
STRICTLY COMMUTATIVE MODELS FOR

E∞ QUASI-CATEGORIES

DIMITAR KODJABACHEV AND STEFFEN SAGAVE

Abstract. In this short note we show that E∞ quasi-categories can be re-
placed by strictly commutative objects in the larger category of diagrams of

simplicial sets indexed by finite sets and injections. This complements earlier

work on diagram spaces by Christian Schlichtkrull and the second author.

1. Introduction

An E∞ space is a space with a multiplicative structure encoded by the action of
an E∞ operad, i.e., an operad consisting of contractible spaces with a free Σn-action.
It is shown in joint work by Christian Schlichtkrull and the second author [SS12]
that E∞ spaces can be rigidified to strictly commutative objects if one passes to a
larger category of I-spaces: if I denotes the category of finite sets n = {1, . . . , n}
and injective maps, then the functor category sSetI has a symmetric monoidal
convolution product, and the category sSetI [C] of commutative monoid objects in

sSetI admits a model structure making it Quillen equivalent to the category of
E∞ spaces.

The following construction, due to Mirjam Solberg [SS, Section 4.14], shows that

symmetric monoidal categories give rise to commutative monoid objects in sSetI

in a natural way.

Example 1.1. Let (A,⊗) be a symmetric monoidal category. We consider the
functor Φ(A) : I → Cat with objects of Φ(A)(n) the n-tuples (a1, . . . , an) of objects
in A and morphisms

Φ(A)(n)((a1, . . . , an), (b1, . . . , bn)) = A(a1 ⊗ . . .⊗ an, b1 ⊗ . . .⊗ bn).

Functoriality in I is induced by permutation of entries and insertion of the unit
object of A. Composing with the nerve functor N gives an I-simplicial set NΦ(A),
and the symmetric monoidal structure of A makes NΦ(A) a commutative monoid

object in sSetI , see [SS, Proposition 4.16].

Equipped with the (standard or Kan) model structure, the category of simpli-
cial sets sSet is Quillen equivalent to the category of topological spaces. Therefore,
weak homotopy types of spaces are represented by simplicial sets. But simplicial
sets also model quasi-categories up to Joyal equivalence: there is a finer Joyal model
structure on sSet whose fibrant objects are the quasi-categories and whose weak
equivalences are called Joyal equivalences (see e.g. [Lur09a] or [DS11] for published
references). Simplicial sets with E∞ structures are also interesting from this per-
spective since they model symmetric monoidal (∞, 1)-categories [Lur]. These play
a prominent role in Lurie’s work on the cobordism hypothesis [Lur09b].

In view of these two interpretations of simplicial sets, it is an obvious question
if the above comparison of E∞ objects in sSet and strictly commutative objects in
sSetI still holds if we regard simplicial sets as models for quasi-categories. The aim
of this note is to prove that this is indeed the case:
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2 DIMITAR KODJABACHEV AND STEFFEN SAGAVE

Theorem 1.2. (i) The category sSetI [C] of commutative monoid objects in sSetI

admits a left proper positive I-model structure where a map f is a weak
equivalence if and only if hocolimI f is a Joyal equivalence.

(ii) If D is an E∞ operad, then there is a chain of Quillen equivalences relat-

ing sSetI [C] and the category sSet[D] of E∞ simplicial sets with the model
structure lifted from the Joyal model structure.

Here an E∞ operad is an operad D in simplicial sets such that D(n) has a
free Σn-action and D(n) is contractible with respect to the Joyal model structure.
Every E∞ operad in this sense is an E∞ operad in the classical sense since being
contractible with respect to the Joyal model structure implies being contractible
with respect to the Kan model structure. Moreover, every operad D with D(n)
a Σn-free Kan complex such that D(n) → ∗ is a weak homotopy equivalence is
an E∞-operad in the sense of the theorem, for example the Barratt–Eccles operad
whose n-th space is EΣn.

By [SS, Lemma 4.15], the object NΦ(A) in sSetI [C] considered in Example 1.1 is
fibrant in the model structure of Theorem 1.2(i). It models the E∞ quasi-category
NA associated with the symmetric monoidal category A. Therefore Example 1.1
shows that the nerve of a symmetric monoidal category can be rigidified to a com-
mutative monoid object in sSetI in a natural way.

More generally, it follows from Theorem 1.2 that for any E∞ simplicial set
X in the sense of the theorem, there is an A ∈ sSetI [C] and a chain of maps

A← B → constIX of E∞ objects in sSetI that induces a chain of Joyal equiva-
lences when applying hocolimI (compare [SS12, Corollary 3.7]). Hence the E∞
object X can be replaced by the strictly commutative object A. Although this
rigidification of a structure up to homotopy by a strict one is in contrast to the
philosophy of quasi-categories, we think that it is valuable to observe that E∞
quasi-categories can be expressed this way: when viewing simplicial sets as models
for spaces, it is often easy to write down explicit objects in sSetI [C] that model
E∞ spaces. This applies for example to Q(X) if X is connected [SS12, Example
1.3] or to BGL∞(R)+[Sch04, Remark 2.2]. It is likely that besides Example 1.1
above, there are more instances where interesting E∞ quasi-categories arise from
commutative I-functors.

Theorem 1.2 and the corresponding statement about weak homotopy types of E∞
spaces [SS12, Theorem 1.2] refer to different model structures on the same categories
that have the same cofibrations. Nonetheless, several arguments from [SS12] do
not apply here since [SS12, Theorem 1.2] was derived from a result about diagram
spaces indexed by more general categories than I, and some of the more general
arguments were based on special features of the Kan model structure. However,
the Joyal model structure differs from the Kan model structure since it fails to be
right proper and simplicial, and because it doesn’t have an explicit set of generating
acyclic cofibrations. In the proof of Theorem 1.2 presented here, we put emphasis
on the points where new arguments are required and simply cite those parts of the
proof of [SS12, Theorem 1.2] that also apply here.

This note is a condensed and revised version of the first author’s master’s thesis at
the University of Bonn, supervised by the second author. We thank an anonymous
referee for a quick and helpful report on an earlier version of this note.

2. Model structures on I-simplicial sets

The category of simplicial sets sSet admits a Joyal model structure with cofibra-
tions the monomorphisms and fibrant objects the quasi-categories, i.e., the weak
or inner Kan complexes. See [Lur09a, Theorem 2.2.5.1] or [DS11, Theorem 2.13].
The Joyal model structure is cofibrantly generated with generating cofibrations
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I = {∂∆n → ∆n |n ≥ 0}. We let J be a set of generating acyclic cofibrations.
(There is no known explicit description of such a set J .)

Let I be the category with objects the finite sets n = {1, . . . , n} for n ≥ 0 and
morphisms the injections. Concatenation of ordered sets t makes I a symmetric
monoidal category with unit 0 and symmetry isomorphism the obvious shuffle map.

Let sSetI be the functor category of I-diagrams of simplicial sets. For every
object n of I, there is a free/forgetful adjunction F In : sSet � sSetI : Evn with

F In (K) = I(n,−) × K and Evn(X) = X(n). For X and Y in sSetI , the left
Kan extension of the I × I-diagram X(−)× Y (−) along t : I × I → I defines an

object X � Y in sSetI . This construction defines a symmetric monoidal product
� : sSetI × sSetI → sSetI with unit F I0 (∗).

We now start to consider model structures on sSetI . Let I+ be the full sub-
category of I on the objects n with |n| ≥ 1. We say that a map f : X → Y in

sSetI is an absolute (resp. positive) level equivalence if f : X(n)→ Y (n) is a Joyal
equivalence for all n in I (resp. all n in I+), and an absolute (resp. positive) level
fibration if f : X(n)→ Y (n) is a fibration in the Joyal model structure for all n in
I (resp. all n in I+). A map is an absolute (resp. positive) level cofibration if it
has the left lifting property with respect to any map that is both an absolute (resp.
positive) level fibration and level equivalence.

Lemma 2.1. These classes of maps define two cofibrantly generated left proper
model structures on sSetI , called the absolute and the positive level model struc-
tures.

Proof of Lemma 2.1. The absolute case follows from [Hir03, Theorem 11.6.1], and
the positive case works as in [SS12, Proposition 6.7]. The sets

(2.1) I level
abs = {F In (i) | i ∈ I,n ∈ I} and I level

pos = {F In (i) | i ∈ I,n ∈ I+}

provide the generating cofibrations. The generating acyclic cofibrations J level
abs and

J level
pos are defined similarly with J in place of I. �

Since the Joyal model structure fails to be simplicial, the usual Bousfield-Kan
formula does not provide a homotopy invariant homotopy colimit functor. In the
following, hocolimI : sSetI → sSet denotes the functor constructed in [Hir03, §19]
using cosimplicial frames. We recall from [Hir03, Example 19.2.10] that there is a
natural map hocolimI X → colimI X.

Lemma 2.2. If X is absolute or positive level cofibrant in sSetI , then the map
hocolimI X → colimI X is a Joyal equivalence.

Proof. This is analogous to [Hir03, Theorem 19.9.1], with the absolute level model
structure replacing the Reedy model structure in that reference. �

We say that a map f : X → Y in sSetI is an I-equivalence if hocolimI f is a
Joyal equivalence of simplicial sets, and an absolute (resp. positive) I-cofibration
if it is an absolute (resp. positive) level cofibration. A map is an absolute (resp.
positive) I-fibration if it has the right lifting property with respect to any map that
is both an absolute (resp. positive) I-cofibration and an I-equivalence.

Proposition 2.3. These classes of maps define two cofibrantly generated left proper
model structures on sSetI , called the absolute and the positive I-model structures.

We write sSetIabs and sSetIpos for these model categories. These (Joyal) I-model
structures have the same cofibrations as the corresponding (Kan) I-model struc-
tures constructed in [SS12, Proposition 6.16] by a different technique.
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Proof. Since I has an initial object, its classifying space is contractible. Hence the
existence of the absolute I-model structure follows from [Dug01, Theorem 5.2], and
we recall from [Dug01] that it is constructed as the left Bousfield localization of the
absolute level model structure at S = {α∗ : F In (∗)→ F Im(∗) |α : m→ n ∈ I}.

The positive I-model structure is defined to be the left Bousfield localization of
the positive level model structure with respect to

T = {α∗ : F In (∗)→ F Im(∗) |α : m→ n ∈ I+}.
It exists and is left proper by [Hir03, Theorem 4.1.1]. Hence it remains to show
that its weak equivalences, the T -local equivalences, are the I-equivalences. Since
T ⊂ S, every T -local equivalence is an I-equivalence. Let f be an I-equivalence.
Passing to fibrant replacements, we may assume that f is a map of T -local objects.
Restricting f along the inclusion I+ → I and applying [Dug01, Theorem 5.2]

to sSetI+ , it follows that hocolimI+ f is a Joyal equivalence. Since I+ → I is
homotopy cofinal [SS12, Proof of Corollary 5.9], this implies the claim. �

Corollary 2.4. There is a chain of Quillen equivalences

sSetIpos

id //sSetIabs
id
oo

colimI //sSet
constI
oo

relating sSetI equipped with the positive and absolute I-model structures and sSet
equipped with the Joyal model structure.

Proof. It is clear that (id, id) is a Quillen equivalence. The adjunction (colimI , constI)
is a Quillen equivalence by [Dug01, Theorem 5.2(b)]. �

The next lemma and the subsequent proposition are analogous to [SS12, Propo-
sition 7.1(iii)-(v) and Proposition 8.2]. The proofs given here avoid using features
of the Bousfield-Kan formula for homotopy colimits.

Lemma 2.5. (i) The gluing lemma for levelwise monomorphisms and level equiv-
alences holds.

(ii) The gluing lemma for levelwise monomorphisms and I-equivalences holds.
(iii) For any ordinal λ and any λ-sequence (Xα)α<λ of levelwise monomorphisms,

the canonical map hocolimα<λXα → colimα<λXα is a level equivalence.

Proof. Part (i) follows from the gluing lemma in left proper model categories [Hir03,
Proposition 13.5.4]. Using (i) and the absolute level cofibrant replacement, it is
enough to show (ii) for a diagram of absolute cofibrant objects. This special case
follows from the gluing lemma in the Joyal model structure by applying colimI .
Part (iii) follows from [Hir03, Theorem 19.9.1]. �

Proposition 2.6. If X is absolute cofibrant in sSetI , then X � − preserves I-
equivalences between not necessarily cofibrant objects.

Proof. We first assume that X = F Ik (L) with L ∈ sSet and k ∈ I. Let Y → Z
be an I-equivalence. If Y and Z are absolute cofibrant, then the claim follows by
applying the strong symmetric monoidal functor colimI and using Corollary 2.4 and
the pushout-product axiom for the Joyal model structure [DS11, 2.15 Proposition].
If Y c → Y is an absolute level cofibrant replacement, then [SS12, Lemma 5.6]
implies that (X � (Y c → Y ))(m) is isomorphic to

(2.2) L× colimktl→m Y c(l)→ L× colimktl→m Y (l).

Since each connected component of the comma category k t − ↓ m has a termi-
nal object [SS12, Corollary 5.9], the colimits in (2.2) are Joyal equivalent to the
corresponding homotopy colimits and (2.2) is a level equivalence. It follows that
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X� (Y → Z) is an I-equivalence since X� (Y c → Zc) is. With Lemma 2.5 replac-
ing those parts of [SS12, Proposition 7.1] that involve weak equivalences, the case
of general X follows as in the proof of [SS12, Proposition 8.2]. �

Corollary 2.7. The absolute and positive I-model structures on sSetI satisfy the
pushout-product axiom and the monoid axiom.

Proof. The part of the pushout-product axiom involving only cofibrations results
from [SS12, Proposition 8.4]. As in [SS12, §8], Proposition 2.6 implies the rest. �

The following lemma is analogous to [SS12, Lemma 8.1].

Lemma 2.8. Let G be a finite group and let f : X → Y and Y → E be morphisms
in (sSetI)G such that hocolimI f is a Joyal equivalence. If G acts freely on E(m)
for every object m in I, then f/G : X/G→ Y/G is an I-equivalence.

Proof. Since there is a G-map Y → E, the G-action on Y (m) is also free. Hence
hocolimG Y (m) → colimG Y (m) ∼= (Y/G)(m) is a Joyal equivalence. Using the
same argument for X, it follows that

hocolimG hocolimI f ' hocolimI hocolimG f ' hocolimI(f/G)

is a Joyal equivalence. �

The use of the positive model structure is motivated by the positive model struc-
ture for symmetric spectra discovered by Jeff Smith. The next lemma highlights
one of its key features.

Lemma 2.9. If X is positive I-cofibrant, then the Σn-action on the simplicial set
(X�n)(m) is free for every object m of I.

Proof. Let f : U → V and U → Y be maps in sSetI . By a cell induction argument,
it is enough to show that if f is a generating cofibration and Σn acts freely on
(Y �n)(m) for every m in I, then Z = Y

∐
U V has this property. By [SS12,

Lemma A.8], Y �n → Z�n has a filtration by maps that are cobase changes of maps
of the form Σn ×Σn−i×Σi

Y �n−i � f�i where f�i is the i-fold iterated pushout

product map in (sSetI ,�). Hence it suffices to show that (Y �n−i � f�i)(m) is a
(Σn−i ×Σi)-projective cofibration of simplicial sets with (Σn−i ×Σi)-action. Since
f = F Ik (∗)× g with g a generating cofibration for sSet and k ∈ I+, it follows from
[SS12, Lemma 5.6] that there is an isomorphism

(2.3) (Y �n−i � f�i)(m) ∼= (colimktitl→m Y �n−i(l))× g�i

where g�i is the i-fold iterated pushout-product map of g in (sSet,×). By [SS12,
Corollary 5.9], each connected component of the indexing category kti t − ↓ m
has a terminal object, and Σi acts freely on the set of connected components.
Hence colimktitl→m Y �n−i(l) is a (Σn−i × Σi)-free simplicial set, and (2.3) is a
(Σn−i × Σi)-projective cofibration. �

3. Model structures on structured diagrams of simplicial sets

In the following, an operad D denotes a sequence of simplicial sets D(n) with Σn-
action such that D(0) = ∗, there is a unit map ∗ → D(1), and there are structure
maps D(n)×D(i1)×· · ·×D(in)→ D(i1 + · · ·+in) satisfying the usual associativity,
unit and equivariance relations. It is called Σ-free if Σn acts freely on D(n) for all n.

Let sSetI [D] be the category of D-algebras in (sSetI ,�). We say that a model

structure on sSetI lifts to sSetI [D] if sSetI [D] admits a model structure where a

map is a weak equivalence or fibration if the underlying map in sSetI is.
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Theorem 3.1. Let D be an operad. The positive I-model structure lifts to sSetI [D],

and the absolute I-model structure lifts to sSetI [D] if D is Σ-free.

Since the generating cofibrations coincide, these model structures have the same
cofibrations as the corresponding Kan I-model structures [SS12, Proposition 9.3].

Proof. As in the analogous statement about the Kan I-model structure [SS12,
Proposition 9.3], the claim reduces to showing that for a generating acyclic cofibra-

tion f : U → V in sSetI , the bottom map in a pushout square∐
n≥0D(n)×Σn

U�n //

��

∐
n≥0D(n)×Σn

V �n

��

X // Y

in sSetI [D] is an I-equivalence. Replacing [SS12, Propositions 8.4 and 8.6] by
Corollary 2.7 and [SS12, Lemma 8.1] by Lemma 2.8, the argument given in the
proof of [SS12, Lemma 9.5] applies verbatim with one exception: we need to show
that for any n ≥ 0 and any m in I, the group Σn acts freely on V �n(m). Using that
the generating cofibrations have cofibrant domains and codomains, we may assume
that this also holds for the generating acyclic cofibrations [Bar10, Corollaries 2.7
and 2.8]. Hence the last claim follows from Lemma 2.9. �

We recall that a morphism of operads Φ: D → E induces an adjunction

Φ∗ : sSetI [D] � sSetI [E ] : Φ∗.

Proposition 3.2. Let Φ: D → E be a morphism of operads with Φn : D(n)→ E(n)
a Joyal equivalence for each n ≥ 0. Then (Φ∗,Φ

∗) is a Quillen equivalence with
respect to the positive I-model structures. If D and E are Σ-free, then it is also a
Quillen equivalence with respect to the absolute I-model structures.

Proof. Again the proof of the analogous statement about the Kan I-model struc-
ture [SS12, Proposition 9.12] applies almost verbatim: in the key ingredient [SS12,
Lemma 9.13], Lemma 2.5 replaces those parts of [SS12, Proposition 7.1] that involve
weak equivalences, Corollary 2.7 replaces [SS12, Proposition 8.4], Proposition 2.6
replaces [SS12, Proposition 8.2], and Lemma 2.8 replaces [SS12, Lemma 8.1]. �

Proof of Theorem 1.2. Part (i) follows from Theorem 3.1 applied to the commuta-
tivity operad C with C(n) = ∗ for every n. Left properness follows by the arguments
from [SS12, Lemma 11.8 and Proposition 11.9], where again the results from Sec-
tion 2 replace the corresponding statements in [SS12].

If D is an E∞ operad, then there is a canonical morphism Φ: D → C, and we
obtain a chain of Quillen adjunctions

sSetIpos[C]
Φ∗
// sSetIpos[D]

id //
Φ∗oo sSetIabs[D]

id
oo

colimI // sSet[D]
constI
oo

The first adjunction is a Quillen equivalence by Proposition 3.2. The last two
adjunctions are Quillen equivalences by Corollary 2.4 and the fact that cofibrant
objects in sSetIabs[D] are cofibrant in sSetIabs if D is Σ-free [SS12, Corollary 12.3]. �
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