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Diffusion of energy in chains of oscillators with
conservative noise

Cédric Bernardin

Abstract These notes are based on a mini-course given during the conference Parti-
cle systems and PDE’s - II which held at the Center of Mathematics of the University
of Minho in December 2013. We discuss the problem of normal and anomalous dif-
fusion of energy in systems of coupled oscillators perturbed by a stochastic noise
conserving energy.

Key words: Superdiffusion, Anomalous fluctuations, Green-Kubo formula, Non
Equilibrium Stationary States, Heat conduction, Hydrodynamic Limits, Ergodicity.

The goal of statistical mechanics is to elucidate the relation between the microscopic
world and the macroscopic world.Equilibrium statistical mechanicsassume the mi-
croscopic systems studied to be in equilibrium. In this course we will be concerned
with non-equilibrium statistical mechanicswhere time evolution is taken into ac-
count: our interest will not only be in the relation between the microscopic and the
macroscopic scales in space but also in time.

By microscopic system we refer to molecules or atoms governed by the classi-
cal Newton’s equations of motion. The question is then to understand how do these
particles manage to organize themselves in such a way as to form a coherent struc-
ture on a large scale. The “structure” will be described by few variables (tempera-
ture, pressure . . . ) governed by autonomous equations (Euler’s equations, Navier-
Stokes’s equation, heat equation . . . ). The microscopic specificities of the system
will appear on this scale only through the thermodynamics (equation of state) and
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through the transport coefficients. Unfortunately, we are very far from understand-
ing how to derive such macroscopic equations for physical relevant interactions.

One of the main ingredients that we need to obtain the macroscopic laws is that
the particles, which evolve deterministically, have a behavior that one can consider
almost as being random. The reason for this is that the dynamical system consid-
ered is expected to have a very sensitive dependence on the initial conditions and
therefore is chaotic. This “ deterministic chaos” is a poorly understood subject for
systems with many degrees of freedom and even a precise consensual formulation
is missing.

A first simplification to attack these problems consists in replacing the deter-
ministic evolution of particlesab initio by purely stochastic evolutions. Despite this
simplification we notice that the derivation of the macroscopic evolution laws is
far from being trivial. For example, we do not have any derivation of a system of
hyperbolic conservation laws from a stochastic microscopic system after shocks.
Nevertheless, since the pioneering work of Guo, Papanicolaou,Varadhan ([35]) and
Yau ([67]), important progresses have been performed in several well understood
situations by the development of robust probabilistic and analytical methods (see
[41] and [55] for reviews).

In this course we will be mainly (but not only) interested in hybrid models for
which the time evolution is governed by a combination of deterministic and stochas-
tic dynamics. These systems have the advantage to be mathematically tractable and
conserve some aspects of the underlying deterministic evolution. The stochastic
noise has to be chosen in order to not destroy the main features of the Hamilto-
nian system that we perturb.

The central macroscopic equation of these lecture notes is the heat equation:




∂tu= ∂x(D(u)∂xu), x∈ Ů , t > 0,

u(0,x) = u0(x), x∈U,

u(t,x) = b(x), x∈ ∂U, t > 0.

Hereu(t,x) is a function of the timet ≥ 0 and the spacex∈U ⊂Rd, d ≥ 1, starting
from the initial conditionu0 and subject to boundary conditions prescribed by the
functionb. The advantage of the heat equation with respect to other macroscopic
equations such as the Euler or Navier-Stokes equations is that the notion of solu-
tion is very well understood. The dream would be to start froma system ofN ≫ 1
particles whose interactions are prescribed by Newton’s laws and to show that in
the largeN limit, the empirical energy converges in the diffusive timescalet = τN2

to u (τ is the microscopic time andt the macroscopic time). In fact, this picture is
expected to be valid only under suitable conditions and to fail for some low dimen-
sional systems. In the case where the heat equation (or its variants) holds we say
that the system has a normal behavior. Otherwise anomalous behavior occurs and
the challenging question (even heuristically) is to know bywhat we shall replace the
heat equation and what is the time scale over which we have to observe the system
in order to see this macroscopic behavior ( [19], [24],[47] for reviews).
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The course is organized as follows. In Chapter 1 we introducethe models stud-
ied. Chapter 2 is concerned with models which have a normal diffusive behavior.
In Chapter 3 we are interested in systems producing an anomalous diffusion. An
important issue not discussed here is the effect of disorderon diffusion problems. In
order to deal with lecture notes of a reasonable size, many ofthe proofs have been
suppressed or only roughly presented.

1 Chains of oscillators

1.1 Chains of oscillators with bulk noise

Chains of coupled oscillators are usual microscopic modelsof heat conduction in
solids. Consider a finite boxΛN = {1, . . . ,N}d ⊂ Zd, d ≥ 1, whose boundary∂ΛN

is defined as∂ΛN = {x /∈ ΛN ; ∃y∈ ΛN, |x−y|= 1}. Here| · | denotes the Euclidian
norm inRd and “· ” the corresponding scalar product. Let us fix a nonnegative pair
interaction potentialV and a pinning potentialW onR. The atoms are labeled byx∈
ΛN. The momentum of atomx is px ∈ R and its displacement from its equilibrium
position1 is qx ∈ R. The energyEx of the atomx is the sum of the kinetic energy,
the pinning energy and the interaction energy:

Ex =
|px|2

2
+W(qx)+

1
2 ∑
|y−x|=1,

y∈ΛN

V(qx−qy). (1)

The Hamiltonian is given by

HN = ∑
x∈ΛN

Ex+ ∂ HN (2)

where∂ HN is the part of the Hamiltonian corresponding to the boundaryconditions
which are imposed.

We will consider the following cases:

• Periodic boundary conditions: we identify the site 1 to the site N and denote the
corresponding box byTN, the discrete torus of lengthN (then∂HN = 0).

• Free boundary conditions: this corresponds to the absence of boundary condi-
tions, i.e. to∂HN = 0.

• Fixed boundary conditions: introduce the positionsqy = 0, y ∈ ∂ΛN, of some
fictive walls. We add to the HamiltonianHN a boundary term∂HN = ∂ f HN

given by

1 We restrict us to the case whereqx ∈R
n with n= 1 because the relevant dimension of the system

is the dimensiond of the lattice. Most of the results stated in this manuscriptcan be generalized to
the casen≥ 1.
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Fig. 1: A one-dimensional chain of pinned oscillators with free boundary conditions

∂ f HN = ∑
|y−x|=1,

x∈ΛN,y∈∂ΛN

V(qx−qy) = ∑
|y−x|=1,

x∈ΛN,y∈∂ΛN

V(qx).

• Forced boundary conditions: site1 = (1, . . . ,1) is in contact with a wall at po-
sition q0 = 0 and each sitey ∈ ∂ΛN\{0} is driven by a constant forceτy. This
results in a boundary term∂HN = ∂ τ HN given by

∂ τ HN = ∑
|y−x|=1,

x∈ΛN ,y∈∂ΛN

V(qx−qy)− ∑
y∈∂ΛN\{0}

τyqy. (3)

The equations of motion of the atoms are

q̇x = ∂pxHN, ṗx =−∂qxHN (4)

and the generatorAN of the system is given by the Liouville operator

AN = ∑
x∈ΛN

{
∂pxHN ∂qx − ∂qxHN ∂qx

}
.

It will be also useful to consider the chain of oscillators ininfinite volume, i.e.
replacingΛN by Zd, d ≥ 1, in the definitions above. The formal generatorAN is
then denoted byA . The dynamics can be defined for a large set of initial conditions
if V andW do not behave too badly ([45], [50], [12]). We define the setΩ as the
subset ofRZd

given by
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Ω =
⋂

α>0

{
ξ ∈ R

Zd
; ∑

x∈Zd

e−α |x||ξx|2 <+∞

}
(5)

andΩ̃ = Ω ×Ω . We equipΩ with its natural product topology and its Borelσ -
field andΩ̃ by the corresponding product topology. ForX = Ω or X = Ω̃ , the set
of Borel probability measures onX is denoted byP(X). A function f : X → R is
said to belocal if it depends ofξ only through the coordinates{ξx ; x ∈ Λ f }, Λ f

being a finite box ofZ. We also introduce the setsCk
0(X), k ≥ 1 (resp.k = 0), of

bounded local functions onX which are differentiable up to orderk with bounded
partial derivatives (resp. continuous and bounded).

In the rest of the manuscript, apart from specific cases, we will assume that one
of the following conditions hold:

• The potentialsV andW have bounded second derivatives. Then the infinite dy-
namics(ω(t))t≥0 can be defined for any initial conditionω0 = (q0,p0) ∈ Ω̃ .
MoreoverΩ̃ is invariant by the dynamics. This defines a semigroup(Pt)t≥0 on
C0

0(Ω̃) and the Chapman-Kolmogorov equations

(Pt f )(ω)− f (ω) =
∫ t

0
(PsA f )(ω)ds =

∫ t

0
(A Ps f )(ω)ds (6)

are valid for anyf ∈C1
0(Ω̃ ).

• The potentialW = 0 and the interaction potentialV has a second derivative uni-
formly bounded from above and below. It is more convenient togo over the defor-
mation fieldη(x,y) = qy−qx, |x−y|= 1, which by construction is constrained to
have zero curl. Ind = 1 we will denoteη(x−1,x) = qx−qx−1 by rx. The dynamics
(4) can be read as a dynamics for the deformation field and the momenta. Given
sayq0, the scalar fieldq = {qx}x∈Zd can be reconstructed fromη . In the sequel,
whenW = 0, we will use these coordinates without further mention. The dynam-
ics for the coordinatesω = (η ,p) = (η(x,x+e), px)|e|=1,x∈Z can be defined if the
initial condition satisfiesω0 ∈ Ω̃ . Moreover the set̃Ω is invariant by the dynam-
ics. This defines a semigroup(Pt)t≥0 on C0

0(Ω̃) and the Chapman-Kolmogorov
equations

(Pt f )(ω)− f (ω) =
∫ t

0
(PsA f )(ω)ds =

∫ t

0
(A Ps f )(ω)ds (7)

are valid for anyf ∈C1
0(Ω̃ ).2

Let us first consider the problem related to the characterization of equilibrium
states. For simplicity we take the finite volume dynamics with periodic boundary
conditions. Then it is easy to see that the system conserves one or two physical
quantities depending on whether the chain is pinned or not. The total energyHN is
always conserved. IfW = 0 the system is translation invariant and the total momen-
tum∑x px is also conserved. Notice that because of the periodic boundary conditions

2 The generatorA has to be written in terms of the deformation field.
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the sum of the deformation field∑x η(x,x+ei ) is automatically fixed equal to 0 for any
i = 1, . . . ,d.

Liouville’s Theorem implies that the uniform measureλ N on the manifoldΣN

composed of the configurations with a fixed total energy (and possibly a fixed total
momentum) is invariant for the dynamics. The micro canonical ensemble is defined
as the probability measureλ N. The dynamics restricted toΣN is not necessarily er-
godic. Two examples for which one can show it is not the case are the harmonic
lattice (V andW quadratic) and the Toda lattice (d = 1,W = 0,V(r) = e−r −1+ r)
which is a completely integrable system ([61]). In fact whatis really needed for our
purpose is not the ergodicity of the finite dynamics but of theinfinite dynamics. We
expect that even if the finite dynamics are never ergodic the fraction ofΣN corre-
sponding to non ergodic behavior decreases asN increases, and probably disappears
asN = ∞ (apart from very peculiar cases). Therefore a good notion ofergodicity
has to be stated for infinite dynamics. The definition of a conserved quantity is not
straightforward in infinite volume (the total energy of the infinite chain is usually
equal to+∞). To give a precise definition we will use the notion of space-time in-
variant probability measures for the infinite dynamics defined above.

The infinite volume Gibbs grand canonical ensembles are suchprobability mea-
sures. They form a set of probability measures indexed by one(pinned chains) or
d+ 2 (unpinned chains) parameters and are defined by the so-called Dobrushin-
Landford-Ruelle’s equations. To avoid a long discussion wejust give a formal defi-
nition (see e.g. [34] for a detailed study).

• Pinned chains (W 6= 0): the infinite volume Gibbs grand canonical ensembleµβ
with inverse temperatureβ > 0 is the probability measure oñΩ whose density
with respect to the Lebesgue measure is

Z−1(β )exp

(
−β ∑

x∈Zd

Ex

)
.

• Unpinned chains (W = 0): the infinite volume Gibbs grand canonical ensemble
3 µβ ,p̄,τ with inverse temperatureβ > 0, average momentum ¯p∈ R and tension
τ = β−1λ ∈ Rd is the probability measure oñΩ whose density with respect to
the Lebesgue measure is

Z−1(β , p̄,τ) exp

(
−β ∑

x∈Zd

{Ex− p̄ px−
d

∑
i=1

τi η(x,x+ei )}
)
. (8)

Observe that in the one dimensional unpinned case we have simply product mea-
sures and that the tensionτ is equal to the average ofV ′(rx).

Fix an arbitrary Gibbs grand canonical ensembleµ . A probability measureν is
said to beµ-regular if for any finite boxΛ ⊂ Zd whose cardinal is denoted by|Λ |,
the relative entropy ofν|Λ w.r.t. µ |Λ is bounded above byC|Λ | for a constantC

3 They are defined with respect to the gradient fieldsη(x,y). It would be more coherent to call them
gradient Gibbs measures.
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independent ofΛ . We recall that the relative entropyH(ν|µ) of ν ∈ P(X) with
respect toµ ∈ P(X), X being a probability space, is defined as

H(ν|µ) = sup
φ

{∫
φ dν − log

(∫
eφ dµ

)}
, (9)

where the supremum is carried over all bounded measurable functionsφ onX.
For any arbitrary Gibbs grand canonical ensemblesµ andµ ′, µ is µ ′-regular and

µ ′ is µ-regular. Thereforeν is µ-regular is equivalent toν is µ ′-regular and we
simply say thatν is regular.

A notion of ergodicity for infinite dynamics which is suitable to derive rigorously
large scale limits of interacting particle systems is the following.

Definition 1 (Macro-Ergodicity). 4 We say that the dynamics generated byA is
macro-ergodicif and only if the only space-time invariant5 regular measuresν for
A are mixtures (i.e. generalized convex combinations) of Gibbs grand canonical
ensembles.

If the microscopic dynamics is macro-ergodic, then, by using the relative entropy
method developed in [51], we can derive the hydrodynamic equations6 in the Euler
time scale of the chain before the appearance of the shocks, at least ind = 1 ([12]).
These limits form a triplet of compressible Euler equations(for energye, momentum
p and deformationr) of the form





∂tr= ∂qp

∂tp= ∂qτ
∂te= ∂q(pτ)

(10)

where the pressureτ := τ(r,e− p2

2 ) is a suitable thermodynamic function depending
on the potentialV. A highly challenging open question is to extend these results after
the shocks. The proof can be adapted to take into account the presence of mechanical
boundary conditions ([20]).

We do not claim that the macro-ergodicity is a necessary condition to get Euler
equations for purely Hamiltonian systems. We could imaginethat weaker or differ-
ent conditions are sufficient but in the actual state of the art the macro-ergodicity is
a clear and simple mathematical statement of what we could require from determin-
istic systems in order to derive Euler equations rigorously. We refer the interested
reader to [21] and [59] for interesting discussions about the role of ergodicity in
statistical mechanics.

4 The name has been proposed by S. Goldstein.
5 Observe that a probability measureν is time invariant for the infinite dynamics if and only if∫

A f dν = 0 for any f ∈ C1
0(Ω̃ ). This is a consequence of the Chapman-Kolmogorov equations

(7).
6 The notion of hydrodynamic limits is detailed in Section 2.2.1 and Section 3.2.2.
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1.1.1 Conserving noises

In [31], Fritz, Funaki and Lebowitz prove a weak form of macro-ergodicity for a
chain of anharmonic oscillators under generic assumptionson the potentialsV and
W that we do not specify here (see [31]).

Theorem 1 ([31]).7 Consider the pinned chain W6= 0 generated byA or an un-
pinned chainW=0 in d=1. The only regular time and space invariant measures for
A which are such that conditionally to the positions configurationq := {qx ; x∈Zd}
the law of the momentap := {px ; x∈ Zd} is exchangeable are given by mixtures of
Gibbs grand canonical ensembles.

They also proposed to perturb the dynamics by a stochastic noise that consists
in exchanging at random exponential times, independently for each pair of nearest
neighbors sitex,y∈ Zd, |x− y|= 1, the momentapx andpy. The formal generator
L of this dynamics, that we will call thestochastic energy-momentum conserving
dynamics, is given byL = A + γS , γ > 0, whereA is the Liouville operator and
S is defined for any local functionf : Ω̃ →R by

(S f )(q,p) = ∑
x,y∈Zd

|x−y|=1

[ f (q,px,y)− f (q,p)] . (11)

Here the momenta configurationpx,y is the configuration obtained fromp by ex-
changingpx with py. The previous discussion about existence of the dynamics on
Ω̃ for the deterministic case and its relation with its formal generator is also valid
for this dynamics and the other dynamics defined in this section.

With some non-trivial entropy estimates we get the following result.

Theorem 2 ([31]).Consider the pinned (W6= 0) or the one-dimensional unpinned
(W 6= 0) stochastic energy-momentum conserving dynamics. The only regular time
and space invariant measures for these dynamics are given bymixtures of Gibbs
grand canonical ensembles, i.e. the stochastic energy-momentum conserving dy-
namics is macro-ergodic.

Consequently the stochastic energy-momentum conserving dynamics is macro-
ergodic. By using the relative entropy method developed in [51], one can show it
has in the Euler time scale and before the appearance of the shocks the same hy-
drodynamics (10) as the deterministic model. This is because the noise has some
macroscopic effects only in the diffusive time scale ([12]).

We consider now a different stochastic perturbation. Let usdefine the flipping
operatorσx : p ∈ Ω → px ∈ Ω wherepx is the configuration such that(px)z = pz

for z 6= x and (px)x = −px. In [31] is also proved that the only time-space regu-
lar stationary measures for the Liouville operatorA such that conditionally to the

7 The proof given in [31] assumesW 6= 0 but it can be adapted to the unpinned one dimensional
case (see [12]). It would be interesting to extend this theorem to the general unpinned case.
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positions the momenta distribution is invariant by any flipping operatorσx are mix-
tures of Gibbs grand canonical ensembles with zero momentumaverage. Then we
consider the dynamics oñΩ generated byL = A + γS , γ > 0, with S the noise
defined by

(S f )(q,p) =
1

2 ∑
x∈Zd

[ f (q,px)− f (q,p)] (12)

for any local functionf : Ω̃ → R. This dynamics conserves the energy and the
deformation of the lattice but destroys all the other conserved quantities. We call this
system thevelocity-flip model(sometimes thestochastic energy conserving model).

Theorem 3 ([31]). Consider the pinned d-dimensional velocity-flip model or the
one-dimensional unpinned velocity-flip model. The only regular time and space in-
variant measures are given by mixtures of Gibbs grand canonical ensembles. In
other words the velocity-flip model is macro-ergodic.

Since the velocity flip-model does not conserve the momentumits Gibbs invari-
ant measures are given by (8) with ¯p = 0. In particular the average currents with
respect to theses measures is zero. Therefore assuming propagation of local equi-
librium in the Euler time scale we get that it has trivial hydrodynamics in this time
scale: initial profile of energy does not evolve. This is onlyin the diffusive scale that
an evolution should take place.

1.1.2 NESS of chains of oscillators perturbed by an energy conserving noise

The models defined in the previous sections can also be considered in a non-
equilibrium stationary state (NESS) by letting them in contact with thermal baths at
different temperatures and imposing various mechanical boundary conditions. Let
us only give some details for the NESS of the one-dimensionalvelocity-flip model.

Consider a chain ofN unpinned oscillators where the particle 1 (resp.N) is sub-
ject to a constant forceτℓ (resp.τr ). Moreover we assume that the particle 1 (reps.N)
is in contact with a Langevin thermal bath at temperatureTℓ (resp.Tr ). The generator
LN of the dynamics on the phase spaceΩN = RN−1×RN is given by

LN = A τℓ,τr
N + γSN + γℓB1,Tℓ + γrBN,Tr , γ > 0, (13)

whereA τℓ,τr
N is the Liouville operator,B j ,T the generator of the Langevin bath at

temperatureT acting on thej–th particle andSN the generator of the noise. The
strength of noise and thermostats are regulated byγ, γℓ and γr respectively. The
Liouville operator is defined by

A τℓ,τr
N =

N

∑
x=2

(px− px−1)∂rx +
N−1

∑
x=2

(
V ′(rx+1)−V′(rx)

)
∂px

−
(
τℓ−V ′(r2)

)
∂p1 +

(
τr −V′(rN)

)
∂pN .

(14)
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The generators of the thermostats are given by

B j ,T = T∂ 2
p j
− p j∂p j . (15)

The noise corresponds to independent velocity change of sign, i.e.

(SN f )(r ,p) =
1
2

N−1

∑
x=2

( f (r ,px)− f (r ,p)) , f : ΩN →R. (16)

We will also consider the case where the chain has fixed boundary conditions.

Proposition 1 ([10], [11],[22]).Consider a finite chain of pinned or unpinned oscil-
lators with fix, free or forced boundary conditions in contact with two thermal baths
at different temperatures and perturbed by one of the energyconserving noises de-
fined above. Then, there exists a unique non-equilibrium stationary state for this
dynamics which is absolutely continuous w.r.t. Lebesgue measure.

Proof. The proof of the existence of the invariant state can be obtained from the
knowledge of a suitable Liapounov function. To prove the uniqueness of the invari-
ant measure it is sufficient to prove that the dynamics is irreducible and has the
strong-Feller property. Some hypoellypticity, control theory and conditioning argu-
ments are used to achieve this goal. ⊓⊔

1.2 Simplified perturbed Hamiltonian systems

Introducing a noise into the deterministic dynamics help usto solve some ergodicity
problems. Nevertheless, as we will see, several challenging problems remain open
for chains of oscillators perturbed by a conservative noise. In [13] we proposed to
simplify still these models and the main message addressed there is that the models
introduced in [13] have qualitatively the same behaviors asthe unpinned chains. For
simplicity we define only the dynamics in infinite volume.

Let U and V be two potentials onR and consider the Hamiltonian system
(ω(t))t≥0 = ( r(t),p(t))t≥0 described by the equations of motion

dpx

dt
=V ′(rx+1)−V′(rx),

drx

dt
=U ′(px)−U ′(px−1), x∈ Z, (17)

wherepx is the momentum of particlex, qx its position andrx = qx−qx−1 the “defor-
mation”. Standard chains of oscillators are recovered for aquadratic kinetic energy
U(p) = p2/2. The dynamics conserves (at least) three physical quantities: the to-
tal momentum∑x px, the total deformation∑x rx and the total energy∑xEx with
Ex = V(rx)+U(px). Consequently, every Gibbs grand canonical ensembleνβ ,λ ,λ ′

defined by

dνβ ,λ ,λ ′(η) = ∏
x∈Z

Z (β ,λ ,λ ′)−1exp
{
−βEx−λ px−λ ′rx

}
drx dpx (18)
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is invariant under the evolution. To simplify we assume thatthe potentialsU andV
are smooth potentials with second derivatives bounded by below and from above.

To overcome our ignorance about macro-ergodicity of the dynamics, as before,
we add a stochastic conserving perturbation. In the generalcaseU 6=V, the Hamil-
tonian dynamics can be perturbed by the energy-momentum conserving noise acting
on the velocities (as proposed in [31]) but conserving the three physical invariants
mentioned above. Then the infinite volume dynamics can be defined on the state
spaceΩ̃ . Its generatorL is given byL = A + γS , γ > 0, where

(A f )(r ,p) = ∑
x∈Z

{
(V ′(rx+1)−V′(rx))∂px f + (U ′(px)−U ′(px−1))∂rx f

}
(r ,p)

(S f ) = ∑
x∈Z

[
f (r ,px,x+1)− f (r ,p)

]

(19)

for any f ∈C1
0(Ω̃).

Theorem 4 ([13]).Assume that the potentials U and V are smooth potentials with
second derivatives bounded by below and from above. The dynamics generated by
L =A + γS with γ > 0 andA ,S given by (19) is macro-ergodic. Consequently,
before the appearance of the shocks, in the Euler time scale,the hydrodynamic limits
are given by a triplet of compressible Euler equations.

Our motivation being to simplify as much as possible the dynamics considered
in [1, 2] without destroying the anomalous behavior of the energy diffusion, we
mainly focus on the symmetric caseU =V. Then thep’s andr ’s play a symmetric
role so there is no reason that momentum conservation is moreimportant than de-
formation conservation. We propose thus to add a noise conserving only the energy
and∑x[rx+ px]. It is more convenient to use the variables{ηx ; x∈ Z} ∈RZ defined
by η2x = px andη2x−1 = rx so that (17) becomes

dηx =
[
V ′(ηx+1)−V′(ηx−1)

]
dt, x∈ Z. (20)

We might also interpret the dynamics for theη ’s as the dynamics of an interface
whose height (resp. energy) at sitex is ηx (resp.V(ηx)). It is then quite natural to
call the quantity∑x ηx the “volume”.

Hence, we introduce the so-calledstochastic energy-volume conserving dynam-
ics, which is still described by (20) between random exponential times where two
nearest neighbors heightsηx andηx+1 are exchanged. Observe that in the momenta-
deformation picture this noise is less degenerate than the momenta exchange noise
since exchange between momenta and positions is now allowed. The generatorL
of the infinite volume dynamics, well defined on the state space Ω , is given by
L = A + γS , γ > 0, where for anyf ∈C1

0(Ω),
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(A f )(η) = ∑
x∈Z

[
V ′(ηx+1)−V′(ηx−1)

]
(∂ηx f )(η),

(S f )(η) = ∑
x∈Z

[
f (ηx,x+1)− f (η)

]
.

(21)

The noise still conserves the total energy and the total volume but destroys the
conservation of momentum and deformation. Therefore, onlytwo quantities are
conserved and the invariant Gibbs grand canonical measuresof the stochastic dy-
namics correspond to the choiceλ =λ ′ in (18). We denoteνβ ,λ ,λ (resp.Z (β ,λ ,λ ))
by µβ ,λ (resp.Z(β ,λ )).

2 Normal diffusion

Normal diffusion of energy in purely deterministic homogeneous chains of oscilla-
tors is expected to hold in high dimension (d≥ 3) or if momentum is not conserved,
i.e. in the presence of a pinning potential. The problem of anomalous diffusion will
be discussed in the next chapter. In this chapter we considerthe case of normal
diffusion.

The first step to show such normal behavior is to prove that thetransport co-
efficient, the thermal conductivity, is well defined. Once ithas been achieved, the
following non-equilibrium problems can be considered:

• Hydrodynamic limits in the diffusive time scaletε−2, ε being the scaling param-
eter: if the system has trivial hydrodynamics in the time scale tε−1, i.e. if mo-
mentum is not conserved, we would like to show that in the diffusive time scale,
the macroscopic energy profile evolves according to a diffusion equation. If the
system has non-trivial hydrodynamics given by the Euler equations in the hy-
perbolic scaling (i.e. if momentum is conserved), in the diffusive time scale, we
would like to derive the incompressible Navier-Stokes equations. These would
be obtained by starting with some initial momentum macroscopic profile of or-
derO(ε) but an energy profile of orderO(1).

• Validity of Fourier’s law: we consider the NESS of the systemin contact at the
boundaries with thermal baths at different temperatures. Fourier’s law expresses
that the average of the energy current in the NESS is proportional to the gradient
of the local temperature. The proportionality coefficient is called the thermal
conductivity.

Assume for simplicity thatd = 1 and that the energy is the only conserved quan-
tity. The corresponding microscopic current, denoted byjex,x+1, is defined by the
local energy conservation law

L Ex =−∇ jex−1,x (22)

whereL is the generator of the infinite dynamics under investigation and∇ is the
discrete gradient defined for any(ux)x ∈ RZ by ∇ux = ux+1 − ux. In the current
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state of the art, in all the problems mentioned above, the usual approach consists to
prove that there exist functionsϕx = θxϕ0 andhx = θxh0 (actually only approximate
solutions are needed) such that the following decomposition

jex,x+1 = ∇ϕx+L hx (23)

holds. Hereθx denotes the shift byx ∈ Z
d. Equation (23) is called amicroscopic

fluctuation-dissipation equation. Then, taking arbitrary large integerℓ ≥ 1, by us-
ing a multi-scale analysis we replace the block averaged function 1

2ℓ+1 ∑|y−x|≤ℓ ∇ϕy

by D(E ℓ
x )∇E ℓ

x where the functionD is identified to a diffusion coefficient which
depends on the empirical energyE ℓ

x = 1
2ℓ+1 ∑|y−x|≤ℓEy in the mesoscopic box of

length(2ℓ+1) centered aroundx. Intuitively, L hx represents rapid fluctuation (in-
tegrated in time, it is a martingale) and the term∇ϕx represents the dissipation. Gra-
dient models are systems for which the current is equal to thegradient of a function
(hx = 0 with the previous notations).

There are at least two reasons for which the problems listed above are difficult:

• The existence of a microscopic fluctuation-dissipation equation has been given
for the first time for reversible systems. It has been extended to asymmetric sys-
tems satisfying asector condition. Roughly speaking this last condition means
that the antisymmetric part of the generator is a bounded perturbation of the
symmetric part of the generator8. Later this condition has been relaxed into the
so-calledgraded sector condition: there exists a gradation of the space where the
generator is defined and the asymmetric part is bounded by thesymmetric part
on each graded part (see [43], [36] and references therein).The Hamiltonian sys-
tems perturbed by a noise are non-reversible and since the noise (the symmetric
part of the generator) is very degenerate, none of these conditions hold.

• The system evolves in a non compact space and one needs to showthat energy
cannot concentrate on a site. This technical problem turns out to be difficult
since no general techniques are available. For deterministic nonlinear chains the
bounds on the average energy moments are usually polynomialin the sizeN of
the system. Typically we need bounds of order one with respect to N.

2.1 Anharmonic chain with velocity-flip noise

2.1.1 Linear response theory: Green-Kubo formula

The Green-Kubo formula is one of the most important formulasof non-equilibrium
statistical mechanics. In the two problems mentioned in theintroduction of the chap-

8 The antisymmetric (resp. symmetric) part of the generatorL is given by L−L ∗
2 (resp. L+L ∗

2 )
whereL ∗ is the adjoint ofL in L

2(µ), µ being any Gibbs grand canonical measure. For the mod-
els considered in this course, the antisymmetric part isA and due to the deterministic dynamics,
the symmetric part isS and due to the noise.
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ter (hydrodynamic limits and Fourier’s law) the limiting objects are defined via some
macroscopic coefficients which can be expressed by a Green-Kubo formula. The
latter is a formal expression and showing that it is indeed well defined is a difficult
problem. It is usually introduced in the context of the linear response theory that we
describe below.

Consider a one dimensional unpinned chain ofN harmonic oscillators with
forced boundary conditions and perturbed by the velocity-flip noise. The two ex-
ternal constant forces are denoted byτℓ andτr . Furthermore on the boundary parti-
cles 1 andN, Langevin thermostats are acting at different temperatureTℓ = β−1

ℓ and
Tr = β−1

r . The generatorLN of the dynamics is given by (13) and we denote the
unique non-equilibrium stationary state byµss. The expectation w.r.t.µss is denoted
by 〈·〉ss.

Tℓ Tr

τrτℓ

Fig. 2: The unpinned chain with boundary thermal reservoirsand forced boundary
conditions.

The energy9 of atomx is defined by

E1 =
p2

1

2
, Ex =

p2
x

2
+V(rx), x= 2, . . . ,N.

The local conservation of energy is expressed by the microscopic continuity
equation

LN(Ex) =−∇ jex−1,x, x= 1, . . . ,N,

where the energy currentjex,x+1 from sitex to sitex+1 is given by

je0,1 =−τℓp1+ γℓ(Tℓ− p2
1),

jeN,N+1 =−τr pN − γr(Tr − p2
N),

jex,x+1 =−pxV
′(rx+1), x= 1, . . . ,N−1.

(24)

9 The definition of the energy is slightly modified w.r.t. (1). It is more convenient since the energies
are then independent random variables in the Gibbs grand canonical ensemble.
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The energy currentje0,1 (and similarly for jeN,N+1) is composed of two terms: the
term−τℓp1 corresponds to the work done on the first particle by the linear force and
the termγℓ(Tℓ− p2

1) is the heat current due to the left reservoir.
Let Ps be the velocity of the center of mass of the system andJs be the average

energy current, which are defined by

Ps = 〈px〉ss and Js = 〈 jex,x+1〉ss.

We have the simple relation between these two quantities

Js =−τℓPs+ γℓ(Tℓ−〈p2
1〉ss), Js =−τrPs− γr(Tr −〈p2

N〉ss). (25)

The value ofPs can be determined exactly and is independent of the nonlinearities
present in the system. By writing that〈LN(px)〉ss= 0 for anyx = 1, . . . ,N we get
that the tension profile, defined byτx = 〈V ′(rx)〉ss, satisfies

τ2− τℓ = γℓPs, τr − τN = γrPs,

τx+1− τx = γPs, x= 2, . . . ,N−1.

We have then:

Lemma 1 ([11]).The velocity Ps of the center of mass is given by

Ps =
τr − τℓ

γ(N−2)+ γℓ+ γr
(26)

and the tension profile is linear:

τx =
γ(x−2)+ γℓ

γ(N−2)+ γℓ+ γr
(τr − τℓ)+ τℓ. (27)

Consequently
lim
n→∞

τ[Nu] = τℓ+(τr − τℓ)u, u∈ [0,1]. (28)

For purely deterministic chain (γ = 0), the velocityPs is of order 1, while the
tension profile is flat at the value(γℓ+ γr)

−1 [γℓτr + γrτℓ]. The first effect of the noise
is to makePs of orderN−1 and to give a nontrivial macroscopic tension profile.

It is expected that there exists a positive constantC independent of the sizeN
such that〈Ex〉ss≤ C for anyx= 1, . . . ,N. Apart from the harmonic case we do not
know how to prove such a bound.

We shall denote bỹfss the derivative of the stationary stateµsswith respect to the
local Gibbs equilibrium stateµlg defined byµlg(dr ,dp) = g(r ,p)drdp with

g(r ,p) =
N

∏
x=1

e−βx(Ex−τxrx)

Z(τxβx,βx)
, (29)
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whereβx = βℓ+
x
N(βr −βℓ) andτx = τℓ+ x

N (τr −τℓ). In the formula above we have
introducedr1 = 0 to avoid annoying notations.

The functionf̃ss is solution, in the sense of distributions, of the equation

L̃ ∗
N f̃ss= 0 (30)

whereL̃ ∗
N is the adjoint ofLN in L2(µlg). We assume thatTr = T+δT,Tℓ = T and

τr = τ − δτ,τℓ = τ with δT,δτ small. At first order inδT andδτ, we have

L̃ ∗
N = L ∗

N,eq.+ γrδT∂ 2
pN

− δτ∂pN −
δT
T2N

N−1

∑
x=1

(
jex,x+1+ τ px

)
− δτ

NT

N−1

∑
x=1

px+o(δT,δτ)

whereL ∗
N,eq. =−A τ,τ

N + γSN + γℓB1,T + γrBN,T is the adjoint inL2(µN
τ,T) of

LN,eq. = A τ,τ
N + γSN + γℓB1,T + γrBN,T (31)

andµN
τ,T is the finite volume Gibbs grand canonical ensemble with tension τ and

temperatureT. We now expand̃fss at the linear order inδT andδτ:

f̃ss= 1+ ũδT + ṽδτ +o(δT,δτ) (32)

and we get that ˜u andṽ are solution of

L ∗
N,eq.ũ=

1
T2N

N−1

∑
x=1

(
jex,x+1+ τ px

)
,

L ∗
N,eq.ṽ=

1
NT

N−1

∑
x=1

px.

(33)

It is clear that the functionhx appearing in the microscopic fluctuation-dissipation
equation (23) is closely related (up to a time reversal) to the functions ˜u, ṽ, i.e. to
thefirst order correction to local equilibrium.

We can now compute the average energy current at the first order in δT andδτ
asN → ∞ but we need to introduce some notation. We recall that the generator of
the infinite dynamics is given byL = A + γS where, for anyf ∈C1

0(Ω̃),

(A f )(r ,p) = ∑
x∈Z

[
(px− px−1)∂rx f +

(
V ′(rx+1)−V′(rx)

)
∂px f

]
(r ,p),

(S f )(r ,p) =
1
2 ∑

x∈Z
[ f (r ,px)− f (r ,p)] .

LetH :=Hτ,T be the completion of the vector space of bounded local functions w.r.t.
the semi-inner product≪ ·, · ≫ defined for bounded local functionsf ,g : Ω̃ → R,
by

≪ f ,g≫= ∑
x∈Z

{µτ,T( f θxg)− µτ,T( f )µτ,T(g)} . (34)
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Observe that inH every constantc∈R and discrete gradientψ = θ1 f − f is equal to
zero since for any local bounded functionh we have≪ c,h≫= 0 and≪ψ ,h≫= 0.

Assuming they exist let̃Js and P̂s be the limiting average energy current and
velocity:

J̃s = lim
N→∞

N〈 je0,1〉ss, P̂s = lim
N→∞

N〈p0〉ss, (35)

and defineĴs = J̃s+ τP̂s. We expect that asN goes to infinity and, at first order in
δT andδτ, (

Ĵs

P̂s

)
=−κ(T,τ)

(
δT
δτ

)

with

κ(T,τ) =
(

κe κe,r

κ r,e κ r

)
(36)

the thermal conductivitymatrix. Assume for simplicity thatN= 2k is even. By (32)
and (33), we get that

N〈p0〉ss= N〈pk〉ss= N
∫

pk f̃ssdµlg

= NδT
∫

pk ũ dµlg + Nδτ
∫

pk ṽ dµlg + o(δT,δτ)

=−
δT

T2

∫
pk (−L ∗

N,eq.)
−1
(N−1

∑
x=1

( jex,x+1+ τ px)
)

dµlg

−
δτ
T

∫
pk (−L ∗

N,eq.)
−1
(N−1

∑
x=1

px

)
dµlg + o(δT,δτ).

Since
dµlg

dµN
τ,T

is equal to 1+O(δT,δτ), we can replaceµlg by µN
τ,T in the last terms of

the previous expression. Using thatL ∗
N,eq. is the adjoint ofLN,eq. in L

2(µN
τ,T) and

denoting by〈·,〉τ,T the scalar product inL2(µN
τ,T), we obtain that

N〈p0〉ss=−δT

T2

〈
(−LN,eq.)

−1pk ,
N−1

∑
x=1

( jex,x+1+ τ px)

〉

τ,T

− δτ
T

〈
(−LN,eq.)

−1pk ,
N−1

∑
x=1

px

〉

τ,T

+ o(δT,δτ)

=−δT

T2

〈
(−L2k,eq.)

−1pk ,
k−1

∑
y=−k+1

( jey+k,y+k+1+ τ py+k)

〉

τ,T

− δτ
T

〈
(−L2k,eq.)

−1pk ,
k−1

∑
y=−k+1

py+k

〉

τ,T

+ o(δT,δτ)
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In the first order terms of the previous expression we can recenter everything around
k by a translation of−k and we get

N〈p0〉ss=−δT

T2

〈
(−LΛk,eq.)

−1p0 ,
k−1

∑
y=−k+1

( jey,y+1+ τ py)

〉

τ,T

− δτ
T

〈
(−LΛk,eq.)

−1p0 ,
k−1

∑
y=−k+1

py

〉

τ,T

+ o(δT,δτ)

whereΛk = {−k+1, . . . ,k} and

LΛk,eq. = A τ,τ
Λk

+ γSΛk + γℓB−k,T + γrBk,T

with

A τ,τ
Λk

=
k

∑
x=−k+2

(px− px−1)∂rx +
k−1

∑
x=−k+2

(
V ′(rx+1)−V′(rx)

)
∂px

−
(
τ −V′(r−k+2)

)
∂p−k+1 +

(
τ −V′(rk)

)
∂pk

and

(SΛk f )(r ,p) =
1
2

k−1

∑
x=−k+2

( f (r ,px)− f (r ,p)) .

A similar formula can be obtained forN〈 je0,1〉ss. As k → ∞, the finite volume
Gibbs measure converges to the infinite volume Gibbs measure. Moreover, we ex-
pect that sincek → ∞ the effect of the boundary operatorsB±k,T around the site 0
disappears so that(−LΛk,eq.)

−1p0 converges to(−L )−1p0. Therefore, in the ther-
modynamic limitN → ∞ (i.e. k→ ∞), the transport coefficients are given by the
Green-Kubo formulas

κe = T−2 ≪ je0,1+ τ p0 , (−L )−1 ( je0,1+ τ p0)≫,

κe,r = T−1 ≪ p0 , (−L )−1 ( je0,1+ τ p0)≫,
(37)

and

κ r = T−1 ≪ p0 , (−L )−1 (p0)≫,

κ r,e = T−2 ≪ je0,1+ τ p0 , (−L )−1 (p0)≫ .
(38)

The argument above is formal. In fact even proving the existence of the transport
coefficients defined by (37), (38) is a non-trivial task. The existence ofP̂s defined by
the second limit in (35) can be made rigorous since we have theexact expression of
Ps. From Lemma 1, we have, even forδτ,δT that are not small,

P̂s =−δτ
γ
.
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On the other hand we show in Theorem 5 that the quantitiesκ r ,κ r,e, formally given
by (38), can be defined in a slightly different but rigorous way, and are then equal to

κ r = γ−1, κ r,e = 0. (39)

Thus we can rigorously establish the validity of the linear response theory for the
velocity P̂s.

2.1.2 Existence of the Green-Kubo formula

One of the main results of [11] is the existence of the Green-Kubo formula for the
conductivity matrix. LetHa (resp.Hs) be the set of functionsf : Ω̃ → R antisym-
metric (resp. symmetric) inp, i.e. f (r ,p) = − f (r ,−p) (resp. f (r ,p) = f (r ,−p))
for every configuration(r ,p) ∈ Ω̃ . For example, the functionsje0,1, p0 and every
linear combination of them are antisymmetric inp.

Theorem 5 ([11], [9]).Let f,g∈Ha. The limit

σ( f ,g) = lim
z→0
z>0

≪ f , (z−L )−1 g≫

exists andσ( f ,g) = σ(g, f ). Therefore, the conductivity matrixκ(T,τ) is well de-
fined in the following sense: the limits

κe = lim
z→0
z>0

T−2 ≪ je0,1+ τ p0 , (z−L )−1 ( je0,1+ τ p0)≫,

κe,r = lim
z→0
z>0

T−1 ≪ p0 , (z−L )−1 ( je0,1+ τ p0)≫,

κ r = lim
z→0
z>0

T−1 ≪ p0 , (z−L )−1 (p0)≫= γ−1,

κ r,e = lim
z→0
z>0

T−2 ≪ je0,1+ τ p0 , (z−L )−1 (p0)≫

(40)

exist and are finite. Moreover Onsager’s relationκe,r = κ r,e(= 0) holds.

We have a nice thermodynamical consequence of the previous result. If δT and
δτ are small and of the same order, the system cannot be used as a refrigerator or a
boiler: at the first order, a gradient of tension does not contribute to the heat current
Ĵs. The argument above says nothing about the possibility to realize a heater or a
refrigerator ifδτ is not of the same order asδT. For the harmonic chain, we will
see that it is possible to get a heater ifδτ is of order

√
δT.

Remark 1. 1. The existence of the Green-Kubo formula is also valid for apinned
or unpinned chain in any dimension.
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2. Observe that with respect to the establishment of a microscopic fluctuation-
dissipation equation (23) the computation of the Green-Kubo formula is less
demanding since only the knowledge of∑x hx is necessary.

The proof of Theorem 5 is based on functional analysis arguments. The first
main observation is that there exists a spectral gap for the operatorS restricted to
the spaceHa.

Lemma 2. The noise operatorS letsHa andHs invariant. For any local function
f ∈Ha we have that

≪ f , f ≫≤≪ f ,−S f ≫ . (41)

Moreover, for any local function f∈ Ha, there exists a local function h∈ Ha such
that

S h= f .

Proof. Since the Gibbs states are Gaussian states in thepx’s it is convenient to
decompose the operatorS (which acts only on thepx’s) in the orthogonal basis
of Hermite polynomials. The the lemma follows easily. ⊓⊔
Proof (Theorem 5).

We observe first thatHa andHs are orthogonal Hilbert spaces such thatH =
Ha⊕Hs. It is also convenient to define the following semi-inner product

≪ u,w≫1=≪ u,(−S )w≫ .

LetH1 be the associated Hilbert space. We also define the Hilbert spaceH−1 via the
duality given by theH norm, that is

‖u‖2
−1 = sup

w
{2≪ u,w≫−≪ w,w≫1}

where the supremum is taken over local bounded functionsw. By Lemma 2 we have
thatHa ⊂H−1. Thusg∈H−1.

Let wz be the solution of the resolvent equation(z−L )wz= g. We have to show
that≪ f ,wz≫ converges aszgoes to 0. We decomposewz intowz=w−

z +w+
z , w−

z ∈
Ha andw+

z ∈Hs. SinceHa is orthogonal toHs and f ∈Ha we have≪ f ,wz ≫=≪
f ,w−

z ≫. It is thus sufficient to prove that(w−
z )z>0 converges weakly inH asz→ 0.

SinceA inverts the parity andS preserves it andHa⊕Hs =H andg∈Ha, we
have, for anyµ ,ν > 0,

νw+
ν −A w−

ν − γS w+
ν = 0,

µw−
µ −A w+

µ − γS w−
µ = g.

(42)

Taking the scalar product withw+
µ (resp.w−

ν ) on both sides of the first (resp. second)
equation of (42), we get

ν ≪ w+
µ ,w

+
ν ≫−≪ w+

µ ,A w−
ν ≫+γ ≪ w+

µ ,w
+
ν ≫1= 0,

µ ≪ w−
ν ,w

−
µ ≫−≪ w−

ν ,A w+
µ ≫+γ ≪ w−

µ ,w
−
ν ≫1=≪ wν ,g≫ .

(43)
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Summing the above equations we have

ν ≪ w+
µ ,w

+
ν ≫+µ ≪ w−

ν ,w
−
µ ≫+γ ≪ wµ ,wν ≫1=≪ wν ,g≫ (44)

Puttingµ = ν we get

ν ≪ wν ,wν ≫+γ ≪ wν ,wν ≫1≤ ‖wν‖1‖g‖−1.

Hence(wν )ν>0 is uniformly bounded inH1 and by the spectral gap property so is
(w−

ν )ν>0 in H. Moreover,(νwν )ν>0 converges strongly to 0 inH asν → 0. We can
then extract weakly convergent subsequences. Taking first the limit, in (44),ν → 0
and thenµ → 0 along one such subsequence (converging tow∗) we have

γ ≪ w∗,w∗ ≫1=≪ w∗,g≫ .

Next, taking the limit along different weakly convergent subsequences (letw∗ be the
other limit) we have

γ ≪ w∗,w∗ ≫1=≪ w∗,g≫
and, exchanging the role of the two sequences

2γ ≪ w∗,w∗ ≫1=≪ w∗,g≫+≪ w∗,g≫= γ ≪ w∗,w∗ ≫1 +γ ≪ w∗,w∗ ≫1

which impliesw∗ = w∗, that is all the subsequences have the same limit. Thus
(wν )ν>0 converges weakly inH1 as well as(w−

ν )ν>0 in H by Lemma 2. ⊓⊔
In the harmonic case,V(r) = r2/2, much more is known. Indeed one easily

checks that the exact microscopic fluctuation-dissipationequation (23) holds with

hx =
1
2γ

rx+1(px+ px+1)−
r2
x+1

4
, ϕx =− 1

2γ
(rxrx+1+ p2

x). (45)

It follows that we can compute explicitly(z−L )−1 je0,1 and obtain that the value
of the conductivity matrix:

κ(τ,T) =

(
1
2γ 0

0 1
γ

)
.

This value will be recovered by considering the hydrodynamic limits of the system
(Theorem 6) and also by establishing the validity of Fourier’s law (see Theorem 7).

2.1.3 Expansion of the Green-Kubo formula in the weak coupling limit

In the previous subsection we proved the existence of the Green-Kubo formula
showing that the transport coefficient is well defined if somenoise is added to the
deterministic dynamics. We are now interested in the behavior of the Green-Kubo
formula as the noise vanishes. We investigate this questionin the weak coupling
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limit, i.e. assuming that the interaction potential is of the formεV whereε ≪ 1 is
the (small) coupling parameter. For notational simplicitywe consider the one dimen-
sional infinite pinned system but the arguments given below are easily generalized
to the (pinned or unpinned)d ≥ 1-dimensional case10. The expansion presented in
this section is formal but we will precise at the end of the section what has been rig-
orously proved. In order to emphasize the dependence ofκe (denoted in the sequel
by κ) in the coupling parameterε and the noise intensityγ, we denoteκ by κ(ε,γ).
Here we propose a formal expansion of the conductivityκ in the form

κ(ε,γ) = ∑
n≥2

κn(γ)εn. (46)

Then we study rigorously the first term of this expansionκ2(γ). It is intuitively
clear that the expansion starts fromε2 since the Green-Kubo formula is a quadratic
function of the energy current and that the latter is of orderε (see (49)).

When the system is uncoupled (ε = 0), the dynamics is given by the generator
L0 = A0+ γSwith S the flip noise defined by (12) and

A0 = ∑
x∈Z

px∂qx −W′(qx)∂px.

Whenε > 0, the generator of the coupled dynamics is denoted by

Lε = L0+ εG (47)

where
G = ∑

x∈Z
V ′(qx−qx−1)(∂px−1 − ∂px).

The energy of each cell, which is the sum of the internal energy and of the inter-
action energy, is defined by

E ε
x = Ex+

ε
2
(V(qx+1−qx)+V(qx−qx−1)) , Ex =

p2
x

2
+W(qx). (48)

Observe thatEx = E 0
x is the energy of the isolated systemx. The dynamics gener-

ated byL0 preserves all the individual energiesEx. The dynamics generated byLε
conserves the total energy. The corresponding energy currents ε jx,x+1, defined by
the local conservation law

LεE
ε
x = ε ( jx−1,x− jx,x+1)

are given by

ε jx,x+1 =−ε
2
(px+ px+1) ·V′(qx+1−qx). (49)

10 If W = 0 the variablesqx have to take values in a compact manifold.
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Let us denote byµβ ,ε = 〈·〉β ,ε the canonical Gibbs measure at temperature
β−1 > 0 defined by the Dobrushin-Lanford-Ruelle equations, whichof course de-
pends on the interactionεV. We shall assume in all the cases considered thatµβ ,ε is
analytical inε for sufficiently smallε (when applied to local functions). In partic-
ular we assume that the potentialsV andW are such that the Gibbs state is unique
and has spatial exponential decay of correlations (this holds under great general
conditions onV andW, see [33]).

In order to emphasize the dependence inε we reintroduce some notation. For any
given local functionsf ,g, define the semi-inner product

≪ f ,g≫β ,ε = ∑
x∈Z

[〈θx f ,g〉β ,ε −〈 f 〉β ,ε〈g〉β ,ε ]. (50)

We recall thatθx is the shift operator byx. The sum is finite in the caseε = 0,
and converges forε > 0 thanks to the exponential decay of the spatial correlations.
Denote byHε =L2(≪ ·, · ≫β ,ε) the corresponding closure. We define the subspace
of antisymmetric functions in the velocities

H
a
ε = { f ∈Hε : f (q,−p) =− f (q,p)} . (51)

Similarly we define the subspace of symmetric functions inp asHs
ε . On local func-

tions this decomposition of a function into symmetric and antisymmetric parts is
independent ofε. Let us denote byPa

ε andPs
ε the corresponding orthogonal pro-

jections, whose definition in fact does not depend onε. Therefore we sometimes
omit the indexε in the notation. Finally, for any functionf ∈ L

2(µβ ,ε), define

(Πε f )(E ) = µβ ,ε( f |E ), Qε = Id−Πε

whereE := {Ex ; x∈ Z}. According to Theorem 5 the conductivity is defined by

κ(ε,γ) = ε2 lim
ν→0

≪ j0,1 , (ν −Lε)
−1 j0,1 ≫β ,ε . (52)

It turns out that, for calculating the terms in the expansion(46), it is convenient to
chooseν = ε2λ in (52), for aλ > 0, and solve the resolvent equation

(λ ε2−Lε)uλ ,ε = ε j0,1 (53)

for the unknown functionuλ ,ε . The factorε2 is the natural scaling in view of the
subsequent computations. We assume that a solution of (53) is in the form

uλ ,ε = ∑
n≥0

Uλ ,nεn = ∑
n≥0

(vλ ,n+wλ ,n)εn, (54)
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whereΠvλ ,n = Qwλ ,n = 0, i.e.wλ ,n = ΠUλ ,n andvλ ,n = QUλ ,n. HereΠ = Π0 and
Q= Q0 refer to the uncoupled measureµβ ,0

11. Given such an expression we can, in
principle, use it in (52) to write

κ(ε,γ) = lim
λ→0

∑
n≥0

εn+1 ≪ j0,1,vλ ,n+wλ ,n ≫β ,ε

= ∑
n≥1

lim
λ→0

εn ≪ j0,1,vλ ,n−1 ≫β ,ε
(55)

where we have used the fact that that≪ j0,1,wλ ,ε ≫β ,ε= 0 and we have, arbitrarily,
exchanged the limit with the sum. Note that this is not yet of the type (46) since
the terms in the expansion depend themselves onε. To identify the coefficientsκn

we would need to expand inε also the expectations. This is not obvious since the
functionsvλ ,n are non local.

Let us consider the operatorL= ΠG Pa(−L0)
−1G Π . We show below that the

operatorL is a generator of a Markov process so that(λ −L)−1 is well defined for
λ > 0. Pluging (54) in (53) we obtain the following hierarchy

vλ ,0 = 0,

wλ ,0 = (λ −L)−1ΠG Pa(−L0)
−1 j0,1,

vλ ,1 = (−L0)
−1[ j0,1+G wλ ,0

]
,

wλ ,n = (λ −L)−1ΠG Pa(−L0)
−1[−λvλ ,n−1+QG vλ ,n

]
, n≥ 1

vλ ,n+1 = (−L0)
−1[−λvλ ,n−1+G wλ ,n+QG vλ ,n

]
, n≥ 1.

(56)

Observe that in the previous equations the (formal) operator (−L0)
−1 is always

applied to functionsf such thatΠ f = 0 (this is the minimal requirement to have
consistent equations). This is however not sufficient to make sense of the functions
vλ ,n andwλ ,n. Nevertheless, by using an argument similar to the one givenin Theo-
rem 5, we have that the local operatorT0 onHa

0 defined by

T0 f = lim
ν→0

Pa(ν −L0)
−1 f , f ∈H

a
0,

is well defined. Therefore, it is possible to make sense, as a distribution, of

α01 = ΠG Pa(−L0)
−1 j0,1 := ΠG T0 j0,1. (57)

Nevertheless, the functionwλ ,0 is still not well defined since we are not sure that
T0 j0,1 is in the domain ofG .

Even if the previous computations are formal a remarkable fact is that the opera-
torL, when applied to functions of the internal energies, coincides with the Markov
generatorLGL of a reversible Ginzburg-Landau dynamics on the internal energies.

11 The reason to use the orthogonal decomposition ofUλ ,n = vλ ,n+wλ ,n is that at some point we
will have to consider, for a given functionf , the solutionh to the Poisson equationL0h= f . The
minimal requirement for the existence ofh is thatΠ f = 0.



Diffusion of energy in chains of oscillators with conservative noise 25

Let us denote byρβ the distribution of the internal energiesE = {Ex ; x∈ Z} under
the Gibbs measureµβ ,0. It can be written in the form

dρβ (E ) = ∏
x∈Z

Z−1
β exp(−βEx−U(Ex))dEx

for a suitable functionU . We denote the formal sum∑xU(Ex) by U := U (E ).
We denote also, for a given value of the internal energyẼx in the cell x, by νx

Ẽx
the microcanonical probability measure in the cellx. i.e. the uniform probability
measure on the manifold

ΣẼx
:= {(qx, px) ∈ Ω ; Ex(qx, px) = Ẽx}.

Then, the generatorLGL is given by

LGL = ∑
x

eU (∂Ex+1 − ∂Ex)
[
e−U γ2(Ex,Ex+1)(∂Ex+1 − ∂Ex)

]
, (58)

where
γ2(Ẽ0, Ẽ1) =

∫

ΣẼ0
×ΣẼ1

(
j0,1 T0 j0,1

)
dν0

Ẽ0
dν1

Ẽ1
. (59)

The operatorLGL is well defined only if the functionγ2 has some regularity prop-
erties, that are actually proven in specific examples [48, 25]. We can show that the
Dirichlet forms12 associated toL andLGL coincide. Then in the cases whereγ2 is
proven to be smooth (58) is well defined andL= LGL.

Proposition 2 ([9]). For each local smooth functions f,g of the internal energies
only we have

≪ g,(−L) f ≫β ,0=≪ g,(−LGL) f ≫β ,0 . (60)

The operatorLGL is the generator of a Ginzburg-Landau dynamics which is re-
versible with respect toρβ , for anyβ > 0. It is conservative in the energy∑xEx and
the corresponding currents are given byθxα0,1 whereα0,1 has been defined in (57).
The corresponding finite size dynamics appears in [48, 26] asthe weak coupling
limit of a finite numberN (fixed) of cells weakly coupled by a potentialεV in the
limit ε → 0 when timet is rescaled astε−2. Moreover, the hydrodynamic limit of the
Ginzburg-Landau dynamics is then given (in the diffusive time scaletN2, N→+∞),
by a heat equation with diffusion coefficient which coincides with κ2 as given by
(62) below ([65]). This is summarized in Figure 3.

According to the previous expansion it makes sense to defineκ2(γ) by

κ2(γ) = lim
ε→0

lim
λ→0

{
≪ j0,1,T0 j0,1 ≫β ,ε +≪ j0,1,T0G wλ ,0 ≫β ,ε

}
(61)

12 They are well defined even ifγ2 is not regular.
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N cells coupled byεV ∂tT = ∇(κ(ε ,γ)∇T)
tN2, N → ∞, ε ∼ 1

Ginzburg-Landau dynamics forN particles

ε−2t, ε → 0

∂tT = ∇(κ2(γ)∇T)

tN
2 , N → ∞

Fig. 3: The relation between the hydrodynamic limit, the weak coupling limit and
the Green-Kubo expansion. The dotted arrow (hydrodynamic limits in the diffusive
time scale) has not been proved. The weak coupling limit (vertical arrow) has been
proved in [48] (see also [26]) and the diagonal arrow (hydrodynamic limits for a
Ginzburg-Landaudynamics) has been obtained in [65] in somecases which however
do not cover our cases. In [9] it is argued thatκ(ε,γ)∼ ε2κ2(γ) asε → 0.

if the limits exist. In fact, a priori, it is not even clear that the termT0G wλ ,0 makes
sense sincewλ ,0 is not well defined. In [9] we argue that

κ2(γ) =
〈
γ2
0,1

〉
β −≪ α0,1 , (−LGL)

−1α0,1 ≫β . (62)

Here〈·〉β and≪·≫β refer to the scalar products w.r.t.ρβ . In the special caseW= 0
13, we prove rigorously in [9] that we can make sense for anyλ ,ε of the term in the
righthandside of (61) and that (62) is valid, supporting theconjecture that (62) is
valid in more general situations. Observe that (62) is the Green-Kubo formula for
the diffusion coefficient of the Ginzburg-Landau dynamics.

In specific examples, it is possible to study the behavior ofκ2(γ) defined by (62)
in the vanishing noise limitγ → 0:

1. Harmonic chain: it is known that the conductivity of the (deterministic) har-
monic chain isκ(ε,0) = ∞. If γ > 0, κ(ε,γ) = cγ−1ε−2, c> 0 a constant, and
we get thus that limγ→0 κ2(γ) = ∞.

2. Disordered pinned harmonic chain:V is quadratic and the one-site potentialW
is site-dependent given byWx(q) = νxq2 where{νx ; x ∈ Z} is a sequence of
independent identically distributed positive bounded random variables14. It is
known ([8]) thatκ(ε,0) = 0 so thatκ2(ε,0) = 0. It can be proved thatκ2(γ)
vanishes asγ goes to 0.

13 If W = 0 the variablesqx have to take values in a compact manifold.
14 Even if this model does not belongstricto sensuto the class of models discussed above it is easy
to generalize to this case, at least formally, the previous results.
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3. Harmonic chain with quartic pinning potential:V is quadratic andW(q) = q4.
Then it can be shown that limsupγ→0 κ2(γ) < ∞. This upper bound does not
prevent the possibility that limγ→0 κ2(γ) = 0.

To prove these results we use the upper boundκ2(γ) ≤
〈

γ2
0,1

〉
β
. Recalling (59)

we see that if we are able to computeT0 j0,1 then we can estimate
〈
γ2(E0,E1)

〉
β . It

is exactly what is done in [9] for the specific cases above.
It would be highly interesting to have a rigorous derivationof the formal expan-

sion above. Bypassing this problem, another relevant issueis to decide if genuinely
limγ→0 κ2(γ) is zero or not. Some authors (see [23] and references therein) con-
jecture that, in some cases, the conductivity of the deterministic chainκ(ε,0) has
a trivial weak coupling expansion (κ(ε,0) = O(εn) for any n ≥ 2). Showing that
κ2(γ)→ 0 asγ → 0 would support this conjecture.

2.2 Harmonic chain with velocity-flip noise

In this section we assume thatV(r) = r2/2.

2.2.1 Hydrodynamic limits

As explained in the beginning of this chapter an interestingproblem consists to de-
rive a diffusion equation for a chain of oscillators perturbed by an energy conserv-
ing noise. Consider a one dimensional unpinned chain ofN harmonic oscillators
with periodic boundary conditions perturbed by the velocity flip noise in the diffu-
sive scale. In other words letω(t) = (r(t),p(t))t≥0 be the process with generator
N2LN = N2 [AN + γSN] whereSN is given by (12),Zd being replaced byTN, the
discrete torus of lengthN, andAN is the Liouville operator of a chain of unpinned
harmonic oscillators with periodic boundary conditions. The system conserves two

quantities: the total energy∑x∈TN
Ex, Ex =

p2
x

2 + r2
x
2 , and the total deformation of the

lattice∑x∈TN
rx. Consequently, the Gibbs equilibrium measuresνβ ,τ are indexed by

two parametersβ > 0, the inverse temperature, andτ ∈ R, the pressure. They take
the form

dνβ ,τ(dr ,dp) = ∏
x∈TN

Z −1(β ,τ) exp{−β (Ex− τrx)}drxdpx

where

Z (β ,τ) =
2π
β

exp(β τ2/2).

Observe the following thermodynamic relations
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∫
Exdνβ ,τ = β−1+ τ2

2 ,

∫
rx dνβ ,τ = τ

or equivalently

τ =

∫
rx dνβ ,τ , β =





∫
Ex dνβ ,τ −

(
∫

rx dνβ ,τ

)2

2





−1

.

Definition 2. LetT= [0,1) be the continuous torus. Lete0 : T→R andr0 : T→R

be two continuous macroscopic profiles such thate0 >
r2

0
2 . A sequence of probability

measures(µN)N≥1 on(R×R)TN is said to be a sequence of Gibbs local equilibrium
states associated to the energy profilee0 and the deformation profiler0 if

dµN(dr ,dp) = ∏
x∈TN

Z −1(β0(
x
N ),τ0(

x
N )) exp{−β0(x/N)(Ex− τ0(x/N)rx)}drxdpx

where the functionsβ0 andτ0 are defined by

τ0 = r0, β0 = {e0− r2
0
2 }

−1.

Once we have the microscopic fluctuation-dissipation equation (see (45)) and
assuming the propagation of local equilibrium in the diffusive time scale it is easy
to guess the hydrodynamic equations followed by the system.In [54] the following
theorem is proved.

Theorem 6 ([54]).Consider the unpinned velocity-flip model with periodic bound-
ary conditions. Let(µN)N be a sequence of Gibbs local equilibrium states15 asso-
ciated to a bounded energy profilee0 and a deformation profiler0. For every t≥ 0,
and any test continuous functions G,H : T→ R, the random variables

( 1
N ∑

x∈TN

G( x
N)rx(tN

2),
1
N ∑

x∈TN

H( x
N )Ex(tN

2)
)

(63)

converge in probability as N→ ∞ to

(∫

T

G(y)r(t,y)dy,
∫

T

H(y)e(t,y)dy
)

wherer ande are the (smooth) solutions to the hydrodynamical equations

{
∂tr=

1
γ ∂ 2

y r,

∂te=
1
2γ ∂ 2

y

[
e + r2

2

] , y∈ T, (64)

with initial conditionsr(0,y) = r0(y), e(0,y) = e0(y).

15 One can consider more general initial states, see [54].
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The proof of this theorem is based on Yau’s relative entropy method ([67], [51]).
The general strategy is simple. LetµN

t be the law of the process at timetN2 starting
from µN and letµ̃N

t be a sequence of Gibbs local equilibrium state corresponding
to the deformation profilert(·) := r(t, ·) and energy profileet(·) := e(t, ·) solution
of (64). We expect that sincee andr are the hydrodynamic profiles, the probability
measure of the processµN

t is close, in some sense, to the local Gibss stateµ̃N
t . Yau’s

relative entropy method consists to show that the entropic distance16

HN(t) := H(µN
t |µ̃N

t ) = o(N) (65)

between the two states is relatively small. Assuming (65), in order to prove for
example the convergence of the empirical energy, we use the entropy inequality17

which states that for anyα > 0 and test functionφ

∫
φdµN

t ≤ H(µN
t |µ̃N

t )
α +

1

α
log

(∫
eαφ dµ̃N

t

)
. (66)

We take thenα = δN, δ > 0, and

φ =

∣∣∣∣∣
1
N ∑

x∈TN

H( x
N )Ex−

∫

T

H(y)e(t,y)dy

∣∣∣∣∣ .

Sinceµ̃N
t is fully explicit and even product, by using large deviations estimates, it is

possible to show that

limsup
N→∞

1

δN
log

(∫
eδNφ dµ̃N

t

)
= I(δ ) (67)

whereI(δ )→ 0 asδ → 0. By using (65), we are done. It remains then to prove (65)
and for this we rely on a Gronwall inequality for the entropy production (C> 0 is a
constant)

∂tHN ≤CHN(t)+o(N). (68)

The proof of (68) is quite evolved and we refer the interestedreader to [54], [12]
(see also [41] for some overview on the subject). It is in thisstep that the macro-
ergodicity of the dynamics is used in order to derive the so-called one-block esti-
mate.

For non-gradient systems, i.e. systems such that the microscopic currents of the
conserved quantities are not given by discrete gradients18, the previous strategy
has to be modified. Indeed, in order to have (65) it is necessary to replace the local
equilibrium Gibbs statẽµN

t by a local equilibrium state with a first order correction

16 There is some abuse of language here since the relative entropy is not a distance between prob-
ability measures.
17 It is a trivial consequence of the definition (9).
18 Observe that if a system is gradient then a microscopic fluctuation-dissipation equation (23)
holds with a zero fluctuating term.
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term of the form

dµ̂N
t (dr ,dp)

= Z−1
t,N ∏

x∈TN

exp
{
−βt(x/N)(Ex− τt(x/N)rx)+

1
N F(t,x/N)(θxg)(r ,p)

}
drxdpx

(69)

whereZt,N is a normalization constant,

τt = rt , βt = {et − r2
t
2 }

−1

and the functionsF and g are judiciously chosen. The choice is guided by the
fluctuation-dissipation relation (45) and done in order to obtain the first order ”Tay-
lor expansion” (71) below.

Let ΩN = (R×R)TN be the configurations space and denote

ĤN(t) := H
(
µN

t |µ̂N
t

)
=
∫

ΩN
f N
t (ω) log

f N
t (ω)

φN
t (ω)

dν∗(ω) , (70)

where f N
t is the density ofµN

t with respect to the Gibbs reference measureν∗ :=
ν1,0. In the same way,φN

t is the density ofµ̂N
t with respect toν∗ (which is fully

explicit). The goal is to get (68) withHN replaced byĤN .
We begin with the following entropy production bound. Let usdenote byL ∗

N =
−AN+ γSN the adjoint ofLN in L2(ν∗).

Lemma 3.

∂tĤN(t)≤
∫

1

φN
t

(
N2L ∗

NφN
t − ∂tφN

t

)
f N
t dν∗ =

∫ [
1

φN
t

(
N2L ∗

NφN
t − ∂tφN

t

)]
dµN

t .

Proof. We have thatf N
t solves the Fokker-Plack equation∂t f N

t = N2L ∗
N f N

t . As-
suming it is smooth to simplify, we have

∂tĤN(t) =
∫

∂t f N
t [1+ log f N

t ]dν∗−
∫

∂t f N
t logφN

t dν∗−
∫

∂tφN
t

f N
t

φN
t

dν∗

= N2
∫

L ∗
N f N

t [log f N
t − logφN

t ]dν∗−
∫

∂tφN
t

f N
t

φN
t

dν∗

= N2
∫

f N
t LN[log f N

t
φN

t
]dν∗−

∫
∂tφN

t
f N
t

φN
t

dν∗

= N2
∫

f N
t

φN
t

LN[log f N
t

φN
t
]φN

t dν∗−
∫

∂tφN
t

f N
t

φN
t

dν∗

≤ N2
∫

LN[
f N
t

φN
t
]φN

t dν∗−
∫

∂tφN
t

f N
t

φN
t

dν∗

= N2
∫ f N

t

φN
t

L ∗
NφN

t dν∗−
∫

∂tφN
t

f N
t

φN
t

dν∗
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where we used that for any positive functionh, hLN(logh)≤ LNh (this is a conse-
quence of Jensen’s inequality). ⊓⊔

We defineξx := (Ex, rx) andπ(t,q) := (e(t,q),r(t,q)). If f is a vectorial function,
we denote its differential byD f .

Proposition 3 ([54]). Let (λ ,β ) be defined byβ = (e− r2

2 )
−1 and λ = −β r. The

term(φN
t )−1

(
N2L ∗

NφN
t − ∂tφN

t

)
can be expanded as

(φN
t )−1(N2L ∗

NφN
t − ∂tφN

t

)

=
5

∑
k=1

∑
x∈TN

vk

(
t,

x
N

)[
Jk

x −Hk

(
π
(

t,
x
N

))
− (DHk)

(
π
(

t,
x
N

))
·
(

ξx−π
(

t,
x
N

))]

+o(N) (71)

where

k Jk
x Hk(e,r) vk(t,q)

1 p2
x + rxrx−1+2γ pxrx−1 e+ r2/2 −(2γ)−1∂ 2

q β (t,q)
2 rx+ γ px r −γ−1∂ 2

q λ (t,q)
3 p2

x (rx+ rx−1)
2 (2e− r2)

(
e+3r2/2

)
(4γ)−1[∂qβ (t,q)]2

4 p2
x (rx+ rx−1) r (2e− r2) γ−1∂qβ (t,q) ∂qλ (t,q)

5 p2
x e− r2/2 γ−1[∂qλ (t,q)]2

Observe thatHk(e, r) is equal to
∫

Jk
xdνβ ,τ whereβ ,τ are related toe, r by the

thermodynamic relations. Thus, the terms appearing in the righthand side of (71)
can be seen as first order “Taylor expansion”. The form of the first order correction
in (69) plays a crucial role in order to get such expansions.

A priori the first term on the right-hand side of (71) is of order N, but we want to
take advantage of these microscopic Taylor expansions to show it is in fact of order
o(N).

First, we need to cut-off large energies in order to work withbounded variables
only. To simplify, we assume they are bounded ab initio.

Let ℓ be some integer (dividingN). We introduce some averaging over micro-
scopic blocks of sizeℓ and we will letℓ → ∞ afterN → ∞. We decomposeTN in
a disjoint union ofp= N/ℓ boxesΛℓ(x j ) of lengthℓ centered atx j , j ∈ {1, . . . , p}.
The microscopic averaged profiles in a box of sizeℓ aroundy∈ TN are defined by

ξ̃ℓ(y) =
1

ℓ ∑
x∈Λℓ(y)

ξx.

Similarly we define

J̃k
ℓ (y) =

1

ℓ ∑
x∈Λℓ(y)

Jk
x .
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In (71) we rewrite the sum∑x∈TN
as∑p

j=1 ∑x∈Λℓ(xj ) and, by using the smoothness of
the functionvk, Hk, it is easy to replace the term

1

N ∑
x∈TN

vk

(
t,

x
N

)[
Jk

x −Hk

(
π
(

t,
x
N

))
− (DHk)

(
π
(

t,
x
N

))
·
(

ξx−π
(

t,
x
N

))]

by

1

p

p

∑
j=1

vk

(
t,

x j

N

)[
J̃k
ℓ (x j) − Hk

(
π
(

t,
x j

N

))
− (DHk)

(
π
(

t,
x j

N

))
·
(

ξ̃ℓ(x j)−π
(

t,
x j

N

))]

in the limit N, ℓ→ ∞ with some error term of ordero(1).
Then, the strategy consists in proving the following crucial estimate, often called

the one-block estimate: we replace the empirical average currentJ̃k
ℓ (x j) which is

averaged over a box centered atx j by its mean with respect to a Gibbs measure
with the parameters corresponding to the microscopic averaged profilesξ̃ℓ(x j), i.e.
Hk(ξ̃ℓ(x j)). This non-trivial step is achieved thanks to some compactness argument
and the macro-ergodicity of the dynamics.

Consequently we have to deal with terms in the form

1

p

p

∑
j=1

vk

(
t,

x j

N

)[
Hk

(
ξ̃ℓ(x j)

)
− Hk

(
π
(

t,
x j

N

))

−(DHk)
(

π
(

t,
x j

N

))
·
(

ξ̃ℓ(x j)−π
(

t,
x j

N

))] (72)

The final step consists then in applying the entropy inequality (66) with respect
to µ̂N

t with φ := φℓ,N given by (72) andα = δN, δ > 0 fixed but small. This will
produce some term of order̂HN(t)/N plus the term

limsup
ℓ→∞

limsup
N→∞

1

δN
log

(∫
eδNφ dµ̂N

t

)
= I(δ ).

By using some large deviations estimates (observe thatµ̂N
t is explicit and product at

first order inN) one can show thatI(δ ) is nonpositive forδ sufficiently small. Thus
we get the desired Gronwall inequality.

There is some additional difficulty that we hid under the carpet in the sketch of
the proof. Since the state space is non compact, a control of high energies is re-
quired for the initial cut-off. This is a highly non trivial problem19. In the harmonic
case considered here this control is obtained thanks to the following remark: the
set of mixtures of Gaussian probability measures20 is preserved by the (harmonic)
velocity-flip model. Since for Gaussian measures all the moments are expressed in

19 A similar problem appears in [51] where the authors derived Euler equations for a gas perturbed
by some ergodic noise. There, to overcome this difficulty, the authors replace ab initio the kinetic
energy by the relativistic kinetic energy.
20 A Gibbs local equilibrium state is a Gaussian state in the harmonic case.
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terms of the covariance matrix, required bounds can be obtained by a suitable con-
trol of the covariance matrices appearing in the mixture.

The extension of this result in the anharmonic case is a challenging open problem
(see however [52] where equilibrium fluctuations are considered for an anharmonic
chain perturbed by a conservative noise acting on the momenta and positions).

2.2.2 Fourier’s law

Since in the harmonic case an exact fluctuation-dissipationequation is available
Fourier’s law can be obtained without too much work21.

Theorem 7 ([10, 11]).Consider the one-dimensional harmonic chain in contact
with two heat baths and with forced boundary conditions as inSection 2.1.1. Then
Fourier’s law holds:

J̃s := lim
N→∞

N〈 je0,1〉ss=
1

2γ
{
(Tℓ−Tr)+ (τ2

ℓ − τ2
r )
}

(73)

and we have

Ĵℓ = lim
N→∞

N(〈p2
1〉ss−Tℓ) =

1

2γγℓ

[
(Tr −Tℓ)+ (τℓ− τr)

2] ,

Ĵr = lim
N→∞

N(Tr −〈p2
N〉ss) =

1

2γγr

[
(Tr −Tℓ)− (τℓ− τr)

2] .
(74)

Proof. We divide the proof in two steps:

• We first prove that there exists a constantC independent ofN such that|〈 je0,1〉ss| ≤
C/N. This is obtained by using the fluctuation-dissipation equation and the fact
that〈 jex,x+1〉ss is independent ofx:

〈 je0,1〉ss =
1

N−3

N−2

∑
x=2

〈 jex,x+1〉ss (75)

= −
1

2γ
1

N−3

N−2

∑
x=2

〈
∇
[
p2

x + rxrx+1
]〉

ss

=
1

2γ
1

N−3

{
(〈p2

2〉ss+ 〈r2r3〉ss)− (〈p2
N−1〉ss+ 〈rN−1rN〉ss)

}
.

By using simple computations, one can show that(〈p2
2〉ss+〈r2r3〉ss)−(〈p2

N−1〉ss+
〈rN−1rN〉ss) is uniformly bounded inN by a positive constant.

• Now we have only to evaluate the limit of each term appearing in (〈p2
2〉ss+

〈r2r3〉ss)− (〈p2
N−1〉ss+ 〈rN−1rN〉ss). Notice that assuming local equilibrium we

21 Thea posteriorisimple but fundamental remark that an exact fluctuation-dissipation equation
exists for the harmonic model (see (45)) is the real contribution of [10].
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easily get the result. The first step implies that〈 je0,1〉ss and 〈 jeN,N+1〉ss vanish

as N → +∞. SinceVs goes to 0 by Lemma 1, one has that〈p2
1〉ss and 〈p2

N〉ss

converge respectively toTℓ andTr . By using some “entropy production bound”
one can propagate this local equilibrium information to theparticles close to the
boundaries and show (73).

⊓⊔
It follows from this Theorem that the system can be used as a heater but not as a

refrigerator. Assume for example thatTr > Tℓ. The termĴℓ (resp.Ĵr ) is the macro-
scopic heat current from the left reservoir to the system (resp. from the system to
the right reservoir). Whatever the values ofτℓ,τr are,Ĵℓ > 0 and we can not realize
a refrigerator. But if(Tr −Tℓ)< (τr − τℓ)2 thenĴr < 0 and we realized a heater.

The proof of the validity of Fourier’s law for anharmonic chains perturbed by an
energy conserving noise is still open.

2.2.3 Macroscopic Fluctuation Theory for the energy conserving harmonic
chain

The macroscopic fluctuation theory ([17]) is a general approach developed by
Bertini, De Sole, Gabrielli, Jona-Lasinio and Landim to calculate the large deviation
functional of the empirical profiles of the conserved quantities of Markov processes
in a NESS. Its main interest is that it can be applied to a largeclass of boundary
driven diffusive systems and does not require the explicit form of the NESS but
only the knowledge of two thermodynamic macroscopic parameters of the system,
the diffusion coefficientD(ρ) and the mobilityχ(ρ). This theory can be seen as an
infinite dimensional generalization of the Freidlin-Wentzel theory [28] and is based
on the large deviation principle for the hydrodynamics of the system.

In order to explain (roughly) the theory we consider for simplicity a Marko-
vian system{η(t) := {ηx(t) ∈R ; x∈ {1, . . .N}}t≥0 with only one conserved quan-
tity, say the densityρ , in contact with two reservoirs at each extremity. HereN
is the size of the system which will be sent to infinity. We denote by µN

ss the
nonequilibrium stationary state of{η(t)}t≥0. For any microscopic configuration
η := {ηx ; x∈ {1, . . . ,N}} let

πN(η , ·) =
N−1

∑
x=1

ηx1[ x
N ,

x+1
N

)(·)

be the empirical density profile. In the diffusive time scale, we assume thatπN(η(tN2), ·)
converges asN goes to infinity toρt(·) := ρ(t, ·) solution of





∂tρ = ∂y(D(ρ)∂yρ), y∈ [0,1], t ≥ 0,

ρ(t,0) = ρℓ, ρ(t,1) = ρr , t ≥ 0,

ρ(0, ·) = ρ0(·)
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whereρ0(·) is the initial density profile,D(ρ)> 0 is the diffusion coefficient andρℓ,
ρr the densities fixed by the reservoirs. Ast →∞ the solutionρt of the hydrodynamic
equation converges to a stationary profileρ̄ : [0,1] → R solution of D(ρ̄)∂yρ̄ =
J = const. with ρ̄(0) = ρℓ, ρ̄(1) = ρr . We assume that underµN

ss, the empirical
density profileπN(η , ·) converges toρ̄ . This assumption is nothing but a law of
large numbers for the random variablesπN.

We are here interested in the corresponding large deviationprinciple. Thus, we
want to estimate the probability that in the NESSµN

ss the empirical density profile
πN is close to an atypical macroscopic profileρ(·) 6= ρ̄. This probability typically
is of ordere−NV(ρ) whereV is the rate function:

µN
ss(π

N(η , ·)≈ ρ(·))≈ e−NV(ρ).

The goal of the macroscopic fluctuation theory is to obtain information about this
functional.

The condition to be fulfilled by the system to apply the theoryof Bertini et al.
is that it satisfies adynamical large deviation principlewith a rate function which
takes a quadratic form22 like (77).

Let us first explain what we mean by dynamical large deviationprinciple. Imag-
ine we start the system from a Gibbs local equilibrium state corresponding to the
macroscopic profileρ0. We want to estimate the probability that the empirical den-
sity πN(η(tN2), ·) is close during the macroscopic time interval[0,T], T fixed, to a
smooth macroscopic profileγ(t,y) supposed to satisfy23 γ(0, ·) = ρ0. This proba-
bility is exponentially small inN with a rateI[0,T](γ |ρ0)

P
[
πN(η(tN2),y)≈ γ(t,y), (t,y) ∈ [0,T]× [0,1]

]
∼ e−NI[0,T](γ|ρ0). (76)

The rate function is assumed to be of the form

I[0,T](γ |ρ0) =
1
2

∫ T

0
dt
∫ 1

0
dyχ(ρ(t,y)) [(∂yH)(t,y)]2 (77)

where∂yH is the extra gradient external field needed to produce the fluctuationγ,
namely such that

∂tγ = ∂y [D(γ)∂yγ − χ(γ)∂yH] . (78)

Thus,I[0,T](γ|ρ0) is the work done by the external field∂yH to produce the fluctu-
ation γ in the time interval[0,T]. The functionχ appearing in (78) is the second
thermodynamic parameter (with the diffusion coefficientD) mentioned in the be-
ginning of this section. The two parametersD and χ are in fact related together
by the Einstein relation so that knowing one of them and the Gibbs states of the
microscopic model is sufficient to obtain the second.

22 Such property has been proved to be valid for a large class of stochastic dynamics ([42], [41]).
23 This assumption avoids taking into account the cost to produce the initial profile, cost which is
irrelevant for us.
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To show this result the strategy is the following. We perturbthe Markov process
{η(t)}t≥0 thanks to the functionH := H(γ), which is solution of the Poisson equa-
tion (78), by adding locally a small space inhomogeneous drift provided by∂yH.
In doing so we obtain a new Markov process{ηH(t)}t≥0 such that in the diffusive
time scaleπN(ηH(tN2), ·) converges toγ(·). Let PH (resp.P0) be the probability
measure on the empirical density paths space induced by{ηH(tN2)}t∈[0,T] (resp.
{η(tN2)}t∈[0,T]) . Then, by using hydrodynamic limits techniques similar tothe
ones explained in Section 2.2.1 we show that in the largeN limit, underPH , the
Radon-Nikodym derivative is well approximated by24

dP0

dPH(π)≈ exp
{
−NI[0,T](π |ρ0)

}
.

Here π := {π(t,y) ; t ∈ [0,T],y ∈ [0,1]} is any space-time density profile. Thus,
since

P
0[πN(η(tN2), ·)∼ γ(t, ·), t ∈ [0,T]

]
= E

H

[
dP0

dPH(π)1{π(t,·)∼γ(t,·),t∈[0,T ]}

]

we obtain (76).
The macroscopic fluctuation theory claims that the large deviations functional

V(ρ) of the empirical density in the NESS coincides with the quasi-potentialW(ρ)
defined by

W(ρ) = inf
γ:γ(−∞)=ρ̄

γ(0)=ρ

I[−∞,0](γ|ρ̄).

Here I[−∞,0] is obtained fromI[0,T] by a shift in time by−T, T being sent to+∞
afterwards. In words, the quasi potential determines the cost to produce a fluctuation
equal toγ at t = 0 when the system is macroscopically in the stationary profile ρ̄ at
t =−∞.

Thus, the problem is reduced to computingW. It can be shown thatW solves (at
least formally) the infinite-dimensional Hamilton-Jacobiequation

1
2

〈
∂y

[
δW
δρ

]
,χ(ρ)∂y

[
δW
δρ

]〉
+

〈
δW
δρ

, ∂y [D(ρ)∂yρ ]
〉
= 0 (79)

where 〈·, ·〉 denotes the usual scalar product inL2([0,1]). Note that there is no
uniqueness of solutions (W = 0 is a solution) and up to now a general theory of
infinite dimensional Hamilton-Jacobi equations is still missing. This implies that
we have in fact to solve by hand the variational problem and the solution is only
known for few systems. This is an important limitation of themacroscopic fluctua-
tion theory. Even getting interesting qualitative properties onW is difficult.

24 We use Girsanov transform to express the Radon-Nikodym derivative. A priori it is not a func-
tional of the empirical density and we need to establish somereplacement lemma(see [41]).
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The rigorous implementation of this long program has only been carried for the
boundary driven Symmetric Simple Exclusion Process and extended with less rigor
to a few other systems (see [15], [18], [27] for rigorous results).

Let us now try to apply this theory for the harmonic chain withvelocity-flip
noise. Since we have a fully explicit microscopic fluctuation-dissipation equation
(even when some harmonic pinning is added) we can easily guess what is the form
of the hydrodynamic equations under various boundary conditions by assuming that
the propagation of local equilibrium in the diffusive time scale holds. Nevertheless,
let us observe that a rigorous derivation is missing, the obstacle being a sufficiently
good control of the high energies25. The boundary conditions we impose to the
system are the following. At the left (resp. right) end we putthe chain in contact
with a Langevin bath at temperatureTℓ (resp.Tr ) and consider the system with fixed
boundary conditions or with forced boundary conditions with the same forceτ at
the two boundaries. Then, for the unpinned chain, the equations (64) are still valid
but they are supplemented with the boundary conditions ([14])

[
e−

r2

2

]
(t,0) = Tℓ,

[
e−

r2

2

]
(t,1) = Tr , (80)

since the Langevin baths fix the temperatures at the boundaries and

∂yr(t,0) = ∂yr(t,1) = 0 (81)

for fixed boundary conditions (the total length of the chain is constant26) and

r(t,0) = r(t,1) = τ (82)

for forced boundary conditions.
If the chain is pinned by the harmonic potentialW(q) = νq2/2 then only the

energy is conserved and the macroscopic diffusion equationtakes the form




∂te= ∂y(κ∂ye),

e(0,y) = e0(y),

e(t,0) = Tℓ, e(t,1) = Tr ,

y∈ (0,1) (83)

where the conductivityκ is equal to ([14])

κ =
1/γ

2+ν2+
√

ν(ν +4)
. (84)

Assuming a good control of high energies, it is possible to derive the dynami-
cal large deviations function of the empirical conserved quantities. The goal would
be to compute the large deviation functional of the NESS which according to the

25 This control is only available in the case of periodic boundary conditions ([54]).
26 Indeed, by (64), we have∂t(

∫ 1
0 r(t,y)dy) = γ−1∫ 1

0 ∂ 2
y r(t,y)dy= γ−1[∂yr(t,1)−∂yr(t,0)] = 0.
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macroscopic fluctuation theory coincides with the quasi potential. We recall that the
quasi potential is defined by a variational problem and that it depends only on two
thermodynamic quantities, the diffusion coefficient and the mobility (the latter are
matrices if several conserved quantities are involved).

Let us first consider the pinned velocity flip model where the energy is the only
conserved quantity. It turns out that the mobility is a quadratic function. Conse-
quently, the methods exposed in Theorem 6.5 of [16] apply andthe variational for-
mula can be computed. The quasi potentialV(·) is given by ([14])

V(e) =
∫ 1

0
dq

[
e(q)

F(q)
−1− log

(
e(q)

F(q)

)
− log

(
F ′(q)

Tr −Tℓ

)]
, (85)

whereF is the unique non decreasing solution of




F ′′ =
F −e

F2 (F ′)2 ,

F(0) = Tℓ, F(1) = Tr .
(86)

Surprisingly, the functionV is independent of the pinning valueν and of the inten-
sity of the noiseγ. It is thus natural to conjecture that in the NESS of the unpinned
velocity flip model the large deviation function of the empirical energy profile coin-
cides withV but we did not succeed to prove it. Observe that at equilibrium (Tℓ=Tr ),
F(q) = Tℓ = Tr and the last term in (85) disappears so that the quasi potential is lo-
cal. On the other hand, ifTℓ 6= Tr , this is no longer the case and this reflects the
presence of long-range correlations in the NESS. In particular, an approximation of
the NESS by a Gibbs local equilibrium state in the form (29) would not give the
correct value of the quasi potential.

For the unpinned chain we have two conserved quantities. Solving the variational
problem of the quasi potential for these two conserved quantities is a very difficult
open problem27 (see [5] for a partial result for some other stochastic perturbation of
the harmonic chain).

3 Anomalous diffusion

An anomalous large conductivity is observed experimentally in carbon nanotubes
and numerically in chains of oscillators without pinning, where numerical evidence
shows a conductivity diverging with the sizeN of the system likeNα , with α < 1 in
dimensiond = 1, and like logN in dimensiond = 2. If some nonlinearity is present
in the interaction, finite conductivity is observed numerically in all pinned case or in
dimensiond ≥ 3 ([24],[47]). Consequently it has been suggested that conservation

27 Here we do not have any exactly solvable model like the Symmetric Simple Exclusion Process
which could give us some hints for the form of the quasi-potential.
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of momentum is an important ingredient for the anomalous conductivity in low
dimensions (see however [66]).

In Chapter 2 we considered chains of oscillators perturbed by a noise conserving
only energy and destroying the possible momentum conservation. In the harmonic
case we obtained Fourier’s law and in the anharmonic case we proved existence of
the Green-Kubo formula for the thermal conductivity.

In this chapter the added perturbation conserves both energy and momentum (en-
ergy and volume for the Hamiltonian systems considered in Section 1.2). These
systems qualitatively have the same behavior as Hamiltonian chains of oscilla-
tors (without any noise), i.e. anomalous transport for unpinned chain in dimension
d = 1,2 and normal transport otherwise. We could even be more optimistic and
hope that they share with the deterministic systems common limits for the energy
fluctuation fields, two point correlation functions. . . This is because one expects
that the microscopic details of the dynamics are irrelevant. Therefore someuniver-
sality should hold. Recently H. Spohn ([58]), by following ideas of[64], used the
nonlinear fluctuating hydrodynamics theory to classify very precisely the different
expected universality classes. The nonlinear fluctuating hydrodynamics theory is
based on the assumption that the microscopic dynamics evolve in the Euler time
scale according to a system of conservation laws. The theoryis macroscopic in the
sense that all the predictions are done starting from this system of conservation laws
without further references to the microscopic dynamics. Since we have seen that the
presence of the energy-momentumconserving noise does not change the form of the
hydrodynamic equations, the theory claims in fact that the limit of the fluctuations
fields of the conserved quantities for purely deterministicchains of oscillators and
for noisy energy-momentum conserving chains are exactly the same.

3.1 Harmonic chains with momentum exchange noise

Getting some information on the behavior of the energy fluctuation field in the large
scale limit remains challenging. So far, satisfactory but not complete results have
only been obtained in the harmonic case. The anharmonic caseis much more diffi-
cult.

In [1], [2] we explicitly compute the time correlation current for a system of
harmonic oscillators perturbed by an energy-momentum conserving noise28 and
we find that it behaves, for large times, liket−d/2 in the unpinned cases, and like
t−d/2−1 when on-site harmonic potential is present.

These results are given in the Green-Kubo formalism. Their counterpart in the
NESS formalism have been considered in [46] but a rigorous proof is still missing.
Several variations of the Green-Kubo formula can be found inthe literature: one
can start with the infinite system in the canonical ensemble,as we did in Subsec-
tion 2.1.2, or with a finite system, in the canonical or micro-canonical ensembles,

28 It is straightforward to adapt the proofs given in [1], [2] tothe case of the momenta exchange
noise.
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sending the size of the system to infinity. It is widely believed that all these def-
initions coincide (also in the case of infinite conductivity). As shown in [2], this
is essentially true for the energy-momentum conserving harmonic chain. Here we
consider the simplest possible definition avoiding to discuss the rigorous definition
of the canonical ensemble in infinite volume and the problem of equivalence of
ensembles.

The set-up is the following. We consider a chain perturbed bythe energy-
momentum conserving noise (see (11)) with periodic boundary conditions. Its
Hamiltonian is given byHN = ∑x∈Td

N
Ex where the energyEx of atomx is

Ex =
|px|2

2
+W(qx)+

1
2 ∑
|y−x|=1

V(qx−qy). (87)

The system is considered at equilibrium under the Gibbs grand-canonical mea-
sure

dµN,T =
e−HN/T

ZN,T
dqdp

whereZN,T is the renormalization constant.
The Green-Kubo formula for the thermal conductivity in the direction ek, 1≤

k ≤ d, is 29 the limiting variance of the energy currentJe,γ
x,x+ek

([0, t]) up to timet in
the directionek in a space-time box of sizeN× t:

κ(T) =
1

2T2 lim
t→+∞

lim
N→∞

EµN,T





 1√

Ndt
∑

x∈Td
N

Je,γ
x,x+e1

([0, t])




2

 . (88)

The energy currents{Je,γ
x,x+ek

([0, t]) ; k = 1, . . . ,d} are defined by the energy conser-
vation law

Ex(t)−Ex(0) =
d

∑
k=1

(
Je,γ

x−ek,x
([0, t])− Je,γ

x,x+ek
([0, t])

)
.

The energy current up to timet can be written as

Je,γ
x,x+ek

([0, t]) =
∫ t

0
je,γx,x+ek

(s)ds+Mx,x+ek(t) (89)

whereMx,x+ek(t) is a martingale andje,γx,x+ek
is the instantaneous current which has

the form

je,γx,x+ek
= j̃ex,x+ek

+γ
[
p2

x+ek
− p2

x

]
, j̃ex,x+ek

=−1
2

V ′(qx+ek −qx)(px+ek + px). (90)

The term j̃ex,x+ek
is the Hamiltonian contribution while the gradient term is due to

the noise.

29 By symmetry arguments this is independent ofk.
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We now expand the square in (88). Notice first that since we have periodic bound-
ary conditions the gradient term appearing in (90) does not contribute. By a time
reversal argument one can show that the cross term between the martingale and the
time integral of the instantaneous current vanishes. Moreover a simple computation
shows that the square of the martingale term gives a contribution equal toγ (see [2]
for details). Thus we obtain

κ(T) = T−2 lim
t→+∞

lim
N→∞

1
2Ndt

EµN,T





 ∑

x∈Td
N

∫ t

0
j̃ex,x+ek

(s)ds




2

 + γ

= T−2 lim
t→+∞

lim
N→∞ ∑

x∈Td
N

∫ +∞

0
ds
(

1− s
t

)+
EµN,T

[
j̃e0,ek

(0) j̃ex,x+ek
(s)
]

ds+ γ

(91)

where the last line is obtained by time and space stationarity of the Gibbs measure
andu+ denotes max(u,0)30. It is then clear that the divergence of the Green-Kubo
formula, i.e. anomalous transport, is due to a slow decay of the time correlation
functionC(t) defined by

C(t) = lim
N→∞ ∑

x∈Td
N

EµN,T

[
j̃e0,ek

(0) j̃ex,x+ek
(t)
]
. (92)

Theorem 8 ([2]). Consider the harmonic case: V(r) = αr2, W(q) = νq2 where
α > 0 andν ≥ 0.
Then the limit defining C(t) in (92) exists and can be computed explicitly. In partic-
ular, we have that C(t)∼ t−d/2 if ν = 0 and C(t)∼ t−d/2−1 if ν > 0.
Consequently, the limit (91) exists in(0,+∞] and is finite if and only if d≥ 3 or
ν > 0. When finite,κ(T) is independent of T and can be computed explicitly.

Proof. We compute the Laplace transformLN(z) =
∫ +∞

0 e−ztCN(t)dt, z > 0, of
CN(t) = ∑x∈Td

N
EµN,T

[
j̃0,ek(0) j̃ex,x+ek

(t)
]
. Since we have

LN(z) = N−1µN,T




 ∑

x∈Td
N

j̃ex,x+,ek


 (z−LN)

−1


 ∑

x∈Td
N

j̃ex,x+,ek






it is equivalent to solve the resolvent equation(z−LN)hN = ∑x∈Td
N

j̃ex,x+ek
. Notice

thatLN maps polynomial functions of degree 2 into polynomial functions of degree
2 and that∑x j̃ex,x+ek

is a polynomial function of degree 2. Thus, the functionhN is
a polynomial function of degree 2. Moreover it has to be spacetranslation invariant
since∑x j̃ex,x+ek

is. Therefore we can look for a functionhN of the form

30 Observe that replacing(1− s
t )

+ by e−s/t and limN→∞ ∑x∈Td
N

by ∑x∈Zd we formally get an ex-
pression similar to the Green-Kubo formula of Theorem 5.
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hN = ∑
x,y

a(y− x)pxpy+∑
x,y

b(y− x)pxqy+∑
x,y

c(y− x)qxqy

wherea,b andc are functions fromTd
N intoR. We compute explicitlya,b andc and

we geta= c= 0 whileb is the solution to

(z+2ν − γ∆)b=−α(δek − δ−ek)

where∆ is the discrete Laplacian. Then we deduceLN(z), henceCN(t) by inverse
Laplace transform. The limitC(t) = limN→+∞ CN(t) follows. ⊓⊔

Consequently in the unpinned harmonic cases in dimensiond = 1 and 2, the
conductivity of our model diverges asN goes to infinity. Otherwise it converges as
N → ∞. In the anharmonic case we obtained some upper bounds showing that the
divergence cannot be worse than in the harmonic case. These upper bounds also
show that the conductivity cannot be infinite ifd ≥ 3 (see [2] for details and precise
statements).

3.2 A class of perturbed Hamiltonian systems

In [13] is proposed a class of models for which anomalous diffusion is observed.
These models have been introduced in Section 1.2 of Chapter 1. The goal of [13]
was to show that these systems have a behavior very similar tothat of the standard
one-dimensional chains of oscillators conserving momentum 31.

3.2.1 Definition of thermodynamic variables

Let us fix a potentialV and consider the stochastic energy-volume conserving model
defined by the generatorL = A + γS , γ ≥ 0, whereA andS are given by (21).
Recall that the Gibbs grand-canonical probability measures µβ ,λ , β > 0, λ ∈ R,
defined onΩ by

dµβ ,λ (η) = ∏
x∈Z

Z(β ,λ )−1 exp{−βV(ηx)−λ ηx}dηx

form a family of invariant probability measures for the infinite dynamics. We as-
sume that the partition functionZ is well defined on(0,+∞)×R. The following
thermodynamic relations relate the chemical potentialsβ ,λ to the mean volumev
and the mean energyeunderµβ ,λ :

31 They could be defined in any dimension.
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v(β ,λ ) = µβ ,λ (ηx) =−∂λ

(
logZ(β ,λ )

)
,

e(β ,λ ) = µβ ,λ (V(ηx)) =−∂β

(
logZ(β ,λ )

)
.

(93)

These relations can be inverted by a Legendre transform to expressβ andλ as a
function ofeandv. Define the thermodynamic entropyS : (0,+∞)×R→ [−∞,+∞)
as

S(e,v) = inf
λ∈R,β>0

{
βe+λv+ logZ(β ,λ )

}
.

Let U be the convex domain of(0,+∞)×R whereS(e,v)>−∞ andŮ its interior.
Then, for any(e,v) := (e(β ,λ ),v(β ,λ )) ∈ Ů , the parametersβ ,λ can be obtained
as

β = (∂eS)(e,v), λ = (∂vS)(e,v). (94)

We also introduce the tensionτ(β ,λ ) = µβ ,λ (V
′(η0)) = −λ/β . The microscopic

energy currentje,γx,x+1 and volume currentjv,γx,x+1 are given by

je,γx,x+1 =−V ′(ηx)V
′(ηx+1)− γ∇[V(ηx)],

jv,γx,x+1 =−[V ′(ηx)+V′(ηx+1)]− γ∇[ηx].
(95)

With these notations we have

µβ ,λ ( je,γx,x+1) =−τ2, µβ ,λ ( jv,γx,x+1) =−2τ. (96)

In the sequel, with a slight abuse of notation, we also writeτ for τ(β (e,v),λ (e,v))
whereβ (e,v) andλ (e,v) are defined by relations (94).

3.2.2 Hydrodynamic limits

Consider the finiteclosedstochastic energy-volume dynamics with periodic bound-
ary conditions, that is the dynamics generated byLN,per= AN,per+ γSN,per where

(
AN,perf

)
(η) = ∑

x∈TN

[
V ′(ηx+1)−V′(ηx−1)

]
∂ηx f (η), (97)

and (
SN,perf

)
(η) = ∑

x∈TN

[
f (ηx,x+1)− f (η)

]
.

We choose to consider the dynamics onTN rather than onZ to avoid (nontrivial)
technicalities. We are interested in the macroscopic behavior of the two conserved
quantities on a macroscopic time-scaleNt asN → ∞.

Remark 2.The results of this section shall be compared to the results of Section
2.2.1. For the velocity-flip model, the hydrodynamic limitswhere trivial in the Euler
time scale. It was only in the diffusive time scale that some evolution of the profiles
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was observed and the hydrodynamic limits were given by parabolic equations (see
(64). Here, the evolution is not trivial in the Euler time scale and the hydrodynamic
limits are given by hyperbolic equations (see below (99).

We assume that the system is initially distributed according to a local Gibbs
equilibrium state corresponding to a given energy-volume profile X0 : T→ Ů :

X0 =

(
e0

v0

)
,

in the sense that, for a given system sizeN, the initial state of the system is described
by the following product probability measure:

dµN
e0,v0

(η) = ∏
x∈TN

exp{−β0(x/N)V(ηx)−λ0(x/N)ηx}
Z(β0(x/N),λ0(x/N))

dηx, (98)

where(β0(x/N),λ0(x/N)) is actually a function of(e0(x/N),v0(x/N)) through re-
lations (94).

Starting from such a state, we expect the state of the system at time Nt to be
close, in a suitable sense, to a local Gibbs equilibrium measure corresponding to an
energy-volume profile

X(t, ·) =
(
e(t, ·)
v(t, ·)

)
,

satisfying a suitable partial differential equation with initial conditionX0 at timet =
0. In view of (96), and assuming propagation of local equilibrium, it is not difficult
to show that the expected partial differential equation is the following system of two
conservation laws: {

∂te− ∂qτ2 = 0,

∂tv−2∂qτ = 0,
(99)

with initial conditionse(0, ·) = e0(·),v(0, ·) = v0(·). We write (99) more compactly
as

∂tX+ ∂qJ(X) = 0, X(0, ·) = X0(·),
with

J(X) =

(
−τ2(e,v)
−2τ(e,v)

)
. (100)

The system of conservation laws (99) has other nontrivial conservation laws.
In particular, the thermodynamic entropyS is conserved along a smooth solution
of (99):

∂tS(e,v) = 0. (101)

Since the thermodynamic entropy is a strictly concave function on Ů , the sys-
tem (99) is strictly hyperbolic onŮ (see [53]). The two real eigenvalues of(DJ)(ξ̄ )
are 0 and−

[
∂e(τ2)+2∂v(τ)

]
, corresponding respectively to the two eigenvectors
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(
−∂vτ
∂eτ

)
,

(
τ
1

)
. (102)

It is well known that classical solutions to systems ofn≥ 1 conservation laws in
general develop shocks in finite times, even when starting from smooth initial con-
ditions. If we consider weak solutions rather than classical solutions, then a criterion
is needed to select a unique, relevant solution among the weak ones. For scalar con-
servation laws (n= 1), this criterion is furnished by the so-called entropy inequality
and existence and uniqueness of solutions is fully understood. If n≥ 2, only partial
results exist (see [53]). This motivates the fact that we restrict our analysis to smooth
solutions before the appearance of shocks.

We assume that the potentialV satisfies the following

Assumption 3.1 The potential V is a smooth, non-negative function such thatthe
partition function Z(β ,λ ) =

∫ ∞
−∞ exp(−βV(r)−λ r) dr is well defined forβ > 0

andλ ∈R and there exists a positive constant C such that

0<V ′′(r)≤C, (103)

and

limsup
|r|→+∞

rV ′(r)
V(r)

∈ (0,+∞), (104)

limsup
|r|→+∞

[V ′(r)]2

V(r)
<+∞. (105)

Providedwe can prove that the infinite volume dynamics is macro-ergodic, then
we can rigorously prove (even ifγ = 0), using the relative entropy method of Yau
([67]), that (99) is indeed the hydrodynamic limit in the smooth regime,i.e. for
timest up to the appearance of the first shock (see for example [41, 62]). Observe
that the expected hydrodynamic limits do not depend onγ. We need to assumeγ > 0
to ensure the macro-ergodicity of the dynamics.

Remark 3.As argued in [62], it turns out that the conservation of thermodynamic
entropy (101) is fundamental for Yau’s method where, in the expansion of the time
derivative of relative entropy, the cancelation of the linear terms is a consequence of
the preservation of the thermodynamic entropy.

Averages with respect to the empirical energy-volume measure are defined, for
continuous functionsG,H : T→R, as (similarly to (63))

(
EN(t,G)
VN(t,H)

)
=




1
N ∑

x∈TN

G
( x

N

)
V(ηx(t))

1
N ∑

x∈TN

H
( x

N

)
ηx(t)


 .

We can then state the following result.
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Theorem 9 ([13]).Fix someγ > 0 and consider the dynamics on the torusTN gen-
erated byLN,per where the potential V satisfies Assumption 3.1. Assume that the
system is initially distributed according to a local Gibbs state (98) with smooth en-
ergy profilee0 and volume profilev0. Consider a positive time t such that the solution
(e,v) to (99) belongs toŮ and is smooth on the time interval[0, t]. Then, for any
continuous test functions G,H : T → R, the following convergence in probability
holds as N→+∞:

(
EN(tN,G),VN(tN,H)

)
−→

(∫

T

G(q)e(t,q)dq,
∫

T

H(q)v(t,q)dq

)
.

The derivation of the hydrodynamic limits beyond the shocksfor systems of
n ≥ 2 conservation laws is very difficult and is one of the most challenging prob-
lems in the field of hydrodynamic limits. The first difficulty is of course our poor
understanding of the solutions to such systems. Recently, J. Fritz proposed in [29]
to derive hydrodynamic limits for hyperbolic systems (in the casen= 2) by some
extension of the compensated-compactness approach [60] tostochastic microscopic
models. This program has been achieved in [32] (see also the recent paper [30]),
where the authors derive the classicaln = 2 Leroux system of conservation laws.
In fact, to be exact, only the convergence to the set of entropy solutions is proved,
the question of uniqueness being left open. It nonetheless remains the best result
available at this time. The proof is based on a strict controlof entropy pairs at the
microscopic level by the use of logarithmic Sobolev inequality estimates. It would
be very interesting to extend these methods to systems such as the ones considered
here.

3.2.3 Anomalous diffusion

We investigate now the problem of anomalous diffusion of energy for these models.
If V(r) = r2 then Theorem 8 is mutatis mutandis valid and we get the same

conclusions: the time-space correlations for the current behave for large timet like
t−1/2 . Thus the system is super-diffusive (see [13] for the details).

For generic anharmonic potentials, we can only provide numerical evidence of
the super-diffusivity. However, it is difficult to estimatenumerically the time auto-
correlation functions of the currents because of their expected long-time tails, and
because statistical errors are very large (in relative value) whent is large. Also, for
finite systems (the only ones we can simulate on a computer), the autocorrelation
is generically exponentially decreasing for anharmonic potentials, and, to obtain
meaningful results, the thermodynamic limitN → ∞ should be taken before the
long-time limit.

A more tenable approach consists in studying a nonequilibrium system in its
steady-state. We consider a finite system of length 2N+1 in contact with two ther-
mostats which fix the value of the energy at the boundaries. The generator of the
dynamics is given by
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LN = AN + γSN +λℓB−N,Tℓ +λrBN,Tr , (106)

whereAN andSN are defined by

(AN f )(η) =
N−1

∑
x=−(N−1)

(
V ′(ηx+1)−V′(ηx−1)

)
(∂ηx f )(η)

−V′(ηN−1)(∂ηN f )(η)+V ′(η−N+1)(∂η−N f )(η),

(SN f )(η) =
N−1

∑
x=−N

[
f (ηx,x+1)− f (η)

]
,

andBx,T = T∂ 2
ηx
−V′(ηx)∂ηx. The positive parametersλℓ andλr are the intensities

of the thermostats andTℓ,Tr the “temperatures” of the thermostats.
The generatorBx,T is a thermostatting mechanism. In order to fix the energy

at site−N (resp.N) to the valueeℓ (resp.er ), we have to chooseβℓ = T−1
ℓ (resp.

βr = T−1
r ) such thate(βℓ,0) = eℓ (resp.e(βr ,0) = er ). We denote by〈·〉ss the unique

stationary state for the dynamics generated byLN.
The energy currentsje,γx,x+1, which are such thatLN,open(V(ηx)) =−∇ je,γx−1,x (for

x = −N, . . . ,N− 1), are given by the first line of (95) forx = −N+ 1, . . . ,N− 1
while

je,γ−N−1,−N = λℓ

[
TℓV

′′(η−N)− (V′(η−N))
2] ,

je,γN,N+1 =−λr
[
TrV

′′(ηN)− (V′(ηN))
2] .

Since〈LN,open(V(ηx))〉ss= 0, it follows that, for anyx=−N, . . . ,N+1, 〈 je,γx,x+1〉ss

is equal to a constantJγ
N(Tℓ,Tr) independent ofx. In fact,

Jγ
N(Tℓ,Tr) =

〈
J

γ
N

〉
ss, J

γ
N =

1
2N

N

∑
x=−N−1

je,γx,x+1. (107)

The latter equation is interesting from a numerical viewpoint since it allows to per-
form some spatial averaging, hence reducing the statistical error of the results. We
estimate the exponentδ ≥ 0 such that

κ(N) := NJγ
N ∼ Nδ (108)

using numerical simulations. Ifδ = 0, the system is a normal conductor of energy.
If on the other handδ > 0, it is a superconductor.

The numerical simulations giving the value ofδ are summarized in Table 1.
They have been performed for the harmonic chainV(r) = r2/2, the quartic potential
V(r) = r2/2+ r4/4 and the exponential potentialV(r) = e−r + r −1. In Section 3.4
we will motivate our interest in the exponential potential.

Exponents in the harmonic case agree with their expected values. For nonlinear
potentials, except for the singular valueδ = 1 whenγ = 0 andV(r) = e−r + r −1,
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γ V(r) = r2/2 V(r) = r2/2+ r4/4 V(r) = e−r + r −1
0 1 0.13 1

0.01 – 0.14 0.12
0.1 0.50 0.27 0.25
1 0.50 0.43 0.33

Table 1: Conductivity exponents

the exponents seem to be monotonically increasing withγ. A similar behavior of the
exponents is observed for Toda chains [37] with a momentum conserving noise. This
strange behavior casts some doubts on the convergence of conductivity exponentsδ
with respect to system sizeN (see the comment after Theorem 3 in [6]). A detailed
study, including the nonlinear fluctuating hydrodynamics predictions, is available in
[57].

Note also that the value found forγ = 0 with the anharmonic FPU potential
V(r) = r2/2+ r4/4 is smaller than the corresponding value for standard oscillators
chains, which is around 0.33 (see [49]). We performed also numerical simulations
for a “rotor” model,V(r) = 1−cos(r), and we foundδ ≈ 0.02, i.e. a normal conduc-
tivity. A similar picture is observed for the usual rotor32 model which is composed
of a chain of unpinned oscillators with interaction potential V(r) = 1− cos(r). The
normal behavior is conjectured to be due to the absence of long waves (that carry
energy ballistically) because some rotors turning fast in between will break them
([38]). See [56] and references therein for a recent study ofthe rotors model.

3.3 Fractional superdiffusion for a harmonic chain with bulk noise

In this section we consider the energy-volume conserving model with quadratic
potential. Fixλ ∈R andβ > 0, and consider the process{η(t); t ≥ 0} generated by
(21) withV(η) =η2/2 and with initial distributionµβ ,λ . Notice that the distribution
of the process{η(t)+ρ ; t ≥ 0} with initial measureµβ ,ρ+λ is the same for all values
of λ ∈R. Therefore, we can assume, without loss of generality, thatλ = 0. We write
µβ = µβ ,0 to simplify notation, and denote byP the law of{η(t); t ≥ 0} and byE the
expectation with respect toP. Theenergy correlation function{St(x);x∈ Z, t ≥ 0}
is defined as

St(x) =
β 2

2 E
[(

η0(0)
2− 1

β
)(

ηx(t)
2− 1

β
)]

(109)

for anyx ∈ Z and anyt ≥ 0. The constantβ
2

2 is just the inverse of the variance of
η2

x − 1
β underµβ . By translation invariance of the dynamics and the initial distribu-

tion µβ , we see that

32 The variabler has to be interpreted as an angle and belongs to the torus 2πT.
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β 2

2 E
[(

ηx(0)2− 1
β
)(

ηy(t)
2− 1

β
)]

= St(y− x) (110)

for anyx,y∈ Z.

Theorem 10 ([7]).Let f,g : R→R be smooth functions of compact support. Then,

lim
n→∞

1
n ∑

x,y∈Z
f
(

x
n

)
g
( y

n

)
Stn3/2(x− y) =

∫∫
f (x)g(y)Pt(x− y)dxdy, (111)

where{Pt(x);x∈R, t ≥ 0} is the fundamental solution33 of the skew fractional heat
equation onR

∂tu=− 1√
2

{
(−∆)3/4−∇(−∆)1/4}u. (112)

A fundamental step in the proof of this theorem is the analysis of the correlation
function{St(x,y);x 6= y∈ Z, t ≥ 0} given by

St(x,y) =
β 2

2 E
[(

η0(0)
2− 1

β
)
ηx(t)ηy(t)

]
(113)

for anyt ≥ 0 and anyx 6= y∈ Z. Notice that this definition makes perfect sense for
x = y and, in fact, we haveSt(x,x) = St(x). For notational convenience we define
St(x,x) as equal toSt(x). However, these quantities are of different nature, since
St(x) is related toenergy fluctuationsandSt(x,y) is related tovolume fluctuations
(for x 6= y).

Remark 4.It is not difficult to see that with a bit of technical work the techniques
actually show that the distribution valued process{E n

t (·) ; t ≥ 0} defined for any test
function f by

E n
t ( f ) =

1√
n ∑

x∈Z
f
(

x
n

)
{ηx(tn

3/2)2− 1
β }

converges asn goes to infinity to an infinite dimensional 3/4-fractional Ornstein-
Uhlenbeck process, i.e. the centered Gaussian process withcovariance prescribed
by the right hand side of (111).

Remark 5.It is interesting to notice thatPt is the maximally asymmetric 3/2-Levy
distribution. It has power law as|x|−5/2 towards the diffusive peak and stretched
exponential as exp[−|x|3] towards the exterior of the sound cone ([63, Chapter 4]).
As mentioned to us by H. Spohn, this reflects the expected physical property that no
propagation beyond the sound cone occurs.

Remark 6.With a bit of technical work the proof of this theorem can be adapted
to obtain a similar statement for a harmonic chain perturbedby the momentum ex-
changing noise (see [39] where such statement is proved for the Wigner function). In
this case the skew fractional heat equation is replaced by the (symmetric) fractional
heat equation.

33 Since the skew fractional heat equation is linear, it can be solved explicitly by Fourier transform.
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Proof. Denote byC ∞
c (Rd) the space of infinitely differentiable functionsf : Rd →

R of compact support. Then,‖ f‖2,n denotes the weightedℓ2(Zd)-norm

‖ f‖2,n =

√
1
nd ∑

x∈Zd

f
(

x
n

)2
. (114)

Letg∈C ∞
c (R) be a fixed function. For eachn∈Nwe define the field{S n

t ; t ≥ 0}
as

S n
t ( f ) = 1

n ∑
x,y∈Z

g
( x

n

)
f
( y

n

)
Stn3/2(y− x) (115)

for any t ≥ 0 and anyf ∈ C ∞
c (R). By the Cauchy-Schwarz inequality we have the

a priori bound ∣∣S n
t ( f )

∣∣ ≤ ‖g‖2,n‖ f‖2,n (116)

for any t ≥ 0, anyn ∈ N and any f ,g ∈ C ∞
c (R). For a functionh ∈ C ∞

c (R2) we
define{Qn

t (h); t ≥ 0} as

Qn
t (h) =

1
n3/2 ∑

x∈Z
∑

y6=z∈Z
g
( x

n

)
h
( y

n,
z
n

)
Stn3/2(y− x,z− x). (117)

Notice thatQn
t (h) depends only on the symmetric part of the functionh. Therefore,

we will always assume, without loss of generality, thath(x,y) = h(y,x) for anyx,y∈
Z. We point out thatQn

t (h) does not depend on the values ofh at the diagonal
{x= y}. We have thea priori bound

∣∣Qn
t (h)

∣∣≤ 2‖g‖2,n‖h̃‖2,n, (118)

whereh̃ is defined bỹh
( x

n,
y
n

)
= h
( x

n,
y
n

)
1x6=y.

For a functionf ∈ C ∞
c (R), we define∆n f : R→R as

∆n f
(

x
n

)
= n2

(
f
(

x+1
n

)
+ f
(

x−1
n

)
−2 f

(
x
n

))
. (119)

In other words,∆n f is a discrete approximation of the second derivative off . We
also define∇n f ⊗ δ : 1

nZ
2 →R as

(
∇n f ⊗ δ

)(
x
n,

y
n

)
=





n2

2

(
f
(

x+1
n

)
− f
(

x
n

))
; y= x+1

n2

2

(
f
(

x
n

)
− f
(

x−1
n

))
; y= x−1

0; otherwise.

(120)

Less evident than the interpretation of∆n f , ∇n f ⊗ δ turns out to be a discrete ap-
proximation of the (two dimensional) distributionf ′(x)⊗ δ (x= y), whereδ (x= y)
is theδ of Dirac at the linex= y. We have that

d
dtS

n
t ( f ) =−2Qn

t (∇n f ⊗ δ )+S n
t (

1√
n∆n f ). (121)
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In this equation we interpret the termQn
t (∇n f ⊗ δ ) in the obvious way. By the

a priori bound (116), the termS n
t (

1√
n∆n f ) is negligible, asn → ∞.We describe

now the equation satisfied byQn
t (h). For this we need some extra definitions. For

h∈ C ∞
c (R2) we define∆nh : R2 →R as

∆nh
( x

n,
y
n

)
= n2

(
h
(x+1

n , y
n

)
+h
(x−1

n , y
n

)
+h
( x

n,
y+1

n

)
+h
( x

n,
y−1

n

)
−4h

( x
n,

y
n

))
.

(122)
In words,∆nh is a discrete approximation of the 2d Laplacian ofh. We also define
Anh : R→ R as

Anh
( x

n,
y
n

)
= n
(

h
( x

n,
y−1

n

)
+h
(x−1

n , y
n

)
−h
( x

n,
y+1

n

)
−h
(x+1

n , y
n

))
. (123)

The functionAnh is a discrete approximation of the directional derivative(−2,−2) ·
∇h. Let us defineDnh : 1

nZ→R as

Dnh
(

x
n

)
= n
(

h
(

x
n,

x+1
n

)
−h
(

x−1
n , x

n

))
(124)

andD̃nh : 1
nZ

2 →R as

D̃nh( x
n,

y
n) =





n2
(
h
(

x
n,

x+1
n

)
−h
(

x
n,

x
n

))
; y= x+1

n2
(
h
(

x−1
n , x

n

)
−h
(

x−1
n , x−1

n

))
; y= x−1

0; otherwise.

(125)

The functionDnh is a discrete approximation of the directional derivative of h
along the diagonalx = y, while D̃nh is a discrete approximation of the distribu-
tion ∂yh(x,x)⊗ δ (x = y). Finally we can write down the equation satisfied by the
field Qn

t (h):

d
dt Q

n
t (h) = Qn

t

(
n−1/2∆nh+n1/2Anh

)
−2S n

t

(
Dnh

)
+2Qn

t

(
n−1/2D̃nh

)
. (126)

Given f ∈ C ∞
c (R), if we chooseh := hn( f ) such that

n−1/2∆nh+n1/2Anh= 2∇n f ⊗ δ

then summing (121) and (126) we get

d
dtS

n
t ( f ) =− d

dt Q
n
t (h)+S n

t (
1√
n∆n f )−2S n

t

(
Dnh

)
+2Qn

t

(
n−1/2D̃nh

)
.

We integrate in time the previous expression. By the a prioribounds, the term∫ t
0 S n

s (
1√
n∆n f )ds is small as well as

∫ t
0

d
dsQ

n
s(h)ds= Qn

t (h)−Qn
0(h). The term

∫ t

0
Qn

s(n
−1/2D̃nh)ds
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is quite singular since it involves an approximation of a distribution but it turns
out to be negligible, although this does not follow directlyfrom the a priori
bounds (see [7]). By using Fourier transform one can see that−2Dnh converges
to− 1√

2

{
(−∆)3/4−∇(−∆)1/4

}
f and we are done.

⊓⊔

3.4 Anomalous diffusion for a perturbed Hamiltonian systemwith
exponential interactions

We investigate here in more details the exponential caseVexp(r) = e−r −1+ r. The
deterministic system with generator (97) and with the exponential potential above is
well known in the integrable systems literature34. It has been introduced in [40] by
Kac and van Moerbecke and was shown to be completely integrable. Consequently,
using Mazur’s inequality, it is easy to show that the energy transport is ballistic
([13]).

As we will see the situation dramatically changes when the momentum exchange
noise is added: the energy transport is no more ballistic butsuperdiffusive. Thus the
situation is similar to the harmonic case. Nevertheless we expect the time autocorre-
lation of the current to decay liket−2/3. We are not able to show this but we proved
in [6] lower bounds sufficient to imply superdiffusivity.

The results are stated in infinite volume: we consider the stochastic energy-
volume conserving dynamics{η(t)}t≥0 with potentialV := Vexp. Its generator is
given byL = A + γS whereA andS are defined by (21). Since the exponen-
tial potential grows very fast asr → −∞, some care has to be taken to show that
the infinite dynamics is well defined (see [6]). We recall thatgrand canonical Gibbs
measures are denoted byµβ ,λ and take the form

dµβ ,λ (η) = ∏
x∈Z

e−βV(ηx)−λ ηx

Z(β ,λ )
dηx, β > 0, λ +β < 0.

In this section,β andλ are fixed and we denote bye (resp.v) the average energy
(resp. volume) w.r.t.µβ ,λ (see (93)).

The microscopic energy currentje,γx,x+1 and volume currentjv,γx,x+1 are given by

je,γx,x+1(η) =−e−(ηx+ηx+1)+(e−ηx +e−ηx+1)− γ∇(V(ηx))

and
jv,γx,x+1(η) = e−ηx +e−ηx+1 − γ∇ηx.

We will use the compact notations

34 It seems that although the Hamiltonian structure of the Kac-van-Moerbecke system was known,
the interpretation of the latter as a chain of oscillators with exponential kinetic energy and expo-
nential interaction was not observed before [13].
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ωx =

(
V(ηx)

ηx

)
, Jx,x+1 =

(
je,γx,x+1
jv,γx,x+1

)
.

In the hyperbolic scaling, the hydrodynamical equations for the energy profilee
and the volume profilev take the form

{
∂te− ∂q((e−v)2) = 0

∂tv+2∂q(e−v) = 0.
(127)

They can be written in the compact form∂tX+ ∂qJ(X) = 0 with

X =

(
e

v

)
, J(X) =

(
−(e−v)2

2(e−v)

)
. (128)

The differential matrix ofJ is given by

(∇J)(X) = 2

(
−(e−v) e−v

1 −1

)
.

For given(e,v) we denote by(T+
t )t≥0 (resp.(T−

t )t≥0) the semigroup onS(R)×
S(R) generated by the linearized system

∂tε +MT ∂qε = 0, (resp.∂tε −MT ∂qε = 0), (129)

where

M := M(e,v) = [∇J](ω), ω =

(
e
v

)
.

We omit the dependence of these semigroups on(e,v) for lightness of the notations.
AboveS(R) denotes the Schwartz space of smooth rapidly decreasing functions.

The first result of [6] gives a lower bound on the time-scale for which a non-trivial
evolution of the energy-volume fluctuation field can be observed.

We take the infinite system at equilibrium under the Gibbs measureµβ̄ ,λ̄ corre-
sponding to a mean energy ¯eand a mean volume ¯v. Our goal is to study the energy-
volume fluctuation field in the time-scaletn1+α , α ≥ 0:

Y n,α
t (G) =

1√
n ∑

x∈Z
G(x/n) ·

(
ωx(tn

1+α)− ω̄
)
, (130)

where forq∈ R, x∈ Z,

G(q) =

(
G1(q)
G2(q)

)
, ωx =

(
V(ηx)

ηx

)

andG1,G2 are test functions belonging toS(R).
We need to introduce some notation. For eachz≥ 0, letHz(x) = (−1)zex2 dz

dxze−x2

be the Hermite polynomial of orderzandhz(x) = (z!
√

2π)−1Hz(x)e−x2
the Hermite
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function. The set{hz,z≥ 0} is an orthonormal basis ofL2(R). Consider inL2(R)
the operatorK0 = x2−∆ , ∆ being the Laplacian onR. For an integerk≥ 0, denote
by Hk the Hilbert space obtained by taking the completion ofS(R) under the norm
induced by the scalar product〈·, ·〉k defined by〈 f ,g〉k = 〈 f ,Kk

0g〉0, where〈·, ·〉0

denotes the inner product ofL2(R) and denote byH−k the dual ofHk, relatively
to this inner product. Let〈·〉 represent the average with respect to the Lebesgue
measure.

If E is a Polish space thenD(R+,E) (resp,C(R+,E)) denotes the space of
E-valued functions, right continuous with left limits (resp. continuous), endowed
with the Skorohod (resp. uniform) topology. LetQn,α be the probability measure
on D(R+,H−k ×H−k) induced by the fluctuation fieldY n,α

t and µβ ,λ . Let Pµβ ,λ

denote the probability measure onD(R+,RZ) induced by(η(t))t≥0 andµβ ,λ . Let
Eµβ ,λ denote the expectation with respect toPµβ ,λ .

Theorem 11 ([6]).Fix an integer k> 2. Denote by Q the probability measure on
C(R+,H−k ×H−k) corresponding to a stationary Gaussian process with mean0
and covariance given by

EQ [Yt(H)Ys(G)] = 〈T−
t H · χ T−

s G〉

for every0 ≤ s≤ t and H,G in Hk ×Hk. Here χ := χ(β ,λ ) is the equilibrium
covariance matrix ofω0. Then, the sequence(Qn,0)n≥1 converges weakly to the
probability measure Q.

The theorem above means that in the hyperbolic scaling the fluctuations are triv-
ial: the initial fluctuations are transported by the linearized system of (127). To see
a nontrivial behavior we have to study, in the transport frame, the fluctuations at a
longer time scaletn1+α , with α > 0. Thus, we consider the fluctuation field̂Y n,α

· ,
α > 0, defined, for anyG ∈ S(R)×S(R), by

Ŷ n,α
t (G) = Y n,α

t

(
T+

tnα G
)
. (131)

Our second main theorem shows that the correct scaling exponentα is greater
than 1/3:

Theorem 12 ([6]).Fix an integer k> 1 andα < 1/3. Denote by Q the probability
measure onC(R+,H−k×H−k) corresponding to a stationary Gaussian process with
mean0 and covariance given by

EQ [Yt(H)Ys(G)] = 〈H · χ G〉

for every0≤ s≤ t andH,G in Hk×Hk. Then, the sequence(Qn,α)n≥1 converges
weakly to the probability measure Q.

The proofs of these theorems can be reduced to the proof of a so-calledequilib-
rium Boltzmann-Gibbs principle. Let us explain what it means. Observables can be
divided into two classes: non-hydrodynamical and hydrodynamical. The first ones
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are the non conserved quantities and they fluctuate on a much faster scale than the
conserved ones. Hence, they should average out and only their projection on the
hydrodynamical variables should persist in the scaling limit. For any local function
g := g(η), the projectionPe,v g of g on the fields of the conserved quantities is
defined by

(Pe,vg)(η) = g(η)− g̃(e,v)− (∇g̃)(e,v) · (ω0−ω)

whereg̃(e,v) = 〈g〉µβ ,λ and∇g̃ is the gradient of the function ˜g. As explained above
we expect that in the Euler time scale, for any test functionH ∈ S(R)×S(R), the
space-time variance

lim
n→∞

Eµβ ,λ



(∫ t

0

1√
n ∑

x∈Z
H (x/n) · [θxPe,v g(η(sn))] ds

)2

= 0 (132)

vanishes asn goes to infinity. In fact it suffices to show (132) for the functiong= J0,1
35. Thus let us first define thenormalizedcurrents by

Ĵx,x+1 = [θxPē,v̄J0,1] =

(
je,γx,x+1(η)
jv,γx,x+1(η)

)
−J(ω)− (∇J)(ω)

(
Vexp(ηx)−e

ηx− v

)
. (133)

To estimate the space-time variance involved we use the following inequality (see
[43]):

Eµβ ,λ

[(∫ t

0
f (η(sn1+α))ds

)2
]
≤

Ct

n1+α

〈
f ,

(
1

tn1+α − γS

)−1

f

〉

µβ ,λ

(134)

where f =
1√
n

∑x∈Z H (x/n) · Ĵx,x+1. Due to the very simple form of the operator

S the RHS of (134) can be estimated and shown to vanish asn goes to infinity.
Nevertheless it has to be done with some care sinceS is very degenerate so that
without the term 1

tn1+α the RHS of (134) blows up.
Theorem 12 does not exclude the possibility of normal fluctuations, i.e. the con-

vergence in law of the fluctuation field of the two conserved quantities to an infinite
dimensional Ornstein-Uhlenbeck process in the diffusive time scale (α = 1). To see
that it is not the case we will show that the diffusion coefficientD := D(e,v) ap-
pearing in this hypothetical limiting process would be infinite, excluding thus this
possibility. Up to a constant matrix coming from a martingale term (due to the noise)
and thus irrelevant for us (see [2], [13]), the matrix coefficient D is defined by the
Green-Kubo formula

D =
∫ ∞

0
Eµβ ,λ

[
∑
x∈Z

Ĵx,x+1(t)
[
Ĵ0,1(0)

]T
]

dt. (135)

35 For Theorem 12, the Boltzmann-Gibbs principle has to be proved in the longer time scaletn1+α

and in the transport frame.
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The signature of the superdiffusive behavior of the system is seen in the divergence
of D , i.e. in a slow decay of the current-current correlation function. To study the
latter we introduce its Laplace transform

F (γ,z) =
∫ ∞

0
e−zt

Eµβ ,λ

[
∑
x∈Z

Ĵx,x+1(t)
[
Ĵ0,1(0)

]T
]

dt

which is well defined for anyz> 0. This can be rewritten as

F (γ,z) =≪ Ĵ0,1,(z−L )−1Ĵ0,1 ≫β ,λ

where≪ ·, · ≫β ,λ is the semi-inner product defined with respect toµβ ,λ in the same
way as in (34).

Our third theorem is the following lower bound onF (γ,z). Observe thatF (γ,z)
is a square matrix of size 2 whose entry(i, j) is denoted byFi, j .

Theorem 13 ([6]).Fix γ > 0. There exists a positive constant c:= c(γ) > 0 such
that

F1,1(γ,z) ≥ cz−1/4

and
Fi, j(γ,z) = 0, (i, j) 6= (1,1).

Moreover, there exists a positive constant C:=C(γ) such that for any z> 0,

C−1F1,1(1,z/γ)≤ F1,1(γ,z) ≤CF1,1(1,z/γ). (136)

The last part of the theorem follows easily by a scaling argument and is in fact
also valid for general potentialsV and for generic “standard” anharmonic chains
of oscillators. In [3, 37, 13], numerical simulations indicate a strange dependence
w.r.t. the noise intensityγ > 0 of the exponentδ in the energy transport coefficient
κ(N)∼Nδ (N is the system size, see (108) for the definition ofκ(N)): δ := δ (γ)>0
is increasing with the noise intensityγ. This is very surprising since the more
stochasticity in the model is introduced, the more the system is superdiffusive! The
inequality (136) shows that the time decay of the current autocorrelation function
is independent ofγ (up to possible slowly varying functions corrections, i.e.in a
Tauberian sense). It is common folklore that there should bea simple relationship
between the slow long-time tail decay of the autocorrelation of the current in the
Green-Kubo formula (described by some power law decay) and the divergence of
the thermal conductivity of open systems in their steady states. The argument is that
the autocorrelation should be integrated over times of order N. If we believe in this
argument it means that the numerical simulations of [3, 37, 13] are not converged.
There is however no clear mathematical result backing up this belief.

The proof of the first part of Theorem 13 is based on the three following argu-
ments.
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• The first idea consists in performing the microscopic changeof variablesξx =
e−ηx, x ∈ Z, that defines a new Markov process{ξ (t)}t≥0 = {ξx(t) ; x ∈ Z}t≥0

with state space(0,+∞)Z and conserving∑x ξx and ∑x logξx. Its generator is
given byL̃ = ˜A + γS̃ where for any local differentiable functionf ,

( ˜A f )(ξ ) = ∑
x∈Z

ξx(ξx+1− ξx−1)(∂ξx f )(ξ ),

(S̃ f )(ξ ) = ∑
x∈Z

[
f (ξ x,x+1)− f (ξ )

]
.

The invariant measures for(ξ (t))t≥0 are obtained from the Gibbs measuresµβ ,λ
by the change of variables above. They form a family{νρ ,θ}ρ ,θ of translation
invariant product measures indexed by two parametersρ andθ which satisfy

ρ = νρ ,θ (ξx), θ = νρ ,θ (logξx).

In fact the marginal ofνρ ,θ is a Gamma distribution. The parameters(ρ ,θ ) are
in a one-to-one explicit correspondence with the parameters(e,v).
Rewriting Ĵx,x+1 with these new variables we see that it is sufficient to prove
a similar statement for the process(ξ (t))t≥0 under the equilibrium probability
measureνρ ,θ . Introducing the inner product≪ ·, · ≫ defined, for any local func-
tions f ,g on (0,+∞)Z by

≪ f ,g≫= ∑
x∈Z

{
νρ ,θ ( f θxg)−νρ ,θ ( f )νρ ,θ (g)

}

we can show that the proof of the first claim of Theorem 13 reduces to showing
that there exists a positive constantc such that for anyz> 0,

≪W0,1,(z− L̃ )−1W0,1 ≫≥ cz−1/4 (137)

whereW0,1(ξ ) = (ξ0−ρ)(ξ1−ρ).
• The second step consists in using a variational formula to express the LHS of

(137). Indeed we have

≪W0,1,(z− L̃ )−1W0,1 ≫= sup
g

{
2≪W0,1,g≫−≪ g,(z− γS̃ )g≫

−≪ ˜A g,(z− γS̃ )−1 ˜A g≫
}

where the supremum is taken over local compactly supported smooth functionsg.
To get a lower bound it is sufficient to find a functiong for which one can show
that

2≪W0,1,g≫−≪ g,(z− γS̃ )g≫−≪ ˜A g,(z− γS̃ )−1 ˜A g≫≥ cz−1/4.

• Let H be the Hilbert space obtained by completion of the set of local functions
w.r.t. the inner product≪ ·, · ≫. Sinceνρ ,θ is a product of Gamma distributions,
the set of multivariate Laguerre polynomials form an orthogonal basis ofH. It is
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then possible to decomposeH as an orthogonal sum⊕n∈NHn of subspacesHn

such that
S̃ : Hn →Hn, ˜A : Hn →Hn−1⊕Hn⊕Hn+1.

The functionW0,1 belongs toH2. Then we restrict the variational formula to
functionsg ∈ H2 and we estimate the corresponding new variational problem
which is still infinite dimensional but involves only functions belonging toH1⊕
H2⊕H3. To solve this variational problem we adapt ideas developedfirst in the
context of Asymmetric Simple Exclusion Process ([4], [44])and exploited later
for other models. One of the difficulties comes again from thefact that the noise
is degenerate.

The extension of Theorem 13 to other interacting potentialsis a challenging prob-
lem. The general strategy presented here could be carried out but the orthogonal ba-
sis (formed by Laguerre polynomials in the exponential case) is no longer explicit
and only defined by some recurrence relations.

Acknowledgements This work has been supported by the Brazilian-French Network in Mathe-
matics and the French Ministry of Education through the ANR grant EDNHS. The referees deserve
thanks for careful reading and many useful comments.

References

1. G. Basile, C. Bernardin, and S. Olla. Momentum conservingmodel with anomalous thermal
conductivity in low dimensional systems.Phys. Rev. Lett., 96:204303, May 2006.

2. G. Basile, C. Bernardin, and S. Olla. Thermal conductivity for a momentum conservative
model.Comm. Math. Phys., 287(1):67–98, 2009.

3. G. Basile, L. Delfini, S. Lepri, R. Livi, S. Olla, and A. Politi. Anomalous transport and relax-
ation in classical one-dimensional models.The European Physical Journal - Special Topics,
151:85–93, 2007. 10.1140/epjst/e2007-00364-7.

4. C. Bernardin. Fluctuations in the occupation time of a site in the asymmetric simple exclusion
process.Ann. Probab., 32(1B):855–879, 2004.

5. C. Bernardin. Stationary nonequilibrium properties fora heat conduction model.Phys. Rev.
E (3), 78(2):021134, 10, 2008.
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21. J. Bricmont, D. Dürr, F. Petruccione, G. Ghirardi, G. Gallavotti, and N. Zanghi.Chance in
Physics: Foundations and Perspectives. Springer, 2001.

22. P. Carmona. Existence and uniqueness of an invariant measure for a chain of oscillators in
contact with two heat baths.Stochastic Process. Appl., 117(8):1076–1092, 2007.

23. W. De Roeck and F. Huveneers. Asymptotic localization ofenergy in non-disordered oscillator
chains.ArXiv e-prints, to appear in Comm. Pure Appl. Math, May 2013.

24. A. Dhar. Heat transport in low-dimensional systems.Advances in Physics, 57(5):457–537,
2008.

25. A. Dhar and J. L. Lebowitz. Effect of phonon-phonon interactions on localization.Phys. Rev.
Lett., 100:134301, Apr 2008.

26. Dmitry Dolgopyat and Carlangelo Liverani. Energy transfer in a fast-slow Hamiltonian sys-
tem. Comm. Math. Phys., 308(1):201–225, 2011.

27. J. Farfan. Static large deviations of boundary driven exclusion processes.ArXiv e-prints,
August 2009.

28. Mark I. Freidlin and Alexander D. Wentzell.Random perturbations of dynamical systems,
volume 260 ofGrundlehren der Mathematischen Wissenschaften [Fundamental Principles of
Mathematical Sciences]. Springer, Heidelberg, third edition, 2012. Translated from the 1979
Russian original by Joseph Szücs.
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