [0, 1], IntA = R/Z× (0, 1).

Lemma 3.2 (annular compactification, cf. Notation 2.7 in [FH12]). If U ⊂
M is an f -invariant, open annulus, then there exists a homeomorphism
hU : A → A (called the annular compactification) of the closed annulus,
which is smoothly conjugated to f |U in IntA. If in S2, one end ∂1U , say, of
ClosS2 U contains more than one point and in addition one point, which is
fixed by ψ, then also ∂1A contains a fixed point of hU .

The last assertion follows from the properties of the prime-end compact-
ification (cf. [Mat82]).

Definition 3.3 (rotation number, cf. Definition 2.1 in [FH12]). Let h : A→
A be a homeomorphism of the closed annulus and h̃ : Ã → Ã a lift to the
universal cover. We write p1 : Ã→ R for the projection to the R-factor and
setting

τ̃h̃(x̃) := lim
n→∞

p1(h̃n(x̃))− p1(x̃)

n
, x̃ ∈ Ã

(if the limit exists), we define the rotation number

ρh(x) ∈ R/Z, x ∈ A

to be the projection of τ̃h̃(x̃) to R/Z, where x̃ projects to x.
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Clearly, ρh is independent of the choice of the lift h̃, invariant under h
and is defined almost everywhere in A by Lemma 2.2 in [FH12].

We can now state the two theorems from [FH12], which we are going to
use, describing the structure of ψ-invariant sets in S2.

Theorem 3.4 (Franks, Handel). Let ψ ∈ Diff(S2, P, µ) have infinite order
and htop(ψ) = 0. Then there exists a countable family A of pairwise disjoint,
f -invariant, open annuli U ⊂M with the following properties:

(1) the union
⋃
U∈A U equals the set W of weakly free disc recurrent

points for f in M ,
(2) A is the set of maximal f -invariant, open annuli in M , i.e. if V ⊂M

is an f -invariant, open annulus, then there exists U ∈ A with V ⊂ U .

Theorem 3.5 (Franks, Handel). Let ψ ∈ Diff(S2, P, µ) have infinite order
and htop(ψ) = 0, let A be given by Theorem 3.4 and for U ∈ A let hU : A→
A be the annular compactification of f |U : U → U . Then

(1) the rotation number ρhU : A → R/Z is well-defined and continuous
everywhere,

(2) if Fix(ψ) ⊂ S2 contains at least three points, then ρhU is non-
constant.

In our applications, ψ ∈ Diff(S2, P, µ) is obtained from a first-return map
φ : N → N of a Poincaré section N , and in this situation we will have an
invariant measure ν defined by a smooth volume form only in IntN ∼= S2−P .
Hence, the following observation will be useful.

Lemma 3.6. If ν is a measure in S2−P induced by a smooth volume form
defined in S2 − P , such that ν(S2 − P ) < ∞, then the measure µ in S2,
defined by

µ(A) = ν(A− P ),

is topologically conjugate to a Lebesgue measure (i.e. the properly rescaled
standard Lebesgue measure).

Proof. Let D be the n-dimensional closed unit ball and µL be the (outer)
Lebesgue measure on D. Recall the following theorem due to J. C. Oxtoby
and S. M. Ulam, cf. Theorem 2 in [OU41]. A finite outer measure µ on D is

topologically conjugate to µ(D)
µL(D) · µL if and only if µ satisfies the following

conditions:

(1) (Caratheodory’s condition) If A,B ⊂ D with inf{d(x, y) : x ∈ A, y ∈
B} > 0, then µ(A ∪B) = µ(A) + µ(B),

(2) (regularity) µ(A) = infU⊃A open µ(U),
(3) (positive on open sets) µ(U) > 0 for U 6= ∅ and U open,
(4) (no atoms) µ({pt}) = µ(∂D) = 0.

Moreover, the homeomorphism h : D → D between µ, µL can be chosen to
satisfy h|∂D = id∂D.
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We now return to our measure µ on S2, let µL be the Lebesgue measure

on S2 and set λ = µ(S2)
µL(S2)

. Consider the equator γ = S2 ∩ {x3 = 0} and

rotate γ about the x1-axis. Then for each t ∈ [0, 2π], we can write S2 as the
union of to compact discs D0

t , D
1
t , that intersect in the rotated equator γt.

Assuming that e.g. µ(D0
t ) ≤ µ(D0

t ) in t = 0, we find the opposite inequality
after time t = π. By continuity of t 7→ µ(Di

t) we find some t0 ∈ [0, π], where
both discs D0

t0 , D
1
t0 have the same µ-area. Obviously, by our assumptions,

µ restricted to the discs Di
t0 satisfies items (1)-(4) above, and hence we can

apply the theorem of Oxtoby and Ulam to µ|Dit0 to obtain homeomorphisms

hi : Di
t0 → Di

t0 conjugating µ to λ · µL in Di
t0 . By the additional assertion

that hi|∂Dit0 is the identity, we obtain the desired homeomorphism of S2. �

In order to apply Theorems 3.4 and 3.5 to Poincaré sections in ST2 for
Finsler metrics on the 2-torus, we need the following observation, which
under certain conditions allows the boundary circles of the surface N above
to be only continuous, instead of C∞.

Lemma 3.7. Let γ1, ..., γn ⊂ S2 be disjoint, continuous, simple, closed
curves and let N ⊂ S2 be the compact surface obtained from S2 by cut-
ting out interiors of the γi. Then Theorems 3.4, 3.5 continue to hold for
µ-preserving homeomorphisms ψ : S2 → S2 obtained from diffeomorphisms
φ : N → N by collapsing each γi into a fixed point pi ∈ P as above with the
additional condition that φ : N → S2 extends to a C∞ embedding of an open
neighborhood U ⊂ S2 of N into S2.

Proof. The only two places, where Franks and Handel use the smoothness
of ∂N in [FH12] is to prove the following two statements:

(1) Let σ : [0, 1] → N be a smooth curve segment and ` denote the
length with respect to any Riemannian metric in U . Then

lim sup
n→∞

1

n
log `(φn(σ)) ≤ htop(φ).

(2) There exists a finite family R of essential, non-peripheral, non-
parallel, simple, closed curves in S2 − Fix(ψ), such that the homeo-
morphism ψ ∈ Diff(S2, P, µ) is isotopic relative to Fix(ψ) to a com-
position of non-trivial Dehn twists in the elements of R.

We first discuss item (2). Considering the embedding φ : U → S2, we show
how to find a C∞ diffeomorphism F : S2 → S2, such that F |N = φ|N ;
then we can proceed as in Section 4 of [FH12]. For the existence of F ,
choose within U n smoothly bounded, compact annuli A1, ..., An, each Ai
containing γi in its interior and bounding open discs Di in S2 − N . It is
well-known that each φ|Ai is isotopic to the inclusion Ai ↪→ S2 and by the
isotopy extension theorem (Theorem 1.4 on p. 180 of [Hir76]), this isotopy
can be extended to a smooth isotopy of the union Di ∪ Ai, ending in φ in
each Ai. Taking the time-1-map of these isotopies in the Di, we have found
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F . Item (1) now follows from applying Theorem 1.4 in [Yom87] to F and
smooth curves σ in the F -invariant set N ⊂ S2. �

4. Non-ergodicity in the case of the 2-sphere

In this section we let (S2, F ) be the 2-sphere with a reversible Finsler
metric F . Moreover, we will in the following assume that every geodesic
of F has conjugate points and claim that a dense geodesic in SS2 implies
htop(φtF ) > 0 (Theorem 1.5). In order to prove this, we want to apply the
results of J. Franks and M. Handel from Section 3, i.e. we need Poincaré
sections in SS2. A very classical construction is due to G. D. Birkhoff (cf.
Section VI.10 of [Bir27]), which we will recall now.

It is well-known, that there always exists a simple, closed geodesic c :
R/TZ → S2, T > 0 being the minimal period of c, by minimax methods,
cf. Section 15-19 of [Bir17]. Letting N : R/TZ→ SS2 be a unit vector field
along c, orthogonal to ċ with respect to the standard round metric denoted
by 〈., .〉, we define a smoothly bounded, compact annulus

A := {v ∈ SS2 | ∃t ∈ R/TZ : πv = c(t), 〈 v,N(t) 〉 > 0} ⊂ SS2,

which we call the Birkhoff annulus with base geodesic c (in direction N).

Lemma 4.1 (Birkhoff, Bangert). If F is a reversible Finsler metric on S2,
then the Birkhoff annulus A ⊂ SS2 with base geodesic c : R/TZ → S2 is
everywhere transverse to the generator of the geodesic flow φtF : SS2 → SS2

in the interior of A. Moreover, if every geodesic of F possesses conjugate
points, then every geodesic in SS2 − {ċ(t),−ċ(t) : t ∈ R/TZ} hits A in
uniformly bounded positive and negative times.

We give a proof along the lines of V. Bangert’s arguments, cf. Section 4
of [Ban93] (which discusses the Riemannian case).

Proof. For the transversality observe that for v ∈ IntA we have d
dt

∣∣
t=0

π ◦
φtF v = v, which is transverse to π(A) = c(R/TZ) by definition.

Let L be the supremum of times that unit speed geodesics take to hit A
and assume L = ∞. Then there exists a sequence of arc-length geodesic
segments cn : [0, Ln] → S2 with Ln → ∞, disjoint from the base geodesic
c : R/TZ → S2 of A. Letting vn := ċn(Ln/2) ∈ SS2, take a convergent
subsequence vn → v, then cv : R → S2 is entirely disjoint from c. By the
assumption that c possesses conjugate points, it is not possible for cv to
come arbitrarily close to c without intersecting it: for then the geodesic
flow would take the orbit ċv(t) across c due to the existence of conjugate
points, which means that φtF rotates along the closed orbit ċ(R/TZ). Hence
inft∈R d(c(R/TZ), cv(t)) > 0 and the pair of geodesics c, cv bounds an open
annulus U ⊂ S2, which is locally geodesically convex, as it is bounded by
(parts of) geodesics.

Fixing k ≥ 1, take a sequence γkn of smooth, simple, closed curves in the
prime homotopy class of the k-fold cover Uk of U , such that the F -lengths
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lF (γkn) decrease with n → ∞ to the infimum of lengths of such curves.
For each n deform γkn into a closed geodesic in Uk by means of the curve
shortening flow for reversible Finsler metrics [Ang08] (the curves stay in Uk

due to local geodesic convexity). In the limit, we obtain a shortest, simple,
closed geodesic γk in the prime homotopy class of Uk.

If the boundary component of Uk corresponding to cv is not smooth, then
the smooth curve γk is disjoint from this boundary component. On the other
hand, γk cannot be equal to the k-th iterate ck of c for large k (and by the
same reasoning not equal to the other boundary component of Uk, if it is
smooth). For this, observe that due to the existence of conjugate points
along c, we can find on both sides of ck smooth, closed curves close to ck,
which are shorter than ck (cf. Lemma 2 in [Ban93] or for the Finsler case
the techniques in Chapter 7.4 of [BCS00]). It now follows from classical ar-
guments of G. A. Hedlund (cf. Section 5 in [Hed32]), that γk is in fact prime
periodic in U and locally minimizing on arbitrarily long subsegments and
hence it has to be free of conjugate points. This contradicts our hypothesis
on the existence of conjugate points along every geodesic. �

As a corollary, we obtain a smooth first-return map

φ : IntA→ IntA,

which (as a map coming from a Hamiltonian flow) is well-known to preserve
a smooth area form, also defined in the interior IntA. This is sometimes
called the Birkhoff annulus map. In order to apply the results from Section
3, we need a smooth continuation of φ to all of A.

Lemma 4.2. If F is a reversible Finsler metric on S2 with conjugate points
along every geodesic, then the Birkhoff annulus map extends to a C∞ dif-
feomorphism φ : A→ A.

Proof. By Lemma 4.1, the first-return time τ : IntA → R of a point x ∈
IntA to A under φtF is uniformly bounded from above. Let us investigate τ
near the boundary ċ(R/TZ) of A, the other part −ċ(R/TZ) being treated

analogously. If τ extends to a C∞ function A → R then φ(v) = φ
τ(v)
F v is

smooth in all of A.
We identify a strip in S2 around c(R/TZ) with U := R/TZ × (−ε, ε) 3

(t, s) in such a way that c(t) ∼= (t, 0). For r ∈ R let V (t, s, r) be the F -
unit vector in T(t,s)U , which makes an angle r mod 2π with the vector ∂t ∈
T(t,s)U (angles with respect to the euclidean metric in U). Then V : M →
SU is a diffeomorphism between M := U × R/2πZ and the neighborhood
SU ⊂ SS2 of ċ(R/TZ). Let X : SS2 → TSS2 be the generator of the
geodesic flow φtF v = ċv(t), then V ∗X being the pullback of X to a vector
field on M , we can write

V ∗X = ((V ∗X)t, (V
∗X)s, (V

∗X)r) ∈ R3 ∼= TπV ∗XM,

V = (Vt, Vs) ∈ R2 ∼= TπV U.
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Using linearity of the s-projection and πV (t, s, r) = (t, s), we obtain

(V ∗X(t, s, r))s =
(
dV −1(V (t, s, r)) d

dτ

∣∣
τ=0

ċV (t,s,r)(τ)
)
s

= d
dτ

∣∣
τ=0

(
V −1 ◦ ċV (t,s,r)(τ)

)
s

= d
dτ

∣∣
τ=0

(
cV (t,s,r)(τ)

)
s

= (V (t, s, r))s .

Hence

d
dr

∣∣
r=0

(V ∗X)s(t, 0, r) = d
dr

∣∣
r=0

Vs(t, 0, r) 6= 0

by definition of V . Observe moreover, that

V −1(A) = R/TZ× {0} × [0, π].

The lemma now follows from Lemma 4.3 below. �

Lemma 4.3. Let ψτ : R3 → R3 be a local C∞ flow, such that writing
(t, s, r) ∈ R3 for the coordinates, we have

(1) ψτ (t, 0, 0) = (t + τ, 0, 0), i.e. γ : R → M with γ(τ) = (τ, 0, 0) is an
orbit of ψτ ,

(2) ψτ is transverse to V := R×{0}× (0,∞) and any orbit in V returns
to V after a uniformly bounded, positive time,

(3) if X = (Xt, Xs, Xr)(t, s, r) is the generator of ψτ , then

d
dr

∣∣
r=0

Xs(t, 0, r) 6= 0 ∀t ∈ R.

Then the first-return time τ : V → R extends to a C∞ function τ : V → R.

The author is thankful to Umberto Hryniewicz for explaining to him the
following proof of Lemma 4.3.

Proof. Set

F : R× R2 → R, F (τ, t, r) := (ψτ (t, 0, r))s,

where (.)s : R3 → R is the projection onto the s-coordinate. Then

ψτ (t, 0, r) ∈ V ⇐⇒ F (τ, t, r) = 0 & (ψτ (t, 0, r))r > 0.

By γ(τ) being an orbit of ψτ , we find F (τ, t, 0) ≡ 0 and hence we can write

F (τ, t, r) = r ·G(τ, t, r)

with

G(τ, t, r) =

{
1
rF (τ, t, r) : r 6= 0
∂
∂r

∣∣
r=0

F (τ, t, r) : r = 0
.

By Lemma A.1 in Appendix A, G is again a C∞ function. Observe that
now

ψτ (t, 0, r) ∈ V ⇐⇒ G(τ, t, r) = 0 & (ψτ (t, 0, r))r > 0.

By assumption (2) we have a bounded C∞ function τ = τ(t, r) : V → R
given by the first-return time under ψτ to V , which solves

G(τ(t, r), t, r) = 0 & (ψτ(t,r)(t, 0, r))r > 0 ∀(t, 0, r) ∈ V.
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Now observe, that by definition of F,G

d

dτ

∣∣∣∣
τ=0

G(τ, t, 0) =
d

dτ

∣∣∣∣
τ=0

∂

∂r

∣∣∣∣
r=0

(ψτ (t, 0, r))s =
∂

∂r

∣∣∣∣
r=0

Xs(t, 0, r) 6= 0

by assumption (3). Hence, by the implicit function theorem and the bound-
edness of τ , we can extend τ into a neighborhood of V in R× {0} × R and
the lemma follows. �

We can thus prove Theorem 1.5 from the introduction.

Proof of Theorem 1.5. By Lemmata 4.1 and 4.2, the geodesic flow of F can
be reduced to the Birkhoff annulus map φ, which is smooth in the closed
annulus A. The topological entropy of φ vanishes by Remark 1.3 (note
that the first-return time is uniformly bounded). Hence, we are in the
setting of Section 3 and obtain a homeomorphism ψ ∈ Diff(S2, P, µ) with
cardP = 2. The assumed existence of a second closed geodesic leads to an
interior periodic point of the Birkhoff annulus map of period q ≥ 1, say,
and hence ψq has a third fixed point in S2 − P . We apply Theorems 3.4,
3.5 to ψq and let U ∈ Aq be a ψq-invariant, open annulus. Considering the
rotation number ρ : A→ R/Z of the annular compactification hU of ψq as a
non-constant, continuous function, we observe that in every interval of R/Z
there exists some r with µ(ρ−1(r)) = 0, as the sets ρ−1(r) are disjoint and
µ(U) < ∞. We obtain q + 1 (in fact, infinitely many) disjoint, open, ψq-
invariant subsets U0, ..., U1 ⊂ U as preimages of the rotation number of open
intervals bounded by r’s with µ(ρ−1(r)) = 0, such that also the closures Ui
are disjoint and µ(Ui) = µ(Ui). Assuming the Ui to be ordered according

to area, µ(U0) being the smallest, the set ∪q−1
i=0ψ

i(U0) is closed, ψ-invariant,
has non-empty interior and

µ(∪q−1
i=0ψ

i(U0)) ≤ q · µ(U0) < (q + 1) · µ(U0) ≤ µ(∪qi=0Ui) ≤ µ(A).

But if there exists a dense geodesic, then ψ possesses a dense orbit, and we
have ∪q−1

i=0ψ
i(U0) = A, contradiction. �

Remark 4.4. By the results of A. Harris and G. Paternain [HP08], also
for 1/4-pinched non-reversible Finsler metrics and more generally for dy-
namically convex Reeb flows on S3 there exist well-behaved, disc-like, global
Poincaré surfaces of section. One can probably also prove smoothness of
the arising first-return maps on the closure of the disc-like Poincaré surface
and then apply the results of J. Franks and M. Handel. Hence, it is quite
possible that Theorem 1.5 generalizes to 1/4-pinched non-reversible Finsler
metrics and dynamically convex Reeb flows on S3.

5. Non-ergodicity in elliptic tubes for the 2-torus

We fix a reversible Finsler metric F on T2 with geodesic flow φtF : ST2 →
ST2 and assume htop(φtF ) = 0. In order to prove Theorem 1.10, we construct
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a Poincaré section for the geodesic flow φtF : ST2 → ST2 of F , associated to
a rational direction ρ ∈ S1. For this, we use the reversibility of F .

Let z = (z1, z2) ∈ Z2 − {0} and z⊥ := (−z2, z1). Choose a minimal axis
c⊥ : R → R2 of the translation R2 → R2 associated to z⊥ and consider the
torus

T 2
z := R2/(zZ⊕ z⊥Z).

Writing 〈., .〉 for the euclidean inner product on R2 ∼= TxT
2
z and π : TT2 →

T2 for the canonical bundle projection, we consider the open annulus

Az := {v ∈ ST 2
z | ∃t ∈ R : πv = c⊥(t), 〈 v, ċ⊥(t) 〉 > 0} ⊂ ST 2

z .

Note that Az ∼= R/Z × R. If v ∈ ST2, we take any lift c̃v : R → R2 of the
geodesic cv : R→ T2 and set

ρ(v) = lim
t→∞

c̃v(t)

|c̃v(t)|
∈ S1.

Due to htop(φtF ) = 0, it follows from Theorem 1.7, that ρ(v) exists for every
v ∈ ST2, is independent of the choice of the lift c̃v and ρ(−v) = −ρ(v).

Lemma 5.1. Az is transverse to the geodesic flow φtF . If htop(φtF ) = 0, then
every orbit φtF v with v ∈ ST2 and ρ(v) lying in the connected component of

z in S1 − {±z⊥} hits Az after finite positive and negative time.

Proof. Let v ∈ Az, then the geodesic cv(t) = π(φtF v) is transverse in t = 0

to π(Az) = c⊥(R), showing transversality. The second claim follows directly
from Theorem 1.7 (4). �

The first-return map to the Poincaré section Az is a C∞ diffeomorphism

φ : Az → Az, Az ∼= R/Z× R,
preserving a smooth area ν (by being a first-return map of a flow conjugated
to a Hamiltionian flow in T ∗T 2

z ) and we can see a transverse version of
Figure 1 for φ in Az. Recall the notation Γ±ρ in Theorem 1.7 for the two

invariant graphs in ST2 with asymptotic direction ρ ∈ S1 and that for ρ
with irrational slope, we have Γ−ρ = Γ+

ρ =: Γρ. We use the same notation

for the intersections of these graphs with Az. The φtF -invariant tori given
by Theorem 1.7 then appear as φ-invariant, (Lipschitz) continuous, simple,
closed and non-contractible curves Γ±ρ ⊂ Az.

Lemma 5.2. There exist ρ−, ρ+ ∈ S1 with irrational slope, such that ρ− <
z/|z| < ρ+ in the counterclockwise orientation of S1 and such that φ : Az →
Az has no fixed points in Az between the invariant graphs Γρ− ,Γρ+ other

than the ones in the region enclosed by the two graphs Γ±z/|z|.

Proof. If we choose a neighborhood of z in z + Rz⊥ that intersects Z2 only
in z, we can choose irrational ρ± such that the lines R>0ρ± intersect z+Rz⊥
in that neighborhood on either side of z. Let v ∈ Az be a fixed point for φ,
then cv : R→ T2 is a closed geodesic with some homotopy class z+λz⊥ ∈ Z2
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for some λ ∈ Z and if λ 6= 0, the asymptotic direction ρ(v) = z+λz⊥

|z+λz⊥| lies

outside the segment between ρ± by construction. On the other hand, if the
orbit ċv lies between Γρ± , then ρ(v) lies between ρ± in S1, so λ = 0 and

hence ρ(v) = z/|z| and ċv lies between Γ±z/|z|. �

We want to study the behavior of φ : Az → Az in the space between the
φ-invariant Lipschitz curves

Γ± := Γ±z/|z| ⊂ Az.

By Lemma 5.2, we are also given two disjoint, φ-invariant Lipschitz curves

γ± := Γρ± ⊂ Az
and we restrict ourselves to the subset N of Az between γ− and γ+, restrict-
ing the area ν to IntN . By Remark 1.3, we find

htop(φ|N ) ≤ htop(φtF ) = 0.

Collapsing γ± into two points p± ∈ S2, we are precisely in the situation
of Lemmata 3.6, 3.7 and hence can apply Theorems 3.4, 3.5 of Franks and
Handel in Section 3. Analogous to Definition 1.8, we call the components E
of N − ∪Γ± between Γ± elliptic islands. Since the non-empty intersection
∩Γ± consists of fixed points for φ, elliptic islands are φ-invariant (instead of
merely being permuted). Cf. Figure 2 for the notation.

Figure 2. The annulus Az with the curves γ±,Γ± and fixed
points p0, p1 in the boundary of an elliptic island E. The
arrows indicate the principle direction of φ.

Next, we observe that the regions above Γ+ and below Γ− in N actually
occur as φ-invariant, open annuli in Theorem 3.4. As in Section 3, we write

M = N − Fix(φ), f = φ|M .
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We will use the following fact, cf. Theorem (2.1) in [Fra92]. Namely, if
h : IntA → IntA is a fixed-point free, orientation- and area-preserving
homeomorphism of the open annulus, then the set of points with vanishing
rotation number has measure zero.

Lemma 5.3. The open annuli U− between γ− and Γ− and U+ between Γ+

and γ+ belong the the collection A of maximal f -invariant, open annuli in
Theorem 3.4.

Proof. By Lemma 5.2, both U± belong to M and by invariance of γ±,Γ±,
they are f -invariant. By Theorem 3.4, there exists an f -invariant, open
annulus U ∈ A, such that U ⊃ U+. Suppose that U ∩Γ+ 6= ∅, and note that
every point x below Γ+ has zero rotation number in the annulus U , since it
is contained in an elliptic island. But then f |U has a fixed point by the fact
recalled above, contradicting U ⊂M . �

We can now prove Theorem 1.10. In the following proof, we fix an elliptic
island E ⊂ N , which has two fixed points p0, p1 ∈ ∂E, cf. Figure 2.

Proof of Theorem 1.10. For item (1), note that we can restrict ourselves to
the set E ∩M . Since the set of weakly free disc recurrent points W ∩E has
full measure in E ∩M and since the set of maximal invariant annuli A in
Theorem 3.4 is countable, we can even restrict to some U ∈ A lying in E
by Lemma 5.3. If x ∈ U with ω(φ, x) ∩ ∂E 6= ∅, then by the heteroclinic
dynamics in ∂E − {p0, p1}, we obtain ω(φ, x) ∩ {p0, p1} 6= ∅. Hence, one
point p ∈ {p0, p1} lies in one end ∂1U in N . On the other hand, ∂1U cannot
consist only of p, since U ⊂ IntE by Lemma 5.3. Thus, Lemma 3.2 shows
that in the annular compactification hU : A → A we find a fixed point p̃ of
hU in ∂1A corresponding to ∂1U and hence the rotation number of hU |∂1A
vanishes. If the above x ∈ U corresponds to some x̃ ∈ A, then we find
∂1A ∩ ω(hU , x̃) 6= ∅ and by continuity of the rotation number in Theorem
3.5, we have ρhU (x̃) = 0. But by the above stated special case of Theorem
(2.1) in [Fra92], this can happen only for a set of points x̃ ∈ A (and hence
x ∈ U) of measure zero, for the homeomorphism hU |IntA is fixed-point free
by definition. This proves (1).

For (2) observe first that a dense orbit for the geodesic flow φtF |E will be
dense for the Poincaré map φ|E and hence also be dense in some U ∈ A by
Lemma 5.3. Then Theorem 3.5 (1) shows that ρhU is constant, while ψ has
at least three fixed points p ∈ {p0, p1} and p−, p+ corresponding to γ−, γ+.
Hence ρhU is non-constant by Theorem 3.5 (2), contradiction. �
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Appendix A.

In Section 4 we used the following lemma, which we will prove here.

Lemma A.1. Let F : Rn → R be a C∞ function, such that writing (x, t) ∈
Rn−1 × R we have F (x, 0) ≡ 0. Set

G : Rn → R, G(x, t) :=

{
F (x, t)/t : t 6= 0

∂tF (x, 0) : t = 0
.

Then G : Rn → R is C∞ as well.

Proof. A Taylor expansion of ∂kt F with k ∈ N0 in the t-variable shows

∂kt F (x, t)(2)

= ∂kt F (x, 0) + t∂k+1
t F (x, 0) +

t2

2
∂k+2
t F (x, 0) +

t3

6
∂k+3
t F (x, τ)

for some τ ∈ [−1, 1], if |t| ≤ 1. Via induction on k one easily shows

∂kt G(x, t) =
∂kt F (x, t)− k∂k−1

t G(x, t)

t
in {t 6= 0}.(3)

We will prove via induction on k that G is a Ck-function with ∂kt G(x, 0) =
1

k+1∂
k+1
t F (x, 0). For k = 0 this is clear from the definition of G. Assume

now that the statement is true for k − 1, k. We then find using (2), (3)

∂kt G(x, t)− ∂kt G(x, 0)

t

=
∂kt F (x, t)− k∂k−1

t G(x, t)− t∂kt G(x, 0)

t2

=

{
∂kt F (x, 0) + t∂k+1

t F (x, 0) + t2

2 ∂
k+2
t F (x, 0) + t3

6 ∂
k+3
t F (x, τ)

−k∂k−1
t G(x, t)− t∂kt G(x, 0)

}
t2

=

{
∂kt F (x, 0)− k∂k−1

t G(x, t)

+t ·
(
∂k+1
t F (x, 0)− ∂kt G(x, 0)

) }
t2

+
1

2
∂k+2
t F (x, 0) +

t

6
∂k+3
t F (x, τ).

By our induction hypothesis for k−1, we have ∂kt F (x, 0)−k∂k−1
t G(x, t)→ 0

as t→ 0 and applying the l’Hospital rule and ∂kt G(x, 0) = 1
k+1∂

k+1
t F (x, 0),

the above fraction tends to

lim
t→0

∂k+1
t F (x, 0)− ∂kt G(x, 0)− k∂kt G(x, t)

2t

= lim
t→0

∂k+1
t F (x, 0)− (k + 1)∂kt G(x, 0) + k∂kt G(x, 0)− k∂kt G(x, t)

2t

=
−k
2
· lim
t→0

∂kt G(x, t)− ∂kt G(x, 0)

t
.
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Hence, we obtain the existence of the limit

(2 + k) · ∂k+1
t G(x, 0) = (2 + k) · lim

t→0

∂kt G(x, t)− ∂kt G(x, 0)

t
= ∂k+2

t F (x, 0).

Using (3), the induction hypothesis for k, the l’Hospital rule and our just

found formula for ∂k+1
t G(x, 0), we obtain

lim
t→0

∂k+1
t G(x, t) = lim

t→0

∂k+1
t F (x, t)− (k + 1)∂kt G(x, t)

t

= ∂k+2
t F (x, 0)− (k + 1)∂k+1

t G(x, 0) = ∂k+1
t G(x, 0).

The continuity of ∂k+1
t G in x at t = 0 is obvious from F being Ck+2. To

check the other partial derivatives of G not involving t, observe

∂xi1 · · · ∂xilG(x, t) =

{
1
t ∂xi1 · · · ∂xilF (x, t) : t 6= 0

∂t∂xi1 · · · ∂xilF (x, 0) : t = 0
.

This function is continuous, since ∂xi1 · · · ∂xilF (x, 0) ≡ 0 due to F (x, 0) ≡
0. To check derivatives of the form ∂k+1−l

t ∂xi1 · · · ∂xilG, apply the above
formula for ∂xi1 · · · ∂xilG and observe that we can apply the above arguments
to F replaced by the functions ∂xi1 · · · ∂xilF . Having this in mind, observe

that by (3) and our formula for ∂tG(x, 0)

∂xj∂tG(x, t) =

{
∂xj

∂tF (x,t)− 1
t
F (x,t)

t : t 6= 0

∂xj
1
2∂

2
t F (x, 0) : t = 0

=

{
∂t(∂xjF )(x,t)− 1

t
(∂xjF )(x,t)

t : t 6= 0
1
2∂

2
t (∂xjF )(x, 0) : t = 0

= ∂t(
1
t ∂xjF )(x, t)

= ∂t∂xjG(x, t).

This shows that we can exchange ∂t and ∂xj applied to G, so that we can

always obtain the form ∂k+1−l
t ∂xi1 · · · ∂xilG of the partial derivatives. Thus,

G is also Ck+1. �
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