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Diffusion of energy in chains of oscillators with
conservative noise

Cédric Bernardin

Abstract These notes are based on a mini-course given during thereocfeParti-
cle systems and PDE's - Il which held at the Center of Math@waf the University
of Minho in December 2013. We discuss the problem of normalearomalous dif-
fusion of energy in systems of coupled oscillators pertdrbg a stochastic noise
conserving energy.

Key words: Superdiffusion, Anomalous fluctuations, Green-Kubo folaniNon
Equilibrium Stationary States, Heat conduction, Hydraaiyic Limits, Ergodicity.

The goal of statistical mechanics is to elucidate the matatietween the microscopic
world and the macroscopic worlEquilibrium statistical mechaniassume the mi-

croscopic systems studied to be in equilibrium. In this sewre will be concerned
with non-equilibrium statistical mechanieghere time evolution is taken into ac-
count: our interest will not only be in the relation betweka microscopic and the
macroscopic scales in space but also in time.

By microscopic system we refer to molecules or atoms govkhyethe classi-
cal Newton’s equations of motion. The question is then tceustéind how do these
particles manage to organize themselves in such a way asmoefeoherent struc-
ture on a large scale. The “structure” will be described by ¥ariables (tempera-
ture, pressure ...) governed by autonomous equationsr{&etpations, Navier-
Stokes’s equation, heat equation ...). The microscopicifpiées of the system
will appear on this scale only through the thermodynamigsiéion of state) and
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through the transport coefficients. Unfortunately, we aggy\ar from understand-
ing how to derive such macroscopic equations for physidavaat interactions.

One of the main ingredients that we need to obtain the magpistaws is that
the particles, which evolve deterministically, have a dvathat one can consider
almost as being random. The reason for this is that the dysamystem consid-
ered is expected to have a very sensitive dependence onitilaé donditions and
therefore is chaotic. This “ deterministic chaos” is a pganhderstood subject for
systems with many degrees of freedom and even a precisensuatdormulation
iS missing.

A first simplification to attack these problems consists iplaeing the deter-
ministic evolution of particleab initio by purely stochastic evolutions. Despite this
simplification we notice that the derivation of the macrgscaevolution laws is
far from being trivial. For example, we do not have any ddidraof a system of
hyperbolic conservation laws from a stochastic microscagstem after shocks.
Nevertheless, since the pioneering work of Guo, Paparicoi@radhan [[35]) and
Yau ([67]), important progresses have been performed iera¢well understood
situations by the development of robust probabilistic andlgical methods (see
[41] and [55] for reviews).

In this course we will be mainly (but not only) interested iybhid models for
which the time evolution is governed by a combination of dataistic and stochas-
tic dynamics. These systems have the advantage to be maitaltydractable and
conserve some aspects of the underlying deterministicugol The stochastic
noise has to be chosen in order to not destroy the main featirthe Hamilto-
nian system that we perturb.

The central macroscopic equation of these lecture notée is¢at equation:

du=0dx(D(u)d), xeU, t>0,
U(O,X) = UO(X)a xeu,
ut,x) =b(x), xedu, t>0.

Hereu(t,x) is a function of the timé > 0 and the spacec U c RY, d > 1, starting
from the initial conditionuy and subject to boundary conditions prescribed by the
functionb. The advantage of the heat equation with respect to otheraseapic
equations such as the Euler or Navier-Stokes equationsighh notion of solu-
tion is very well understood. The dream would be to start feosystem ofN > 1
particles whose interactions are prescribed by Newtomis land to show that in
the largeN limit, the empirical energy converges in the diffusive tisualet = TN?

to u (1 is the microscopic time andthe macroscopic time). In fact, this picture is
expected to be valid only under suitable conditions anditddasome low dimen-
sional systems. In the case where the heat equation (orritsnts) holds we say
that the system has a normal behavior. Otherwise anomakhevor occurs and
the challenging question (even heuristically) is to knowidtat we shall replace the
heat equation and what is the time scale over which we havegeree the system
in order to see this macroscopic behaviar (| [19]] [24],[4#]reviews).
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The course is organized as follows. In Chapier 1 we introdlneenodels stud-
ied. Chaptel2 is concerned with models which have a nornfiaisilie behavior.
In Chaptei. B we are interested in systems producing an aoogiffusion. An
importantissue not discussed here is the effect of disandeiffusion problems. In
order to deal with lecture notes of a reasonable size, mattyegbroofs have been
suppressed or only roughly presented.

1 Chains of oscillators

1.1 Chains of oscillators with bulk noise

Chains of coupled oscillators are usual microscopic modkfseat conduction in
solids. Consider a finite bofy = {1,.. .,N}d c79,d > 1, whose boundargAy

is defined a®/An = {X ¢ An; 3y € AN, |[X—Y| = 1}. Here| - | denotes the Euclidian
norm inRY and “-” the corresponding scalar product. Let us fix a nonnegataie p
interaction potentia¥ and a pinning potentid onR. The atoms are labeled By
An. The momentum of atommis px € R and its displacement from its equilibrium
positionﬁ] is gx € R. The energysy of the atomx is the sum of the kinetic energy,
the pinning energy and the interaction energy:

| x| 1
+W(ax) + 5 V(Ox — dy)- 1)
2 2 ly—x|=1,

yeAN

é()x:

The Hamiltonian is given by

M=y &+ @

whered /4 is the part of the Hamiltonian corresponding to the boundangditions
which are imposed.
We will consider the following cases:

e Periodic boundary conditions: we identify the site 1 to tle N and denote the
corresponding box b¥'y, the discrete torus of length (thend sz = 0).

e Free boundary conditions: this corresponds to the absehiseumdary condi-
tions, i.e. tod 74 = 0.

e Fixed boundary conditions: introduce the positiags= 0, y € dAn, of some
fictive walls. We add to the Hamiltoniag#g, a boundary ternd 4 = ot A
given by

1 We restrict us to the case whegee R" with n = 1 because the relevant dimension of the system
is the dimensiom of the lattice. Most of the results stated in this manusagst be generalized to
the casen > 1.
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Fig. 1: A one-dimensional chain of pinned oscillators witlef boundary conditions

o' S = Z V(agx—qy) = ; V().
ly—x=1, ly—x[=1,

XEAN,YEONN XEAN,YEONN

e Forced boundary conditions: sife= (1,...,1) is in contact with a wall at po-
sition gg = 0 and each sitg € dAN\{0} is driven by a constant forcg. This
results in a boundary terahv4 = 9% 74 given by

0" I = ; V(ax—ay) — Ty Q. 3)
ly—x|=1, yed/AN\{0}
XEAN,YEONN

The equations of motion of the atoms are
QX = apx%\h px = —aqxjﬁ\l (4)
and the generatawy of the system is given by the Liouville operator

N = Z {dpxjﬁ\‘ 0%( - 0(1#%\‘ aQX}'

XeAN

It will be also useful to consider the chain of oscillatordnfinite volume, i.e.
replacing/An by Z9, d > 1, in the definitions above. The formal generatdy is
then denoted by7. The dynamics can be defined for a large set of initial coodi
if V. andW do not behave too badly ([45], [50], [12]). We define the &ets the

subset oR% given by
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Q=) {E e R%; > e M| &% < +00} (5)

a>0 xeZd

andQ = Q x Q. We equipQ with its natural product topology and its Boret
field andQ by the corresponding product topology. BoE= Q or X = Q, the set
of Borel probability measures oX is denoted by (X). A function f : X — R is
said to belocal if it depends ofé only through the coordinately; x € At}, Ag
being a finite box ofZ. We also introduce the set%(X), k> 1 (resp.k =0), of
bounded local functions oX which are differentiable up to ord&rwith bounded
partial derivatives (resp. continuous and bounded).

In the rest of the manuscript, apart from specific cases, Weassume that one
of the following conditions hold:

e The potentials/ andW have bounded second derivatives. Then the infinite dy-
namics(w(t))i=o can be defined for any initial condition® = (q°,p°) € Q
MoreoverQ is invariant by the dynamics. This defines a semigré@p-o on
CO( ) and the Chapman-Kolmogorov equations

t t
AN - (@) = [ P D@ds = [(#RN)@ds  (©)

are valid for anyf € C}(Q).

e The potentialW = 0 and the interaction potentidl has a second derivative uni-
formly bounded from above and below. It is more conveniegttover the defor-
mation fieldny,, = gy — dx, [Xx—Yy| = 1, which by construction is constrained to
have zero curl. Il = 1 we will denoteny_1 x) = 0x — dx—1 by rx. The dynamics
(@) can be read as a dynamics for the deformation field and tmeenta. Given
saydqo, the scalar field| = {gx},.,« can be reconstructed from In the sequel,
whenW = 0, we will use these coordinates without further mentiore d@ijpnam-
ics for the coordinates) = (n, p) (Nxxte)> px)‘e‘ —1xez €an be defined if the
initial condition satisfieso® € Q. Moreover the se@ is invariant by the dynam-
ics. This defines a semigroypt )i>o on CO( ) and the Chapman-Kolmogorov
equations

t t
AN - (@) = [ P DH@ds = [(#RN)@ds  7)

are valid for anyf € C3(Q)A

Let us first consider the problem related to the charactéoizaf equilibrium
states. For simplicity we take the finite volume dynamicshwgeriodic boundary
conditions. Then it is easy to see that the system consene®otwo physical
quantities depending on whether the chain is pinned or ra.tdtal energy#y is
always conserved. W = 0 the system is translation invariant and the total momen-
tum S, px is also conserved. Notice that because of the periodic ymdnditions

2 The generators has to be written in terms of the deformation field.
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the sum of the deformation fielgh nx x. ¢ is automatically fixed equal to O for any
i=1,...,d.

Liouville’s Theorem implies that the uniform measur® on the manifold=N
composed of the configurations with a fixed total energy (avsbibly a fixed total
momentum) is invariant for the dynamics. The micro candrdoaemble is defined
as the probability measui). The dynamics restricted 6" is not necessarily er-
godic. Two examples for which one can show it is not the casdle harmonic
lattice (v andW quadratic) and the Toda latticd £ 1,W =0,V (r) =e ' —1+7r)
which is a completely integrable systern ([61]). In fact wisatally needed for our
purpose is not the ergodicity of the finite dynamics but ofittiimite dynamics. We
expect that even if the finite dynamics are never ergodic hetibn of =N corre-
sponding to non ergodic behavior decreasds mxreases, and probably disappears
asN = o (apart from very peculiar cases). Therefore a good noticargbdicity
has to be stated for infinite dynamics. The definition of a eovesd quantity is not
straightforward in infinite volume (the total energy of thimite chain is usually
equal to+). To give a precise definition we will use the notion of spéioge in-
variant probability measures for the infinite dynamics dediabove.

The infinite volume Gibbs grand canonical ensembles are grathability mea-
sures. They form a set of probability measures indexed by(pin@ed chains) or
d + 2 (unpinned chains) parameters and are defined by the smdaibrushin-
Landford-Ruelle’s equations. To avoid a long discussiorfjugegive a formal defi-
nition (see e.gl[34] for a detailed study).

e Pinned chainsW # 0): the infinite volume Gibbs grand canonical ensembje
with inverse temperatur@ > 0 is the probability measure a@ whose density
with respect to the Lebesgue measure is

zl(ﬁ)exp(—ﬁ 3 5)

xeZd

e Unpinned chainsW = 0): the infinite volume Gibbs grand canonical ensemble
B Ug 5 With inverse temperatur@ > 0, average momentume R and tension
T =B 1A € RY is the probability measure o2 whose density with respect to
the Lebesgue measure is

d
Zil(Ba p,T) eXp<_B Z {&—pp— .eri ’7(x,x+ei)}> . (8)

xezd

Observe that in the one dimensional unpinned case we haygysproduct mea-
sures and that the tensiarns equal to the average wf(ry).

Fix an arbitrary Gibbs grand canonical ensembleé\ probability measure is
said to beu-regular if for any finite boxA c Z9 whose cardinal is denoted |,
the relative entropy of|4 w.r.t. u|, is bounded above b@|A| for a constanC

3 They are defined with respect to the gradient figdds, . It would be more coherent to call them
gradient Gibbs measures
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independent of\. We recall that the relative entropy(v|u) of v € Z(X) with
respecttqu € #(X), X being a probability space, is defined as

H(vlu) —sgp{ [ odv-tog </e“’du> } ©)

where the supremum is carried over all bounded measuratdtidnse on X.

For any arbitrary Gibbs grand canonical ensemplesidp’, u is p’-regular and
y’ is py-regular. Thereforev is p-regular is equivalent tw is p’-regular and we
simply say thav is regular.

A notion of ergodicity for infinite dynamics which is suit&tio derive rigorously
large scale limits of interacting particle systems is tHefaing.

Definition 1 (Macro-Ergodicity). A we say that the dynamics generated.dsyis
macro-ergodidf and only if the only space-time invaria{ﬁiregular measures for
</ are mixtures (i.e. generalized convex combinations) ofb&igrand canonical
ensembles.

If the microscopic dynamics is macro-ergodic, then, by gisive relative entropy
method developed if [51], we can derive the hydrodynamiatondd in the Euler
time scale of the chain before the appearance of the shadkssaind = 1 ([12]).
These limits form a triplet of compressible Euler equatidosenergy, momentum
p and deformation) of the form

Gv = dgp
dip = OgT (10)
Ge = 0y(pT)

where the pressurme:= 7(t,e — p—;) is a suitable thermodynamic function depending
on the potentiaV/. A highly challenging open question is to extend these tesifter
the shocks. The proof can be adapted to take into accountésence of mechanical
boundary conditions[([20]).

We do not claim that the macro-ergodicity is a necessaryitondo get Euler
equations for purely Hamiltonian systems. We could imadjirae weaker or differ-
ent conditions are sufficient but in the actual state of tihéh&r macro-ergodicity is
a clear and simple mathematical statement of what we cogldneefrom determin-
istic systems in order to derive Euler equations rigorausly refer the interested
reader to[[211] and_[59] for interesting discussions aboatrtiie of ergodicity in
statistical mechanics.

4 The name has been proposed by S. Goldstein.

5 Observe that a probability measuwes time invariant for the infinite dynamics if and only if
J/fdv=0foranyf e C(%(Q). This is a consequence of the Chapman-Kolmogorov equations
@.

6 The notion of hydrodynamic limits is detailed in Section.2.and Section 3.22.
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1.1.1 Conserving noises

In [31], Fritz, Funaki and Lebowitz prove a weak form of maemgodicity for a
chain of anharmonic oscillators under generic assumpbartbe potentialy and
W that we do not specify here (seée [31]).

Theorem 1 ([31]).[] Consider the pinned chain \& 0 generated by7 or an un-
pinned chainW=0ind = 1. The only regular time and space invariant measures for
</ which are such that conditionally to the positions confidimagq := {qgx; x € Z9}

the law of the momenta:= { py; x € Z4} is exchangeable are given by mixtures of
Gibbs grand canonical ensembles.

They also proposed to perturb the dynamics by a stochaste tlwat consists
in exchanging at random exponential times, independeatlgéch pair of nearest
neighbors site,y € Z9, [x—y| = 1, the momentay and py. The formal generator
& of this dynamics, that we will call thstochastic energy-momentum conserving
dynamicsis given by.Z = o7 + y., y > 0, whereg/ is the Liouville operator and
. is defined for any local functiof : Q>R by

(“Hap)= 3 [f(a,p™)-1(ap)]. 11)

x,yezd
[x—y|=1

Here the momenta configuratigrtY is the configuration obtained from by ex-
changingpx with py. The previous discussion about existence of the dynamics on
Q for the deterministic case and its relation with its formahgrator is also valid
for this dynamics and the other dynamics defined in this secti

With some non-trivial entropy estimates we get the follaguiasult.

Theorem 2 ([31]). Consider the pinned (£ 0) or the one-dimensional unpinned
(W #£ 0) stochastic energy-momentum conserving dynamics. Tlyaegular time
and space invariant measures for these dynamics are givamixtyires of Gibbs
grand canonical ensembles, i.e. the stochastic energyentum conserving dy-
namics is macro-ergodic.

Consequently the stochastic energy-momentum conseryingnaics is macro-
ergodic. By using the relative entropy method develope®iij,[one can show it
has in the Euler time scale and before the appearance of tlekskthe same hy-
drodynamics[(Tl0) as the deterministic model. This is bezdlns noise has some
macroscopic effects only in the diffusive time scale ([12])

We consider now a different stochastic perturbation. Letlefine the flipping
operatoroy : p € Q — p* € Q wherep* is the configuration such th&p*); = p;
for z# x and (p¥)x = —px- In [31] is also proved that the only time-space regu-
lar stationary measures for the Liouville operatgrsuch that conditionally to the

7 The proof given in[[31L] assumad + 0 but it can be adapted to the unpinned one dimensional
case (see [12]). It would be interesting to extend this texto the general unpinned case.
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positions the momenta distribution is invariant by any flifgpoperatoioy are mix-
tures of Gibbs grand canonical ensembles with zero momeausamage. Then we
consider the dynamics o generated by? = &/ +y.#, y > 0, with . the noise
defined by

(F0@p) =5 ¥ 1@~ 1(ap) (12)

xezd

for any local functionf : @ — R. This dynamics conserves the energy and the
deformation of the lattice but destroys all the other comsgguantities. We call this
system thevelocity-flip mode{sometimes thstochastic energy conserving model

Theorem 3 ([31]). Consider the pinned d-dimensional velocity-flip model @ th
one-dimensional unpinned velocity-flip model. The onlylagtime and space in-
variant measures are given by mixtures of Gibbs grand carar@nsembles. In
other words the velocity-flip model is macro-ergodic.

Since the velocity flip-model does not conserve the mometitai@ibbs invari-
ant measures are given By (8) with= 0. In particular the average currents with
respect to theses measures is zero. Therefore assuminggatam of local equi-
librium in the Euler time scale we get that it has trivial hgdynamics in this time
scale: initial profile of energy does not evolve. This is dnlyhe diffusive scale that
an evolution should take place.

1.1.2 NESS of chains of oscillators perturbed by an energy oserving noise

The models defined in the previous sections can also be @residn a non-
equilibrium stationary state (NESS) by letting them in @mivith thermal baths at
different temperatures and imposing various mechanicahtary conditions. Let
us only give some details for the NESS of the one-dimensiogiatity-flip model.

Consider a chain dfl unpinned oscillators where the particle 1 (redpis sub-
jectto a constant force (resp.t;). Moreover we assume that the particle 1 (réyjs.
is in contact with a Langevin thermal bath at temperalu(eesp.T;). The generator
% of the dynamics on the phase spa2g = RN-1 x RN is given by

=R A YANA VBT, + BT, Y >0, (13)

where,szf/ " is the Liouville operatorj 1 the generator of the Langevin bath at
temperatureT acting on thej—th particle and#y the generator of the noise. The
strength of noise and thermostats are regulated,by and y respectively. The
Liouville operator is defined by

’5MI\?’Tr = ;(p Px—1 arx‘f' % rx+1 (I‘X)) ﬁpx
— (1, =V'(r2)) Op, + (T = V'(rN)) Opy,-

(14)
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The generators of the thermostats are given by

Bt = Tagj — pj0p;.- (15)
The noise corresponds to independent velocity change of isgy

N-1

ADEP=5 3 (P =1p), ok a8

We will also consider the case where the chain has fixed boyrdaditions.

Proposition 1 ([10], [11],[22]).Consider a finite chain of pinned or unpinned oscil-
lators with fix, free or forced boundary conditions in cortasdth two thermal baths
at different temperatures and perturbed by one of the enesggerving noises de-
fined above. Then, there exists a unique non-equilibriuttiostary state for this
dynamics which is absolutely continuous w.r.t. Lebesguesare.

Proof. The proof of the existence of the invariant state can be pbthfrom the
knowledge of a suitable Liapounov function. To prove thequeness of the invari-
ant measure it is sufficient to prove that the dynamics iglireéble and has the
strong-Feller property. Some hypoellypticity, contratt¢iny and conditioning argu-
ments are used to achieve this goal. u

1.2 Simplified perturbed Hamiltonian systems

Introducing a noise into the deterministic dynamics helppusolve some ergodicity
problems. Nevertheless, as we will see, several challgnmioblems remain open
for chains of oscillators perturbed by a conservative ndis¢13] we proposed to
simplify still these models and the main message addrebsed is that the models
introduced in[[13] have qualitatively the same behaviothasinpinned chains. For
simplicity we define only the dynamics in infinite volume.

Let U andV be two potentials orfiR and consider the Hamiltonian system
(o(t))>0 = (r(t),p(t) )i>0 described by the equations of motion

=V/(rxr1) = V'(rx), drx =U'(px) —U'(px_1), X€E Z, a7

dpx dry
dt

dt

wherepy is the momentum of particbe gy its position andy = gx — gx_1 the “defor-
mation”. Standard chains of oscillators are recovered fpuadratic kinetic energy
U(p) = p?/2. The dynamics conserves (at least) three physical giemntihe to-
tal momentums, px, the total deformatiory,rx and the total energy, &x with
&x =V (rx) +U(px). Consequently, every Gibbs grand canonical ensempje,
defined by

dvgar(n) = Qg(ﬁ,A,A/)*lexp{—wX—/\ Px— A'ry} dredpx (18)
Xe
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is invariant under the evolution. To simplify we assume thatpotentialt) andV
are smooth potentials with second derivatives bounded lmyend from above.

To overcome our ignorance about macro-ergodicity of theadyios, as before,
we add a stochastic conserving perturbation. In the genasal) #V, the Hamil-
tonian dynamics can be perturbed by the energy-momentusecaing noise acting
on the velocities (as proposed [n [31]) but conserving thedtphysical invariants
mentioned above. Then the infinite volume dynamics can baekkfdn the state
spaceQ. Its generator? is given by. = .« + ., y > 0, where

(@ f)(r,p) = EZ{ (1) = V' (1)), + (U’ () —U'(Px-1))0r, T} (r,p)

(f) :ng[ (r,p ) —1(r,p)]
(19)

forany f € C3(Q).

Theorem 4 ([13]). Assume that the potentials U and V are smooth potentials with
second derivatives bounded by below and from above. Thardgs@enerated by
¥ = +y withy > 0and.«, . given by[(ID) is macro-ergodic. Consequently,
before the appearance of the shocks, in the Euler time stedyydrodynamic limits
are given by a triplet of compressible Euler equations.

Our motivation being to simplify as much as possible the dyica considered
in [1, [2] without destroying the anomalous behavior of thergy diffusion, we
mainly focus on the symmetric case= V. Then thep’s andr’s play a symmetric
role so there is no reason that momentum conservation is imp@rtant than de-
formation conservation. We propose thus to add a noise cangeonly the energy
andy,[rx+ px. Itis more convenientto use the variablex; x € Z} € RZ defined
by nNax = px andnax_1 = rx so that[(I¥) becomes

dnx = [V'(nx1) =V'(nx-1)] dt, x€Z. (20)

We might also interpret the dynamics for thés as the dynamics of an interface
whose height (resp. energy) at sités nx (resp.V(nx)). It is then quite natural to
call the quantityy  nx the “volume”.

Hence, we introduce the so-callstbchastic energy-volume conserving dynam-
ics, which is still described by (20) between random exponétitiees where two
nearest neighbors heighigs andny. 1 are exchanged. Observe that in the momenta-
deformation picture this noise is less degenerate than traenta exchange noise
since exchange between momenta and positions is now allovixedgenerator?
of the infinite volume dynamics, well defined on the state sp@c is given by
& = +y,y>0,where for anyf € C}(Q),
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(@ f)(n) = Ez V' (Mxi1) = V' (Nx-1)] (9n, F)(N),

Xe

() (n) = Ez[f(n““)— f(n)].

Xe

(21)

The noise still conserves the total energy and the totalmelbut destroys the
conservation of momentum and deformation. Therefore, omty quantities are
conserved and the invariant Gibbs grand canonical meastithe stochastic dy-
namics correspond to the choite= A" in (18). We denotey ,  (resp.2°(3,A,A))

by ug A (resp.Z(B,A)).

2 Normal diffusion

Normal diffusion of energy in purely deterministic homogens chains of oscilla-
tors is expected to hold in high dimensiahX 3) or if momentum is not conserved,
i.e. in the presence of a pinning potential. The problem ohaalous diffusion will
be discussed in the next chapter. In this chapter we conslidecase of normal
diffusion.

The first step to show such normal behavior is to prove thatrdmesport co-
efficient, the thermal conductivity, is well defined. Oncéds been achieved, the
following non-equilibrium problems can be considered:

¢ Hydrodynamic limits in the diffusive time scale 2, € being the scaling param-
eter: if the system has trivial hydrodynamics in the timdesta 1, i.e. if mo-
mentum is not conserved, we would like to show that in theudiffe time scale,
the macroscopic energy profile evolves according to a ddfusquation. If the
system has non-trivial hydrodynamics given by the Euleragiqus in the hy-
perbolic scaling (i.e. if momentum is conserved), in théudifre time scale, we
would like to derive the incompressible Navier-Stokes ¢igna. These would
be obtained by starting with some initial momentum macrpgcprofile of or-
der @' (¢) but an energy profile of orde?(1).

o \Validity of Fourier’s law: we consider the NESS of the systentontact at the
boundaries with thermal baths at different temperaturestier's law expresses
that the average of the energy currentin the NESS is prapwitio the gradient
of the local temperature. The proportionality coefficientcalled the thermal
conductivity.

Assume for simplicity thatl = 1 and that the energy is the only conserved quan-
tity. The corresponding microscopic current, denotedjfiy. ,, is defined by the
local energy conservation law '

L= 05 14 (22)

where.Z is the generator of the infinite dynamics under investigatind( is the
discrete gradient defined for arjyx)x € RZ by Ouy = Uy 1 — Uy. In the current
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state of the art, in all the problems mentioned above, thalugproach consists to
prove that there exist functionfs, = B¢ andhy = 6xhg (actually only approximate
solutions are needed) such that the following decompasitio

Jexi1 = Odx+ Zhy (23)

holds. Heref denotes the shift by € Z9. Equation[[ZB) is called aicroscopic
fluctuation-dissipation equatioThen, taking arbitrary large integér> 1, by us-
ing a multi-scale analysis we replace the block average(:t'rtmmTl+1 Y y-x<¢e Uy
by D(&)0&¢ where the functiorD is identified to a diffusion coefficient which
depends on the empirical enerdy = Tlﬂ Y ly-x<¢ &y In the mesoscopic box of
length(2¢ + 1) centered arouna Intuitively, £hy represents rapid fluctuation (in-
tegrated in time, it is a martingale) and the terigy represents the dissipation. Gra-
dient models are systems for which the current is equal tgthdient of a function
(hx = 0 with the previous notations).

There are at least two reasons for which the problems lidtedesare difficult:

e The existence of a microscopic fluctuation-dissipationatign has been given
for the first time for reversible systems. It has been extdndasymmetric sys-
tems satisfying @&ector conditionRoughly speaking this last condition means
that the antisymmetric part of the generator is a boundetiifition of the
symmetric part of the generaBrLater this condition has been relaxed into the
so-calledgraded sector conditiarthere exists a gradation of the space where the
generator is defined and the asymmetric part is bounded bsythenetric part
on each graded part (sée [43],[36] and references thefgir)Hamiltonian sys-
tems perturbed by a noise are non-reversible and since the (ibe symmetric
part of the generator) is very degenerate, none of thesatammihold.

e The system evolves in a non compact space and one needs tdhstt@mergy
cannot concentrate on a site. This technical problem tumgmbe difficult
since no general techniques are available. For deternginishlinear chains the
bounds on the average energy moments are usually polynomifa sizeN of
the system. Typically we need bounds of order one with regpé.

2.1 Anharmonic chain with velocity-flip noise

2.1.1 Linear response theory: Green-Kubo formula

The Green-Kubo formula is one of the most important formofason-equilibrium
statistical mechanics. In the two problems mentioned imrttteduction of the chap-

8 The antisymmetric (resp. symmetric) part of the generafois given by <%~ (resp.£4%")

where.Z* is the adjoint ofZ in L?(u), u being any Gibbs grand canonical measure. For the mod-
els considered in this course, the antisymmetric pa#fiand due to the deterministic dynamics,
the symmetric part is” and due to the noise.
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ter (hydrodynamic limits and Fourier’s law) the limitingjebts are defined via some
macroscopic coefficients which can be expressed by a Greéo-Kormula. The
latter is a formal expression and showing that it is indeelll defined is a difficult
problem. Itis usually introduced in the context of the linezsponse theory that we
describe below.

Consider a one dimensional unpinned chainNbtharmonic oscillators with
forced boundary conditions and perturbed by the velocipyffbise. The two ex-
ternal constant forces are denotedtpyndr,. Furthermore on the boundary parti-
cles 1 andN, Langevin thermostats are acting at differenttempera‘ltg,uaeB[1 and
T, = B~ L. The generator?y of the dynamics is given by (13) and we denote the
unique non-equilibrium stationary state by The expectation w.r.issis denoted

by (-)ss

Fig. 2: The unpinned chain with boundary thermal resenairs forced boundary
conditions.

The energff of atomx is defined by

P
> Ex= 7+V(rx), x=2,...,N.
The local conservation of energy is expressed by the miomsccontinuity
equation

2
&s="

A& =-0j5 16 X=1,...,N,
where the energy curreig, ., from sitex to sitex+ 1 is given by

i61=—Tp1+v(T—pl),
NNt = —Trpn = W (Tr — p?), (24)
j)ix+1 =—pV(rxp1),x=1,...,N—1.

9 The definition of the energy is slightly modified w.i{ (1)id more convenient since the energies
are then independent random variables in the Gibbs grarahazat ensemble.
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The energy currer‘ilg,1 (and similarly forjﬁ,NH) is composed of two terms: the
term—1,p; corresponds to the work done on the first particle by the fifae and
the termy, (T, — p?) is the heat current due to the left reservoir.

Let Ps be the velocity of the center of mass of the system &gk the average
energy current, which are defined by

Ps=(px)ss and Js= <j§,x+l>ss-
We have the simple relation between these two quantities
Js=—TPs+ (T — (PD)ss),  Js=—TrPs— % (Te — (PR)s9)- (25)

The value oP; can be determined exactly and is independent of the nomifiesa
present in the system. By writing tha#y(px))ss= 0 for anyx=1,...,N we get
that the tension profile, defined oy = (V'(ry))ss, satisfies

To—T=VPs, T —Tn= Wb,
Tw1—Tx=yP, x=2,...,.N—1

We have then:
Lemma 1 ([11]). The velocity Pof the center of mass is given by

p—__ U (26)
T VIN=-2)+y+u

and the tension profile is linear:

yX=2)+vy
Tx = (Tr — ) + T 27
X V(N—2)+W+Yr\r f) 4 ( )
Consequently
rl]m Tng = T+ (T —T)u, ue(0,1]. (28)

For purely deterministic chairy(= 0), the velocityPs is of order 1, while the
tension profile is flat at the valug; + yr)f1 [veTr + ¥ T¢]. The first effect of the noise
is to makePs of orderN~! and to give a nontrivial macroscopic tension profile.

It is expected that there exists a positive cons@inidependent of the sizd
such that{&y)ss < C for anyx=1,...,N. Apart from the harmonic case we do not
know how to prove such a bound.

We shall denote byssthe derivative of the stationary stateswith respect to the
local Gibbs equilibrium statgy defined byuig(dr,dp) = g(r,p)drdp with

N e—&((éarrxrx)

g(r,p) = Xﬂma (29)
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wherefy = By + § (Br — B¢) andty = 1, + § (Tr — 7). In the formula above we have
introduced; = Qto avoid annoying notations.
The functionfsgis solution, in the sense of distributions, of the equation

where.,iz,zj is the adjoint of % in LZ(MQ). We assume th& =T+ 0T, T, =T and
T, =T7T—0T,T, = T with 0T, 51 small. At first order indT anddT, we have

D% * oT p ot
A= LRieq+WOTOh, — OTdp, — N z Jexi1tThx) — NT pr+o (8T,0T1)

where.£y o = — T+ YN+ VBT + Bt is the adjoint inLZ(uﬁfT) of

Aeq =+ YIN+F VBT + W BNT (31)

and ui\“T is the finite volume Gibbs grand canonical ensemble withioens and
temperaturd . We now expan(fSs at the linear order idT anddT:

fes= 1+ 03T + V3T 4 0(dT, 1) (32)
and we get thatt andvare solution of

1 N—-1
gNequi T2N Zl Jxx+1+TpX)

gNqu— m pr

Itis clear that the functiohy appearing in the microscopic fluctuation-dissipation
equation[(2B) is closely related (up to a time reversal) &ftinctionsu; v, i.e. to
thefirst order correction to local equilibrium

We can now compute the average energy current at the first iordd@ anddort
asN — o but we need to introduce some notation. We recall that thergéor of
the infinite dynamics is given by = o/ + y.¥ where, for anyf C&(Q),

(@ D)(r.p) =3 [(Px— Px-1) O F 4 (V' (1ea) = V(1)) Op, F] (1),

er

(7 222 (r,p*) = f(r,p)].

LetH :=H; 1 be the completion of the vector space of bounded local funsiw r.t.
the semi-inner produek -,- > defined for bounded local functiorfsg : @ — R,

by

(33)

< f,g>=" {7 (f6:g) — prr(Fper(9)}- (34)

XEL
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Observe that il every constant € R and discrete gradiegt = 6, f — f is equal to
zero since for any local bounded functiowe have< c,h>>= 0 and< {,h>>=0.

Assuming they exist lefs and Ps be the limiting average energy current and
velocity:

Js=1lim N(j§1)ss, Ps= lim N{po)ss, (35)
N—o0 ’ N—o0
and definels = Js+ TPs. We expect that all goes to infinity and, at first order in
oT anddr, R
J\ oT
(5) =m0 (5)
with e er
K€ K&
K(T,T) = <Kr,e K" ) (36)

the thermal conductivitynatrix. Assume for simplicity thatl = 2k is even. By[(3R)
and [33), we get that

N{po)ss= N{(px)ss= N/ P« stsdIJIg

—N&T /pkﬁ dug + Nar/pkv dug + (3T, 51)

5T LNt
:_ﬁ/pk (_D%N,eq) 1(

S (ifxe1+TP0)) duig
x=1

o1 RN
- ?/pk (_ZN,eq) (le px) dug + o(0T,d1).

Sincedi:,'qg— is equal to 1 O(4T, 81), we can replacgg by u{\‘T in the last terms of
T,T ’

the previous expression. Using tha ., is the adjoint 0fZy eq in Lz(ui\fT) and
denoting by(-,)r . the scalar product ii?(up'y ), we obtain that

oT . N-1 o
N{po)ss= Tz (—Neq) Pk, Z(JX’X+1 +TPx)
T,T

X=

N-1

ot
- ? <(—$N,eq)lpka Z pX > + 0(6T16T)
x=1 T,T

5T =
= 7z | (Fea) TR % (Jyrky+ke1+ TPyk)
y="R+1 -

oT 1 k-1
= 7 ("Zokea) P Py+k + 0(3T,571)
T,T

y="K+1
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In the first order terms of the previous expression we camteceverything around
k by a translation of-k and we get

ST 1 k-1 o
N<p0>ss: —ﬁ (—Z/\k,eq) Po , % (Jy,y+1 + pr)
y=—k+1 T
dT k—1

— —{ (~Zneq) tpo. reener
T <( /\k,eq) 0 yg+lpy>r,T ( )

whereAy = {—k+1,...,k} and

Dheq = D" +VINA NPT + W BT

with
Kk k—1
Ay = % (Px — Px-1) O + (V' (rxr1) = V'(rx)) 9py
X=—k+2 X=—K+2
—(T=V'(ro2)) 9p sy + (T=V'(1)) 9,
and

1 k—1
(y/\kf)(rvp)zz % z(f(rvpx)_f(rvp))'
x="R+

A similar formula can be obtained fdﬂ(ng)SS, As k — o, the finite volume
Gibbs measure converges to the infinite volume Gibbs meaklmesover, we ex-
pect that sincé — o the effect of the boundary operato#s,  r around the site 0
disappears so that—f/\k,eq)*lpo converges td—.%)*po. Therefore, in the ther-
modynamic limitN — o« (i.e. k— =), the transport coefficients are given by the
Green-Kubo formulas

KE=T 2<j§1+TpPo, (—L) (j§1+TPo) >,

er -1 —1ie (37)
Ko =T "< po, (=Z) " (ig1+TPo) >,

and

K'=T 1< po, (—2) (po) >,

38
K" =T 2< 81+ 1po, (—Z) *(po) > . (38)

The argument above is formal. In fact even proving the excstef the transport
coefficients defined by (37], (B8) is a non-trivial task. TRistence ofs defined by
the second limit in[(35) can be made rigorous since we havexhet expression of
Ps. From Lemmall, we have, even far, dT that are not small,

b ot
S y .
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On the other hand we show in Theorglm 5 that the quantties”€, formally given
by (38), can be defined in a slightly different but rigorouywand are then equal to

K=yl «k"=0. (39)

Thus we can rigorously establish the validity of the lineesponse theory for the
velocity Ps.

2.1.2 Existence of the Green-Kubo formula

One of the main results of [11] is the existence of the Greahd<ormula for the
conductivity matrix. Let? (resp.H®) be the set of function$ : Q — R antisym-
metric (resp. symmetric) ip, i.e. f(r,p) = —f(r,—p) (resp.f(r,p) = f(r,—p))
for every configuratiorir,p) € Q. For example, the functionf ;, po and every
linear combination of them are antisymmetrigin

Theorem 5 ([11], [9]).Let f,g € H?. The limit

o(f,g)=lm < f,(z-2)"g>
z>0

exists ando(f,g) = o(g, f). Therefore, the conductivity matri(T, T) is well de-
fined in the following sense: the limits

KE = IZiE?)T*2 < J§1+Tpo, (z—Z) H(i§1+TP0) >,

z>0
K& =lim T < po, (2= ) (iG1+TPo) >,
z>0
_ (40)
K'=limT < po, (z—2) (po) >=y
z—0
z>0
K"e = L[}%sz < j§1+TPo, (z—Z) (po) >
z>0

exist and are finite. Moreover Onsager’s relatiof" = k"¢(= 0) holds.

We have a nice thermodynamical consequence of the prevésu#t.rif 3T and
ot are small and of the same order, the system cannot be useéfagarator or a
boiler: at the first order, a gradient of tension does notriloutie to the heat current
Js. The argument above says nothing about the possibilityatizeea heater or a
refrigerator if 871 is not of the same order a&sT'. For the harmonic chain, we will
see that it is possible to get a heatedifis of ordery/dT.

Remark 1. 1. The existence of the Green-Kubo formula is also valid fpirened
or unpinned chain in any dimension.
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2. Observe that with respect to the establishment of a ndops fluctuation-
dissipation equatior (23) the computation of the GreeneKidsmula is less
demanding since only the knowledgeXfhy is necessary.

The proof of Theoreri]5 is based on functional analysis argusndhe first
main observation is that there exists a spectral gap for pleeator.” restricted to
the spacél?®.

Lemma 2. The noise operatoy” letsH? and HS invariant. For any local function
f € H? we have that
<f >« -S> (41)

Moreover, for any local function & H?, there exists a local function& H? such
that
Zh=f.

Proof. Since the Gibbs states are Gaussian states irpiseit is convenient to
decompose the operatof (which acts only on they’s) in the orthogonal basis
of Hermite polynomials. The the lemma follows easily. a

Proof (Theorerhls).
We observe first thati® andH® are orthogonal Hilbert spaces such that:=
H®a HS. It is also convenient to define the following semi-innergarot

L UW> =< U, (=S )W>>.

Let H! be the associated Hilbert space. We also define the Hilbacedp ! via the
duality given by thetl norm, that is

Jul?4 = SUP(2 < UW > — <WW 31}

where the supremum is taken over local bounded functiols Lemmd2 we have
thatH2 c H-1. Thusg € H 1.

Letw; be the solution of the resolvent equati@ ¢ )w; = g. We have to show
that< f,w, > converges asgoes to 0. We decompoggintow, =w, +W, , W, €
H?2 andw; € HS. SinceH? is orthogonal tdH® and f € H? we have< f,w, >»>=<
f,w; > Itis thus sufficient to prove thgw; ),.o converges weakly ifil asz— 0.

Since inverts the parity and” preserves it antil® ¢ H® = H andg € H?, we
have, for anyu,v > 0,

VW — AW, — YW, =0, 42)
pw, — AW — .S W, =g.

Taking the scalar product Withf, (respw, ) on both sides of the first (resp. second)
equation of[(4R), we get
VWL WY > — KWL, AW > 4y < WL W >1=0,

A _ A (43)
H Wy Wy > — KW, W) S Y W, Wy =< Wy, g5
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Summing the above equations we have
VWL W W W S Y W, Wy =<KWy, 9> (44)
Puttingu = v we get
V& Wy, Wy 3> Y < Wy, Wy 1< Wy [l4]lg]| .

Hence(w, )y~o is uniformly bounded irHI* and by the spectral gap property so is
(W, )y>o in H. Moreover,(vwy )y~ converges strongly to 0 il asv — 0. We can
then extract weakly convergent subsequences. TakingHedtrit, in (44),v — 0
and thenu — 0 along one such subsequence (convergingjove have

Y << Wo, Wy 21 =< Wy, g >

Next, taking the limit along different weakly convergenbsaquences (let* be the
other limit) we have
Y << W, W > 1= W, g >

and, exchanging the role of the two sequences
2 K Wy, W 1= W,,, 0> + KW, 0= Y < W, W, 1 +Y << W W >
which impliesw, = w*, that is all the subsequences have the same limit. Thus

(Wy)y=0 converges weakly ifil* as well agw, )yso in H by Lemmd2. O

In the harmonic case/(r) = r?/2, much more is known. Indeed one easily
checks that the exact microscopic fluctuation-dissipagiguation[(2B) holds with

2

1 r 1
hy = 2—yrx+1(px+ Px+1) — %1, bx = —Z—V(rxrx+1+ Po). (45)

It follows that we can compute explicitlz — J)*ljg’l and obtain that the value

of the conductivity matrix:
1
= 0
K(T,T) = (26/ l) .
y

This value will be recovered by considering the hydrodyr@imiits of the system
(TheoreniB) and also by establishing the validity of Fotsilem (see Theoreil 7).

2.1.3 Expansion of the Green-Kubo formula in the weak couptig limit

In the previous subsection we proved the existence of therGkeibo formula
showing that the transport coefficient is well defined if samése is added to the
deterministic dynamics. We are now interested in the bemafithe Green-Kubo
formula as the noise vanishes. We investigate this questitine weak coupling
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limit, i.e. assuming that the interaction potential is of florm eV wheres < 1 is
the (small) coupling parameter. For notational simplieiyconsider the one dimen-
sional infinite pinned system but the arguments given bel@\easily generalized
to the (pinned or unpinned) > 1-dimensional casel. The expansion presented in
this section is formal but we will precise at the end of thdiseovhat has been rig-
orously proved. In order to emphasize the dependengé (denoted in the sequel
by k) in the coupling parameterand the noise intensity, we denote< by k (&, y).
Here we propose a formal expansion of the conductivily the form

K(ey) = Zan(V)en- (46)

Then we study rigorously the first term of this expansiofy). It is intuitively
clear that the expansion starts frafsince the Green-Kubo formula is a quadratic
function of the energy current and that the latter is of omlggee [4D)).

When the system is uncoupled £ 0), the dynamics is given by the generator
2 = o+ ySwith . the flip noise defined by (12) and

V(Zfo = Z pxdqx —W/(qx)apx

XEZL

Whene > 0, the generator of the coupled dynamics is denoted by
Lo = Lo+ €9 (47)

where
g Z V qX ]_ apx 1 0'3)()

XEZL

The energy of each cell, which is the sum of the internal gnargl of the inter-
action energy, is defined by

6= 6+ SV (Oa1— 00 +V (0~ 0 1)), &= pX+W<qx> (48)

Observe that = &0 is the energy of the isolated systemThe dynamics gener-
ated by % preserves all the individual energi€s The dynamics generated b¥;
conserves the total energy. The corresponding energyrtegg 1, defined by
the local conservation law

fsgxg =& (jxfl,x - jx,x+1)

are given by
. €
€ jxxi1 = =5 (PxF ) -V (G — o) (49)

10 If W = 0 the variablesy, have to take values in a compact manifold.
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Let us denote byug . = (-)g ¢ the canonical Gibbs measure at temperature
B~ > 0 defined by the Dobrushin-Lanford-Ruelle equations, whitbourse de-
pends on the interacticagV . We shall assume in all the cases consideredithatis
analytical in¢ for sufficiently smalle (when applied to local functions). In partic-
ular we assume that the potentiglsandW are such that the Gibbs state is unique
and has spatial exponential decay of correlations (thidshahder great general
conditions orV andW, seel[33]).

In order to emphasize the dependencewe reintroduce some notation. For any
given local functiond, g, define the semi-inner product

<f,g>p.= 5 U605~ (F)pel@pel- (50)

XEL

We recall thatfy is the shift operator by. The sum is finite in the case= 0,

and converges fog > 0 thanks to the exponential decay of the spatial correlation
Denote byH, = L2(< -,- > ¢) the corresponding closure. We define the subspace
of antisymmetric functions in the velocities

HE = {f e He: f(q,—p) = —f(q,p)}. (51)

Similarly we define the subspace of symmetric functiong &sH3. On local func-
tions this decomposition of a function into symmetric antissimmetric parts is
independent o€. Let us denote by?g and #2; the corresponding orthogonal pro-
jections, whose definition in fact does not dependsoifherefore we sometimes
omit the index in the notation. Finally, for any functioh € LZ(UB,a)v define

(Met)(&) = U e(fl&), Qe=Id—N¢
where& = {&; x € Z}. According to Theore]5 the conductivity is defined by
K(e,y) =€2lm < jo1, (V—Z) o1 >pe - (52)
v—0 ’ ’ ’

It turns out that, for calculating the terms in the expangi), it is convenient to
choosev = 22 in (B2), for aA > 0, and solve the resolvent equation

(A& — Ze)Up ¢ = €joa (53)

for the unknown functioru, .. The factore? is the natural scaling in view of the
subsequent computations. We assume that a solutignlof{#8jhe form

Uy e = ZOU/\,nSn = %(VA,n‘FWA,n)ena (54)
n> n>
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wherellvy , = Qwy , =0, i.e.w, , = U, , andv, , = QU, ,. Herell = Iy and
Q = Qg refer to the uncoupled measmgﬁ. Given such an expression we can, in
principle, use it in[(BR) to write

K(e,y) = /{iino ZOSM < Jo,VantWan>pe
s

S (55)
- z lim " < jo1,Van-1>>p¢
& —0 )

where we have used the fact that tkatjo 1, w) ¢ >p = 0 and we have, arbitrarily,
exchanged the limit with the sum. Note that this is not yethef type [46) since
the terms in the expansion depend themselves. dio identify the coefficientp
we would need to expand in also the expectations. This is not obvious since the
functionsv, ,, are non local.

Let us consider the operatér= 19 23(—.%,)~1%1. We show below that the
operatorg is a generator of a Markov process so tfat- £)~ is well defined for
A > 0. Pluging[[54) in[(BB) we obtain the following hierarchy

V)\,O = 07
Wy 0= (A — €)' NY 22~ %) o,
Var=(—%) Hio1+9wWa o], (56)

Wy n= (A = &) NG P~ L)t [-AVp n 1+ QY n] n>1
Vanit = (—Z0) 7 [-AVa n 1+ 9Wy 0+ QFVa 1], n>1

Observe that in the previous equations the (formal) operatazy)~? is always
applied to functiond such that'7f = 0 (this is the minimal requirement to have
consistent equations). This is however not sufficient toersgnse of the functions
V) n andw, . Nevertheless, by using an argument similar to the one givéheo-
rem[3, we have that the local operaté@y onH§ defined by

Tof = lim 23(v — %) 1, feHj,
v—0
is well defined. Therefore, it is possible to make sense, astidodition, of
= ”gf@a(—fo)iljovl = I'l%,%jo’l. (57)

Nevertheless, the functiom, ; is still not well defined since we are not sure that
Dojo.1 is in the domain off.

Even if the previous computations are formal a remarkaldei$athat the opera-
tor £, when applied to functions of the internal energies, caiesiwith the Markov
generatoilg of a reversible Ginzburg-Landau dynamics on the internatgps.

11 The reason to use the orthogonal decompositiodgf = Vi , +w, p is that at some point we
will have to consider, for a given functioh the solutiorh to the Poisson equatioffph = f . The
minimal requirement for the existencelofs that/7f = 0.
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Let us denote byg the distribution of the internal energigs= {&%; x € Z} under
the Gibbs measurgg (. It can be written in the form

dpg(& rLZ Lexp(—Bé&—U(&))dé

for a suitable functio. We denote the formal surpi,U (&) by % = % (&).
We denote also, for a given value of the internal enefgyn the cellx, by vX

the microcanonical probability measure in the oeli.e. the uniform probab|I|ty
measure on the manifold

Tz = {(a0 o) € Q; &k p) = &

Then, the generatdlg, is given by

S =Y € (05, 05) [e S0 b)05,, - 0s)],  (59)
X
where
~ ~ . . O 1
Plodi= [, (iox Tolos) dvhdvh (59
%" "é1

The operatoi€g, is well defined only if the functioy? has some regularity prop-
erties, that are actually proven in specific examples[[4R,\®® can show that the
Dirichlet forms4 associated ta& and£¢. coincide. Then in the cases whareis
proven to be smooth (58) is well defined atie- £¢, .

Proposition 2 ([9]). For each local smooth functions g of the internal energies
only we have
<9, (—&)f >p0=<0.(—LaL)f >p0. (60)

The operatog is the generator of a Ginzburg-Landau dynamics which is re-
versible with respect tpg, for any > 0. Itis conservative in the energy & and
the corresponding currents are givenflyio 1 whereap ; has been defined i (57).
The corresponding finite size dynamics appears in([48, 26hasveak coupling
limit of a finite numbem (fixed) of cells weakly coupled by a potenti&V in the
limit € — 0 when timet is rescaled ate 2. Moreover, the hydrodynamic limit of the
Ginzburg-Landau dynamics is then given (in the diffusivestiscaléN2, N — o),
by a heat equation with diffusion coefficient which coinadeith k» as given by
(®&2) below ([65]). This is summarized in Figure 3.

According to the previous expansion it makes sense to defifjg by

Ko(y) = lim lim {<< jo1, Jojo1 > + < jo1, oYWy 0 >, g} (61)

£—0) —

12 They are well defined even j£ is not regular.
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tN2, N ,E~L
N cells coupled bV | - - - - -=-1- AL S S >‘ aT = O(k(e,y)0T) ‘

4T = O(ke(y)T) |

_2 1
£ 2,0 \N’L‘V\

A,
| Ginzburg-Landau dynamics fot particles|

Fig. 3: The relation between the hydrodynamic limit, the kveaupling limit and
the Green-Kubo expansion. The dotted arrow (hydrodynaimits in the diffusive
time scale) has not been proved. The weak coupling limitigadrarrow) has been
proved in [48] (see alsd [26]) and the diagonal arrow (hygiranic limits for a
Ginzburg-Landau dynamics) has been obtained ih [65] in stases which however
do not cover our cases. In/[9] it is argued tR&E, y) ~ £2k2(y) ase — 0.

if the limits exist. In fact, a priori, it is not even clear thithe term.%%w, o makes
sense sincwy) o is not well defined. IN[[9] we argue that

Ka(Y) = <Vg,1>3 — < agy, (—LoL) tao1>p . (62)

Here(-)p and< - > refer to the scalar products w.idg. In the special casé/ =0
M, we prove rigorously in [9] that we can make sense for &nyof the term in the
righthandside of[{81) and thdt (62) is valid, supporting tbajecture thai(82) is
valid in more general situations. Observe thai (62) is theeG+Kubo formula for
the diffusion coefficient of the Ginzburg-Landau dynamics.

In specific examples, it is possible to study the behavier0f) defined by[(6P)
in the vanishing noise limiy — O:

1. Harmonic chain: it is known that the conductivity of thee{grministic) har-
monic chain i (g,0) = o, If y> 0, k(£,y) = cy 12, ¢ > 0 a constant, and
we get thus that lig,g k2(y) = .

2. Disordered pinned harmonic chaihis quadratic and the one-site potentiél
is site-dependent given Bk (q) = vxg? where{vy; x € Z} is a sequence of
independent identically distributed positive boundediman variablef4. It is
known ([&]) thatk (¢,0) = 0 so thatkz(g,0) = 0. It can be proved thaty(y)
vanishes ag goes to 0.

13 |f W = 0 the variables) have to take values in a compact manifold.

14 Even if this model does not belomsgricto sensuo the class of models discussed above it is easy
to generalize to this case, at least formally, the previessits.
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3. Harmonic chain with quartic pinning potenti®l:is quadratic andlV(q) = g*.

Then it can be shown that limspip, k2(y) < . This upper bound does not
prevent the possibility that lign,o k2(y) = 0.

To prove these results we use the upper boxid) < <y§ >B' Recalling [5B)

we see that if we are able to compuigjo 1 then we can estimat<6/2(£o,éal)>ﬁ. It
is exactly what is done in [9] for the specific cases above.

It would be highly interesting to have a rigorous derivatadrihe formal expan-
sion above. Bypassing this problem, another relevant issioedecide if genuinely
limy_0k2(y) is zero or not. Some authors (séel[23] and references therem
jecture that, in some cases, the conductivity of the detgstic chaink (g,0) has
a trivial weak coupling expansio (g,0) = &'(e") for anyn > 2). Showing that
K2(y) — 0 asy — 0 would support this conjecture.

2.2 Harmonic chain with velocity-flip noise

In this section we assume thétr) = r?/2.

2.2.1 Hydrodynamic limits

As explained in the beginning of this chapter an interegpirablem consists to de-
rive a diffusion equation for a chain of oscillators pertedlby an energy conserv-
ing noise. Consider a one dimensional unpinned chaiN darmonic oscillators
with periodic boundary conditions perturbed by the velpdip noise in the diffu-
sive scale. In other words leb(t) = (r(t),p(t))i>0 be the process with generator
N2.% = N? [ + .| where.7y is given by [12),Z9 being replaced b§y, the
discrete torus of lengtN, and.«# is the Liouville operator of a chain of unpinned
harmonic oscillators with periodic boundary conditioneeTsystem conserves two
quantities: the total energyycr, &x, 6x = %3 + % and the total deformation of the
lattice y yc,, rx- Consequently, the Gibbs equilibrium measurgs are indexed by
two parameter§ > 0, the inverse temperature, and R, the pressure. They take
the form

dvg (dr,dp) = [] 2 (B, ) exp{—B (& Try) }dredpx

where
21 2
Z(B,1) = 5 exp(BT/2)

Observe the following thermodynamic relations
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' _pl, 12 ' _
&dvg =B "+ 5, rxdvg ;=T

or equivalently

oy -1
. . (j'rxdvm)
Tz/rxdvﬁ,ra B= /@@xd‘/ﬁ,r_' 2

Definition 2. Let T = [0, 1) be the continuous torus. La; T —Randy: T — R

be two continuous macroscopic profiles such tba:t . A sequence of probability
measure$pN)n>1 on (R x R)™ is said to be a sequence of Gibbs local equilibrium
states associated to the energy prafiland the deformation profile if

dpM(dr,dp) = [T 2 (B, o)) exp{—Bo(X/N) (& — To(x/N)rx) hdrsd p

xeln

where the functionfy and1g are defined by

2
To=to, Bo={eo— 3} "

Once we have the microscopic fluctuation-dissipation eéqudsee [(4b)) and
assuming the propagation of local equilibrium in the diffesime scale it is easy
to guess the hydrodynamic equations followed by the sydie{s4] the following
theorem is proved.

Theorem 6 ([54]).Consider the unpinned velocity-flip model with periodic hdu
ary conditions. Let uN)y be a sequence of Gibbs local equilibrium statessso-
ciated to a bounded energy profilg and a deformation profiley. For every t> 0,
and any test continuous functionsks: T — R, the random variables

(% S G(ﬁ)rx(th),% 5 HE&IND) (63)

xeTn xeTn

converge in probability as N+ oo to

/G tydy,/H tydy

wheretr ande are the (smooth) solutions to the hydrodynamical equations

{dt: e T (64)
2 s el
de= 5,07 |e [ %} y

with initial conditionst(0,y) = to(Yy), ¢(0,y) = eo(y).

15 One can consider more general initial states, [see [54].
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The proof of this theorem is based on Yau's relative entropthod ([67], [51]).
The general strategy is simple. Ligt be the law of the process at tirtie? starting
from uN and let{iN be a sequence of Gibbs local equilibrium state correspgndin
to the deformation profile(-) := (t,-) and energy profile;(-) := e(t,-) solution
of (&4). We expect that sinaeandt are the hydrodynamic profiles, the probability
measure of the procegg' is close, in some sense, to the local Gibss sifteYau’s
relative entropy method consists to show that the entrdptank:@

Hn(t) == H (" | i) = o(N) (65)

between the two states is relatively small. Assumingd (&b)orider to prove for
example the convergence of the empirical energy, we usentinepsy inequalitﬂ
which states that for ang > 0 and test functiorp

/ N < LR Iog( / e"’“’dﬂt’\') . (66)
We take theror = 6N, > 0, and
1
=I5 2 HR)% /H e(t,y)dy].
xeTn

Sincefi) is fully explicit and even product, by using large deviat@stimates, it is
possible to show that

lim sup5 log (/ e‘SN“’dﬂtN) =1(9) (67)

N—oc0

wherel (8) — 0 asd — 0. By using[(65), we are done. It remains then to prové (65)
and for this we rely on a Gronwall inequality for the entropgghuction C > 0 is a
constant)

dHn < CH(t) +0(N). (68)

The proof of [68) is quite evolved and we refer the intereseadier to[[54],[[12]
(see alsol[41] for some overview on the subject). It is in gtep that the macro-
ergodicity of the dynamics is used in order to derive the alted one-block esti-
mate.

For non-gradient systems, i.e. systems such that the noimpascurrents of the
conserved quantities are not given by discrete grad@ntthe previous strategy
has to be modified. Indeed, in order to hdve (65) it is necgseaeplace the local
equilibrium Gibbs statéN by a local equilibrium state with a first order correction

16 There is some abuse of language here since the relativeogrigraot a distance between prob-
ability measures.

171t is a trivial consequence of the definitidd (9).

18 Observe that if a system is gradient then a microscopic faticto-dissipation equatiofi (23)
holds with a zero fluctuating term.
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term of the form

A (dr dp)
=75 [ exp{—B(x/N)(&— w(x/N)rx) + LF(t,x/N)(8g)(r,p) } dryd

xeTN

(69)

wherez; n is a normalization constant,

2
=, B={a—%}"

and the functiong= and g are judiciously chosen. The choice is guided by the
fluctuation-dissipation relatioh (45) and done in orderkitain the first order "Tay-
lor expansion”[(71L) below.

Let QN = (R x R)™~ be the configurations space and denote

N (w)
o (w)

where fN is the density ofiyN with respect to the Gibbs reference measure=
V1. In the same wayg" is the density ofiiN with respect tov. (which is fully
explicit). The goal is to gef{88) withiy replaced byHy .

We begin with the following entropy production bound. Letdesiote by Zy =
—a/ + Y.\ the adjoint of %y in L2(v,).

A :=H (WAY) = [ 1M(w)log

ON

dv.(w) , (70)

Lemma 3.
. 1 . 71 .
a0 < [ o (N Ll gt v, = [ (il o) o

Proof. We have thatfN solves the Fokker-Plack equatiohfN = N2 fN. As-
suming it is smooth to simplify, we have

A Hn(t /dtft [1+log fN]dv, — /z?tft loggNdv, — /dtqq I —Ldv,
_NZ/Zth log fN —logg"]dv, — /dt(,q dv*
—NZ/fN.zN log fJdv. — /dtqq dv*

_NZ/ A Iog J@Vdv, — /dtqq dv*
< NZ/XN[%]quv*—/quLNdV*

= N2/ .Z,Qj(g”dv* /d(,q dv*
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where we used that for any positive functiorh.-%y(logh) < _#uh (this is a conse-
quence of Jensen’s inequality). u

We defineéy := (éx,rx) andm(t,q) := (e(t,q),t(t,q)). If fisavectorial function,
we denote its differential bp f.

Proposition 3 ([54]). Let (A, 3) be defined by = (¢ — ‘—22)*1 andA = —ft. The
term (@)1 (N2L @Y — a@V) can be expanded as

(@) (N>R - aq")
5 X X X
=2 5 w(tg) [ (n(e ) - 0m (n (1)) (8- m()]
+o(N) (71)
where
K] X | Hi(e, ) | vi(t,9) |
P2+ rrx_1+ 2yPxrx—1 e+17/2 —(2y)19gB(t,q)
2 Ix+ YPx v ] 102)\ (t,q)
3 P (rx+rx1)?  |(2e—t%) (e+3c%/2)| (4y)~ [%B(t )2
4 P (rx+rx-1) t(2e—1?) y 10qB(t.q) A (t,q)
5 Pz e —1?/2 y dgA (t,9))?

Observe thatik(e,r) is equal tof Jkdvg ; where, T are related te,r by the
thermodynamic relations. Thus, the terms appearing initirehand side of[(41)
can be seen as first order “Taylor expansion”. The form of tisé drder correction
in (69) plays a crucial role in order to get such expansions.

A priori the first term on the right-hand side 6f{71) is of ordie but we want to
take advantage of these microscopic Taylor expansionsoiw ghs in fact of order
o(N).

First, we need to cut-off large energies in order to work viaittunded variables
only. To simplify, we assume they are bounded ab initio.

Let £ be some integer (dividin®yl). We introduce some averaging over micro-
scopic blocks of sizé and we will let{ — o afterN — c. We decompos&} in
a disjoint union ofp = N/¢ boxesA(x;) of length/ centered ax;, j € {1,...,p}.
The microscopic averaged profiles in a box of dia@oundy € Ty are defined by

1
=7 3 &

Similarly we define

1
J}((Y) =7 z J>i<(

XeA(Y)
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In (Z1) we rewrite the surfi e, aszjf’:1 Y xeA(x)) and, by using the smoothness of
the functionv, Hy, it is easy to replace the term

8,2 () [ (n(e.3)) - om0 (1. )) - (6 (1))

xeTn

by

o2 (30 [300) = ({1 9)) -0 (1)) - (B0 ()]

in the limit N, £ — o with some error term of ordex(1).

Then, the strategy consists in proving the following cruesimate, often called
the one-block estimateve replace the empirical average curré}‘(b(j) which is
averaged over a box centeredxatby its mean with respect to a Gibbs measure
with the parameters corresponding to the microscopic gmmrofiles&(xj), i.e.
Hk(fg(xj)). This non-trivial step is achieved thanks to some compastaegument
and the macro-ergodicity of the dynamics.

Consequently we have to deal with terms in the form

53 (0 ) [ (B) ~ (1)
—(DHy) (rr(t, %)) ~ (Ez(xj) - "( %))}

The final step consists then in applying the entropy inequés) with respect
to 4N with ¢ := @y given by [72) andx = N, & > 0 fixed but small. This will
produce some term of ordely(t) /N plus the term

(72)

1
lim suplim sup—log </e‘5N“’dﬂtN) =1(d).
{—s00 N—oc0 ON

By using some large deviations estimates (observeitNas explicit and product at
first order inN) one can show tha{d) is nonpositive fod sufficiently small. Thus
we get the desired Gronwall inequality.

There is some additional difficulty that we hid under the ehip the sketch of
the proof. Since the state space is non compact, a contrdgbfdnergies is re-
quired for the initial cut-off. This is a highly non triviakpblemZ3. In the harmonic
case considered here this control is obtained thanks todlfmving remark: the
set of mixtures of Gaussian probability meas(fibis preserved by the (harmonic)
velocity-flip model. Since for Gaussian measures all the ershare expressed in

19 A similar problem appears ih [51] where the authors derivaEequations for a gas perturbed
by some ergodic noise. There, to overcome this difficulty,dbthors replace ab initio the kinetic
energy by the relativistic kinetic energy.

20 A Gibbs local equilibrium state is a Gaussian state in thenbaic case.
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terms of the covariance matrix, required bounds can be rdaddiy a suitable con-
trol of the covariance matrices appearing in the mixture.

The extension of this result in the anharmonic case is aangithg open problem
(see howevel [52] where equilibrium fluctuations are com®d for an anharmonic
chain perturbed by a conservative noise acting on the manaamt positions).

2.2.2 Fourier's law

Since in the harmonic case an exact fluctuation-dissipattpration is available
Fourier's law can be obtained without too much wik

Theorem 7 ([10,[11]).Consider the one-dimensional harmonic chain in contact
with two heat baths and with forced boundary conditions aSectiori 2.1]1. Then
Fourier’s law holds:

- . ) 1
Js = ,\ll'L“WN“S,l)SS: 2—y (Tg—Tr)+(T/?—Tr2)} (73)
and we have
3y = lim N((pd) —T)=—1 (T =T + (e —1)?]
I . 1)ss Y4 ZVW r 14 14 r )
A (74)
J = 'JlianN(Tr - <pﬁ>ss) = 20 [(Tr —Ty)— (1, — Tr)z} .

Proof. We divide the proof in two steps:

o We first prove that there exists a const@mdependent di such that(jg ,)s¢ <
C/N. This is obtained by using the fluctuation-dissipation ¢igueand the fact
that(j3,. 1)ssis independent of.:

. 1 N2
(i61)ss = N_3 ZZ<J§,><+1>SS (75)
X—

1 1 N-2 5
= “gyN_3 2, (PPl

= 2—1),% {({P)ss+ (rara)ss) — ({PR_1)ss+ (TN-1N)so) } -

By using simple computations, one can show (hﬂ§>ss+ (rars)ss) — ((pﬁfl)ser
(rn—1rn)ss) is uniformly bounded ifN by a positive constant.

e Now we have only to evaluate the limit of each term appearmg(p3)ss+
(rors)ss) — (<p,2\,71>53+ (rn—1rN)ss). Notice that assuming local equilibrium we

21 The a posteriorisimple but fundamental remark that an exact fluctuatiosigtigion equation
exists for the harmonic model (s€e145)) is the real contidbuwof [10].
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easily get the result. The first step implies th# ;)ss and (jg . 1)ss vanish
asN — +o. SinceVs goes to 0 by Lemmal 1, one has tH@€)ss and (pg)ss
converge respectively t§ andT;. By using some “entropy production bound”
one can propagate this local equilibrium information to plaeticles close to the
boundaries and show ([73).

0

It follows from this Theorem that the system can be used astehbut not as a
refrigerator. Assume for example tHRt> T,. The termJ; (resp.J;) is the macro-
scopic heat current from the left reservoir to the systerap(réom the system to
the right reservoir). Whatever the valuestpft; are,J; > 0 and we can not realize
a refrigerator. But if T, — T;) < (1 — 7,)? thenJ, < 0 and we realized a heater.

The proof of the validity of Fourier’s law for anharmonic éhaperturbed by an
energy conserving noise is still open.

2.2.3 Macroscopic Fluctuation Theory for the energy conseting harmonic
chain

The macroscopic fluctuation theory ([17]) is a general apphodeveloped by
Bertini, De Sole, Gabrielli, Jona-Lasinio and Landim toccééte the large deviation
functional of the empirical profiles of the conserved qu#giof Markov processes
in a NESS. Its main interest is that it can be applied to a latgss of boundary
driven diffusive systems and does not require the explaimf of the NESS but
only the knowledge of two thermodynamic macroscopic patarsef the system,
the diffusion coefficienD(p) and the mobilityx (p). This theory can be seen as an
infinite dimensional generalization of the Freidlin-Weglttheory [28] and is based
on the large deviation principle for the hydrodynamics & $lystem.

In order to explain (roughly) the theory we consider for dicity a Marko-
vian system{n (t) := {nx(t) € R; x€ {1,...N} };>0 with only one conserved quan-
tity, say the densityp, in contact with two reservoirs at each extremity. Hére
is the size of the system which will be sent to infinity. We denby ull the
nonequilibrium stationary state df(t)}i>o. For any microscopic configuration

n:={nx;xe{1,...,N}} let

&l)(')

X
N

N—-1
nN(na) = Zl nxl[

be the empirical density profile. In the diffusive time s¢ale assume that" (n (tN?), -)
converges abl goes to infinity top;(-) := p(t, -) solution of

ap =0y (D(p)dyp), Yy€[0,1], t=0,
pt,0)=pn pt,1)=p, t>0,
P(0,) = po(*)
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wherepy(+) is the initial density profileD(p) > 0 is the diffusion coefficient ang,

pr the densities fixed by the reservoirs.tAs o the solutionp; of the hydrodynamic
equation converges to a stationary profile [0,1] — R solution of D(p)dyp =

J = const with p(0) = p;, p(1) = pr. We assume that undes, the empirical
density profilert(n,-) converges t. This assumption is nothing but a law of
large numbers for the random variabl@s.

We are here interested in the corresponding large devigtiogiple. Thus, we
want to estimate the probability that in the NEBS the empirical density profile
m is close to an atypical macroscopic profiié) # p. This probability typically
is of ordere NV(P) whereV is the rate function:

pi(m(n, ) ~p()) = e NP,

The goal of the macroscopic fluctuation theory is to obtaforimation about this
functional.

The condition to be fulfilled by the system to apply the theof\Bertini et al.
is that it satisfies @ynamical large deviation principleith a rate function which
takes a quadratic forf# like (77).

Let us first explain what we mean by dynamical large devigpionciple. Imag-
ine we start the system from a Gibbs local equilibrium stateesponding to the
macroscopic profil@g. We want to estimate the probability that the empirical den-
sity 7V (n (tN?), ) is close during the macroscopic time inter{@IT], T fixed, to a
smooth macroscopic profilgt,y) supposed to satis@ ¥(0,-) = po. This proba-
bility is exponentially small ifN with a ratel o 1)(y| o)

P [N (n(IN?),y) = y(t,y), (t,y) € [0,T] x [0,1]] ~ e NomViPo) (76)

The rate function is assumed to be of the form

I, (Y| Po) = %/OT dt/(;ldyx(p(t,y)) [(BH) (t,y))? (r7)

wheredyH is the extra gradient external field needed to produce théu#itiony,
namely such that

ay=20y[D(y)dyy — X(y)AH]. (78)

Thus,l g 1)(YPo) is the work done by the external fiejjH to produce the fluctu-
ation y in the time interval0, T|. The functiony appearing in[(78) is the second
thermodynamic parameter (with the diffusion coefficie)tmentioned in the be-
ginning of this section. The two parametésand x are in fact related together
by the Einstein relation so that knowing one of them and theb&istates of the
microscopic model is sufficient to obtain the second.

22 sych property has been proved to be valid for a large clagedifiastic dynamics[([42], [41]).

23 This assumption avoids taking into account the cost to gredie initial profile, cost which is
irrelevant for us.
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To show this result the strategy is the following. We pertiimd Markov process
{n(t) }+>0 thanks to the functiol := H(y), which is solution of the Poisson equa-
tion (78), by adding locally a small space inhomogeneous provided bydyH.

In doing so we obtain a new Markov procgss™ (t) }1~o such that in the diffusive
time scaler™ (n™ (tN?),-) converges tg/(-). Let P (resp.lP%) be the probability
measure on the empirical density paths space induceﬁ]Wth)}te[ovT] (resp.
{n(th)}te[o’T]) . Then, by using hydrodynamic limits techniques similarthe
ones explained in Sectidn 2.2.1 we show that in the l&tdenit, underP", the
Radon-Nikodym derivative is well approximated[E/

dp®
dITH(n) ~ exp{ —Nljo.)(Tlpo) } -

Here m:= {m(t,y);t € [0,T],y € [0,1]} is any space-time density profile. Thus,
since

dpO
PO [mN(n(IN?),) ~ y(t,-), t € [0, T]] =E" dﬂTH(n) Lt )yt ) te0T]}

we obtain[(76).

The macroscopic fluctuation theory claims that the largeadiewns functional
V(p) of the empirical density in the NESS coincides with the queentialW(p)
defined by

W(p)=inf _I_oq(yIp)
y:¥(—)=p
y(0)=p
Herel|_ g is obtained fromg ) by a shift in time by—T, T being sent tote
afterwards. In words, the quasi potential determines tetogroduce a fluctuation
equal toy att = 0 when the system is macroscopically in the stationary jgrpfit
t=—oo.

Thus, the problem is reduced to computifg It can be shown thaw solves (at

least formally) the infinite-dimensional Hamilton-Jaceljuation

3 (0|5 | x| S+ (5 ap@ae) —0 @)

where (-,-) denotes the usual scalar productliA([0,1]). Note that there is no
uniqueness of solutiondN = 0 is a solution) and up to now a general theory of
infinite dimensional Hamilton-Jacobi equations is stillsging. This implies that
we have in fact to solve by hand the variational problem ardsthiution is only
known for few systems. This is an important limitation of thacroscopic fluctua-
tion theory. Even getting interesting qualitative profronW is difficult.

24 \We use Girsanov transform to express the Radon-Nikodyrnvatasm. A priori it is not a func-
tional of the empirical density and we need to establish s@placement lemmésee [41]).
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The rigorous implementation of this long program has onlgrbearried for the
boundary driven Symmetric Simple Exclusion Process anehebed with less rigor
to a few other systems (see [15], [18], [27] for rigorous te3u

Let us now try to apply this theory for the harmonic chain witsocity-flip
noise. Since we have a fully explicit microscopic fluctuatissipation equation
(even when some harmonic pinning is added) we can easil\sgulest is the form
of the hydrodynamic equations under various boundary ¢mmgdiby assuming that
the propagation of local equilibrium in the diffusive timeate holds. Nevertheless,
let us observe that a rigorous derivation is missing, theamles being a sufficiently
good control of the high energi. The boundary conditions we impose to the
system are the following. At the left (resp. right) end we fhé chain in contact
with a Langevin bath at temperatufe(resp.T;) and consider the system with fixed
boundary conditions or with forced boundary conditiongwitie same force at
the two boundaries. Then, for the unpinned chain, the egus{64) are still valid
but they are supplemented with the boundary conditiong)[14

2 2
[e_%] t,0) =T, [e—%] 1) =T, (80)

since the Langevin baths fix the temperatures at the bowesdand
oye(t,0) = dyr(t,1) =0 (81)
for fixed boundary conditions (the total length of the chaincbnstar@) and
t(t,0)=t(t,1) =1 (82)

for forced boundary conditions.
If the chain is pinned by the harmonic potentl{q) = vg?/2 then only the
energy is conserved and the macroscopic diffusion equtlas the form

Gre = dy(Kdye),
¢(0,y) = eo(Yy), y€(0,1) (83)
e(t,0) =Ty, e(t,1) =T,

where the conductivitk is equal to ([14])

‘— 1y
24+ v24+\/v(v+4)

(84)

Assuming a good control of high energies, it is possible tavdehe dynami-
cal large deviations function of the empirical conservedmjities. The goal would
be to compute the large deviation functional of the NESS tiaiccording to the

25 This control is only available in the case of periodic bougdznditions ([54]).
26 Indeed, by[(6K), we haw@ (f3 c(t,y)dy) = y~* Jg 97x(t,y)dy = y~H{dyx(t, 1) — 3x(t,0)] =O.
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macroscopic fluctuation theory coincides with the quastptial. We recall that the
quasi potential is defined by a variational problem and thaéépends only on two
thermodynamic quantities, the diffusion coefficient ane thobility (the latter are
matrices if several conserved quantities are involved).

Let us first consider the pinned velocity flip model where thergy is the only
conserved quantity. It turns out that the mobility is a qadidrfunction. Conse-
quently, the methods exposed in Theorem 6.5 of [16] applythedariational for-
mula can be computed. The quasi poterii&l) is given by ([14])

1 e &q) F'(q)
V(e):/o dg lm—l—log<m> _|Og<Tr—Tz>1 , (85)

whereF is the unique non decreasing solution of

e F-e
N (86)

Surprisingly, the functiofV is independent of the pinning valweand of the inten-
sity of the noisey. It is thus natural to conjecture that in the NESS of the ungth
velocity flip model the large deviation function of the enigal energy profile coin-
cides withV but we did not succeed to prove it. Observe that at equilibiTy = T),
F(q) =T, = T, and the last term i .(85) disappears so that the quasi paténto-
cal. On the other hand, if; # T;, this is no longer the case and this reflects the
presence of long-range correlations in the NESS. In pdatican approximation of
the NESS by a Gibbs local equilibrium state in the fofml (29uldlonot give the
correct value of the quasi potential.

For the unpinned chain we have two conserved quantitiesirgpthe variational
problem of the quasi potential for these two conserved gliesits a very difficult
open proble (seel5] for a partial result for some other stochastic pbetion of
the harmonic chain).

3 Anomalous diffusion

An anomalous large conductivity is observed experimenialicarbon nanotubes
and numerically in chains of oscillators without pinnindyeve numerical evidence
shows a conductivity diverging with the silkeof the system likeN?, with o < 1 in
dimensiond = 1, and like logN in dimensiond = 2. If some nonlinearity is present
in the interaction, finite conductivity is observed numaliigin all pinned case or in
dimensiond > 3 ([24],[47]). Consequently it has been suggested thatarwation

27 Here we do not have any exactly solvable model like the Symen8tmple Exclusion Process
which could give us some hints for the form of the quasi-ptéén
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of momentum is an important ingredient for the anomalougdootivity in low
dimensions (see however [66]).

In Chapte[ 2 we considered chains of oscillators perturlyeaimise conserving
only energy and destroying the possible momentum consenvah the harmonic
case we obtained Fourier’s law and in the anharmonic caseoveg existence of
the Green-Kubo formula for the thermal conductivity.

In this chapter the added perturbation conserves both gaedmomentum (en-
ergy and volume for the Hamiltonian systems considered irti®@e1.2). These
systems qualitatively have the same behavior as Hamiloadfains of oscilla-
tors (without any noise), i.e. anomalous transport for anpd chain in dimension
d = 1,2 and normal transport otherwise. We could even be more ggiiinand
hope that they share with the deterministic systems comingtsifor the energy
fluctuation fields, two point correlation functions This is because one expects
that the microscopic details of the dynamics are irrelevanérefore someniver-
sality should hold. Recently H. Spohri _([58]), by following ideas[@#], used the
nonlinear fluctuating hydrodynamics theory to classifyyverecisely the different
expected universality classes. The nonlinear fluctuatydyddynamics theory is
based on the assumption that the microscopic dynamics evolthe Euler time
scale according to a system of conservation laws. The thisamacroscopic in the
sense that all the predictions are done starting from thstesy of conservation laws
without further references to the microscopic dynamicsc&iwe have seen that the
presence of the energy-momentum conserving noise doebage the form of the
hydrodynamic equations, the theory claims in fact that itmé bof the fluctuations
fields of the conserved quantities for purely determinishiains of oscillators and
for noisy energy-momentum conserving chains are exaatigéime.

3.1 Harmonic chains with momentum exchange noise

Getting some information on the behavior of the energy flaibtu field in the large
scale limit remains challenging. So far, satisfactory boit complete results have
only been obtained in the harmonic case. The anharmonidsasech more diffi-
cult.

In [1], [2] we explicitly compute the time correlation cuntefor a system of
harmonic oscillators perturbed by an energy-momentumesoimgy noisé?} and
we find that it behaves, for large times, like?/2 in the unpinned cases, and like
t~9/2-1 when on-site harmonic potential is present.

These results are given in the Green-Kubo formalism. Thainterpart in the
NESS formalism have been considered.in [46] but a rigoroasfis still missing.
Several variations of the Green-Kubo formula can be founthénliterature: one
can start with the infinite system in the canonical ensendseaye did in Subsec-
tion[2.1.2, or with a finite system, in the canonical or micemonical ensembles,

28 |t is straightforward to adapt the proofs given fin [1]} [2]ttee case of the momenta exchange
noise.
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sending the size of the system to infinity. It is widely bedidvhat all these def-
initions coincide (also in the case of infinite conductiyiths shown in [2], this
is essentially true for the energy-momentum conservingnbaic chain. Here we
consider the simplest possible definition avoiding to disdine rigorous definition
of the canonical ensemble in infinite volume and the probléracuivalence of
ensembles.

The set-up is the following. We consider a chain perturbedtt®y energy-
momentum conserving noise (séel(11)) with periodic boundanditions. Its
Hamiltonian is given byg = erm & where the energyy of atomx is

2
B wig+2 S Vig-a). )

ly—x=1

G@X:

The system is considered at equilibrium under the Gibbsdyc@monical mea-
sure

e
dunt =

whereZy 1 is the renormalization constant.

The Green-Kubo formula for the thermal conductivity in theedtiong, 1 <
k < d, isP] the limiting variance of the energy curre.iﬁ‘{;eK([O,t]) up to timet in
the directiong, in a space-time box of sizd x t: '

- 1 ey
K(T) - ﬁtL'Tm,\l"m EUNT Nd XGZT Jxx+el : (88)

The energy currentﬁ]ﬁ’LeK([O,t]); k=1,...,d} are defined by the energy conser-
vation law

d
éax(t) - éax(o) = kzl (J;ayq( x([o t]) xx+a<([o t]))

The energy current up to timecan be written as

x+e,( ([0,1]) /J><><+er< )dS+ My xrg (1) (89)

whereMy x1q (t) is a martingale ancji%e‘ is the instantaneous current which has
the form

. ~ o~ 1
xxra = xxractV [P~ B Txra = =5V (Gera =) (Prrac+ Py (90)

The terijf({HeK is the Hamiltonian contribution while the gradient term isedo
the noise.

29 By symmetry arguments this is independenkof
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We now expand the square [N {88). Notice first that since we paviodic bound-
ary conditions the gradient term appearing[inl (90) does aptribute. By a time
reversal argument one can show that the cross term betweendttingale and the
time integral of the instantaneous current vanishes. Manea simple computation
shows that the square of the martingale term gives a cotiiibaqual toy (seel([2]
for details). Thus we obtain

1
- 2 . e
K(T)=T tHTool\lllinoc 2thE“N=T z 0 hixia(S)ds Ty

t—+00 N—co

o . o S\t ~ ~
=T72 lim lim z / ds(l——) Epy [JS,GK(O)J)%XJra((S)} ds+vy
dq /0 t
xeTy
(91)

where the last line is obtained by time and space statignafrithe Gibbs measure
andu' denotes masu,O)@. It is then clear that the divergence of the Green-Kubo
formula, i.e. anomalous transport, is due to a slow decay of the time ciivel
functionC(t) defined by

C(t) = |\|1|an zd IEHN,T [fg,e,((o) Jrix+a< (t)] : (92)
xeTy

Theorem 8 ([2]). Consider the harmonic case:(¥) = ar?, W(q) = vg® where

a > 0andv > 0.

Then the limit defining @) in (@2) exists and can be computed explicitly. In partic-
ular, we have that @) ~t=9/2if v =0and Qt) ~t=9/2-1if v > 0.

Consequently, the limif(91) exists {0, +] and is finite if and only if d> 3 or

v > 0. When finitex (T) is independent of T and can be computed explicitly.

Proof. We compute the Laplace transfori (z) = Jo e #Cy(t)dt, z > 0, of
Cn(t) = S et Eur [Jog(0) ISxre (t)]. Since we have

LN(Z):NillJN,T z jN)iij,q( (Z_D%N)il z jN)?,er,a(

d d
XeTy xeTy

it is equivalent to solve the resolvent equati@r- £y )hn = Y xetd j:’ix 1o Notice
that.#\ maps polynomial functions of degree 2 into polynomial fimres of degree
2 and thaty, j:ixm‘ is a polynomial function of degree 2. Thus, the functignis
a polynomial function of degree 2. Moreover it has to be spigslation invariant
sincey j:’iereK is. Therefore we can look for a functidwy of the form

%0 Observe that replacingl — £)* by e and limy_. Syerg DY Sxeze we formally get an ex-
pression similar to the Green-Kubo formula of Theofgm 5.
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hn = aly —X)pxpy + 3 by —X) Py + Y c(y — X)aixdly
Xy Xy Xy

wherea, b andc are functions fron‘il‘ﬁ into R. We compute explicitha, b andc and
we geta= c = 0 whileb is the solution to

(z+2v—yA)b=—a(dg, —d_¢,)

whereA is the discrete Laplacian. Then we dedlggz), henceCy(t) by inverse
Laplace transform. The lim&(t) = limy_, 4. Cn(t) follows. O

Consequently in the unpinned harmonic cases in dimergienl and 2, the
conductivity of our model diverges & goes to infinity. Otherwise it converges as
N — oo, In the anharmonic case we obtained some upper bounds shtwanthe
divergence cannot be worse than in the harmonic case. Thgsr bounds also
show that the conductivity cannot be infinitedif> 3 (seel[2] for details and precise
statements).

3.2 A class of perturbed Hamiltonian systems

In [13] is proposed a class of models for which anomaloususiéin is observed.
These models have been introduced in Sedtioh 1.2 of Chaplerelgoal of [13]
was to show that these systems have a behavior very simithatof the standard
one-dimensional chains of oscillators conserving monefil

3.2.1 Definition of thermodynamic variables

Let us fix a potentia¥ and consider the stochastic energy-volume conservingimode
defined by the generatd? = .« + y.¥, y > 0, whereZ and.> are given by[(2I1).
Recall that the Gibbs grand-canonical probability measpge),, 8 > 0, A € R,
defined onQ by

duga(n) = QZ(B,)\ )t exp{—BV (nx) — Anx} dnx

form a family of invariant probability measures for the iniindynamics. We as-
sume that the partition function is well defined on(0, +) x R. The following
thermodynamic relations relate the chemical potenfals to the mean volumeg
and the mean energyunderpig ):

31 They could be defined in any dimension.
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V(B.A) = Hg 2 (0) = — 03 (10gZ(BA) )

(93)
&(B,A) = kg A (V () = 05 (10gZ(B.A) ).

These relations can be inverted by a Legendre transformpcesg andA as a
function ofeandv. Define the thermodynamic entrofy (0, +o) X R — [—o0, 4-00)

as
= inf Av+logZ(B,A) ;.
Sev)=, inf {pe+AviiogZ(B.A)}
Let  be the convex domain @b, +) x R whereS(e,v) > —o and? its interior.
Then, for any(e,v) := (e(B3,A),v(B,A)) € %, the parameter8,A can be obtained
as
B = (aeS) (ev V)a A= (aVS) (ev V)' (94)
We also introduce the tensiari3,A) = pg x(V'(no)) = —A /B. The microscopic

energy currenfy) ; and volume current ). ; are given by

Iy ==V (m)V (1) — YOV (1)),

. (95)
Bk =—IV'(m) +V' (1)) — vO[n-
With these notations we have
Hpa(isren) = =15 Hga(iymes) = —2T. (96)

In the sequel, with a slight abuse of notation, we also wrriter T(3(e,v),A(e,v))
wheref(e,v) andA (e, v) are defined by relationg (P4).

3.2.2 Hydrodynamic limits

Consider the finitelosedstochastic energy-volume dynamics with periodic bound-
ary conditions, that is the dynamics generated&per = N per+ Y-"N per Where

(upert ) (m) = 2 [V (1x+2) =V'(11x-1)] o F (1), (97)

and
(Apert ) (M= 3 [H) = F()].
xeTn
We choose to consider the dynamicsg rather than or¥ to avoid (nontrivial)
technicalities. We are interested in the macroscopic kieha¥ the two conserved
quantities on a macroscopic time-schlieasN — co.

Remark 2The results of this section shall be compared to the restil®eotion
[2.2.1. For the velocity-flip model, the hydrodynamic limitkere trivial in the Euler
time scale. It was only in the diffusive time scale that son@gion of the profiles
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was observed and the hydrodynamic limits were given by mdi@bquations (see
(&4)). Here, the evolution is not trivial in the Euler time cand the hydrodynamic
limits are given by hyperbolic equations (see below (99).

We assume that the system is initially distributed accgrdma local Gibbs
equilibrium state corresponding to a given energy-volunodile Xo: T — % :

_ (¢
x= ()

in the sense that, for a given system dike¢he initial state of the system is described
by the following product probability measure:

B exp{—PBo(x/N)V (nx) — Ao(X/N)nx}
W00 = T1 = Z(go(a/N) Aol/N)

where(Bo(X/N), Ao(x/N)) is actually a function ofeg(X/N), v9(x/N)) through re-
lations [94).

Starting from such a state, we expect the state of the systéimeNt to be
close, in a suitable sense, to a local Gibbs equilibrium preasorresponding to an

energy-volume profile
e(t,-
X(ta) = (U((t %) 3

satisfying a suitable partial differential equation witlitial conditionX at timet =
0. In view of [96), and assuming propagation of local equiilitm, it is not difficult
to show that the expected partial differential equatiohésfollowing system of two
conservation laws:

dnx, (98)

_ 2 _
{ dre — 0472 =0, (09)

0o — 2047 =0,

with initial conditionse(0, -) = ¢g(+),1(0,-) = vg(-). We write [99) more compactly
as
d[X+c9q3(X):O, X(Ov'):XO(')v

with 2e.0)

~rvy [ —T%(e,0

IX) = (—ZT(e,n)) : (100)

The system of conservation lawls {99) has other nontriviakeovation laws.

In particular, the thermodynamic entrofis conserved along a smooth solution

of @9):
3S(e,v) = 0. (101)

Since the thermodynamic entropy is a strictly concave foncon 02}, the sys-
tem [99) is strictly hyperbolic o (see[[53]). The two real eigenvalues(@fy) (&)
are 0 and- [0e(T2) + 2(?V(r)] , corresponding respectively to the two eigenvectors
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@) 0

It is well known that classical solutions to systemsof 1 conservation laws in
general develop shocks in finite times, even when startimg §mooth initial con-
ditions. If we consider weak solutions rather than clagsicltions, then a criterion
is needed to select a unique, relevant solution among thk eress. For scalar con-
servation lawsr{= 1), this criterion is furnished by the so-called entropyguality
and existence and uniqueness of solutions is fully undedstiébn > 2, only partial
results exist (se€ [53]). This motivates the fact that wirit®ur analysis to smooth
solutions before the appearance of shocks.

We assume that the potentialsatisfies the following

Assumption 3.1 The potential V is a smooth, non-negative function suchttiet
partition function ZB,A) = [*, exp(—BV(r) — Ar) dr is well defined fo3 > 0
andA € R and there exists a positive constant C such that

0<V"(r)<C, (103)
and Vi)
v/ (r
li 00
‘lrr‘rliuwp v € (0, +00), (104)
- V'(n)]?
I 0. 105
‘lr‘nleruoop V) <+ (105)

Providedwe can prove that the infinite volume dynamics is macro-eigdlaen
we can rigorously prove (even yf= 0), using the relative entropy method of Yau
([67]), that [99) is indeed the hydrodynamic limit in the sotio regime,i.e. for
timest up to the appearance of the first shock (see for example [41,BBserve
that the expected hydrodynamic limits do not depeng.dffe need to assume> 0
to ensure the macro-ergodicity of the dynamics.

Remark 3As argued in[[62], it turns out that the conservation of thedgmamic
entropy [(I01) is fundamental for Yau’s method where, in tkgadsion of the time
derivative of relative entropy, the cancelation of the éineerms is a consequence of
the preservation of the thermodynamic entropy.

Averages with respect to the empirical energy-volume meaate defined, for
continuous function§,H : T — R, as (similarly to[(6B))

1 X
(o)) N2 O(R) Vim)
N H) % H (%) ()

We can then state the following result.
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Theorem 9 ([13]).Fix somey > 0 and consider the dynamics on the toflig gen-
erated by %\ per Where the potential V satisfies Assumpfior 3.1. Assumetibat t
system is initially distributed according to a local Giblate [98) with smooth en-
ergy profileeo and volume profileo. Consider a positive time t such that the solution
(e,0) to (99) belongs toZ and is smooth on the time intervd,t]. Then, for any
continuous test functions,@ : T — R, the following convergence in probability
holds as N— +oo:

(8.0 ) — ( [ G(@xt.ada, | H@u(tada).

The derivation of the hydrodynamic limits beyond the shoftkssystems of
n > 2 conservation laws is very difficult and is one of the mostlenging prob-
lems in the field of hydrodynamic limits. The first difficultg bf course our poor
understanding of the solutions to such systems. Recentlyjtd proposed in[[29]
to derive hydrodynamic limits for hyperbolic systems (ie ttasen = 2) by some
extension of the compensated-compactness apprioach [$@jdeastic microscopic
models. This program has been achieved_in [32] (see alscettent paper [30]),
where the authors derive the classinak 2 Leroux system of conservation laws.
In fact, to be exact, only the convergence to the set of eptsofutions is proved,
the question of uniqueness being left open. It nonethekssins the best result
available at this time. The proof is based on a strict cordf@ntropy pairs at the
microscopic level by the use of logarithmic Sobolev inegyastimates. It would
be very interesting to extend these methods to systems suble @nes considered
here.

3.2.3 Anomalous diffusion

We investigate now the problem of anomalous diffusion ofgnéor these models.

If V(r) =r? then Theoreni]8 is mutatis mutandis valid and we get the same
conclusions: the time-space correlations for the currehsie for large time like
t~1/2 . Thus the system is super-diffusive (see [13] for the dtail

For generic anharmonic potentials, we can only provide migaleevidence of
the super-diffusivity. However, it is difficult to estimateimerically the time auto-
correlation functions of the currents because of their etquklong-time tails, and
because statistical errors are very large (in relativeajalthent is large. Also, for
finite systems (the only ones we can simulate on a compuker)atitocorrelation
is generically exponentially decreasing for anharmoniteptials, and, to obtain
meaningful results, the thermodynamic linhNt— c should be taken before the
long-time limit.

A more tenable approach consists in studying a nonequilibigystem in its
steady-state. We consider a finite system of leng¢h-2L in contact with two ther-
mostats which fix the value of the energy at the boundaries.génerator of the
dynamics is given by



Diffusion of energy in chains of oscillators with conseivatnoise 47

N =9GN+ YN+ )\g%’fN’T[: +ABNT, (106)

whereaqy and.# are defined by

N-1
(ADM =T (V(n1) V(1)) (@0 )0)
x=—(N-1)
—V/(Mn-1) (30 F) (M) V(7 -+2) (0 (M),
N-1
(Ahm= 3 [f () = f(m)]

and%xt = T(?,?X —V'(nx) 0. The positive parametefs andA, are the intensities
of the thermostats anf, T; the “temperatures” of the thermostats.

The generatoy 1 is a thermostatting mechanism. In order to fix the energy
at site—N (resp.N) to the valuee, (resp.e ), we have to choosf; = T{l (resp.
B =T, 1) such thag(B;,0) = & (resp.e(f,0) = &). We denote by:-)ssthe unique
stationary state for the dynamics generated#hy

The energy currentg), ;, which are such thaty openV (Nx)) = —0j5”; , (for
X = —N,...,N—1), are given by the first line of (®5) for=-N+1,... N—-1
while

jimfl’,N = /\é [TEV//(an) - (V/(I],N))Z] )
i = —Ar [TV (nn) = (V' ()] -

Since (L oper(V (Nx)))ss= 0, it follows that, for anyx = —N,...,N+1, (j°F, 1 )ss
is equal to a constadf, (T, Tr) independent o%. In fact,

1 N
RO = (A A =3y 1 [ (107)
N

The latter equation is interesting from a numerical viewpsince it allows to per-
form some spatial averaging, hence reducing the stafigticar of the results. We
estimate the exponeft> 0 such that

K(N) == NJ, ~N° (108)

using numerical simulations. & = 0, the system is a normal conductor of energy.
If on the other hand > 0, it is a superconductor.

The numerical simulations giving the value &fare summarized in Table 1.
They have been performed for the harmonic ch&in) = r?/2, the quartic potential
V(r) =r?/2+r*/4 and the exponential potenth(r) = e™" +r — 1. In Sectiol 34
we will motivate our interest in the exponential potential.

Exponents in the harmonic case agree with their expectedsalor nonlinear
potentials, except for the singular valde= 1 wheny=0andV(r) =e " +r—1,
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y V() =r2/2]V({r)=r?/2+r*/aAN () =e " +r-1
0 1 0.13 1

0.01 - 0.14 0.12

0.1 0.50 0.27 0.25

1 0.50 0.43 0.33

Table 1: Conductivity exponents

the exponents seem to be monotonically increasing wighsimilar behavior of the
exponentsis observed for Toda chains [37] with a momentureewing noise. This
strange behavior casts some doubts on the convergencedfaosity exponentd
with respect to system sif¢ (see the comment after Theorem 3[ih [6]). A detailed
study, including the nonlinear fluctuating hydrodynamiedictions, is available in
[571.

Note also that the value found fgr= 0 with the anharmonic FPU potential
V(r) =r?/24r%/4 is smaller than the corresponding value for standardlatmis
chains, which is around 0.33 (see [49]). We performed alsoerical simulations
for a “rotor” model V(r) = 1—coqr), and we found ~ 0.02, i.e. a normal conduc-
tivity. A similar picture is observed for the usual rokarmodel which is composed
of a chain of unpinned oscillators with interaction potah#(r) = 1 —cogr). The
normal behavior is conjectured to be due to the absence gfu@ves (that carry
energy ballistically) because some rotors turning fastdtwieen will break them
([38]). Seel[56] and references therein for a recent studiefotors model.

3.3 Fractional superdiffusion for a harmonic chain with bl noise

In this section we consider the energy-volume conservindehwith quadratic
potential. FixA € R andf3 > 0, and consider the proce§g(t);t > 0} generated by
1) withV (n) = n?/2 and with initial distributioryg , . Notice that the distribution
of the proces$n (t) + p;t > 0} with initial measureyB"H,\ is the same for all values
of A € R. Therefore, we can assume, without loss of generalityXkra0D. We write
Ug = Ug o to simplify notation, and denote [#the law of{n (t);t > 0} and byE the
expectation with respect . Theenergy correlation functiogS (x); x € Z,t > 0}

is defined as

S0 =& E[(m0(0)~ 3) (me(t)?— 3)] (109)

2. . . .
foranyx € Z and anyt > 0. The constan% is just the inverse of the variance of
nZ— % undergg. By translation invariance of the dynamics and the initiatrabu-
tion ug, we see that

32 The variabler has to be interpreted as an angle and belongs to the tafiis 2
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2

FE[(nx(0 = §) (ny(t)* = )] =S(y—%) (110)
for anyx,y € Z.

Theorem 10 ([7]).Let f,g: R — R be smooth functions of compact support. Then,

im 25 1(%)a(})Sezx-y) = [[ f0gWRK-ydxdy  (111)

Moo XYEZ

where{R (x);x € R,t > 0} is the fundamental soluti¢fi of the skew fractional heat

equation orR
_ 1 { 3/4 A)1/4}U. (112)

A fundamental step in the proof of this theorem is the analgéthe correlation
function{St(x,y);x #y € Z,t > 0} given by

Sixy) = ZE[(n0(0)% ~ 1) ne(t)ny(1)] (113)

for anyt > 0 and any # y € Z. Notice that this definition makes perfect sense for
x =Yy and, in fact, we hav8;(x,x) = S(x). For notational convenience we define
St(x,x) as equal td(x). However, these quantities are of different nature, since
S(X) is related toenergy fluctuationandsSt(x,y) is related tovolume fluctuations

(for x £ y).

Remark 41t is not difficult to see that with a bit of technical work thechniques
actually show that the distribution valued procég8(-) ; t > 0} defined for any test
function f by
EN(f f(X){n(tn*?)2 -1
t ( \/—XEZZ n { ( ) B}
converges as goes to infinity to an infinite dimensiona) 8-fractional Ornstein-

Uhlenbeck process, i.e. the centered Gaussian processvistiiance prescribed
by the right hand side of (111).

Remark 51t is interesting to notice tha is the maximally asymmetric/2-Levy
distribution. It has power law alx|~>/2 towards the diffusive peak and stretched
exponential as exp |x|°] towards the exterior of the sound corle ([63, Chapter 4]).
As mentioned to us by H. Spohn, this reflects the expectedgdiysoperty that no
propagation beyond the sound cone occurs.

Remark 6 With a bit of technical work the proof of this theorem can baptéd

to obtain a similar statement for a harmonic chain pertuthethe momentum ex-
changing noise (see [39] where such statement is proveldatftgner function). In
this case the skew fractional heat equation is replacedédfsyymmetric) fractional
heat equation.

33 Since the skew fractional heat equation is linear, it carohees explicitly by Fourier transform.
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Proof. Denote byz°(RY) the space of infinitely differentiable functioris RY —
R of compact support. Thetif ||2,n denotes the weighted(Z%)-norm

2
Iflan=y/3 5 (%) (114)
x€zd
Letg € 45°(R) be a fixed function. For eache N we define the field.#";t > 0}
as
A =53 97 (})Sw2(y—x) (115)
X,YEZ

for anyt > 0 and anyf € 4;°(R). By the Cauchy-Schwarz inequality we have the
a priori bound
| (D] < llgll2nll 12 (116)

for anyt > 0, anyn € N and anyf,g € ¢ (R). For a functionh € 2°(R?) we
define{Q'(h);t > 0} as

A =gz ; g(Z)(, 2)Sypa(y—%.2—X). (117)
XEL Y#2€L
Notice thatQ'(h) depends only on the symmetric part of the functioiherefore,
we will always assume, without loss of generality, th@t y) = h(y,x) for anyx,y €

Z. We point out thatQf'(h) does not depend on the valuestofit the diagonal
{x=y}. We have the priori bound

|Q(M)] < 2]|gll2nllAll2n, (118)

wherehis defined byh(%, ) = h(%,¥) 1,y
For a functionf € ¢;°(R), we defineA,f : R — R as

anf (%) =P (£ (32) + 1 (552) - 21 (%) ). (119)

In other words A, f is a discrete approximation of the second derivative .0fVe
also defind,f © 5: 172 — Ras

(L) - F(%); y=x+1
(Onf 2 8) (5.3) = B (1(2) ~ 1(551)); y=x-1 (120)
0; otherwise.

Less evident than the interpretation&ff, 0,f ® d turns out to be a discrete ap-
proximation of the (two dimensional) distributidf(x) ® d(x =y), whered(x =y)
is thed of Dirac at the linex =y. We have that

GAE) = —2Q (Ot © ) + A" (Jsdnf). (121)
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In this equation we interpret the ter@'(Onf ® ) in the obvious way. By the
a priori bound [1156), the term?}”(%Anf) is negligible, asn — «.We describe
now the equation satisfied ly{'(h). For this we need some extra definitions. For
h € €2 (R?) we definednh: R? — R as

2oh(%,%) = (X2, 3) + (2, E) +h(% 5E) + (3, 52) —4n(2,2)).
(122)

In words,Anh is a discrete approximation of thel 2aplacian ofh. We also define
ah:R— R as

arh(3,3) =n(n(E52) +h(5E ) (LX) —h(EEy)). a29)

The functionaqhis a discrete approximation of the directional derivative, —2) -
Oh. Let us defineZph: 1Z — R as

7ah(3) =n(h(x.x51) ~n(53) (124)

andZqh: 172 5 Ras

_ n(h(3.52) —h(3. %)) y=x+1
Zah(3.5) = P(MCFEF) —hCFEFY): y=x-1 (125)
0; otherwise.

The functionZnh is a discrete approximation of the directional derivatifeho
along the diagonak =y, while 2,h is a discrete approximation of the distribu-
tion dyh(x,x) ® 6(x =y). Finally we can write down the equation satisfied by the

field QM(h):
4 (h) = Q(n~Y24nh+nY2ah) — 24" (Zah) +2Q0 (N"Y2Zh).  (126)

=3

Givenf € %5’ (R), if we chooseh := hy(f) such that
n~Y2Ash +n'2e0h = 20, f © &
then summing(121) anf (126) we get
GAN(f) = =G M) + A (Fbnt) =247 (Znh) + 2Q (n"Y2%,h).

We integrate in time the prewous expression By the a pﬁmjnds the term
féysn(f nf)dsis small as well agy & 3:Q2(h)ds= Qf'(h) — Qj(h). The term

it _
/0 Q(nY2Zxh) ds
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is quite singular since it involves an approximation of atrdisition but it turns
out to be negligible, although this does not follow directtpm the a priori
bounds (se€ [7]). By using Fourier transform one can see-t@at,h converges
to—%z{(—A)3/4—D(—A)1/4}f and we are done. .

3.4 Anomalous diffusion for a perturbed Hamiltonian systewith
exponential interactions

We investigate here in more details the exponential ¥agfr) =e " —1+r. The
deterministic system with generatbr{97) and with the exgndial potential above is
well known in the integrable systems literatfife It has been introduced iA [40] by
Kac and van Moerbecke and was shown to be completely integi@bnsequently,
using Mazur’s inequality, it is easy to show that the energydport is ballistic
([23)).

As we will see the situation dramatically changes when themer@tum exchange
noise is added: the energy transport is no more ballistisbyperdiffusive. Thus the
situation is similar to the harmonic case. Neverthelessxpee the time autocorre-
lation of the current to decay like 2/3. We are not able to show this but we proved
in [6] lower bounds sufficient to imply superdiffusivity.

The results are stated in infinite volume: we consider thehststic energy-
volume conserving dynamicg (t) }1>o with potentialV := Veyp. Its generator is
given by.¥ = &7 + y. where«/ and.s” are defined by({21). Since the exponen-
tial potential grows very fast as— —o, some care has to be taken to show that
the infinite dynamics is well defined (sée [6]). We recall thiand canonical Gibbs
measures are denoted py , and take the form

e*EV(nx)*Ar]x
d =[] ——=——4dnx >0,A+B<0.

Xe

In this section andA are fixed and we denote l®/(resp.v) the average energy

(resp. volume) w.r.tug  (seel(98)).
The microscopic energy currejit), ;, and volume current.’ . ; are given by

Ji)‘(ﬁrl(n) — _e*(nx+nx+l) + (e*nx + e*’7>(+1) _ VD(V(rIX))

and
J)\::))L',l(n) — efnx _|_ e*’7><+1 _ yDnX

We will use the compact notations

34 |t seems that although the Hamiltonian structure of the ¥@ws-Moerbecke system was known,
the interpretation of the latter as a chain of oscillatorthvexponential kinetic energy and expo-
nential interaction was not observed befaorel [13].
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ey
Vv J
Wy = ( (’7x)> ;o kxr1= ( )\(/))5+l> .
Nx Jx,x+l

In the hyperbolic scaling, the hydrodynamical equatiomstie energy profile
and the volume profile take the form

{(?te— 0q((e —1)2) =0

A +205(e —v) = 0. (127)

They can be written in the compact fodX + d4J(X) = 0 with
_ (¢ iy [ —(e—0)?
= () av0- (27 w29
The differential matrix ofy is given by
. —(e—b)e—0o
(Dd)(X)ZZ( (1 ) -1 )

For given(e,v) we denote by(T," )i>o (resp.(T; )=o) the semigroup oi(R) x
S(R) generated by the linearized system

Ae+MTdge =0, (resp.de—MT dye =0), (129)

where

M :=M(eV) = [03](w), w= <e>

Vv

We omit the dependence of these semigroup@gpr) for lightness of the notations.
AboveS(R) denotes the Schwartz space of smooth rapidly decreasictdns.
The first result ofi[6] gives a lower bound on the time-scatenfbich a non-trivial
evolution of the energy-volume fluctuation field can be obsdr
We take the infinite system at equilibrium under the GibbssuEauﬁj corre-
sponding to a mean energyand a mean volume Our goal is to study the energy-
volume fluctuation field in the time-scaie'*?, a > 0:

where forg € R, x € Z,

Gl(q)) (V(nx))
G = N =
(@ (Gz(Q) - Nx
andG;,, G, are test functions belonging &R).
22 d? X2
e

We need to introduce some notation. For eagtD, letH,(x) = (-1)*¢ g
be the Hermite polynomial of ordemndh,(x) = (Z \/271)*1Hz(x)e*><2 the Hermite



54 Cédric Bernardin

function. The sefh,,z > 0} is an orthonormal basis @f?(R). Consider inL?(R)

the operatoKy = x> — A, A being the Laplacian oR. For an integek > 0, denote

by Hy the Hilbert space obtained by taking the completios@) under the norm
induced by the scalar produ¢t -)x defined by(f,g)x = (f,KEg)o, where(-,-)o
denotes the inner product &f(R) and denote byl the dual ofHy, relatively

to this inner product. Let-) represent the average with respect to the Lebesgue
measure.

If E is a Polish space theD(R™,E) (resp,C(R™,E)) denotes the space of
E-valued functions, right continuous with left limits (resgntinuous), endowed
with the Skorohod (resp. uniform) topology. L&f"? be the probability measure
on D(R*,H i x H ) induced by the fluctuation field;™ and g . Let Py, ,

denote the probability measure BifR*,R”) induced by(n(t))i=o0 and g ». Let
Ey,, denote the expectation with respectig, , .

Theorem 11 ([6]). Fix an integer k> 2. Denote by Q the probability measure on
C(R™,H_y x H_y) corresponding to a stationary Gaussian process with m@an
and covariance given by

EqQ[#(H)%(G)l = (Tr H - xTs G)

for every0 < s<t andH,G in Hy x Hy. Here x := x(B,A) is the equilibrium
covariance matrix ofwy. Then, the sequenc(@”’o)nzl converges weakly to the
probability measure Q.

The theorem above means that in the hyperbolic scaling totufitions are triv-
ial: the initial fluctuations are transported by the linead system of{127). To see
a nontrivial behavior we have to study, in the transport gathe fluctuations at a
longer time scalén'*?, with a > 0. Thus, we consider the fluctuation fietd™,

a > 0, defined, for anys € SR) x SR), by
% (G) =™ (T G). (131)

Our second main theorem shows that the correct scaling exyppanis greater

than 1/3:

Theorem 12 ([6]).Fix an integer k> 1 anda < 1/3. Denote by Q the probability
measure on @R, H_ x H_y) corresponding to a stationary Gaussian process with
mean0 and covariance given by

Eq[#(H)%(G)] = (H - X G)

for every0 < s<t andH,G in Hy x Hy. Then, the sequend¢®™),>1 converges
weakly to the probability measure Q.

The proofs of these theorems can be reduced to the proof etallsalequilib-
rium Boltzmann-Gibbs principld_et us explain what it means. Observables can be
divided into two classes: non-hydrodynamical and hydraudfyical. The first ones
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are the non conserved quantities and they fluctuate on a ragtdr fscale than the
conserved ones. Hence, they should average out and oniypttogéction on the
hydrodynamical variables should persist in the scalingtlifor any local function
g:=g(n), the projectionZe, g of g on the fields of the conserved quantities is
defined by

(Zevg)(n) = 9(n) —§(ev) — (0)(eV) - (w0 — )
wherege,v) = (g)u;,, andljis the gradient of the functiogp As explained above
we expect that in the Euler time scale, for any test funckioa S(R) x S(R), the
space-time variance

2
im B, [( [} 753 Hoxm)- g n(en) ds) ] S cE?

Moo J0 XEL

vanishes as goes to infinity. In fact it suffices to sholv (1132) for the fuinotg = Jo 1
BS. Thus let us first define theormalizedcurrents by

To estimate the space-time variance involved we use thedoll inequality (see
[43)):

t 2 Ct 1 -t
L l</0 f(n(ana))ds) ] < W<f,<m—)/5”> f>um (134)

1 R
wheref = —nzxez H (x/n) - Jyx+1. Due to the very simple form of the operator

& the RHS of [I34) can be estimated and shown to vanish gmes to infinity.
Nevertheless it has to be done with some care si#cis very degenerate so that
without the termmiﬂ—a the RHS of[(134) blows up.

Theorent IR does not exclude the possibility of normal fluibing, i.e. the con-
vergence in law of the fluctuation field of the two conservedmgities to an infinite
dimensional Ornstein-Uhlenbeck process in the diffusimetscale ¢ = 1). To see
that it is not the case we will show that the diffusion coeiitiz := 2(e,v) ap-
pearing in this hypothetical limiting process would be iiténexcluding thus this
possibility. Up to a constant matrix coming from a martiregi@rm (due to the noise)
and thus irrelevant for us (se€ [2], [13]), the matrix coéiit & is defined by the
Green-Kubo formula

7= '/0.00 g ngjx,xﬂ(t) [jo,l(o)fl dt. (135)

35 For Theorenf 112, the Boltzmann-Gibbs principle has to begatan the longer time scate!t?
and in the transport frame.
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The signature of the superdiffusive behavior of the systegeen in the divergence
of 92, i.e. in a slow decay of the current-current correlationction. To study the
latter we introduce its Laplace transform

F(y,2) = /0 me*ZHE,,IM [%&Hl(t) [3“0,1(0)}T] dt

which is well defined for ang > 0. This can be rewritten as
F(1,2) =< Jo1,(z— Z) o1 >pa

where<-,- > , is the semi-inner product defined with respeqtg, in the same
way as in[(34).

Our third theorem is the following lower bound 6#(y, z). Observe that?(y, z)
is a square matrix of size 2 whose entryj) is denoted by%; ;.

Theorem 13 ([6]). Fix y > 0. There exists a positive constant= c(y) > 0 such
that
F1a(y,2) > cz M/

and
Zij(v,9=0, (i,j) #(11).
Moreover, there exists a positive constant&C(y) such that for any z- 0,

Cl711(1,2/y) < F11(v,2) <CF11(L,2/y). (136)

The last part of the theorem follows easily by a scaling argomand is in fact
also valid for general potentialé and for generic “standard” anharmonic chains
of oscillators. In[[3/_3[7,_13], numerical simulations ingie a strange dependence
w.r.t. the noise intensity > 0 of the exponend in the energy transport coefficient
k(N) ~ N9 (N is the system size, sde (108) for the definitior @f1)): & := &(y) >0
is increasing with the noise intensity This is very surprising since the more
stochasticity in the model is introduced, the more the sgstesuperdiffusive! The
inequality [Z36) shows that the time decay of the currenb@artrelation function
is independent of (up to possible slowly varying functions corrections, irea
Tauberian sense). It is common folklore that there should binple relationship
between the slow long-time tail decay of the autocorretatibthe current in the
Green-Kubo formula (described by some power law decay) badlivergence of
the thermal conductivity of open systems in their steadiesta he argument is that
the autocorrelation should be integrated over times ofraxdéf we believe in this
argument it means that the numerical simulations bf [8| 3} ate not converged.
There is however no clear mathematical result backing wpttblief.

The proof of the first part of Theoreml113 is based on the thréeviing argu-
ments.
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e The first idea consists in performing the microscopic chaofgeariableséy =
e ', x € Z, that defines a new Markov process(t) }i>0 = {&x(t); X € Z}t>0
with state spacgo0, +03)Z and conserving , é&x and yxlogéy. Its generator is
given by.¥ = o7 + y.& where for any local differentiable functioh

(A 1)(&) = ngx@m— &c1)(Fg F)(E),
(S1)(E) = %[f(fmﬂ— f(£)].

Xe

The invariant measures fo€ (t) ):>o are obtained from the Gibbs measuggs,
by the change of variables above. They form a farily ¢}, ¢ Of translation
invariant product measures indexed by two parametensd 6 which satisfy

P ="Vpo(éx), 6=Vpe(logéx).

In fact the marginal of, ¢ is a Gamma distribution. The parametéos6) are
in a one-to-one explicit correspondence with the paramégev).

Rewriting J}Ml with these new variables we see that it is sufficient to prove
a similar statement for the proce&s(t))i>o under the equilibrium probability
measurey, . Introducing the inner produet -, - > defined, for any local func-
tions f,g on (0, +)% by

< f.g>= Ez{vp,e(f 6:9) — Vp.a(f)Vpe(9)}

we can show that the proof of the first claim of Theofemh 13 reduo showing
that there exists a positive constarguch that for anyg > 0,

<Wo1,(z—2) Wpy >>cz V4 (137)
whereWp 1(&) = (éo—p)(&1—p).
e The second step consists in using a variational formula press the LHS of
({@I37). Indeed we have
<Wo1,(z—-2) Mh1 > =sup{2 < Wo1,0> — < g,(z— y.9)g >
g
~ < dg,(z—yS) Ldg>)

where the supremum is taken over local compactly suppomedth functiong).
To get a lower bound it is sufficient to find a functigrior which one can show
that

2<Wo1,0>> — < 0,(z— vA)g> — < 79, (2— v ) Ldg> > cz VA

e LetH be the Hilbert space obtained by completion of the set ofl lfagections
w.r.t. the inner produck -,- >. Sincev, g is a product of Gamma distributions,
the set of multivariate Laguerre polynomials form an oribreg) basis oft. It is
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then possible to decompo&eas an orthogonal sum,.nH,, of subspace#l,
such that

S Hy—H,, & Hy— Hyo1 @ Hy® Hpq.

The functionWg 1 belongs toH,. Then we restrict the variational formula to
functionsg € H, and we estimate the corresponding new variational problem
which is still infinite dimensional but involves only funetis belonging td@l; &
H, ¢ Hs. To solve this variational problem we adapt ideas develdipstin the
context of Asymmetric Simple Exclusion Process ([4]./[4did exploited later
for other models. One of the difficulties comes again fromf#tot that the noise
is degenerate.

The extension of Theoredmll 3 to other interacting potenisas<hallenging prob-
lem. The general strategy presented here could be carrtdalibtine orthogonal ba-
sis (formed by Laguerre polynomials in the exponential tasao longer explicit
and only defined by some recurrence relations.
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