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Abstract

Social and biological contagions are influenced by the spatial embeddedness of networks. Histori-
cally, many epidemics spread as a wave across part of the Earth’s surface; however, in modern contagions
long-range edges—for example, due to airline transportation or communication media—allow clusters
of a contagion to appear in distant locations. Here we study the spread of contagions on networks through
a methodology grounded in topological data analysis and nonlinear dimension reduction. We construct
“contagion maps” that use multiple contagions on a network to map the nodes as a point cloud. By ana-
lyzing the topology, geometry, and dimensionality of manifold structure in such point clouds, we reveal
insights to aid in the modeling, forecast, and control of spreading processes. Our approach highlights
contagion maps also as a viable tool for inferring low-dimensional structure in networks.



Considerable research during the past few decades has aimed to understand spreading dynamics on
networks [1, 2, 3, 4, 5]—a widespread phenomenon that occurs in diverse settings that range from biological
epidemics [6, 7, 8] to collective social processes such as social movements [9] and innovation diffusion [10].
To study spreading, it is useful to contrast two classes of networks: “geometric networks,” in which nodes
lie in a metric space and are connected by short-range “geometric edges” that are constrained by the nodes’
locations (e.g., lattices that describe discretized partial differential equations [11]), and networks that are not
geometric, in the sense that their edges are not constrained or defined by distances between nodes. Although
the embedding of nodes in a metric space is ubiquitous for spatial networks on Earth’s surface [12], recent
studies have explored the mapping of nodes in a network to locations in a (potentially) latent and (typically)
low-dimensional metric space for an extensive variety of applications. Such applications include inferring
missing and spurious edges in networks [13, 14, 15, 16]; efficiently routing information across the internet
[17, 18]; identifying node-specific attributes that are responsible for edge formation in social networks [19];
and nonlinear dimension reduction of proximity networks inferred from point-cloud data (e.g., images,
videos, and time series) for data-storage and signal-processing applications [20, 21, 22, 23, 24, 25, 26, 27].

When dynamics such as contagions occur on a geometrically-embedded network, it is fundamental
to question the extent to which the dynamics follows such underlying low-dimensional structure. This
question is particularly important and difficult for geometric networks that are supplemented with long-range
“non-geometric edges,” which directly connect nodes that are distant from each other with respect to an
underlying metric space. Long-range edges arise in numerous applications, either by chance (e.g., subways
that connect distant parts of cities) [12] or as a result of merging distinct layers in multilayer networks [28].
In some scenarios, they can also be construed as a source of “noise” in an otherwise geometric network
(e.g., when edges arise due to the presence of noise for inferred proximity networks [25, 26]). They also
play important roles in small-world network models [29] such as Watts-Strogatz [30], Newman-Watts [31],
and Kleinberg [32] networks. Because we are interested in the geometric embeddedness of such networks,
we use the term “noisy geometric networks” for networks that include non-geometric edges as supplements
to geometric edges. (See Figs. 1-2 for examples).

Figure 1: Examples of noisy geometric networks. Nodes are embedded in three manifolds: (a) a ring (1D)
embedded as a circle in R?; (b) a spherical surface (2D) in R3; and (c) a bounded plane (2D) embedded
(nonlinearly) in R? in a configuration known as the “swiss roll” [22]. Given a network with “geometric
edges” (blue), in panels (a)—(b), we add “non-geometric edges” (red) uniformly at random. In panel (c), by
contrast, we add noise to the nodes’ locations in the ambient space and place edges between nodes that are
nearby in that space. In this scenario, we interpret edges between nodes that are nearby with respect to the
ambient space but not the manifold as the non-geometric edges.

The presence of long-range edges can significantly alter how processes spread [33, 30, 31, 32]. For
example, it is traditional to characterize contagions in a geometric setting using “wavefront propagation”
(WFP) [3], which agrees with the qualitative properties of historical epidemics such as the Black Death [34].
By contrast, Refs. [6, 8, 7] (and numerous other sources [1]) have highlighted that modern biological epi-
demics tend to be dominated by long-range transportation networks, such as airline networks or railway
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Figure 2: Wavefront propagation and the appearance of new clusters. (a) Contagions on a noisy geometric
network containing geometric edges along a manifold (in this case, a two-dimensional lattice, which we
indicate with the blue edges) and non-geometric edges (red edges), which introduce shortcuts in the network.
We study two phenomena in the evolution of contagion clusters (shaded areas): “wavefront propagation”
(WFP) describes the outward expansion of a contagion cluster’s boundary, and the “appearance of a new
contagion cluster” (ANC) occurs when a contagion spreads exclusively along non-geometric edges (dashed
arrow). (b,c) We examine WFP and ANC for the Watts threshold model (WTM) [44] for complex contagions
by studying node activation times (i.e., the times at which nodes adopt the contagion), which depend on the
WTM thresholds {7;}, which we take to be identical for every node (i.e., 7; = T for all 7). (b) For small T,
frequent ANC leads to rapid dissemination of a contagion. (c) For moderate 7, little to no ANC occurs and
WFP leads to slow dissemination. For large T, there is no spreading. For a given network, activation times
across multiple realizations of a contagion (with varying initial conditions) map the nodes to a point cloud
via what we call a “WTM map”.

networks, rather than by geographic proximity. Spreading across long-range edges can result in the “appear-
ance of new clusters” (ANC) of a contagion that are spatially-distant, which is an important phenomenon in
the dynamics of recent global epidemics [35]. Indeed, it has been reported that prominent strains of influenza
(e.g., HIN1/09) exhibited a pattern of “skip-and-resurgence” (in which some countries avoided outbreaks in
some years) during recent worldwide outbreaks [36]. In addition, long-range edges can also have significant
effects on social contagions [37, 38, 39, 40]. Given the (either implicit or explicit) geometric embedded-
ness for so many of the networks on which ideas and diseases spread [12, 1], an improved understanding
of contagions on noisy geometric networks is important for numerous applications, which range from the
identification of influential spreaders of information [41] to control of biological epidemics [42, 43].

WEFP and ANC can be very different in social versus biological contagions. One important difference
arises from phenomena such as social reinforcement [37, 38, 39, 40], which occurs only for social conta-
gions. In Fig. 2, we illustrate the prominent effect of social reinforcement for the Watts threshold model
(WTM) [44] of social contagions. The WTM is a generalization of bootstrap percolation [45] and is based
on the idea that each node 7 has some threshold 7; > 0 [46] for adopting a social contagion (i.e., for be-
coming infected). The threshold dynamics gives rise to the characterization of the WTM as a so-called
“complex” contagion because the dynamics at each node ¢ depend on the states of all neighboring nodes,



and it might be necessary for multiple neighbors to be infected before node ¢ adopts a contagion. Impor-
tantly, for some threshold values, WFP can dominate ANC even in the presence of many “noisy” edges—a
phenomenon that has widespread applications (see Sec. 2 and our Supplementary Discussion).

In the present paper, we study bifurcations in WFP and ANC dynamics by examining data that are
generated by several contagions on a given noisy geometric network. Our methodology is grounded in the
field of computational topology [47, 48], and we note that there has been rapidly intensifying interest (see,
e.g., [49, 50, 51, 52]) in using tools from computational topology to study structural features in networks
and for machine learning [53]. In taking this perspective, we introduce a map from the network nodes to
points in a metric space based on contagion dynamics. By analogy to diffusion maps [24] and similar ideas
in nonlinear dimension reduction and manifold learning [20, 21, 22, 23, 24, 25, 26, 27], we use the term
“contagion maps” for these maps. We investigate the topology, geometry, and dimensionality properties
of these maps, and we find for the contagion regime that predominantly exhibits WFP versus ANC that
these properties correspond to the manifold that underlies the noisy geometric network. We examine both
synthetic and empirical networks, including a transit system in London (see Sec. 1.6, Supplementary Note
1, and Supplementary Figs. 1-5). Given that the manifold structure in a contagion map can reflect the
underlying manifold structure of a noisy geometric network, contagion maps also help for the identification
of such underlying structure. This has numerous applications, including for the denoising of networks (see
Supplementary Note 2 and Supplementary Figs. 6-7).

1 Results

1.1 Noisy Geometric Networks

Noisy geometric networks are a class of networks that arise from geometric networks [12] but also include
non-geometric, “noisy” edges. Consider a set )V of network nodes that have intrinsic locations {W(i) }iey in
a metric space. We restrict our attention to nodes that lie on a manifold M that is embedded in an ambient
space A (i.e., w® e M C A). We use the term “node-to-node distance” to refer to the distance between
nodes in this embedding space .4, which we equip with the Euclidean norm || - ||2 (although one can also
use other metrics [17]). To create a noisy geometric network, we place the nodes in the underlying manifold
and add two families of edges: (1) aset £ (G) of geometric edges, such that (i, j) € € (G) when nodes i and J
are sufficiently close to one another (i.e., the length of shortest path along the manifold M that connects the
two nodes is less than some distance threshold); and (2) a set £ (NG) of non-geometric edges, which we place
using some random process between pairs of nodes (i, j), where i # j and (i,j) ¢ £(©). In Figs. 1(a,b),
we show examples of constructing noisy geometric networks by adding non-geometric edges uniformly at
random. In Fig. 1(c), we show a construction that is motivated by nonlinear dimension reduction of point-
cloud data [22, 23, 24, 25, 26].

As an illustrative example, consider the noisy ring lattice in Fig. 1(a), which is similar to the Newman-
Watts variant of the Watts-Strogatz small-world model [30, 31]. Specifically, we consider N nodes that
are uniformly spaced along the unit circle in R?. We then add geometric edges so that every node i is
connected to its d(®) nearest-neighbor nodes. (Note that there are no self-edges.) We then add dN) non-
geometric edges to each node and connect the ends of these edges (i.e., the stubs) uniformly at random while
avoiding self-edges and multi-edges. The resulting network is a (d(G) +dNG) )-regular network that contains
Nd(©) /2 geometric edges and N dNG) /2 non-geometric edges. We can thus specify this class of random
networks using three parameters: N, d(©), and dNG)_ It is also useful to define the ratio o = d(NG) / d©
of non-geometric to geometric edges. Our construction assumes that /N and d(©) are even. In Fig. 1(a), we



depict a noisy ring network with N = 20 and (d(%),dN%)) = (4,2). In Supplementary Note 3 (see also
Supplementary Figs. 8-9), we study models of noisy geometric networks on a ring manifold that incorporate
heterogeneity in the nodes’ degrees and/or locations.

1.2 Watts Threshold Model (WTM)

We analyze a well-known dynamical system for social contagions: the Watts threshold model (WTM) for
complex contagions [44]. In addition to allowing analytical tractability, we have two other motivations for
using the WTM. First, WTM contagions yield “filtrations” of a network and thereby allow us to develop a
methodology grounded in computational topology [47, 48, 49, 50, 51, 52]. Second, the WTM is a simple-
but-insightful model for social influence that has the virtue of explicitly considering social reinforcement
[37, 38, 39].

We define a WTM contagion as follows. Given an unweighted network (which we represent using an
adjacency matrix A) with a set )V of nodes and a set £ of edges, we let 7;(¢) denote the state of node i € V
at time ¢, where 7;(t) = 1 indicates adoption (i.e., infection) and 7;(¢) = 0 indicates non-adoption. We
initialize a contagion at time ¢ = 0 by choosing a set of nodes S C V and setting 7;(0) = 1 for i € S and
7;(0) = 0 for all other nodes. We refer to S as the “contagion seed.” We consider synchronous updating in
discrete time [4], so a node i that has not already adopted the contagion at time ¢ [i.e., ;(¢) = 0] will adopt
it during the next time step [i.e., 7;(t + 1) = 1] if and only if f; > T;, where T; is a node-specific adoption
threshold and f; = di_1 > y A;jn;(t) denotes the fraction of neighbors that are infected and d; = ) | y Ajj is
the degree of node ¢. (Note that this is a slight modification from the original WTM [44], which uses the
adoption criterion f; > T;.) We repeat this process until the system reaches an equilibrium point at some
time t* < N (i.e., no further adoptions occur). For each node ¢, we let 2 denote the node’s “activation
time,” which is the time ¢ at which the node adopts the contagion. Given {7;} and the contagion seed, a
WTM contagion on a network is a deterministic process. Additionally, a node’s adoption of the contagion
is irreversible (i.e., there is no unadoption in this model), so the dynamics are monotonic in the sense that
the subset Z(¢t) C V of infected nodes at time ¢ is non-decreasing with time [i.e., Z(t) € Z(¢ + 1)]. One
can thus use the contagion to construct a “filtration” of the network nodes V. (See Refs. [47, 48] and our
discussion in Supplementary Note 4.)

1.3 Contagion Maps

We study contagion maps based on WTM contagions, and we refer to these maps as “WTM maps.” A WTM
map is a nonlinear map of nodes in a network to a point cloud in a metric space based on the activation times
from several realizations of a WTM contagion. Given J realizations of a WTM contagion on a network
with different initial conditions, the associated WTM map is a function from V to R’ that records the
activation time iL‘y) of the ith node in the jth realization. More precisely, we define a “regular” WTM map
as V — {xM};cyy € R, where x(V) = [x(li),:rg), ce xf]i)]T. In practice, we enumerate the contagions
7 =12,...,J < N, and we initialize the jth contagion at a contagion seed S () such that {j} CS8 (@) for
each j. (Note that one can select any J nodes as seeds by relabeling the nodes.) In addition to the regular
WTM map V — {X(i)}iev, we also define “reflected” and “symmetric” versions of the WTM map for the

subset of nodes J = {1,2,...,J} C V. Letting y](-i) = J:Ej ) and zj(-i) = mgi) + :UZ(-j ), we define the reflected
WTM map J — {y?};c7 € RN and symmetric WTM map J — {z("};c; € R’. For a given network
and thresholds {7;}, the regular, reflected, and symmetric WTM maps are deterministic.
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Figure 3: Contagion initialized with cluster seeding. A WTM contagion on a noisy ring lattice in which
each node has d(©) = 4 geometric edges and N = 1 non-geometric edge. We initialize the contagion
at time ¢ = 0 by setting node s and its network neighbors as infected (indicated by the light blue nodes and
edges). This results in two contagion clusters: C and Cs. At time ¢t = 1, depending on the WTM thresholds
{T;}, additional nodes can adopt the contagion either via WFP and/or via ANC. As indicated by the orange
nodes and edges, nodes that are in the “boundary” of C'y can adopt the contagion via WFP traveling around
the underlying ring lattice. We illustrate this idea further in the magnifying box, where nodes a and b in the
boundary of C] can potentially become infected in the first time step. Alternatively, nodes that share only
a non-geometric edge with a contagion seed can potentially become infected via ANC (as indicated by the
dark blue nodes and dashed edges).

The choice of contagion seeds {S (j)} plays a crucial role in determining the dynamics of WTM con-
tagions and a WTM map. In practice, we use J = N realizations of a WTM contagion for an /N-node
network, for which we initialize the jth realization with a contagion seed SU) = {j} U {k|A;; # 0} that
includes node j and its network neighbors. We use the term “cluster seeding” to describe this type of initial
condition, which we illustrate in Fig. 3. By contrast, we use the term “node seeding” to refer to the initial-
ization of a contagion at a single node: S @) = {j}. Additionally, note that setting J = N yields 7 = V,
and then the complete set of nodes is mapped by all versions of a WTM map. In Supplementary Note 5 (see
also Supplementary Fig. 10 and Supplementary Table 1) we show that the typical computational complexity
for constructing a WTM map is O(N M), where M is the number of edges. See Sec. 3.1 for code, which
we have made available, that constructs WTM maps.

We now motivate our choice for contagion initialization. The requirement that {j} C SU) is convenient
because it allows us to think of the activation time a;g-z) as a notion of distance from node j to node ¢ (i.e.,
it describes the time that is required for a contagion to travel from node j to ¢). This choice is akin to the
diffusion distance [24] and commute-time distance [54] derived from diffusion dynamics (although the latter
is known to have shortcomings for certain classes of networks [55]). To illustrate this point, suppose that
contagion seeds are individual nodes (i.e., S = {j} for j € V), and suppose that we construct the WTM
map V {i(i)}iev for T; = T' = 0 for each node ¢ € V. In this case, the activation time 57§-i) = :Tcz(j )
exactly recovers the length of the shortest path between nodes ¢ and j, and this in turn defines a metric on the
discrete space V. In fact, the N x N matrix X = [x(), ..., %(™)] is a dissimilarity matrix, which is central
to many algorithms for dimension reduction [22, 23, 24, 25, 26] (including Isomap [22], which implements

the mapping of nodes based on shortest paths). Letting 7; > 0 and still assuming that each 5:§Z> is finite, we



show in Supplementary Note 4 that the symmetric WTM map induces a metric on V. More generally, we
show that a set of “filtrations” induces a metric under certain conditions. Consequently, we find that one can
also use topological data analysis of networks to study the embedding geometry of networks.

Although node seeding has wonderful mathematical properties, cluster seeding is very useful in practice
because it can allow a contagion to infect a larger fraction of the nodes in a network. When 7; > 0 for
each ¢ € V, it is common for WTM contagions to reach equilibria that do not saturate the network with

5;’) = oo for some 7,j € V. Activation times of infinity pose a problem,
because WTM maps are well-defined only for activation times xg-i) that are finite (see Sec. 3.3). Contagions
initialized with clusters of a contagion are more likely to spread than those that are initialized at a single
node [56], so cluster seeding increases the range of threshold choices that yield activation times that are

finite. Although WTM maps that we construct using cluster seeding no longer automatically induce a
(4)

J

a contagion. This implies that =

metric on the node set V, one can still construe x
sufficiently small, |SU)| < [V)].

as a distance from node j to ¢ if the contagion seeds are

1.4 WTM Contagions on Noisy Ring Lattices

To guide our experiments on using WTM maps to study WFP and ANC on noisy ring lattices, we conduct
a bifurcation analysis for WTM contagions that are initialized with cluster seeding. We present our analysis
in detail in Sec. 3.2 and Supplementary Note 6, and we summarize our results here.

Our primary results are two sequences of critical values for the WTM threshold 7" that depend on the
non-geometric degree dN% and geometric degree d‘®. These critical values determine the presence versus
absence of WFP and ANC as well as their rates. The qualitative features of ANC behavior are determined
by the thresholds

NG) _ k.
(ANC) o _d _ (NG)
T, = @ 1 &) k=0,1,...,d . (1)
Whenever T' € [T,gffc), TIEANC)> , anode requires at least (dN® — k) neighbors from non-geometric edges

to be infected before it adopts the contagion. This subsequently determines the rate at which new clusters

of contagion appear. For T" > TO(ANC), there is no ANC. The qualitative features of WFP are determined by
the thresholds @ @
TV e CO2k g )
k d(G)+d(NG) ) PRt 2 )

where a wavefront propagates at a speed of k + 1 nodes per time step for T € |T; ,EYFP),T IEWFP)). For

T > TP, there is no WFP.

In Fig. 4(a), we show a bifurcation diagram that summarizes the WTM dynamics for various values of
the contagion threshold 7" and ratio @ = dN®) /d(%) of non-geometric edges to geometric edges. The solid
and dashed curves, respectively, describe Eq. (1) and Eq. (2) for £ = 0. That is, TO(WFP) =1/(2+ 2a) and
TéANC) = a/(a+ 1), which intersect at (a, T') = (1/2,1/3) and yield four regimes of contagion dynamics
that we characterize by the presence versus absence of WFP and ANC. In Fig. 4(b), we plot Egs. (1) and
(2) with other k values for d(%) = 6, where we note that lower curves correspond to larger k. Observe that
increasing T for fixed a leads to slower WFP and less frequent ANC. In particular, for (d(%), dN%)) = (6, 2)
(which implies that & = 1/3), we find four qualitatively different regimes of WFP and ANC traits (see the
regions that we label I-IV).
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Figure 4: Bifurcation analysis for WTM contagions on a noisy ring lattice. (a) We plot the critical thresholds
for k = 0 given by Eq. (1) (dashed curve) and Eq. (2) (solid curve) versus the ratio o = dNG) / d(G) of non-
geometric to geometric edges. These curves divide the parameter space into four qualitatively different con-
tagion regimes, which we characterize by the presence versus absence of WFP and ANC. (b) Equations (1)
and (2) for other values of £ further describe WFP and ANC, and we show them for d(©) = 6. Note that the
curves become lower with increasing k. Fixing (d(®), dN®)) = (6, 2), which yields o = 1/3, we find four
contagion regimes (which we label using the symbols I-1V), where increasing I’ corresponds to slower WFP
and less frequent ANC. (c) For N = 200 and T" € {0.05,0.2,0.3,0.45}, we plot the contagion size ¢(t) ver-
sus time ¢ for one realization of a WTM contagion with cluster seeding [i.e., ¢(0) = 1+ d(®) 4 dNG) = 9],
We observe, as expected, that the growth rate decreases with 7'. In particular, for regime III (e.g., T' = 0.3),
the contagion spreads strictly via WFP, which initially spreads at a rate of 1 node per time step (both clock-
wise and counterclockwise along the ring) but eventually accelerates to d(©) /2 nodes per time step. As we
show using the labeled black lines, we predict and observe linear growth for ¢(¢) when the contagion spreads
by WFP and no ANC and either ¢(¢) ~ 1 or g(¢) =~ N. (See Sec. 3.2 and Supplementary Note 6.) (d) We
plot the number of contagion clusters C'(t) versus ¢. As expected, C'(¢) only increases above its initial value

of C(0) =1+ dNG) = 3 for regimes I and II (for which T" < T, éANC)). There is no spreading in regime I'V.



In Figs. 4(c,d), we illustrate dynamics from these regimes by choosing 7' € {0.05,0.2,0.3,0.45} and
plotting the size ¢(¢) of the contagion [see Fig. 4(c)] and the number of contagion clusters C(t) [see
Fig. 4(d)] versus time ¢. Note that the number C(¢) of contagion clusters is equal to the number of con-
nected components in the subgraph of the original network that only includes infected nodes and geometric
edges. The values of ¢(¢) and C(¢) that we determine numerically (for N = 200) agree with our analysis.
For T' = 0.05, the WTM contagion saturates the network [i.e., ¢(t) — N] very rapidly due in part to the
appearance of many contagion clusters early in the contagion process. For T = (.2, the contagion saturates
the network relatively rapidly due to the appearance of some new contagion clusters. For T' = 0.3, the
contagion saturates the network slowly, as no new contagion clusters appear and the contagion spreads only
via WFP. For T' = 0.45, the contagion does not saturate the network, as neither WFP nor ANC occur.

1.5 Analyzing WTM Maps for Noisy Ring Lattices

In this section, we analyze symmetric WTM maps V — {z(i)} for noisy ring lattices in several ways:
geometrically, topologically, and in terms of dimensionality. Our point-cloud analytics identify parameter
regimes in which characteristics of a network’s underlying manifold also appear in the WTM maps. This
makes it possible to do manifold learning and to assess the extent to which a contagion exhibits WFP (along
a network’s underlying manifold) versus ANC.

In Fig. 5, we study WTM maps for a noisy ring lattice with N = 200 and (d(®),dNG)) = (6,2).
We give each node i an intrinsic location w(*) = [cos(27i/N),sin(27i/N)]” on the unit circle M =
{(a,b)|a® + b*> = 1} C R2. In Fig. 5(a), we illustrate the point clouds {z()};c;, € R that result from
WTM maps with thresholds of 7" € {0.05,0.2, 0.3, 0.45}, which correspond to the four regimes of contagion
dynamics that are predicted by Egs. (1) and (2) for « = 1/3. [See labels I-IV in Fig. 4(b).] To visualize
the INV-dimensional point clouds {z(i)}iep, we use principal component analysis (PCA) to project onto
R2 [22, 26, 57]. The color of each node at location w(® and point z() reflects the activation time for node
1 during one realization of the WTM contagion that we use to generate the WITM map. In particular, dark
blue nodes (points) indicate the contagion seed under cluster seeding. Gray nodes (points) never adopt the
contagion and thus have activation times that are infinite. For practical purposes, we set these activation
times to be 2N rather than co. (See Sec. 3.3 for additional discussion.) Regime III is the regime for which
the point cloud {z()} appears to best resemble (up to rotation) the nodes’ intrinsic locations {w(?}. This
is expected, as this regime corresponds to WFP and no ANC. (In other words, the contagion follows the
network’s underlying manifold M.)

In Fig. 5(c), we summarize the characteristics of WTM maps for different thresholds 7" € [0, 0.6]. For
each threshold, we analyze manifold structure in a point cloud by studying geometry through a Pearson
correlation coefficient p; dimensionality through an approximate embedding dimension P; and topology
through A, which denotes the difference in lifetimes for the two most persistent 1-cycles in a Vietoris-Rips
filtration [47, 48]. Large values of A indicate the presence of a single dominant 1-cycle (i.e., a ring) in a
point cloud. See Secs. 3.4, 3.5, and 3.6 as well as Supplementary Note 7 and Supplementary Figs. 11-13
for additional discussion of our analysis of point clouds.

As expected by our analysis, for regime III (which exhibits WFP but no ANC), we identify characteris-
tics of the manifold M in the point clouds that result from WTM maps. Namely, for regime III, the point
cloud has similar geometry (i.e., indicated by large p), embedding dimension (i.e., indicated by P = 2), and
topology (i.e., indicated by large A) as the network’s underlying manifold M(i.e., a ring).

In Fig. 6, we analyze WTM maps applied to noisy ring lattices for various values of @ = dNG) / d(©),
Specifically, we show values for p, P, and A for N = 200, dG) = 20, various 7T, and various dNG) We
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Figure 5: Contagion maps applied to noisy ring lattices. Symmetric WTM maps were applied to a noisy
ring lattice with N = 200 and (d®),dN®)) = (6,2). (a) We show point clouds {z(?} € R for
WTM maps with 7' € {0.05,0.2,0.3,0.45}, which correspond, respectively, to regimes I-IV in Fig. 4(b).
For visualization purposes, we show two-dimensional projections of the N-dimensional point clouds after
applying principal component analysis (PCA) [26, 57]. (b) We show one realization of the contagion that
we used to construct the WTM maps in panel (a). The color of each point in panel (a)—and corresponding
node in panel (b)—indicates the node’s activation time for one realization. Nodes in the contagion seed are
dark blue, and nodes that never adopt the contagion are gray. (c) As we discuss in the text, we analyze point
clouds that result from WTM maps with respect to three criteria: geometry through a Pearson correlation
coefficient p; dimensionality through the embedding dimension P; and topology through the difference A
of lifetimes. (See the main text as well as the Methods section.) The vertical dashed lines in panel (c)
indicate the predicted bifurcations in contagion dynamics from Egs. (1) and (2) [see Fig. 4(b)]. Note that
there are activation times that are infinite for 7" > TéWFP) = 3/8 [shaded region in (c)]. As expected for
regime III, p ~ 1, P = 2, and large A indicate that the geometry, dimensionality and topology of the point
cloud recover those of a ring manifold M. See Secs. 3.4, 3.5, and 3.6 as well as Supplementary Note 7 for
discussions of these approaches for analyzing point clouds.

show using the solid and dashed curves, respectively, that the transitions between the qualitatively different
regions of these properties closely resemble the bifurcation structure from Egs. (1) and (2) with £ = 0.
In particular, there is WFP but no ANC, we are able to consistently identify the geometry, embedding
dimension, and topology of the underlying manifold of the noisy ring lattice using the WTM map. When
there is both WFP and ANC, the extent to which a contagion adheres to the network’s underlying manifold
depends on « and 7', and we can quantify this extent using the point-cloud measures p, P, and A. We
illustrate our observations further in Fig. 6(d) by fixing « = 1/3 and plotting p, P, and A as a function of the
threshold 7. We show results for (d(%), dN®)) = (6, 2) (blue dashed curves) and (d(®), dN®)) = (24, 8)
(red solid curves). Observe that the latter curve is smoother than the former one. The latter curve yields
values of p, P, and A that better reflect the underlying ring manifold M. By contrast, increasing the
number N of nodes increases the contrast (i.e., as observed through p, P, and A) between the region that
predominantly exhibits WFP and the other regions.

To give some perspective on the performance of WTM maps for identifying a noisy geometric network’s
underlying manifold even in the presence of many non-geometric edges, we use the arrows in Fig. 6(d) to
indicate the values of p, P, and A for a mapping of nodes based on shortest paths, which one can construe
as a variant of the dimension-reduction algorithm Isomap [22] (which we apply to an unweighted network
rather than to a point cloud). Specifically, we map V — {x()} with T = 0 (as we discussed in the section
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Figure 6: Analyzing manifold structure in contagion maps. We analyze the point clouds of WTM maps
for various thresholds 7' for noisy ring lattices with N = 200 and various ratios o = d(NG)/ d©). (As
an example, we show results for d(G) = 20 and various values of dN©).) For each point cloud, we study
(a) geometry through p, (b) dimensionality through P, and (c) topology through A (see the text and the
Methods section). The transitions between qualitatively different structures in the WTM maps (i.e., as seen
through p, P, and A) closely resemble the bifurcation structure from Eqs. (1) and (2), which we show for
k = 0 using solid and dashed curves, respectively. In panel (d), we fix « = 1/3 and plot p, P, and A as a
function of threshold 7. We show results for (d(%), dN®)) = (6,2) (blue dashed curves) and (24, 8) (red
solid curves). Note that there are activation times that are infinite for 7' > TéWFP) = 3/8 [shaded region
in (d)]. The arrows indicate the p, P, and A values that we obtain for the embedding of nodes based on
shortest paths, which (as we discuss in the text) one can construe as a variant of the dimension-reduction
algorithm Isomap [22].

“WTM Maps”).

In Supplementary Note 8, we describe additional numerical results that compare a WTM map to Isomap
[22] and a Laplacian eigenmap [23] for generalizations of the noisy ring lattice by (1) allowing the node
locations to be a random sampling of points on the unit circle and (2) allowing heterogeneity in their ge-
ometric and non-geometric degrees. We define these other network structures in Supplementary Note 2.
Our results (see Supplementary Figs. 14-21) reveal large parameter regimes in which the ring manifold that
underlies the noisy ring lattice is much more apparent (i.e., as indicated by large p, small P, and large A)
for maps based on WTM contagions versus those based on shortest-path or diffusion dynamics (i.e., as in
the Laplacian eigenmap). We stress that any applications of dimension reduction (e.g., manifold learning)
in networks should use an approach that is appropriate for the question of interest. This is why we use
contagions in this paper instead of other types of spreading dynamics.

1.6 Contagions on a London Transit Network

In addition to synthetic networks, we study WTM maps for a London transit network [see Fig. 7(a)]. Nodes
in the network represent intersections of known latitude and longitude (their coordinates are {W(i)}), geo-
metric edges represent roads (from data used in Ref. [58]), and non-geometric edges represent metropolitan
lines (from data used in Ref. [59]). We have made the network publicly available (see Sec. 3.1). We present
our results in detail in Supplementary Note 1, and we summarize them here.

Our central finding is that the qualitative dynamical regimes that we observe for synthetic noisy geo-
metric networks also occur in the London transit network. More specifically, we observe both WFP and
ANC. Additionally, as we illustrate in Fig. 7(b)—(c), these phenomena can be very sensitive to the WTM
threshold 7. We study WFP and ANC by examining the geometry of WTM maps. However, we do not
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Figure 7: Complex contagions on a London transit system. (a) London transit network with N = 2217 nodes
(i.e., intersections), 2854 roads [58] (which we interpret as geometric edges), and 15 metropolitan lines [59]
(which we interpret as non-geometric edges). (b) Node activation times for a WTM contagion initialized
with cluster seeding illustrate for small 7" that contagions quickly spread by skipping across the metro lines;
this leads to ANC. (c) In contrast, for moderate 7', the contagion spreads via slow WFP. (d) Although not
all contagions exhibit such extreme sensitivity to 1" (see Supplementary Note 5), the dependence of ANC
and WFP on T is captured by the geometry of WTM maps if one appropriately handles the activation times
that are infinite (i.e., nodes that never adopt the contagion). See the discussion in the text. The curves
with symbols indicate the values of p for WTM maps (curves with symbols), and the horizontal dotted and
dashed lines, respectively, indicate p for the mapping of nodes based on shortest-path distances (i.e., as in
the Isomap algorithm [22]) and a 2D Laplacian eigenmap [23].

study their one-dimensional homology, as computations of homology (which remains a very active area of
research [60, 61]) have a much higher computational cost than our calculations of geometry and dimension-
ality.

In Fig. 7(d), we plot the Pearson correlation coefficient p that compares the distance between mapped
nodes to their actual distance from each other (according to latitude and longitude) for various values of 7T'.
We show results for the regular, reflected, and symmetric versions of a WTM map (curves with symbols);
and the horizontal dotted and dashed lines, respectively, give p for the mapping of nodes based on shortest-
path distances (i.e., as in the Isomap algorithm [22]) and a 2D Laplacian eigenmap [23]. For each type of
WTM map, we handle the activation times that are infinite (see Sec. 3.3) using two methods. In the method
that we label “full,” we keep the entire matrix that encodes activation times, and we set the activation times
that are infinite to be 2/N. (Recall that we used this approach when studying WTM maps for synthetic
networks.) In the method that we label “part,” we neglect contagions that do not saturate a network, so
we use only a portion of the values in the matrix that encode activation times. In Fig. 7(d), we see that
these choices give contrasting results. For the “full” option, activation times of infinity (which arise when
T Z 0.1) distort the WTM map and lead to a drop in p. In contrast, the “part” method neglects activation
times of infinity, and we find that there is a range of 7' values for which there is a pronounced increase in
p. Such improved agreement between the geometry of WTM contagions and the transit network’s inherent
latitudinal and longitudinal embedding on Earth’s surface is characteristic of an increase in WFP versus
ANC. Interestingly, we find that the small node degrees (e.g., (d;) ~ 2.59) and the significant heterogeneity
(e.g., with respect to node locations, node degrees, and the length of roads) in the London transit network
causes WFP and ANC to be extremely sensitive to the value of 1" for only a few of the contagion seeds
SU) (see Supplementary Note 1 and Supplementary Fig. 5). Nevertheless, as we have demonstrated, such
minority cases still have a significant effect on WTM maps.

Our numerical experiments for the London transit network highlight additional complexities that can
arise for networks that are constructed from empirical data, and they offer complementary insights to our
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investigation of synthetic networks. In particular, the synthetic networks that we examine either are homoge-
neous or are only slightly heterogeneous, so the WFP and ANC behavior tends to be similar for contagions
that are initialized in different parts of a network. This is not the case for the London transit network, which
has significant heterogeneity and very small node degrees (which seems to exacerbate the effect of hetero-
geneity). Infections that start in some parts of the network have rather different properties than those than
start in others, and one also needs to consider multiple strategies for how to handle activation times of infin-
ity. There are also other interesting phenomena that our approach can examine for heterogeneous networks.
For example, in Supplementary Note 1, we study the geometry of WTM contagions for individual nodes
(rather than averaging our results over an entire network) in what amounts to an “egocentric” analysis of
geometry. We find that the local geometry of WTM maps (and hence of contagions) at a given node relates
strongly to its proximity to a metro line.

2 Discussion

Many empirical networks include a combination of geometric edges between nearby nodes and non-geometric,
long-range edges [12]. Such situations can arise when nodes are restricted by their locations in a physical
space (such as in a city) or in terms of latent underlying spaces [16, 17, 18, 19, 20, 21, 22, 23, 24, 25, 26].
When considering a spreading process on a noisy geometric network, it is important to understand the extent
to which a contagion follows such underlying structure. To address this question, we conducted a detailed
investigation using the Watts threshold model (WTM) of complex contagions (with uniform threshold 7")
on noisy geometric networks. The spreading dynamics exhibit both wavefront propagation (WFP) that fol-
lows the underlying manifold structure of a network as well as the appearance of new clusters (ANC) of
contagions in distant locations. To investigate the extent to which a WTM contagion adheres to a network’s
underlying manifold, we introduced the notion of WTM maps (and contagion maps more generally) and
showed when a contagion predominantly spreads via WFP that WTM maps recover the topology, geometry,
and dimensionality of a network’s underlying manifold even in the presence of many non-geometric (i.e.,
“noisy”) edges.

Our methodology of constructing and analyzing contagion maps has important implications not only for
the analysis, modeling, and control of contagions, but also for other dynamics that can be used to construct
filtrations of networks. Moreover, by studying manifold structure in contagion maps, we have shown that
such maps can also be used to identify and study manifold structure in networks. We have compared WTM
maps to Laplacian eigenmaps [23] and Isomaps [22] (see Supplementary Note 8§ for additional discussion)
and found that WTM maps—which are based on a nonlinear and nonconservative dynamical process—
yield results that contrast with those from the other methods. This is sensible, as nonconservative and
conservative dynamics (e.g., diffusion) are known to give different results for which nodes are central [65]
and what network structures constitute bottlenecks to the dynamics [66].

In the Supplementary Discussion, we further consider the implications of our work on three important
fields of research: (i) studying contagions and other dynamics from the perspective of high-dimensional data
analysis (i.e., computational topology and nonlinear dimension reduction), (ii) identifying low-dimensional
(e.g., manifold) structure in networks, (iii) identifying low-dimensional (e.g., manifold) structure in point-
cloud data.
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3 Methods

3.1 Data and Code Availability

The London transit network that we study in Sec. 1.6 and the code that we use to construct WTM maps are
available as Supplementary Files 1 and 2.

3.2 Bifurcation Analysis

To guide our study of WTM maps, we set 7; = T for each node ¢ € V, and we perform a bifurcation
analysis of WTM contagions on noisy ring lattices. In particular, we investigate the dependence of ANC
and WFP on the contagion threshold 7" and on the network parameters d(%), dNG) and N. In Fig. 3, we
illustrate ANC and WEP for this class of networks with d(¢) = 4, dNG) = 1, and N = 40 by considering
a WTM contagion at time ¢ = 0. The light blue nodes are in the contagion seed S = s U {k|Ag, # 0},
which is centered at node s € V. Because node s is incident to both geometric and non-geometric edges,
the contagion is initialized with 1 + d™NG) = 2 contagion clusters. We denote these clusters by C; and Cs.
Cluster ' is more likely to grow via WFP than Cs. The orange nodes in Fig. 3 are what we call contagion
cluster C'1’s “boundary”—the set of nodes that have yet to adopt the contagion but which are exposed to
it via a geometric edge that is incident to an infected node in C';. As we show in the magnification on the
right, nodes in the boundary can adopt the contagion via WFP. Nodes that are not infected and not on the
boundary can become infected via ANC. (See the dark blue nodes and dashed edges.)

If node 7 adopts a contagion via ANC, then by definition it is not in the boundary of a contagion cluster,
so its neighbors due to geometric edges have yet to adopt the contagion. Consequently, node ¢ potentially

has 0,1, ...,dN9 neighbors that are infected, and its fraction of infected neighbors is restricted to f; €
NG . . . ..
{0, i) +1 NG » ) f NG d<G§l(+ d<)NG> }. This observation yields the critical thresholds
dNG) —
TANO) 2 k=01,...,dN9 .

d(G) 4 qING)?

The contagion dynamics changes abruptly at the critical values of T', so the qualitative dynamics of ANC for

any T € |T(2NO) pANC)

1 ) are similar to each other, but there are abrupt changes at the endpoints of the

interval. In particular, whenever T € [Téffc), T,EANC)>, a node requires at least (dN® — k) neighbors due

to non-geometric edges to be infected before it adopts the contagion. In Supplementary Note 6, we study

the probability that a node has exactly (d™% — k) infected non-geometric neighbors at time ¢. For large
G)

networks, this probability is approximately (dﬁl\g)fk) [q(t)/N]de)*k[l — q(t)/N]*, where ¢(t) denotes
the number of nodes that have adopted the contagion at or before time ¢. Note that the probability is an
expectation over the ensemble of noisy ring lattices, because it uses the fact that non-geometric edges are
generated uniformly at random in our model. Therefore, it does not matter which of the ¢(¢) nodes happen
to be infected.

Turning to WFP, we now study contagion transmissions exclusively across geometric edges. That is,
given a node ¢ in a contagion cluster’s boundary, we assume that the node’s neighbors due to non-geometric
edges are not infected. Naturally, this assumption does not always hold, but it is insightful to first examine
this ideal case and then consider more general situations as perturbations of such a baseline analysis of WFP.

To facilitate our discussion, we will use the example contagion illustrated in Fig. 3. In particular, we
consider WFP in the clockwise direction for cluster C';. Nodes a, b, and ¢ are exposed, respectively, to 2, 1,
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and 0 nodes that have adopted the contagion, so their fractions of neighbors that are infected are f, = 2/5,
fo = 1/5,and f. = 0/5. Note that we assume that the non-geometric edges for nodes a, b, and ¢ are incident
to nodes that are not infected (i.e., which have not adopted the contagion). Because f; > T for node i to
adopt the contagion, one of three situations can occur at time ¢t = 1: (1) if 0 < 7' < 1/5, then nodes a and b
adopt the contagion; (2) if 1/5 < T < 2/5, then node a adopts the contagion; and (3) if 2/5 < T, then the
contagion cluster C; does not increase in size via WFP. Node ¢ cannot adopt the contagion via WFP at time
t = 1 for any T' > 0. We find that WFP is governed by the critical thresholds

TV s A2k A9
k d(G)—I—d(NG)’ [ I 9 )
where a wavefront propagates at a speed of £ + 1 nodes per time step for 7' € T,ngFP),T,iWFP)). For
T > TO(WFP), there is no WFP.

We now include additional discussion of the assumptions in our analysis of WFP. Specifically, when
considering whether or not node ¢ in a contagion cluster’s boundary will become infected, we assumed
that its non-geometric edges are not incident to an infected node. Obviously, this assumption is valid for
dN® = 0. However, as we discuss in Supplementary Note 6, the expected probability (over an ensemble
of noisy geometric networks with non-geometric edges generated uniformly at random) that a node’s non-
geometric edge is incident to an infected node is ¢(¢)/(N — 1). Similarly, the probability that a node
has dNO® non-geometric neighbors and that none of them are infected is approximately [1 — q(¢)/N ]d(NG),
which is therefore the probability that our assumption is valid. In particular, whenever ¢(t) < N, which
necessarily requires NV > 1 and describes the scenario of an early stage of a contagion on a large network,
the probability that our assumption is valid is approximately equal to 1. Therefore, Eq. (2) accurately
describes the speed of WFP in this scenario with high probability. (Note that we also assume that dN® <«
N, so there cannot be too many non-geometric edges.)

Equation (2), which one can construe as a “local” result, is also very useful for predicting the “global”
behavior of WFP. To see this, we make the following two observations: (1) If a contagion cannot spread
when ¢(t) < N, then it will not reach a state in which ¢(¢t) = O(N); and (2) if ¢(¢) does spread for
q(t) < N, then it will also spread when ¢(t) = O(INV) because an increase in ¢(¢) will help promote further
spreading. Specifically, the presence of a node in the boundary with infected non-geometric neighbors can
accelerate WFP by allowing the node to adopt the contagion with fewer infected geometric neighbors than
Eq. (2) would predict. In fact, when the contagion size is large [i.e., when ¢(t) ~ N], we find that the
WEP speed accelerates up to d(©) /2 nodes per time step (i.e., all nodes in the boundary on one side of the
contagion cluster become infected upon each time step). Similar accelerated WFP has also been observed
for other applications including species dispersion [67]. See Supplementary Note 6 for further discussion.

In Supplementary Note 3, we use a perturbative approach to generalize our bifurcation analysis to a
family of synthetic noisy geometric networks with slight heterogeneities. In our generalizations, we examine
the WFP and ANC behavior of WTM contagions at each node. When the nodes are identical (i.e., as in the
synthetic ring lattice), the contagion behavior is uniform across a network; this leads to the bifurcation
diagram in Fig. 4. When there is heterogeneity, the contagion behavior at each node varies across a network.
However, if the amount of heterogeneity is small, then one can construct a perturbed bifurcation diagram in
which the boundaries between contagion regimes are thickened. That is, as one varies 7' or «, the transition
from one regime (e.g., WFP and no ANC) to another (e.g., WFP and ANC) still occurs, but it does not occur
simultaneously for each node.

15



3.3 Activation Times of Infinity in WTM Maps

When studying WTM maps, one needs a strategy for dealing with activation times that are infinite (which
in some cases might be useful for identifying outliers and in other cases might be problematic). After
constructing a map such as V — {x(i)} € R, the distance between points x() and x1) fori,j € V
can be infinite or even undefined, which complicates any subsequent analyses of the point cloud {x(i)}.
Such an issue can also arise for distances that are derived from shortest paths or the commute time for
diffusion, so algorithms for mapping networks often assume that a network consists of a single connected
component [22, 23]. Distances that are infinite are not an issue for diffusion maps [24], because the nodes
are mapped to a bounded metric space whose diameter is equal to twice the maximum of the heat kernel.

For complex contagions, activation times that are infinite arise not only due to disconnected networks,
but also for networks that are “disconnected” with respect to the contagion dynamics. In the present work,
we use two methods for handling activation times that are infinite: we either set these activation times to
be large but finite (i.e., to be 2N < 00), or we neglect the contagions that lead to activation times that are
infinite by restricting the map to a subset of contagions (i.e., j € J' C J, where 7' = {j € J |x§-l) <
oo Vi}). We note in passing (though we do not explore the strategy in the present manuscript) that there
exist maps such as d — d/(d+1) € [0, 1] that map an unbounded metric space to a topologically-equivalent
metric space that is bounded. This ought to be useful for some situations.

3.4 Geometry of WTM Maps

To quantify the similarity of the geometry of a WTM map to that of the nodes on the underlying manifold
of a noisy geometric network, we calculate the Pearson correlation coefficient p to relate node-to-node
distances for the WTM map. In Fig. 5, we compare the geometry of {z(i)} [see panel (a)] to that of the
nodes’ locations {w(i)} € M [see panel (b)] by computing a Pearson correlation coefficient p to compare
the node-to-node distances for the two point clouds (i.e., |z -2\ |5 and | w® —w(D) |5 for (i, j) € Vx V).
We conduct our comparison with respect to the dimension of the ambient spaces in which the points lie (i.e.,
RY for {z("} and R? for {w(?}). See Supplementary Note 7 for further discussion.

3.5 Dimensionality of WTM Maps

We study the dimensionality by examining the residual variance [22, 57] of the point cloud {z(i)} and
computing the smallest dimension such that we lose less than 5% of the variance when projecting to a
lower dimension using PCA [26, 22, 57]. We refer to this dimension as the “embedding dimension” P.
Specifically, we estimate the embedding dimension P of a WTM map by studying p-dimensional projections
of the WTM map obtained via PCA for different values of p € {1, 2, ... }. For each projection, we calculate
the residual variance I, = 1 — (p®))2 [22, 57], where p{P) denotes the Pearson correlation coefficient that
relates the geometric similarity between the p-dimensional projection and the unprojected WTM map (see
Sec. 3.4). We define the embedding dimension P as the smallest dimension p such that B, < 0.05. See
Supplementary Note 7 for further discussion.

3.6 Topology of WI'M Maps

We study the topology of a WTM map by examining the persistence diagram of a Vietoris-Rips filtration
that is generated by the point cloud {z(")} [47, 48]. For our experiments involving a noisy ring lattice, we
are interested primarily in assessing the presence versus absence of a ring topology in a WTM map. We thus
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study the persistent homology of a WTM map by examining a Vietoris-Rips filtration using the software
package PERSEUS [68]. We calculate persistent 1D features (i.e., 1-cycles) for the point cloud and record
the difference A = I; — lo between the two largest lifetimes of such 1D features. We normalize all lifetimes
by the diameter of the point cloud so that A, 1,5 € [0, 1]. (Note that sometimes it can be preferable to use
the “bottleneck distance” between persistence diagrams [69] rather than A.) See Supplementary Note 7 for
further discussion.
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1 Supplementary Note 1: Complex Contagions on a London Transit Net-
work

The primary goal of our work has been to develop the notion of a WTM map and to demonstrate the
utility of using such maps for examining WTM contagions on noisy geometric networks. Specifically, we
conducted a detailed examination that contrasts wavefront propagation (WFP) along geometric edges versus
the appearance of new contagion clusters (ANC) due to the presence of non-geometric, “noisy” edges. We
have focused on synthetic networks—and, in particular, on noisy geometric networks on a ring manifold—
and we conducted a bifurcation analysis to guide our study. However, one can use WTM maps on far more
general types of networks such as noisy geometric networks that are constructed from empirical data. (More
generally, one can also use contagion dynamics that one constructs from other types of spreading processes.)
This allows two important applications to real systems: (1) one can study the extent to which a contagion
on a network exhibits spatial phenomena such as WFP versus non-spatial phenomena such as ANC; and (2)
one can infer (potentially) unknown low-dimensional structure in a network. In this section, we highlight
these ideas for an empirical network that describes transit infrastructure in a part of London.
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Supplementary Figure 1: London transit network with N = 2217 nodes, 2854 geometric edges, and 15
non-geometric edges (which we have made publicly available, as we discussed in Sec. III A of the main
manuscript). (a) The geometric edges (blue), which we take from Ref. [1], are roads between intersections;
and the non-geometric edges (red), which we take from Ref. [2], give connections between metro stations.
Some nodes (i € P C V, where |P| = 11) correspond to both intersections and metro stations, whereas
other nodes (i € V \ P) correspond only to intersections. Each node ¢ € V has an intrinsic location
{w()} based on its latitude and longitude. (b) Histogram of the frequencies of the nodes’ total degrees {d;}
(.e., d; = dEG) + dENG)), where the mean is (d;) ~ 2.59. (c) Histogram of the frequencies of the edge
lengths {x;;}, where x;; = m(i, j) is the Euclidean distance between locations w(?) and w7 for each edge
(i,7) € & [see Eq. (16)]. See 1 for further discussion.
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Description of the London Transit Network

As we illustrate in Supplementary Fig. 1(a), we study WTM contagions on a London transit network
that includes both roads (which we interpret as short-range, geometric edges) and metro lines (which we
interpret as long-range, non-geometric edges). The nodes V = {1,..., N} (where N = 2217) in the
network correspond to intersections, and we obtain the edges from Refs. [1] (road data) and [2] (metro
data). We construct the merged network (which we have posted, as we discussed in Sec. III A of the main
text), by utilizing the latitudinal and the longitudinal coordinates to place the locations of metro stations at
the nearest intersection of roads. Thus, the nodes V consist of two sets: (1) nodes P C V that correspond to
both metro stations and intersections and thus have both geometric and non-geometric edges; and (2) nodes
V \ P that correspond to intersections and have only geometric edges (i.e., roads). Additionally, because
the network of metro lines in Ref. [2] covers a much larger spatial area than the road network in Ref. [1],
we include only metro stations in the convex hull of the road network. (There are |P| = 11 such stations.)
In Supplementary Fig. 1(b), we show histograms of the frequencies of the nodes’ total degrees {d;}, where
di = dl(»G) + dl(NG) and the mean is (d;) ~ 2.59. In Supplementary Fig. 1(c), we show histograms of the
frequencies of the edge lengths {y;;}, where x;; = m(i,j) is the Euclidean distance between locations
w(® and wl) [see Eq. (16)] for each edge (i,7) € E. In practice, we give node 7 an intrinsic location of
wli) = [wgi), wéi)]T, where wgi) and wg) denote, respectively, the intersection’s latitudinal and longitudinal
coordinate. We normalize each set of coordinates to have unit variance [see Supplementary Fig. 1(a)]. In
general, such a projection from a patch on the surface of a sphere (e.g., the Earth’s surface) to a 2D plane
might not be justified. However, the effect of this projection to a plane is negligible in this case due to the

(a) Activation times for threshold T = 0.02 (b) Activation times for threshold T' = 0.18

Supplementary Figure 2: Activation times {xy)} for nodes ¢ € V for a WTM contagion on the London
transit network, which we initiate with cluster seeding centered at a node j near the Bond Street Station.
(a) For small thresholds, such as T' = 0.02, nodes near metro stations have small activation times, so the
contagion does not follow the geometric edges (i.e., the roads). (b) For moderate threshold values, such as
T = 0.18, the activation times have a large positive correlation with the Euclidean distances between the
intrinsic node locations {W(i)} (given by latitude and longitude). Therefore, the WFP and ANC phenomena
of WTM contagions with this initialization depend significantly on the value of 7. Although this is not
“typical” of all WTM contagions on this network, such situations have a significant effect on the resulting
WTM maps. See 1 for further discussion.
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very small size of the patch.

Before analyzing WTM contagions and WTM maps for the London transit network, let’s consider the
following experiment. In Supplementary Fig. 2, we illustrate that the extent to which a WTM contagion
adheres to the network’s underlying manifold—the Earth’s surface—can be very sensitive to a variety of
factors, including the contagion seed and the WTM threshold 7". We plot the London transit network and
color each node ¢ € V according to its activation time xy) for a single contagion that we initialize with
cluster seeding centered at a node j, which we take to be near the Bond Street Station. In panels (a) and (b),
we show {xg-l)} for nodes 7 € V with thresholds of 7' = 0.02 and T' = 0.18, respectively. Note for I" = 0.02
that the contagion spreads via both roads and metro lines, so the contagion includes ANC. By contrast,
for T' = 0.18, the contagion does not spread across the metro lines; rather, it spreads via WFP along the
roads. As we shall see, this extreme sensitivity to the threshold 7" for the behavior of WTM contagions is
not typical for all contagion seeds. Nevertheless, we find that such rare cases can have a large impact on the
network’s WTM maps.

Numerical Results for the Geometry of WTM Maps

In this section, we study the geometry of WTM contagions on the London transit network that we studied
in Sec. I F of the main text by examining the geometry of WTM maps. As before, we study geometry through
the Pearson correlation coefficient p given by Eq. (18). We do not study the dimensionality and topology
because of the large computational time that it would entail.

To guide our investigation, we first study the equilibrium sizes of contagions (i.e., the number of infected
nodes after the contagion stops spreadmg [3]). Our motivation is as follows. Recall that for WTM maps to be
well-defined, all activation times {CL‘ } must be finite. In our numerical experiments for synthetic networks,
we therefore focused on this situation (e.g., see the main text and 8), and we chose to handle activation times
that were infinite by setting them to be 2N. Even with the restriction to finite activation times, we found
a rich set of diverse qualitative dynamics. However, for the London transit network, the most interesting
WTM maps occur for threshold values 7' that involve activation times of infinity. For this example, we must
account for activation times of infinity more carefully to be able to study WTM contagions with WTM maps
in such situations.

We thus begin by studying the equilibrium sizes of WTM contagions that we initialize with cluster

seeding centered at each node ¢ € V. Specifically, for a given threshold 7', we study the size Ci(target) of

()

target node set” (which we define as the set of nodes {;j} such that x;

’“

each node ¢’s is finite) and the size

Ci(source) of its “source node set” (which we define as the set of nodes {j} such that mgi) is finite). In other

words, node j is in the target node set for node 7 if a contagion that is initialized at node ¢ eventually spreads
to node 7, and node j is in the source node set for node i if a contagion that is handle at node j eventually
spreads to node .

In Supplementary Fig. 3(a), we show histograms of the frequencies of (top panel) CZ-(target) and (bottom

panel) Cfsource) for the network nodes for WTM contagions with threshold values of T € {0,0.1,0.2,0.3}
that we initialize with cluster seeding. As expected, the WTM contagions infect almost all (or all) of the
nodes when 7' is small, whereas they spread to just a small number of nodes (or even 0 nodes) when
T is sufficiently large. For example, observe for most nodes that Ci(target) and Ci(soume) are approximately
N = 2217forT < 0.2, whereas they are very small for most nodes for 7" = 0.3. Additionally, the target and
source node sets seem to exhibit dichotomous behavior in our experiments: they are often either very large

(i.e., equal to or only a bit smaller than V) or very small (i.e., approximately 1). We observe this feature both
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Supplementary Figure 3: Equilibrium contagion sizes and geometry of WTM maps on the London transit
network. (a) Histogram of the frequency of sizes Ci(target) for the target node sets and sizes C’i(source) for the
source node sets. Nodes tend to have either very large or very sizes of the target and source node sets, so we

assign nodes into four classes: (1) large Ci(target) and large C’i(source), (2) small C’i(target) and large C’i(source),

(3) large Ci(target) and small Ci(source), and (4) small C’i(target) and small C’fsource). In practice (as we discuss
in 1), we compare these values to [N/2 to assign nodes to classes. (b) Fraction of nodes in classes (1)—(4). All
nodes shift from class (1) to class (4) as T increases; however, for the approximate range 7" € (0.1,0.25),
nodes are only in classes (1)—(3). (c) Pearson correlation coefficient p for the WTM map (solid curves),
Isomap (horizontal dotted line), and a 2D Laplacian eigenmap (horizontal dashed line). For the WTM map,
we show results for the regular (“reg”), reflected (“ref””), and symmetric (“sym”) versions of the WTM map.
For each version, we handle the activation times of infinity in two ways: we either (1) set these activation
times to be 2N and consider the complete matrix of activation times (“full”’) as we proceeded with our
studies of synthetic networks; or (2) we neglect these values and examine only the remaining submatrix
of activation times (“part”) after removing appropriate rows and columns. For the values of 7" for which
nodes are exclusively in classes (1) and (2) [i.e., for T" in the approximate range (0.1,0.2)], we find that p
increases for the WTM maps when we neglect the activation times of infinity. For the WTM maps in which
we set the activation times of infinity to 2V, the values of p for T' Z 0.1 are considerably smaller than those
for T' < 0.1. This is especially prominent in the symmetric and reflected WTM maps. See 1 for further
discussion.

for the values of T that we depict as well as for other values of T'. (We examined 7" € {0.01,0.02,...,0.5}.)
Motivated by this observation, we assign the nodes to four classes for a given 7": (1) nodes ¢ with large

Ci(target) and large Ci(source) that can initiate large contagions and also adopt most contagions; (2) nodes

C(target) C(source)

with small and large that do not initialize large contagions but adopt almost all contagions;

(3) nodes i with large Ci(target) and small CZ-(SOMCG) that initialize large contagions but almost never adopt
(

contagions; and (4) nodes 7 with small Ci(target) and small C; SOUTC) that neither initialize large contagions
nor adopt many contagions. In this classification, we arbitrarily take N/2 to be the boundary between
“large” and “small” for both types of division.

In Supplementary Fig. 3(b), we examine the fraction of nodes in each class as a function of 7. For
sufficiently small 7" (e.g., T' < 0.1), almost all network nodes are in class (1) and almost all WTM contagions
saturate the entire network. However, for large 1" (e.g., 7' > 0.35), all nodes are in class (4) because no
contagions spread if the threshold is sufficiently large. The transitions between the different classes are
interesting. Specifically, observe for the approximate range 7' € (0.1,0.2) that a small fraction of nodes
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moves from class (1) to class (2). Moreover, for the approximate range 7" € (0.2,0.25), class (2) and class
(3) each contain only a small fraction of the nodes. Class (4) remains empty until 7' > 0.25, and it then
grows as we increase 1" until all nodes are in class (4) for T’ g 0.35.

In Supplementary Fig. 3(c), we plot the Pearson correlation coefficient p from Eq. (18) to compare the
geometry of the nodes’ original locations {w(i)} to point clouds that result from WTM maps. We show
results for the regular, reflected, and symmetric versions of the WIM map. (See Sec. I C of the main
text.) We consider two different methods for handling the activation times of infinity [which necessarily
arise whenever nodes are in classes (2)—(4)]. We either set the activation times to 2N and investigate the
complete matrix of activation times, or we consider only finite activation times by using only the associated
submatrix of activation times (after removing appropriate rows and columns that contain activation times of
infinity). To illustrate our analysis, consider the latter case for the map V +— {x(i)}. We project each point
x() e RN onto R’ with J < N by ignoring the dimensions that correspond to WTM contagions that are
initialized with cluster seeding at nodes in class (2). This corresponds to considering the point cloud {fc(i) 1,
where x(9) = Qx(?) and the J x N projection matrix 2 has entries Qji; = 1, where j € {1,..., J}, the set
{k1,ka, ..., k;} indicates the nodes that are not in class (2), and all other entries 2, are equal to 0. For the
reflected WTM map, we consider the map {i} — {y(} only for nodes i that are not in class (2). Finally,
for the symmetric WTM map, we consider the map {i} — {z(V}, where z() = Qz(), and we only map
nodes ¢ € V that are not in class (2).

Returning our attention to Supplementary Fig. 3(c), note for the reflected and symmetric WTM maps
that we calculate the Pearson correlation coefficients p only for the mapped points. As expected, p for the
WTM maps depends significantly on 7', and one can observe that shifts in p are well-aligned with changes
in CZ-(target) and C’fsource). The approximate range of thresholds 7" € (0.1, 0.2) is particularly interesting, as
we observe that values of p for WTM maps increase when we neglect the activation times that are infinite.
These larger p values, in turn, indicate an improved agreement between the nodes’ original locations and
the geometry of the point clouds that result from the WTM maps. By contrast, for WTM maps in which we
handle activation times of infinity by setting them to 2V, we find that the values of p are smaller for 7" Z 0.1
than they are for 7' < 0.1. That is, when we handle the activation times of infinity in this way, we find that
the WTM map becomes significantly distorted away from the known spatial embedding on Earth’s surface.

We now attempt to gain some insight into which nodes we assign to classes (1)—(4). In Supplementary
Fig. 4, we investigate the importance of the nodes’ metro proximities {1;}, where 1; denotes the length of
a shortest path on the London transit network from node ¢ to a metro station (i.e., ¥; = 0 for nodes that are
metro stations, ¥; = 1 for their neighbors, and so on). We consider nodes that are at least 20 edges from any
metro station to be “isolated.” In the top row, for a given value of the metro proximity /;, we plot the fraction
of nodes at that proximity in each of the four classes. Panels (a), (b), and (c), respectively, give results for
threshold values of 7' = 0.16, T' = 0.18, and T' = 0.2, which are characteristic of the range of 7" in which
we observe large values of p for the WTM maps [see Supplementary Fig. 3(c)]. Note for 7' = 0.16 that
almost all nodes are in class (1), but several are in class (2). Interestingly, all nodes in class (2) are located
1; = 2 edges from metro stations. It follows that a WTM contagion tends not to spread very far when we
initialize it with cluster seeding centered at such nodes. For 7" = (.18, we again find that some nodes are
in class (2), whereas the majority of nodes are in class (1). However, the nodes in class (2) are either 2-3
edges from a metro station or they are isolated nodes, which are distant from all other nodes (including, by
definition, metro stations). For T' = 0.2, we find that nodes are in classes (1)—(3). As before, nodes in class
(2) are either 2—3 edges from a metro station or are isolated. The nodes in class (3)—which are the class of
nodes that are typically not reached by WTM contagions initialized with cluster seeding—are all relatively
isolated, so one can construe them as peripheral nodes in the network [2]. Interestingly, our experimental

27



(a) T =0.16 (b) T =0.18

1 1
¥ —— class (1) \V w
0.8 —&—class (2) 0.8
class (3)
= Bl
206 o—dass@ |1 Zop
ks ©
] &
£04 £0.4
0.2
0:& et :
0 10 20 30 40 0 10 20 30 40 0 10 20 30 40
metro proximity (t;) metro proximity (1;) metro proximity (1;)
(d) (e) (f)
0.08 10 50
- - metro stations -E XXX
= = 8% re U = ] x
Z 0.06 = i A& havey; =0 £ a0 gsgsx><
N g z e
> : s 5 X
g 5 6 o < . gggi
Z 0.04 _0:; ok ok WRERE X ¥ F 530 §¥x§
% = LRRRRRRRRRRRRRRRRIRR % = §><§X
h s T L = ! «
£ 0.02 g, o g 20 llillm I
< g ﬁiil
0 0 10
0 10 20 o 30 40 0 10 20 30 40 0 10 20 30 40
metro proximity () metro proximity (%) metro proximity (1;)

Supplementary Figure 4: (Top row) For a given value of the metro proximity ; (i.e., the length of the
shortest path from a node ¢ to a metro station), we show the fraction of nodes that we assign to the four
classes (1)—(4) based on the sizes of their target and source node sets (see the text). (a) For 7' = (.16, almost
all nodes are in class (1), though a few nodes are in class (2). The latter are located ¢); = 2 edges from a
metro station. (b) For T = 0.18, most nodes are in class (1), but some nodes are in class (2). These are either
2-3 edges from a metro station, or they are “isolated” nodes that are distant from the other nodes (including,
by definition, metro stations). (c) For 7' = 0.2, nodes are in classes (1)—(3). As before, nodes in class (2) are
either 2-3 edges from a metro station or are isolated. The nodes in class (3) are relatively isolated. (Bottom
row) Properties of the metro proximities {1; }. (d) Frequency of nodes with a given metro proximity ;. (e)
Scatter plot of the nodes’ total degrees {d;} versus their metro proximities {¢;}. (f) For each node i, we
plot the mean length of the shortest paths from that node to the remaining nodes versus its metro proximity
1);. Note that isolated nodes, which are by definition distant from metro stations, are also distant from other
nodes. See 1 for further discussion.

results suggest that the inability to reach a node [i.e., nodes in classes (3) and (4)] is related to a global
network property (i.e., whether it is “isolated”), whereas the inability to seed a large contagion [i.e., nodes
in classes (2) and (4)] depends on both local and global network properties.

In the bottom row of Supplementary Fig. 4, we show properties of the metro proximities {¢;} for the
London transit network. In panel (d), we show a histogram of the frequencies of nodes at a given metro
proximity 1;, and we note that most nodes are 5-20 edges from a metro station. In panel (e), we give a
scatter plot of the nodes’ total degrees {d; } versus their metro proximities {1); }. Note that the metro stations
(for which i; = 0) have large degrees relative to the other nodes: their mean degree is 5, whereas the mean
degree of all nodes is approximately 2.59. In panel (f), we show that isolated nodes, which by definition are
distant from metro stations, also tend to be distant to other nodes in the London transit network. Specifically,
for each node i, we plot the mean length of the shortest path from it to the remaining nodes j € V \ {i}
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versus its metro proximity ;. Nodes with large values of 1); are also more distant (on average) to the other
nodes. It is therefore appropriate to use the term “isolated” to describe these nodes.

Combining the results from Supplementary Figs. 3 and 4, we find when we ignore the activation times of
infinity that WTM maps have larger values of p when 7T is in the approximate interval (0.1, 0.2) than when
T takes other values. The activation times of infinity result from the existence of a few nodes ¢ such that
WTM contagions that we initialize with cluster seeding centered at those nodes tend not to spread very far.
These nodes tend to be in class (2), and they are often either 2-3 edges from metro stations or are isolated
nodes. Finally, when 7' is sufficiently large so that nodes belong to class (3) (e.g., as occurs for 7' > 0.2),
then the values of p are comparatively very small. Recall that nodes in class (3), which almost never adopt
contagions, are relatively isolated nodes in the network.

“Egocentric” Analysis of Geometry

Thus far, we have studied geometry through the Pearson correlation coefficient p given by Eq. (18).
As we discussed in Sec. III D of the main text (and also see 7), p describes the correlation between node-
to-node distances {m(i, j)} for the intrinsic locations {w(} [see Eq. (16)] and node-to-node distances
{mWTM) (51 for the point clouds {x®}, {y®}, or {z()} that result from a WTM map [see Eq. (17)].
We calculate the correlation p using the N(N — 1)/2 unordered pairs of nodes (i,7) € V x V (where
i # j), and one can interpret it as comparing the geometry of these two point clouds at a “network level.” To
gain further insight, we now compare the geometry of the two point clouds at a “node level” by computing
“egocentric” correlation coefficients that consider only node-to-node distances that involve a particular node
i. Specifically, we study a set of Pearson correlation coefficients {p;(7)} for a given i € V.

We introduce the egocentric correlation coefficient p;(T") for the regular WTM map V — {x()}, and we
note that one can apply it to any version of a WTM map. For each node ¢, we study the Pearson correlation
coefficient p;(T") that relates node-to-node distances {m(i, j)} from node i to all nodes j € V with respect
to the intrinsic locations {w(?} [see Eq. (16)] to the node-to-node distances {m"WT™) (4, j)} from node i
to all nodes {j} € V for a point cloud {x()} that results from a WTM map [see Eq. (17)]. Specifically, we
compute

Zjvl[ (i, a) m(i, 3)] [T (7, j) — mWIM)(j_)]
N [m DY, [mWIM (G, ) — (VI )]

where the bar above a variable indicates that we are taking its mean for all nodes j € V. Note the strong
similarity between Eq. (1) and Eq. (18); the only difference is that the summations in Eq. (1) are over j
rather than over both j and .

In Supplementary Fig. 5, we study egocentric correlation coefficients {p;(7")} for WTM maps on the
London transit network for two values of the threshold 7T'. In the top panels, we show results for the map
V = {x(¥}; in the bottom panels, we show results for the map V + {y®}. For both maps, we handle the
activation times of infinity by neglecting them. In the left column, we plot egocentric Pearson correlation
coefficients {p;(1")} versus the metro proximities {¢;} for the threshold values 7" € {0.1,0.18}. We show
values only for nodes that are not in class (2). Note that the larger value of T' tends to have larger values
of p;(T') in both panels (a) and (d). We highlight this feature further in the center column by plotting
[0i(0.18) — p;(0.1)] versus ;. The solid and dashed curves, respectively, indicate the mean values for
T = 0.1 and T = 0.18 for a given ;. In the right column of Supplementary Fig. 5, we plot histograms of
the frequencies of observed values [p;(0.18) — p;(0.1)], and we note that they appear to have heavy tails:

pi(T) = ey
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Supplementary Figure 5: Egocentric correlation coefficients {p;(T") } for WTM maps applied to the London
transit network. We show results for (top panels) the map V +— {x(i)} and (bottom panels) the map V +—
{y(i)}. For both maps, we neglect activation times that are infinite (see 1). (Left column) In panels (a)
and (d), we plot the egocentric correlations {p;(7)} versus the metro proximities {¢; } for thresholds T €
{0.1,0.18}. We only show values for nodes that are not in class (2). The solid curve indicates the mean of
$i(0.1) for a given value of v;, and the dashed curve indicates the mean of p;(0.18) for a given value of ;.
Note that increasing 7" typically leads to an increase of p;(7") in both panels (a) and (d). (Center column)
We plot [p;(0.18) — p;(0.1)] versus 1;. The solid curves indicate the mean values for a given ;. Observe
that the values of p;(T") are typically larger for 7' = 0.18 than they are for 7' = 0.1. (Right column) We
plot the observed frequencies of [;(0.18) — 5;(0.1)] for nodes j € V. Note that the frequencies are rather
heterogeneous, and they appear to have a heavy tail (see the arrows): although [p;(0.18) — p;(0.1)] tends to
be small and positive for most nodes j € V, there are some nodes for which [p;(0.18) — p;(0.1)] is rather
large. See 1 for further discussion.

[0i(0.18) — p;(0.1)] tends to be small and positive for most nodes j € V, but there are some nodes for which
[0i(0.18) — p;(0.1)] is rather large.

Summary of Experiments with the London Transit Network

We studied WTM contagions on a London transit network in which nodes are intersections that are
connected either by roads (which we interpreted as geometric edges) or by metro lines (which we interpreted
as non-geometric edges). Similar to our study of WTM contagions on synthetic networks, we found that
WEFP and ANC arise for WTM contagions on this empirical network, and the type of epidemic propagation
depends significantly on the contagion threshold 7. We studied these WFP and ANC by analyzing the
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geometry of WTM maps, and we observed that the geometry of point clouds that result from WTM maps
agree better with the geometry of the nodes’ intrinsic locations on Earth’s surface for values of 7" in the
approximate range (0.1, 0.2) than for other values of 7". To obtain this result, we examined situations with
activation times of infinity in two different ways: (1) setting those times to be 2N, as in the synthetic
examples in the main text; and (2) ignoring these values in our subsequent calculations. We found the latter
approach to be more useful for the London transit network. Our investigation led us to assign nodes into
four classes based on their ability to initiate large contagions and consistently adopt contagions, and our
calculations yielded an interesting connection between the proximity of nodes to metro stations and their
behavior with respect to WTM contagions.
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2 Supplementary Note 2: Denoising Networks with WTM Maps

The embedding of a network into a metric space has numerous applications, ranging from the control and
optimization of dynamics to network “denoising” (i.e., the identification of spurious and missing edges). In
this section, we highlight one application of WTM maps: the identification of noisy edges.

Our methodology for denoising proceeds as follows. Given the WTM map for a network, we determine
the length m™T™)(j, 5) [given by Eq. (17) in 7] in the embedding space of each edge (4, j) € £. Because
we expect non-geometric edges to have larger lengths than geometric edges, examining the set of edge
lengths {mMW™(;, 7)}i,j)ee allows one to infer edge type. For example, by studying the distribution of
edge lengths, one can choose a partitioning threshold to partition the edges into classes (i.e., geometric
and non-geometric) by comparing their lengths to the partitioning threshold. There exist various heuristic
approaches for selecting such a partitioning threshold, so we will consider all possible partitioning thresholds
in our experiments. To do this, we construct receiver operating characteristic (ROC) curves that examine
the fraction of false positives and false negatives as the partitioning threshold is increased from the smallest
edge length to the largest edge length.

To gauge the performance of this approach for denoising networks, we compare our results to a popular
approach based on subgraph statistics. For each edge (i,7) € &, we compute the Jaccard index |A; N
N;|/IN; U Nj| to measure the overlap of the set N; £ {k € V : A;; # 0} of nodes that neighbor node
i with the set \j 2lkecV: Aj # 0} of nodes that neighbor node j [4]. Similar to our approach of
comparing the edge lengths to some partitioning threshold, one can compare the edges’ Jaccard indices to a
partitioning threshold and then vary the partitioning threshold to yield a ROC curve. This allows for a direct
comparison between the two approaches.

Note that the approach of Ref. [4] is “local”’—i.e., each edge is classified based on the properties of the
subgraph that contains nodes and edges that are adjacent to that edge—whereas denoising based on WTM
maps is a “global” approach that uses an entire network for the denoising procedure.

Denoising the London Transit Network

In our first experiment, we examine the utility of WTM maps for identifying the metropolitan lines in
the London transit system that we study in Sec. I F of the main text. Because this noisy geometric network
results from the merging of two network layers—a road network and the metropolitan system—our aim
in this context is to disaggregate the two network layers based on the assumption that metropolitan lines
connect nodes that are farther apart than those that are connected by roads. In this experiment, we purposely
do not utilize the known node locations, as we are interested in the ability of WTM maps to identify the
metro lines based on the network structure alone.

In Supplementary Fig. 6(a), we plot ROC curves for symmetric WIM maps that we construct with
various choices of the WTM threshold 7T'. For these maps, we set the activation times of infinity to 2/V.
Perfect inference of the noisy edges would correspond to a ROC curve in which the true-positive rate is
always 1 for any nonzero false-positive rate. We also note that the ROC curves for the WTM depend
strongly on T'. For T' = 0.1, the curve shows poor performance, similar to what one obtains using a Jaccard-
index approach [4]. For larger T' (i.e., T £ 0.1), denoising based on WTM maps outperforms this other
approach. Recall for the London transit network that when 7" surpasses 0.1, we observe an increase in WFP
[which is indicated by the larger values of p in Supplementary Fig. 3(c) when 7" surpasses 0.1]. The fact the
ROC curves are still very high in Supplementary Fig. 6(a) when 7' > 0.2 is somewhat unexpected, because
we previously observed that there is disagreement between the geometry of WTM maps and the geometry
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Supplementary Figure 6: Inference of noisy edges in the London transit network that we studied in Sec. I F
of the main manuscript. We show results for WTM maps using various values of the threshold parameter
T. (a) We show receiver operating characteristic (ROC) curves for the classification of edges in the London
transit network as geometric or non-geometric based on WTM maps in addition to a “local” approach based
on the Jaccard index [4]. (b) ROC curves for inferring the noisy edges in a noisy 2D square lattice. (c) We
plot the the areas under the ROC curves (AUC) for various values of 7. We use crosses to indicate the values
of T' that we used in panel (b). See 2 for further discussion.

of the actual London transit network for this range [see the drop in p values that occurs in Supplementary
Fig. 3(c) as T" surpasses 0.2]. Interestingly, these results imply that the length of edges in the WTM map can
still be very predictive for classifying edges as geometric or non-geometric even when the geometry of the
WTM map disagrees with that of the actual network.

Here, we perform additional experiments to explore network properties that can help to shed light on
these results.

Denoising Noisy Two-Dimensional Square Lattices

We now do an experiment to highlight that local algorithms based on an assumption about the local net-
work structure—e.g., a prevalence of 3-cycles (i.e., triangles) [4]—can be very inaccurate if that assumption
is invalid. In particular, modern road networks are known to exhibit a prevalence of subgraphs other than
3-cycles [5] (e.g., city blocks can give rise to 4-cycles), and we therefore expect the lack of 3-cycles to be a
significant factor that influences the results in Supplementary Fig. 6(a).

In our experiment, we examine the inference of noisy edges for a synthetic noisy geometric network with
N = 40? nodes that are embedded as a 2D lattice with periodic boundary conditions. To construct the “sub-
strate” geometric network, we place d‘9 = 4 geometric edges for each node to connect nearest-neighbor
nodes both horizontally and vertically. We then add 40? non-geometric (i.e., “noisy” edges) uniformly at
random to pairs of nodes that are not already connected by a geometric edge. Therefore, each node has
dNO = 2 non-geometric edges on average. We note that this procedure—which adds non-geometric edges
to a network that already has geometric edges—is identical to the procedure that we used for families (b)
and (d) of the noisy ring networks in 3.

In Supplementary Fig. 6(b), we plot ROC curves for the inference of noisy edges via symmetric WTM
maps using various values of the WTM threshold 7. As before, we set the activation times of infinity to
2N. Note that the best ROC curve corresponds to 7' = 0.3, and that the ROC curves for WTM maps with
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T € {0.2,0.3,0.,4} are much better than that for the Jaccard-index approach.

To more precisely compare the different ROC curves for different 7', in Supplementary Fig. 6(c), we
plot the area under the ROC curve (AUC) as a function of 7" (dashed curve). We use crosses to indicate the
values of 7" that we used to generate Supplementary Fig. 6(b). To gauge the performance of inference using
WTM maps, we note that the best attainable AUC is a value of 1 (which is almost reached for the WTM
map with 7" = 0.3). Using the horizontal red line, we show the AUC for the Jaccard-index approach. Its
value is approximately 0.5, indicating that it is comparable to random guessing in this scenario.

Denoising Noisy Ring Lattices with Removal of Geometric Edges

In our final experiment, we examine the effect of of stochasticity on the inference of noisy edges. In
particular, we explore the inference of noisy geometric networks in which we have removed some percent-
age of the geometric edges. We consider family (a) (see 3) of the noisy ring lattices, in which nodes are
evenly placed on the unit circle in R2. We construct networks with N = 200 nodes, where each node has
dN® = 1 non-geometric edge and we consider various choices of geometric degree d@. We then remove
some percentage of the Nd@ /2 geometric edges—chosen uniformly at random—to include stochasticity.
A nice feature of this experiment is that we can simultaneous increase d‘® and increase the edge-removal
percentage so that the expected number of geometric edges (after removals) remains constant. In this proce-
dure, note that although the number of geometric edges after removal is constant by construction, the mean
length of the geometric edges tends to increase as we consider higher levels of stochasticity (i.e., by adding
and then removing a larger number of edges).

In Supplementary Fig. 7, we plot ROC curves for the inference of noisy edges using symmetric WTM
maps in which we set the activation times of infinity to 2/N. In panels (a)—(d), we show results for four
networks, which we construct using progressively larger values of d‘® and in which remove an associated
larger percentage of geometric edges so that, on average, every node has d© = 20 geometric edges after
the removals. In each panel, we depict ROC curves for several values of the WTM threshold 7" as well
as for the Jaccard-index approach. Note that the ROC curves generally become lower as one moves from
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Supplementary Figure 7: ROC curves for the classification of edges
as geometric or non-geometric based on WTM maps with various WTM thresholds 7'. The four panels
(a)—(d) indicate results for four networks, which we generate so that their geometric edges have a tunable
amount of stochasticity, which we implement by creating geometric edges and then removing some
percentage of them uniformly at random. Note that an increased amount of stochasticity generally
decreases the inference accuracy. See 2 for further discussion.
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panel (a) to (d). In panel (a), for example, WTM maps for all 7" values and the Jaccard-index approach
lead to the accurate inference of the noisy edges. In panel (d), however, we find that the WTM map with
T = 0.2 leads to the best ROC curve. Our main finding is that incorporating stochasticity into the presence
of geometric edges inhibits the successful inference of noisy edges. Depending on the value of 7' and
the network parameters, denoising based on WTM maps can perform either better or worse than a local
approach based on the Jaccard index.

Summary of Experiments for Denoising Networks

Our experiments highlight the use of WTM maps for the denoising of networks. We now briefly dis-
cuss the advantages and drawbacks of this novel technique in comparison to other approaches; an in-depth
exploration would be very interesting, but it is well beyond the scope of the present paper. One class of
previous approaches are “local” approaches that make an assumption about local network properties, such
as a prevalence of 3-cycles (i.e., triangles), and then infer “noisy” edges to be the ones that do not follow this
assumption. One can attempt to infer whether a particular edge is consistent with such an assumption by
examining a Jaccard index or another subgraph statistic [4, 6, 7]. Because these are “local” approaches, they
have the advantage of being fast and straightforward to compute. In contrast, our approach based on WTM
maps is reminiscent of “global” approaches that leverage a model for an entire network (i.e., as opposed to a
model for the local subgraph structure) to find edges that do not adhere to the model [8, 10, 9]. We note that
these prior efforts often have focused on the problem of identifying missing (rather than spurious) edges,
although these problems are closely related [9].

In our experiments, we have illustrated examples of noisy geometric networks in which a global ap-
proach based on WTM maps can be advantageous to a local approach. We demonstrated that the global
perspective of the WTM can be beneficial for denoising networks that fail to have a sufficient prevalence
of 3-cycles (so that methods based on, e.g., the Jaccard index, do not perform well in those scenarios).
We have demonstrated this situation both for the London transit network and for noisy 2D square lattices.
Furthermore, even in scenarios in which 3-cycles are prevalent, we found that the WTM and Jaccard-index
approaches show similar levels of performance [see Supplementary Fig. 7(a)]. For noisy ring lattices that
also include stochasticity in the geometric edges, we found (depending on the value of the WTM threshold
T') that an approach based on WTM maps can lead to either higher or lower AUC values than an approach
based on the Jaccard index.
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3 Supplementary Note 3: Generalizations of the Noisy Ring Lattice

In the main text, we analyzed the WTM on noisy ring lattices. In this section, we review our construction of
noisy ring lattices and introduce three additional families of noisy geometric networks that use an underlying
ring manifold. In these families, we introduce heterogeneity into the nodes’ geometric and non-geometric

degrees, which we now denote, respectively, by dl(-G) and dENG) for a given node i. We denote their means

over the nodes by <d§G)) =Ny, dz(.G) and (dz(.NG)) =Ny, d,ENG), respectively. We therefore adjust
our definition of the ratio a to denote the ratio of the mean non-geometric degree to the mean geometric
degree:
NG G
o= (d" D)) @

We note that it is equivalent to state that a denotes the ratio of the number of non-geometric edges to the
number of geometric edges in a given network.

Families of Noisy Geometric Networks on a Ring Manifold

We now define four families of noisy geometric networks on a ring manifold given by the unit circle
in R%. We label these families as (a), (b), (c), and (d). In Supplementary Fig. 8, we illustrate an example
network for each family and plot its corresponding adjacency matrix and degree distribution.

* Family (a). To generate the noisy ring lattice that we studied in the main text, we place N nodes evenly on the
unit circle in R? so that each node 4 has location w() = [cos(6;),sin(6;)]” with 6; = 27i/N. We then add
geometric edges between neighboring node pairs (i, 7) € V x V, so that each node i has exactly dEG) = (dgG)>
geometric edges. That is, we connect each node to its nearest dz(-G) /2 neighbors on each side, and we note that
dEG) is even because of symmetry. We then assign non-geometric edges randomly using (a slight modification
of) the configuration model [11] so that each node has exactly dz(-NG) = (dENG)> non-geometric edges. As in
the configuration model, we connect ends of edges (i.e., “stubs”) to each other uniformly at random, but we
disallow self-edges and multi-edges. Our implementation of the configuration model is a slight modification
of the original version, because we want to guarantee that the set of geometric edges is disjoint from the set
of non-geometric edges. Specifically, if we propose a candidate edge between two nodes that would lead to a
disallowed situation (i.e., it would lead to a self-edge, multi-edge, or an edge that is already a geometric edge),
then we discard the candidate edge, and we propose a new candidate edge as prescribed by the configuration
model. The resulting network is a ((dEG)) + (dl(-NG)>)—regu1ar network that contains N(dEG))/Q geometric
edges and V (dz(-NG)> /2 non-geometric edges. The geometric edges form a deterministic backbone (as in the
Newman-Watts variant [12, 13] of the Watts-Strogatz model [14]), whereas we obtain non-geometric edges
through a stochastic process.

e Family (b). Our first generalization of the noisy ring lattice in family (a) is to allow heterogeneity in the
number of non-geometric edges that are incident to a given node ¢ (i.e., its non-geometric degree dENG)). The
total number of non-geometric edges is still equal to the constant N (dl(-NG)> /2, but we now distribute them

. (N—1—q©®
uniformly at random among the %

possible edge locations that are unoccupied by geometric edges.
Hence, the subgraph that consists only of non-geometric edges limits to an Erdds-Rényi (ER) network when
N > d©) [11]. The distribution of non-geometric degrees is thus a binomial distribution that is centered at

(dNDy,

* Family (c). Our second generalization of (a) is to allow heterogeneity in the node locations on the unit circle in
R2. Constraining geometric edges by distance, in turn, leads to heterogeneity in the number of geometric edges
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Supplementary Figure 8: Example networks with N = 20 nodes, a mean geometric degree of (d
4, and a mean non-geometric degree of (dl(.NG)> = 2, for four families of noisy geometric networks on
a ring manifold: family (a), the noisy ring lattice (which we also discuss in the main manuscript), for
which nodes are evenly spaced and have constant geometric and non-geometric degrees; family (b), for
which the nodes are evenly spaced, have constant geometric degrees, and have heterogeneous non-geometric
degrees; family (c), for which we sample the node locations from the unit circle in R? using a stochastic
process (see the text), and the nodes have heterogeneous geometric degree and constant non-geometric
degrees; and family (d), for which we randomly sample the node locations from the unit circle in R?, and
the nodes have heterogeneous geometric and non-geometric degrees. (As we discuss in the text, we do the
sampling uniformly at random.) The top row depicts example networks, where blue solid and red dashed
lines indicate geometric and non-geometric edges, respectively. The center row depicts the corresponding
adjacency matrices; blue pixels indicate geometric edges that align along the diagonal, whereas red pixels
indicate non-geometric edges that arise randomly. The bottom row depicts the corresponding distributions
for the geometric (red), non-geometric (blue), and total (grey) degrees. Note that the geometric degrees are

identical for families (a) and (b), with dl(-G) = 4, whereas they are heterogeneous with mean <dEG)> = 4 for
(NG)

families (c) and (d). For families (a) and (c), the non-geometric degrees are identical (d; = 2), whereas

they are heterogeneous with mean (dz(.NG)) = 2 for families (b) and (d). See 3 for further discussion.

that are incident to a given node ¢ (and hence in its geometric degree dEG)). To make such a generalization in
a tunable manner, we assign the node locations (or, equivalently, the angles {6;} in the case of the unit circle)
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to be evenly spaced as for family (a), and we then perturb these locations using a random variable §6;, so that
the location for each node i is given by [cos(6; + 66;),sin(6; + 66;)]T. We consider a Gaussian-distributed
random variable 60; ~ N (0, (s%ﬂ)2), where one can vary s to adjust the amount of heterogeneity in node
location along a ring manifold. The choice s = 0 recovers the original node locations, and s — oo corresponds
to sampling locations on the unit circle uniformly at random. Unless we specify otherwise, we use s = 1/2.
To generate geometric edges, we choose a parameter € > 0 and place edges between all pairs of nodes 7 and j
such that |0; — 6| < e. To compare networks from family (c) to networks from families (a) and (b), for which
the nodes have the identical geometric degree dgG) = (dEG)>, we choose the parameter € so that each network
in family (c) has exactly N(dl(-G))/Q edges.

e Family (d). Our final network family combines the generalizations from families (b) and (c) so that there is
heterogeneity in the non-geometric degrees {d,(;NG)} (where the mean is (dENG) )), the geometric degrees {dEG)}
(where the mean is (dEG)>), and the node locations {w (")},

Perturbed Bifurcation Results

Equations (1) and (2) in the main text give sequences of critical thresholds that determine WFP and ANC
for large networks of family (a). Recall that the degrees dl(.G) and dz(.NG) for each node 7 are deterministic and
constant for family (a). However, here we introduce various types of stochasticity (and hence heterogene-
ity) for these degrees in network families (b)—(d). Because of such heterogeneity, the critical thresholds that
we derived previously for network family (a) no longer accurately describe the WTM contagion dynamics.
However, based on numerical experiments, we find that Egs. (1) and (2) in the main text still describe con-
tagion dynamics at a given node ¢ if we use the correct geometric and non-geometric degrees. Specifically,
the ability of node ¢ to adopt a contagion via WFP when it has no infected non-geometric neighbors is given
approximately by Eq. (13) with the substitutions d(©) - d“ and d™) s ¢ Similarly, the ability of
(G)

i

WFP)}

node ¢ to adopt a contagion via ANC is given approximately by Eq. (7) with the substitutions d©) — d
and dNG) — dENG). Hence, for each node i € V), there are sequences of critical thresholds, {T,g

and {7, ,EANC) }, that are (potentially) specific to that node. Consequently, the nodes can exhibit qualitatively
dissimilar contagion dynamics with respect to WFP and ANC. For example, for a given threshold 7', some
nodes can have geometric and non-geometric degrees that support WFP but no ANC, whereas other nodes
can have degrees that support both WFP and ANC. Nevertheless, one can construe the bifurcation analy-
sis that we developed for family (a) as an approximate bifurcation analysis for the other families. In this
light, note that if the degree heterogeneities are sufficiently small compared to the mean degrees, then we
still identify four different qualitative regimes of WTM contagion dynamics that are marked by the absence
versus presence of WFP and ANC. However, the boundaries that separate these regimes are perturbations of
what we found for family (a).

i(G) = dz(.G) - <diG)) denote the difference between its geometric

degree and the mean geometric degree. Similarly, let 5§NG) = dENG) — (dENG)) denote the difference
between its non-geometric degree and the mean non-geometric degree. Restricting our attention to the

critical thresholds given by Egs. (1) and (2) in the main text for & = 0 (although one can write similar

More precisely, for each node i, let §
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NG)

expressions for other values of k), we can express the critical thresholds in terms of 61-(G) and 52(

as
5(NG>
1+ e
T(ANC) ( 5@ 5(NG)) A (d™) 3)
0 [ () - 1 (6(G)+5(NG>)
L4+ 14+ W
5(©
1
T(WFP) (5(G) s(NG)y & * <d‘G>> 4

)

Expressions (3) and (4) summarize the effect of degree heterogeneity on the critical thresholds that de-
scribe a WTM contagion at a given node ¢. When there is no degree heterogeneity (e.g., family (a),
where 5§G) = (52-(NG) = 0), we recover our results from the main text: TéANC) (0,0) = 1/(a™t +1)

and TéWFP)(O7 0) = 1/(2 4+ 2a)). Meanwhile, when 6§G) and 5§NG) are both small compared to their re-

spective means (dEG)> and (dgNG) ), the perturbed critical thresholds are approximately equal to those for the

mean degree. In other words, TéANC)(d(G), 5§NG)) ~ TO(ANC)(O, 0) when (5§G) + 5§NG))/(d§NG)> is small,
and T(WFP)((S( ) (5(NG)) R~ TO(WFP) (0,0) when (5§G) + 5§NG))/<d§G)> is small. We therefore interpret
our bifurcation analysis for network family (a) as an approximate bifurcation analysis for network families
(b)—(d). We expect our interpretation to be increasingly accurate as the mean degrees become larger relative
to the heterogeneity in the degrees.

In Supplementary Fig. 9, we plot curves that indicate the node-specific critical thresholds given by

Egs. (3) and (4) for the (T, ) parameter plane. We show results for d(%) = 20 and dNG) ¢ [0, 20] for
several choices of 62-((}) and 5§NG) such that |5§G)| < 2 and \5§NG)] < 2. Panels (a)—(d), respectively,
demonstrate the heterogeneity that arises in 62@) and 5§NG) from network families (a)-(d). Note for all
panels that there exist parameter regimes in which the nodes support similar contagion phenomena (i.e.,
WEFP and no ANC, WFP and ANC, no WFP and ANC, or no WFP and no ANC) even through their degrees
are heterogeneous. Therefore, one can construe the set of curves that one obtains for multiple values of
51-(G) and 5§NG) as a “thickening” of the boundary between regions of qualitatively different dynamics. In
other words, as we vary parameters, we see that the transitions between regions of different dynamics can
occur for slightly different parameter values for different nodes in a network. Note, however, that this
interpretation does not take into account the distribution of node degrees, as we have only shown the critical
threshold curves in Supplementary Fig. 9 for degrees that are near the mean degrees (i.e., for |6Z-(G)| <2
and ]5§NG
heterogeneous node degrees, and it is then possible that |5Z-(G) | > 2. (For example, the non-geometric degrees
follow a binomial distribution for families (b) and (d).) Therefore, one can construe our bifurcation analysis
for family (a) as an approximate bifurcation analysis for families (b)—(d) only when the heterogeneities in

)\ < 2). As we discussed in this Supplementary Note, families (b)-(d) lead to networks with

the two types of degrees are both sufficiently small when compared to the means <d§G)> and <d(NG)).
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Supplementary Figure 9: Node-specific critical thresholds for the (7', o) parameter plane, where « denotes
the ratio of the mean non-geometric degree <dl(.NG)> to the mean geometric degree <dEG)). We plot Egs. (3)
and (4) for nodes with ]51-((;)\ < 2and ]5§NG)] < 2. We show these curves for the example degrees d,gG) =20
and dENG) € [0,20]. Panels (a)—(d), respectively, depict the appropriate choices for J, (©) and 51-(NG) for the

(2

heterogeneities in network families (a)—(d). If the perturbations of the node degrees are both sufficiently
small compared to the nodes’ degrees, then we still obtain four qualitatively different contagion regimes for
all nodes. We again characterize these different regimes based on the presence versus absence of WFP and
ANC. However, because of the heterogeneity of the nodes’ degrees, transitions between these regimes in
the (T, o) parameter plane occur at different values for different nodes. That is, the boundaries between
the WTM contagion regimes have “thickened.” We note for any fixed |0 (G) |, NG| > 0 that the perturbed
curves approach those that correspond to 6(%) = §NG) = ( as the mean geometric and non-geometric
degrees increase. See 3 for further discussion.
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4 Supplementary Note 4: A Set of Filtrations Defines a Metric

In this section, we prove that the set of activation times for a WTM contagion with threshold 7" on a network
induces a metric on the node set V = {1,2,..., N}. Let :ﬁgl) denote the activation time (which we assume
to be finite for all node pairs (i,5) € V x V) for node i for a contagion initialized with the seed node j.
We will show that (V, mWTM) (G, ])) is a discrete metric space with metric m(WTM) (3, j) = i‘gl) + :EZ(J).
However, rather than showing this result for the specific case of a WTM contagion, we will prove a more
general result using the observation that the growing set of infected nodes during one realization of a WTM
contagion defines a “filtration” of the node set V. We will therefore prove that any “complete” and “con-
sistent” set of filtrations (see the definitions below) on a finite set }V induces a metric on V. Subsequently,
because the filtrations that result from realizations of a WTM contagion on a given network with conta-
gion seeds {j} for j € {1,..., N} satisfy the conditions of completeness and consistency, it follows that

mWTM) (. 5y = :i’g.i) + i“gj) is a metric on } whenever jgj) < oo forevery i,j € V.

Complete and Consistent Filtrations

Before proving that the set of activation times—and, more generally, any “complete” and “consistent”
set of “filtrations”—leads to a metric, we give a few definitions.

Definition: Filtration.
Consider a sequence of sets Ny for t € {1,2,...}. The sequence of sets is called a filtration [15, 16, 17] if
it has the property that Ay C N for all t!.

Definition: Completeness.
Let V be a finite set with cardinality |V| = N. We define a set of filtrations to be complete if there are N
filtrations of the following form: for every j € V), there exists a filtration such that

{3} = No(j) S NI(G) S Naj) € - S Nos () = V. 5)

Note that the filtration {N;(j)} consists of nested sets N¢(j), where the innermost set is the element {j}
and the outermost set (i.e., the t;th set) is the complete set V of indices.

Definition: Consistency.

Let V be a finite set with cardinality |V| = N, and consider a set of filtrations in which the jth filtration
corresponds to nested sets {V;(j)} that are indexed by ¢. We define the set of filtrations to be consistent if,
for any two filtrations {N;(7)} and {N;(j)} from the set, the following is true:

Ni(i) CN7(J) = Nega(i) € Nrqa(d), (6)

where the indices ¢ and 7 can be different from each other.

'One can also define a filtration sequence of filtrations using the superset relation N; O N;11. Additionally, one can also
generalize the notion of a filtration to concepts like “zigzag filtrations,” which allow both subset and superset relations amidst the
sequence of sets [18].
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Filtration-Induced Metrics
Theorem: A Metric Induced by Filtrations.

Let ) be a finite set with cardinality |V| = N, and let NV;(j) denote sets that define a complete and consistent
set of filtrations on V. Additionally, let t;l) denote the smallest index ¢ such that i € A(j). It then follows

that m(i, j) = tgj )+ t;i) defines a metric on the set V.
Proof: First, we show that m(i,j) > 0 and that m(i,7) = 0 implies ¢ = j. Note that tg-i)
MORSIE)
i b

> 0 for any

i,7 € V; this implies that m(i,7) > 0. Similarly, m(i,j) = 0 requires = 0, which in turn
requires that NVy(j) = {i} (and Ny(i) = {j}). However, we know by definition that {j} = ANy(j) (and
{i} = Ny(2)), so it must be the case that i = j. It s trivial to show that m(i,j) = m(j,i). Finally, we
complete the proof by showing that m(i, j) satisfies the triangle inequality: m(i, j) < m(i, k) + m(k, 7).
This step is a bit more complicated, and it relies on the completeness and consistency of the set of filtra-
gl) < tg-k) + t](;). Using the notation a = tg.z),
b= t§-k), and ¢ = t,(;), we will prove that a < b + ¢. Because the result is trivial when b > a due to
the non-negativity of ¢, we can assume that a > b. By definition, it must be the case that i € N, (j),
k € Np(j), and i € N (k). Because b < a, it must also be the case that Ny (j) C N,(j). We now consider
{k} = No(k) C Ny(j), which uses the completeness of the filtrations. Using the consistency property, it
follows that N1 (k) C Npi1(j), Na(k) € Npi2(j), and so on. Repeating this procedure demonstrates that
Ne(k) C Npye(j). Noting that i € N (k), it follows that i € Ny,.(j). It follows, in turn, that tg-z) <b+ec,
which is equivalent to a < b + c. O

tions. Using the definition of m(4, j), it suffices to show that ¢

Corollary: A Metric Induced by WTM Contagions.

Consider a network with node set VV and edge set £ that consists of a single connected component. Let £
()
J

is a metric on the node set V.

()
J

denote the activation time of node ¢ for a WTM contagion with seed {j}. As before, we assume that " is
finite for all node pairs (7, j) € V x V. It then follows that m(i, j) = il@ —I—i;i)
Proof: Tt suffices to show that NV realizations of a WTM contagion with the set of contagion seeds S(7) = {7}
(for j € V) produces a complete and consistent set of filtrations on V. It will be convenient to use the notation

t jl) = 32'5-1). We first prove completeness. Let NV; () denote the set of nodes for realization j that have adopted

the contagion by time ¢. Note that Ny(j) = SU) = {j} for each j. Additionally, Ni(j) C Niy1(j) for
any ¢, as nodes cannot unadopt a contagion during a time step. Therefore, the sequence {/N;( j)}zj:0 yields a

filtration of the node set V that satisfies Eq. (5). It follows that the set of filtrations of the form {N;(j )}:i:o
(for j € V) is a complete set of filtrations. We now prove consistency. Consider two realizations of a
WTM contagion on a single network. Let Vi, (i) C V denote the set of nodes that are adopters at time ¢;
for the +th realization, and let ./\/tj (j) C V denote the set of nodes that are adopters at time ¢; for the jth
realization. To have consistency, it must be true that Ny, 1 1(i) € Ni,41(j) if Ny, (i) € N, (7). Suppose that
t; and t; are times such that Ny, (i) C NV, (j), and consider the spreading that occurs for a WTM contagion
during one time step. By definition, the update rule for each node is identical across all realizations of a
WTM contagion. (In other words, for a node k, the fraction of infected neighbors f, must surpass 7" for
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adoption.) Additionally, for any node k£ € V), increasing the infection size can only increase fj,. Hence, if
fr > T for some node k when nodes N, (i) are infected, then fr > T is also true if we instead consider
a superset of \V, (i) to be infected. Thus, the set V;, 11 (¢) of adopters at time step ¢ = ¢; + 1 must satisfy
Ni;+1(i) € Ni;11(j). The N realizations of a WTM contagion with seeds S @) = {j} (where j € V)
thus produce to a complete and consistent set of filtrations on V for which ty) = xgl). It follows that the
activation times define a metric on the node set V. O
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5 Supplementary Note 5: Algorithm for Constructing WTM Maps

In this section, we describe our algorithm for constructing WTM maps and discuss its computational com-
plexity. We also conduct numerical simulations to illustrate the scaling of computation time with respect to
network size N and mean node degree d = N~' Y irj A;;. We thereby confirm that the typically observed
computational cost of our algorithm scales quadratically with /N and linearly with d. That is, for N nodes
and M = Nd/2 edges, the typical computational cost is O(NM).

Algorithm and Computational Complexity

We begin by describing our algorithm for constructing a WTM map. (See the pseudocode in Algorithm 1
for a summary.) For a WTM map of a network with N nodes, we implement N realizations of a WTM
contagion. We simulate the jth realization with cluster seeding by initializing the nodes in the contagion
seed SU) = {j}U{k|Ajx # 0} (i.e., node j and its neighbors) as infected and all other nodes as uninfected.
The activation time for the seed nodes is ¢ = 0. That is, :L'g-z) = 0 fori € SU). After initialization, we
simulate a WTM contagion for time steps ¢ = 1,2,... until the dynamics reaches equilibrium. In other
words, we reach a time step in which no new node becomes infected; this is guaranteed to occur at some
time t < IN. When considering the set of nodes that can become infected during a given time step t, it is
sufficient to check only the subset of nodes ¢ C V that are (1) not yet infected and (2) adjacent to a node
that was infected during the previous time step (i.e., at time ¢ — 1). Therefore, as the contagion spreads, it is
important to record which nodes adopt the contagion during each time step. Given such a list, upon reaching
time step ¢, we examine the neighbors of all nodes that became infected at time ¢ — 1. Any uninfected node
1 (among those neighbors) whose ratio f; of infected neighbors to total neighbors satisfies f; > 1" then
becomes infected at time ¢ (which we record as its activation time).

We now comment on the computational complexity of Supplementary Algorithm 1. There are N dif-
ferent contagions (because of cluster seeding centered at node j € V). For each one, we need to calculate
the activation time of every node ¢ € ). Therefore, the computational complexity of computing a WTM
map is at least O(N?). Because we examine the neighbors of recently infected nodes at each time step,
our algorithm also scales linearly with the node degree d = d@ 4 dN® (which is identical for every node
i € V in the experiments below), giving a total complexity of O(N2d). However, there is scope to speed
up the construction of WTM maps. If one constructs the dissimilarity matrix that encodes shortest paths
between nodes (e.g., as required by Isomap [23]) using a “naive” method, then its computational complex-
ity is also O(N?). However, one can speed up the problem of computing shortest paths using Djikstra’s
algorithm [19], and we expect that similar improvements are possible for WTM maps.

Before we numerically support the O(/N2d) computational complexity, we comment on the worst-case
scenario, which has a complexity of O(NN3). This situation corresponds to a network in which every node
is connected to every other node and exactly one node adopts the contagion at each time step for every
contagion. Although such a scenario is technically feasible with general WTM contagion dynamics [20],
this cannot arise in the WTM contagions that we study (and we also note that one can also analyze such a
pathological situation using mean-field theory [21]) because we set T; = T for all 7 € V) in our experiments.
Finally, although our implementation of Supplementary Algorithm 1 is sufficiently fast for the purposes of
the present paper, we note that one can speed it up further by parallelizing it because the different initial
conditions are independent of each other.
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Supplementary Algorithm 1 Construction of a WTM map with threshold 7" for a network with N nodes
1: foreachnode j € V ={1,...,N} do
2: Initialize cluster seeding by infecting ;7 and its neighbors; record their activation times as 0

3: Run WTM contagion dynamics:

4: while dynamics has not reached equilibrium do
5: for 7 is a neighbor of a node that was infected during the last time step do
6: if 7 is still uninfected then

7 if fraction of activated neighbors f; > T then
8: infect node ¢ and record its activation time
9: end if

10: end if

11: end for

12: end while

13: end for

Numerical Investigation of Computational Cost

We implement Supplementary Algorithm 1 in both MATLAB and C++. In our discussion, we focus
on our C++ implementation (which we have made publicly available, as we discussed in Sec. III A of the
main text). We conduct numerical experiments to study the scaling behavior of the computational cost with
respect to N and (d). All of the results that we report in the present section are mean values that we compute
using 10 realizations for a particular choice of parameter values. We run these simulations on a computer
with the following specifications: Debian GNU/Linux 7 operating system; 32 GB RAM memory; and 8
processor cores (Intel Core i7-4770 CPU @ 3.40GHz).

In Supplementary Fig. 10(a), we show the run times ¢ (in seconds) of our algorithm. These give
computational costs for constructing WTM maps for noisy ring lattices with various sizes N € [32,31623],
which we construct while keeping the node degrees fixed at (d@,dN®) = (10,2). We show results for
thresholds 7" = {0.05,0.2,0.35,0.45}. Note for these values of 7" that the dependence of dt on N is much
stronger than the dependence of 6t on I". The symbols in Supplementary Fig. 10(a) give the observed
computation times, and the solid lines give the inferred scaling behavior, which we assume takes the form
6t = 10" N¢ for some constants ¢ and I". In Supplementary Table 1, we summarize the fitted values for
exponent ¢ and the prefactor I' for various values of 7. (As we discuss in the table caption, we use a least-
squares fit.) We find that { ~ 2 for all 7', supporting our claim of quadratic scaling behavior. We neglect
the observed values of ¢t for NV = 32 for our fitting procedure because we are interested in the scaling as
N — oo.

In Supplementary Fig. 10(b), we investigate the dependence of the computational cost on node degree d.
In this experiment, we fix N = 2000 and 7" = 0.35 [which yields the largest values of ¢ in Supplementary
Fig. 10(a)], and we vary d € {12,24,...,96}. We plot the observed values of J¢ versus d for several choices
of the ratio a = dN® /dN_ For all values of «, we observe positive scaling with d that we expect to be
linear. As expected, we find that 0¢ is much smaller when o > 1/2 than when « < 1/2. For large values
of o, WTM contagions tend to either not spread at all (e.g., when T is large) or spread very quickly due
to frequent ANC (e.g., when 7T is small). Therefore, the number of time steps that are necessary to reach
equilibrium is small. This, in turn, yields a small value of §t.
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Supplementary Figure 10: Computational costs from experiments with Supplementary Algorithm 1. We
use the run time ¢ (in seconds) to measure the cost of constructing WTM maps with threshold T for
noisy ring lattices with NV nodes. (a) We plot the observed values of ¢ (symbols) versus /N for several
choices of T'. Note that Jt varies only slightly with respect to T', whereas the dependence on N is much
stronger. We show results for (d@,dN®) = (10,2); that is, « = 0.2 and d = 12. The solid lines
indicate the inferred scaling behaviors O(NN¢); as we illustrate in Supplementary Table 1, the scalings are
approximately quadratic O(N?). (b) We plot observed values of 6 for a noisy ring lattice with N = 2000
nodes with various choices for the node degree d = d© + dN®. We show results for various d for several
choices of the ratio a = dN% /dNO_ For all values of o, we observe that §t scales approximately linearly
with d. Networks with large values of o promote transmission via ANC, which saturates the network
in fewer time steps than that for smaller «,, which subsequently leads to considerably smaller run times
(e.g., see the results for « > 1/2 versus a < 1/2). (c) The solid curve indicates §t versus the WTM
threshold 7'; the shaded region near the curve indicates the standard deviation over 10 realizations for a
given threshold 7. When a contagion saturates the network, so that all nodes eventually adopt the contagion
(e., T < TéWFP) ~ 0.4167), observe that §t tends to increase with T". By contrast, when a contagion does
not spread (i.e., T £ 0.4167), then 6t is very small compared to the values when the contagion does spread.
We also note that the abrupt jumps in d¢ are well-aligned with the critical thresholds given by Egs. (7)
and (13). The shaded region near the curve indicates the standard deviation (in units of time §t) over 10
realizations for a given threshold 7. See 5 for further discussion.

In Supplementary Fig. 10(c), we further explore the dependence of ¢t on WFP and ANC by plotting
&t versus threshold 7T for a noisy ring lattice with N = 10000 nodes and (d‘9, dN®) = (2,10). (In this
case, o = 0.2.) First, note that there is a very large drop in 6t near 7' = TéWFP) ~ 0.4167 that corresponds
to the bifurcation that separates the region in which the contagion spreads from the one in which it does
not. For T" 2 0.4167, the contagion spreads to just a few additional nodes (or no additional nodes), so it
requires very few time steps for to reach an equilibrium state. For T < 0.4, the contagion spreads faster as
T increases, which leads in turn to larger values of dt. Finally, note that there are several sharp jumps in 0¢;
these correspond to the bifurcations in the contagion dynamics [see Egs. (7) and (13)].
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Inferred run time scaling: 6t = 107 N¢

threshold T’ exponent ¢ prefactor I'
0.05 2.1675 —6.5207
0.2 2.1407 —6.3416
0.35 2.1440 —6.2792
0.45 2.2195 —6.8987

Supplementary Table 1: For various choices of threshold 7', we infer the scaling behavior that relates the
computational cost (i.e., the run time Jt) to the network size N. For our inference procedure, we assume a
power-law relationship 6¢ = 10" N¢, and we fit the constants I' and ¢ using a least-squares fit. In this fit,
the horizontal coordinates are log(/V), and the vertical coordinates are log(dt) (We neglect the results for
N = 32 in our fitting procedure.) Note that the exponents are approximately quadratic: ( =~ 2. See 5 for
further discussion.
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6 Supplementary Note 6: Additional Theory for Noisy Ring Lattices

In this section, we extend the bifurcation analysis that we presented in Sec. III B of the main text. In
particular, we provide further details on our analysis for two contagion phenomena: wavefront propagation
(WFP) along a network’s underlying manifold and the appearance of new clusters (ANC) of a contagion
due to transmission across non-geometric edges.

Appearance of New Contagion Clusters (ANC)

ANC describes a contagion transmission in which a node becomes infected exclusively due to exposure
via non-geometric edges. That is, the node’s neighbors from geometric edges must not already be infected.
As we discussed in Secs. I D and III B of the main text, we are able to describe this phenomenon with a
sequence of critical thresholds:

dNG) —

ANC) a
 d(G) £ g(NG)

NG
T k=0,1,...,dN0 (7)
where d(©) and dNG), respectively, denote a node’s geometric and non-geometric degree for the noisy
ring lattice with IV nodes. (A node’s “geometric degree” is its number of geometric stubs, that is, the
number of its stubs that obey the original geometric space constraints, and a node’s “non-geometric degree”

TANC). TIEANC)

is its number of non-geometric stubs.) For T" € |\T;" >, a node adopts a contagion if at least

(d(NG) —k) non-geometric neighbors are infected. For 7" > TO(ANC), the contagion cannot spread exclusively
by exposure to the contagion via non-geometric edges. In this section, we show by considering spreading
exclusively on the subgraph that includes all nodes but only non-geometric edges that the rate of ANC of a
WTM contagion increases as the contagion threshold T' decreases.

We first consider the probability that a given node has exactly k infected non-geometric neighbors, given
that ¢(t) of the N nodes are infected at time step ¢. First, consider the case k = 1, in which a node ¢ has
exactly one infected non-geometric neighbor. Given that node i has dN©) non-geometric edges (which we
label as eq, ..., e na)), there are d(NG) possible outcomes with k& = 1. For example, e; is incident to an
infected node and the remaining edges are incident to uninfected nodes, e is incident to an infected node
and the remaining edges are incident to uninfected nodes, and so on. Recalling that we place non-geometric
edges uniformly at random for the noisy ring lattice, the probability that edge e; is incident to an infected
node is %, as there are ¢(t) such potential infected nodes and there are N — 1 other nodes (because there
are no self-edges). If edge e; is incident to an infected node, then the probability that edge es is incident

%:g(t). If edges e; and ey are incident, respectively, to an infected node and an

uninfected node, then the probability that edge e is incident to an uninfected node is ]\/_1]\,_73(;)_1. We can

to an uninfected node is

continue arguing similarly for the other edges. Taking into account that there are d(N&) possible outcomes
in which the dNG) edges are incident to exactly one infected node, the probability that a node has exactly
one infected non-geometric neighbor is

g(t) (TIES) 2N = 1= q(t) — ¥
P(1) = dN) x ( e ) ®)

w—o (N —=1-=F)
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More generally, the probability that a node has exactly k infected non-geometric neighbors is

P@>:<%M3>< icoa) =) (T2 N =1 -4 - )

¢ boo (N =1 k)

€))

For fixed dN®) < N and ¢(t) = O(N), Eq. (9) simplifies to

o () 40 -2

We now estimate the expected contagion size g(t) of a WTM contagion that spreads exclusively via
ANC. In other words, we neglect exposures to the contagion from geometric edges, as we are assuming that
they do not contribute to spreading. We define

KANO) (7Y — ax {k’ | TANO) T} , (11)

It follows that the minimum number of non-geometric neighbors that need to be infected for a node i to
adopt the WTM contagion is (d(NG) - k(ANC)). Using Eq. (9) and Eq. (11), we estimate that the expected
contagion growth satisfies

L(ANC)

gt+1)=g(t) + [N —g(t)] > P~ —¥), (12)
k'=0

where we calculate the expectation for g(¢) over the ensemble of noisy ring lattices. We again stress that
Eq. (12) estimates the size of a WTM contagion for ANC independent of WFP and does not account for the
joint effect of spreading via both geometric and non-geometric edges. It therefore gives a lower bound for
the size of the contagion [i.e., ¢(¢)] for the regime that exhibits ANC but no WFP.

Wavefront Propagation (WFP)

WFP describes the situation in which a contagion cluster expands because a node in its “boundary,”
which we define as the set of nodes that are adjacent via a geometric edge to an infected node in the contagion
cluster, becomes infected at time step ¢. In the main text, we found that WFP has the following sequence of

critical thresholds:
T(WFP) a d(G)/2 —k d©
. 2

m, kZO,l,...,T. (13)

Assuming that the non-geometric edges of nodes in the contagion cluster’s boundary are incident to nodes

that are not infected, a wavefront propagates with a speed of k+1 nodes per time step for 7" € [T,EYIFP), T,EWFP)> .

For T > TO(WFP), there is no WFP. For a contagion that consists of a single cluster that is expanding via
WEFP in both directions along a noisy ring lattice, the size ¢(¢) of the contagion (i.e., the number of nodes
that have adopted the contagion) for time ¢ € {0, 1,2, ...} has a lower bound of

h(t) = (1 +d9) 4 dNG)) p2i(WFP)¢ (14)

seed nodes
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where
W) 2 1 4 max{k | TV > T} (15)

and the factor of 2 accounts for WFP in both directions along the ring.

Note that h(t) is a lower bound for ¢(¢) because we have assumed that the non-geometric edges of
nodes in the contagion cluster’s boundary are incident to nodes that are not infected. This assumption is not
always valid, so Eq. (14) is a lower bound because the invalidation of this assumption can only increase the
rate of WFP. That is, nodes in a contagion cluster’s boundary will adopt a contagion even if the number of
geometric neighbors that are infected is smaller than what is required by Eq. (13).

Above we showed that the expected probability that a non-geometric edge of a node is incident to an
infected node is q(t)/(N — 1) ~ ¢(t)/N. Similarly, for a node with a non-geometric degree of dN9, the
expected probability that none of its non-geometric edges are incident to an infected node is approximately
[1—q(t)/N ]d(NG). This is therefore the probability that our WFP analysis given by Eq. (13) is valid for
a given node at a given time step ¢. For large networks (i.e., N > 1) and early stages of a contagion
(i.e., q(t) < N), the probability that our assumption is valid is approximately equal to 1. In this situation,
Egs. (13)—(15) accurately describe WFP (and the spread of the contagion). However, when ¢(¢) ~ N, our
assumption is almost certainly invalid, and we observe accelerated speeds of WFP. Interestingly, for large
networks (i.e., NV > 1), we find that such acceleration occurs infrequently early in a WTM contagion and
that it occurs rather frequently towards the end of a contagion [i.e., just before ¢(¢) — N, which is when a
contagion saturates a network]. Accelerated WFP is improbable [because ¢(t) is small, but V is large] in
the early stages of a contagion on a large network. When ¢ = 0, for example, ¢(0) = d© 4+ dNG) « N.
However, during the late stages of a contagion [i.e., ¢(t) ~ N], accelerated WFP is very likely at every
time step. Therefore, for small ¢(t), Eq. (14) is both a lower bound for ¢(¢) and an approximation for it.
In general, the speed of WFP increases with time until it reaches an upper bound of d(©) /2 nodes per time
step. This bound corresponds to the situation in which all nodes that are incident via geometric edges to one
side of a contagion cluster become infected during each time step. Note that there is no acceleration of WFP
when k£(WFP) — ¢(G) /2, as the wavefront is already propagating at its fastest rate.
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7 Supplementary Note 7: Extended Discussion of Point-Cloud Analyses

In this section, we provide further details on our approach to analyzing the point clouds that result from
WTM maps. In particular, we provide a detailed discussion of the following three items:

1. The Pearson correlation coefficient p, which we use to investigate a point cloud’s geometry.
2. The embedding dimension P, which we use to investigate a point cloud’s dimensionality.

3. The difference A = l1 — 5 in lifetimes of the two most persistent 1-cycles [i.e., one-dimensional (1D)
holes], which we use to investigate a point cloud’s topology.

We restrict our discussion of the above items for a point cloud that results from a regular WTM map V
{x(i) }, but one can apply the same techniques to any point cloud, including one that results from a reflected
WTM map V + {y®} or a symmetric WITM map V — {z(9}. (See Sec. I C of the main text for further
discussion of these maps.)

We find for certain WTM contagion parameters that the structure of the point cloud that results from a
WTM maps can reveal manifold structure in the original network and that one can quantify such structure
using the values of p, P, and A. Importantly, one can thus use our approach to study not only manifold
structure in networks but also the WTM contagion dynamics itself (e.g., uncovering the extent to which
WFP dominates ANC or vice versa).

Analysis of Geometry

Studying the geometry of a point cloud such as {X(i)}iey that results from a WTM map can reveal
the extent to which the geometry of a WTM contagion follows the underlying geometry of a network. We
investigate the extent to which the distance between two nodes in a point cloud that results from a WTM map
relates to the distance between those nodes in the original metric-space embedding of the noisy geometric
network. Specifically, we restrict our attention to noisy geometric networks in which the nodes V have
intrinsic locations {w()},c}, € M on a manifold M C RP. That is, they lie in a p-dimensional ambient

space R? that we equip with the Euclidean norm [|wljs = /> ¥_; wi. We require the dimension p to

be equal to the point cloud’s “embedding dimension”. In other words, there is no subspace of dimension
smaller than p that one can define by a hyperplane that captures the manifold. Using the Euclidean metric,
the distance between nodes ¢ and j in the ambient space is

(w? —w)". (16)

M@

i

1

We also use the Euclidean norm for the point cloud {x(i)} € RY that results from a WTM map. The
distance between node 7 and node j in such a point cloud is thus given by

N
mW G ) = |3 (o) = o) (a7
k=1
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Given two sets of distances m and m(WT™M)  we compute the Pearson correlation coefficient

Y YN [, g) = m(, 5)] [V (G, ) — mOVIMI (G, )]

p =
\/Zﬁ\; Z;V:Hl [m (i, 7) — m(ivj)f\/Zfil Z;’V:H-l [mWEM)(4, j) — m(WTM) (Z'J)P

between all non-identical, unordered pairs (i,7) € V x V. Because ¢ # j for distinct nodes, there are
N(N —1)/2 such pairs.
(@)

Note that calculating Eq. (18) requires the activation time z;” to be finite for all nodes 7 and realizations
7 of a WTM contagion. Unfortunately, this is not the case whenever there is a node that never becomes
activated. Indeed, xg-l) = oo for all nodes other than the seed if the threshold 7T’ is too large. (For instance,

T > max{T, éWFP) , T O(ANC)} is too large for the example of the noisy ring lattice.) For practical purposes,

we set xg-z) = 2N in such cases, where we note that l‘;-z) < N — 1 for any numerical simulation in which
node ¢ eventually becomes infected. In 1, we discuss other methods for handling situations with activation

times of infinity.

(18)

Analysis of Dimensionality

We study the dimensionality of a point cloud that results from a WTM map by exploring its embedding
dimension. For a manifold M C RP, we define the embedding dimension P as the minimum hyperplane
dimension over all hyperplanes that span the manifold M. Because a point cloud typically contains noise,
which can potentially increase the dimensionality above that of an underlying manifold, we estimate em-
bedding dimension using residual variance [22, 23].

Given the set of points {x("};c;, € RN, we consider each i € V and let {%(*)(p)} denote the linear
projection onto R? that we obtain from principal component analysis (PCA) [22, 23]. Let p() denote the
Pearson correlation coefficient that relates node-to-node distances m("™"W™) from the original point cloud to
node-to-node distances

P
m® ()= |3 [#00) - 20 )] (19)

k=1
in the projected point cloud. It follows that p(®) is given by Eq. (18) with the substitution m(i,j) —
m® (i, 5).

The residual variance of such a linear dimension reduction is R, = 1 — (pP))2. We estimate the
embedding dimension as the smallest dimension P such that the residual variance is (strictly) less than
0.05. That is, P = min{p|R, < 0.05}. For our calculations of embedding dimension, we only consider
dimensions up to P = 20, as this simplifies the computational overhead of calculating P. Our motivation for
this simplification (besides reducing computational cost) is that we are particularly interested in determining
whether or not P is close to the known embedding dimension (e.g., P = 2 for the unit circle in R2, in which
our noisy ring lattices are embedded).
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Analysis of Topology

In this section, we explain how to analyze the topology of a point cloud that results from a WTM map.
We present our analysis for a general point cloud U = {u(i)}?:1 e R’ (i.e., there are n points u in .J
dimensions). We note for a typical WTM map, for which we map all IV nodes based on IV contagions, that
one obtains a point cloud {u(”} withn = J = N.

A set U has a very simple topology. If u® % u9) for i # j, then U consists of N distinct connected
components that correspond to the points {u(i)}. There are no 1-cycles in U. To infer the topology of a
meaningful underlying manifold (if present) that gives rise to a point cloud, we consider its topology across
different spatial scales. In particular, we are interested in the topology of the sets

U = U {ue R’ : Hu(i) —ufle <r} (20)
ie{l,...,n}

for different values of r € [0, 00). That is, we study the topology of sets that we construct as the union of
radius-r balls centered at points u(? € /. Note that 2/(?) = /. We choose to use the Euclidean norm, but it
is also possible to use other norms.

We start with an example. In Supplementary Fig. 11, we show a noisy point cloud that we sample from
a ring manifold. In particular, we sample the points uniformly from a unit circle in R?, and we add a small
amount of noise to their locations in the embedding space RZ. When 7 = 0, there are 10 distinct connected
components, which correspond to the individual points. As we increase r, four of the components merge to
create a 1-cycle [see Supplementary Fig. 11(b)]. As we continue to increase 7, this 1-cycle fills in very soon
after its birth. After it is filled in, another 1-cycle appears when » = 0.5 [see Supplementary Fig. 11(c)].

(@) (b) () (d)

%

2 - 0 1 2 2 - 0 1 2 2 - 0 1 2 2 -1 0 1 2

Supplementary Figure 11: We study the topology of a point cloud I/ by examining the persistent homology
that is induced by a Vietoris-Rips filtration. This entails examining simplicial complexes that are created by
forming, for every set of points, a simplex (e.g., an edge, a triangle, a tetrahedron, etc.) whose diameter is at
most r. Increasing r from 0 and considering how a simplicial complex evolves yields a filtration. In panel
(a), we show a point cloud U = {u(i)} that consists of a noisy sample of the unit circle. In this example,
there are n = 10 points in J = 2 dimensions. In panels (b)—(d), we show &) for r € {0.22,0.6,0.85}.
One can approximate the homology of /(") using a Vietoris-Rips complex that is given by the nodes, edges,
and triangles that we show in the panels. The first 1-cycle in /(") occurs at r = 0.22. It is a result of the
noisy sampling, and it is filled in almost immediately as 7 increases. In panel (c), we show the dominant
1-cycle (i.e., the 1-cycle that corresponds to the ring and persists across many spatial scales). It is born at
r = 0.5 and persists until » ~ 0.81. Identifying a single persistent 1-cycle indicates that the point cloud lies
on a ring manifold. See 7 for further discussion.

53



This 1-cycle persists for a larger range of r values than the first 1-cycle, and it appears to correspond to a
ring manifold that underlies the point cloud. This illustrates that one can study the topology of a point cloud
by examining 1-cycles that persist across different spatial scales. To make this statement more quantitative,
we employ tools from persistent homology [15, 16, 17].

For every set ("), one can assign homology groups H.(U (T)), where ¢ € {0,1,2,...}. The rank 5.
of the group H.(U (7’)) counts the number of c-dimensional topological features that are present in /(). In
particular, 5y counts the number of connected components, 51 counts the number of 1-cycles (which one
can construe as a 1D hole or loop), and 32 counts the number of cavities [i.e., two-dimensional (2D) holes].
The fact that (™ C U") forr <+’ is very important. As we discussed earlier in this section, a sequence of
sets with this property is a filtration. Thus, for any sequence {r;} that satisfies r; < r;; fori € {1,2,...},
the sequence of sets {U/ (”)} forms a filtration of R?. Examining changes of the topological features across
the different elements of {¢/(")} reveals multiple-scale topological features of the point cloud {u(®}.

In the present paper, we are interested in understanding the birth and death of 1-cycles of U/(") as we vary
r. The quantity /31 encodes such information, which one can summarize by drawing a persistence diagram.
In Supplementary Fig. 12, we show the 3 persistence diagram for the point cloud in Supplementary Fig. 11.
The diagram contains two points, which correspond to the two 1-cycles that we discussed previously. The
horizontal (“birth”) axis of the point is the value of r at which the 1-cycle corresponding to this point first
appears in /(") and the vertical (“death™) axis indicates when the 1-cycle is filled in. Enumerating the points
i =1,2,... for every point ¢ with coordinates (r(),r4(7)) in the persistence diagram (where r, denotes
when a feature is born and r; denotes when a feature dies), we define the “lifetime” I; = rq(i) — r(7),
and we denote the set of lifetimes of all points by L = {l1,l,...} (which we order such that I; > [y >
...). Topological features with longer lifetimes (i.e., ones that are more persistent) indicate more dominant

B, persistence diagram
: : :

Supplementary Figure 12: A (1 persistence diagram that summarizes the 1D features (i.e., 1-cycles) that are
revealed by the filtration U () in Supplementary Fig. 11. It contains two points, which correspond to the two
observed 1-cycles. One point (the red diamond) indicates a 1-cycle that persists over a long range of spatial
scales. Its lifetime [y = r4(1) — (1) is thus large. The second point (the yellow square) indicates another
1-cycle. Its small lifetime lo = 74(2) — r(2) indicates that it dies a short time after it is born, so it does not
persist over many spatial scales. The large difference A = [y — [5 in the top two lifetimes indicates that the
point cloud contains a single dominant 1-cycle and offers strong evidence that the point cloud lies on a ring
manifold. See 7 for further discussion.
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features in a point cloud. In our example, there is one point with a very short lifetime that corresponds to
a l-cycle that arises for a single spatial scale due to the noisy sampling. The other point has a much larger
lifetime, which indicates that its associated 1-cycle persists across many spatial scales. We thereby identify
the ring structure of the sampled manifold. For the purpose of identifying whether or not a point cloud lies
on a ring manifold, we summarize persistence diagrams by using the difference A = [y — [ between the
most persistent lifetimes. Large values of A correspond to persistence diagrams that consist of a single point
with a large lifetime, as we expect for a point cloud that lies on a ring manifold.

In practice, computing the persistent homology of a set /(") is complicated. However, the so-called
“Nerve Theorem” [24] guarantees that the homology of 2(") is the same as the homology of a corresponding
Cech complex, which simplifies analysis but is computationally expensive to construct. Therefore, we study
an approximation of the Cech complex that is known as the Vietoris-Rips complex. For a given point cloud
U = {u(l)7 u®, ... 7u(")} € R’ and r € R, the Vietoris-Rips complex VR consists of the simplices
(usr) ul2) . ulk)) such that |[ul®) — ul)||y < r for all s; and s;. In the present paper, we are
interested only in identifying the 1-cycles in VR®, so it is sufficient for us to use only O-simplices (i.e.,
points), 1-simplices (i.e., line segments), and 2-simplices (i.e., triangles).

To compute persistent homology, we use the software package PERSEUS [25] (version 3.0 Beta), and
we also check some of our results using the JAVAPLEX Persistent Homology Library [26]. To construct
Vietoris-Rips filtrations VR®™ fora point cloud that results from a WTM map (e.g., {x(i) 1), we use Eq. (17)
to define distances between points. As an input to PERSEUS, we use the dissimilarity matrix in which the
entry in the ¢th row and jth column encodes the distance between nodes ¢ and j given by Eq. (17).

In Supplementary Fig. 13, we study 3 persistence diagrams for point clouds that result from the appli-
cation of WTM maps to noisy ring lattices. We thereby reveal the absence versus presence of 1-cycles in the
point cloud. We analyze the (3, persistence diagrams for several values of the WTM threshold 7" € [0, 0.5]
and several choices for non-geometric degrees dN) € [0, 20] for networks with N = 200 nodes and a geo-
metric degree of d(G) = 20 (which implies that v = d(N&) / d©) ¢ [0, 1]). A red diamond in Supplementary
Fig. 13 represents the point that corresponds to the most persistent 1-cycle. We indicate the second-most
persistent 1-cycle using a yellow square, and we mark the remaining points in the persistence diagram using
white circles. If there is only one dominant 1-cycle, then the separation between the red diamond and the
other points is large. To measure this separation, we calculate A = [; — ls, where [; and [5 are the lifetimes
of the dominant and the second most dominant 1-cycle, respectively. The background coloration reflects the
value of A. To construct a filtration using various values of r, we consider 100 evenly-spaced values of r
that range from O up to the maximum distance distance 7'payx = max; jey Hz(i) — z0) |2 between any two
points. For our plots, we normalize all r values by 7max, S0 A € [0, 1]. It follows that A ~ 1 indicates the
presence of the ring topology, whereas small values of A indicates its absence.
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Supplementary Figure 13: We show a grid of 3; persistence diagrams for point clouds that result from
the application of WTM maps with various values of the threshold I" to noisy ring lattices for various
values of the ratio o« = dNG) /d(G) of non-geometric edges to geometric edges. We show results for
T = 0,0.05,...,0.5 for networks with N = 200 nodes each with d() = 20 geometric edges and dNG)
{0,2,...,20} non-geometric edges. For a given point cloud, we apply a Vietoris-Rips filtration to yield
the 31 persistence diagram that summarizes the multiscale 1D features (i.e., 1-cycles or loops). In each
persistence diagram, we use a red diamond to mark the most persistent 1-cycle, a yellow square to mark the
second most persistent 1-cycle, and white circles to indicate the remaining 1-cycles that we find. Note that
the lifetime /; of a given point ¢ corresponds to the height above the diagonal (the cyan lines). We shade
the background color of each persistence diagram according to the difference A = I; — l» between the two
largest lifetimes. Note that A € [0, 1] due to normalization. (See Sec. III F of the main manuscript and 7.)
The magnitude of A provides strong evidence regarding whether or not a given point cloud arises from a 1D
ring topology. In the main manuscript, we thus summarize our topological analysis with the parameter A.
[For example, see Fig. 6(c) of the main manuscript.] Note that we do not do any calculations (as indicated

by the empty squares) for WTM maps in which any node has an activation time of infinity [i.e., when there
is at least one pair (i, j) such that xy) = 00]. See 7 for further discussion.
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8 Supplementary Note 8: Complex Contagions on a Ring Manifold

In this section, we give results for numerical experiments in which we study the geometry, dimensionality,
and topology of point clouds that result from the application of symmetric WITM maps V — {z(i)} to noisy
geometric networks generated by network families (a)—(d), which we defined in 3. We thereby reveal the
extent to which a WTM contagion exhibits WFP that follows the underlying ring manifold (i.e., the extent to
which spreading occurs across a network subgraph that contains exclusively geometric edges) versus ANC.
In particular, WFP is more prevalent than ANC when one can identify the properties of the underlying
manifold in the point cloud that results from a WTM map.

To give some perspective for our numerical experiments, we compare our results for point clouds pro-
duced by WTM maps to results from two well-known methods of mapping network nodes as a point cloud:
a Laplacian eigenmap [27] and Isomap [23]. In particular, we consider a 2D Laplacian eigenmap in which
we map each node i to [’U§2),’U§3)]T € R2, where v(?) is the eigenvector that corresponds to the jth eigen-
value \; of the unnormalized Laplacian matrix L (i.e., Lvl) = )\jv(j )) and we have ordered the eigen-
values so that 0 = A} < Ay < A3 < .-+ < Ay. The unnormalized Laplacian matrix has the form
L = diag(dy, da,...,dy) — A, where d; = dz(»G) + dZ(NG) is the total degree of node ¢ and A is the adjacency
matrix. As we discussed in Sec. I C of the main text, Isomap entails mapping network nodes based on the
shortest paths between nodes. It corresponds to a WTM map with T" = 0 if we initialize the contagions with
node seeding rather than cluster seeding. As we will see, when assessing the extent to which point clouds
that result from WTM maps resemble the underlying ring manifold, we typically find a range of threshold
values for which the geometry, dimensionality, and topology of the manifold is more apparent in WTM
maps than for Laplacian eigenmap and Isomap methods. For other threshold values, the manifold is less
apparent for WTM maps than for the other methods.

Note that Laplacian eigenmaps and Isomap were introduced originally for the purpose of nonlinear
dimension reduction of point-cloud data rather than for network analysis. They were developed to map
a high-dimensional point cloud to a network and then to map that network to a low-dimensional point
cloud. Therefore, applying a Laplacian eigenmap or Isomap directly to a network—especially one that is
unweighted—is different from what they were designed to do. In particular, for networks that arise from
high-dimensional data—e.g., ones with nodes that are connected to each other by applying a k-nearest-
neighbor algorithm—one often weights network edges based on distances in the original, high-dimensional
point cloud. Incorporating such additional information can, of course, improve the results of dimension
reduction (e.g., when attempting to “learn” manifold attributes such as topology, geometry, and dimension-
ality). Finally, when considering dimension reduction such as manifold learning in networks (i.e., rather
than point clouds), one should determine the approach to dimension reduction (e.g., whether the algorithm
is based on diffusion, shortest paths, or contagion dynamics) based on the application at hand. (For example,
one might be more interested in conservative processes in some situations and in non-conservative processes
in others.)

Numerical Results for Geometry

In this section, we compare the geometry of symmetric WTM maps for networks in the families (a)—(d),
which we defined in 3, via calculating a Pearson correlation coefficient p to compare WTM distances to
distances in an underlying manifold. We also investigate the effects on WTM maps of varying the mean
geometric and non-geometric degrees and the network size N (when we hold other parameters constant).
We show our results in Supplementary Figs. 14—16. Panels (a)—(d), respectively, give our results for network
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families (a)—(d). Unless we indicate otherwise, we show results for one network from each family in these
and subsequent figures.

In Supplementary Fig. 14, we plot p for point clouds that result from symmetric WTM maps for the
(T, o) parameter plane. The solid and dashed curves yield approximate bifurcation curves, which we obtain
from Egs. (3) and (4) with 6§G) = 5§NG) = 0. Note that panel (a) depicts similar information as Supplemen-
tary Fig. 6(a) of the main text, although the results that we now show are for a larger network with larger
degrees. For all panels, the curve given by TéWFP) agrees very well with a relatively abrupt transition that
one can observe by examining the geometry of the WTM maps via the coefficient p. In contrast, the curve

TéANC)

for appears to not be as closely related to p. To illustrate this, fix & = 0.25 and consider increasing

values of T" in any panel. As T surpasses TéWFP), there is a large drop in the value of p. By contrast, p

changes only slightly when we cross 1" ~ TO(ANC). Comparing the four panels to each another, we find that

TéWFP)

the agreement between and the observed shifts in p decreases as the node degrees become more

heterogeneous. In particular, the transition that is imposed by TO(WFP) appears to shift to smaller values of
T, so the heterogeneities that we introduce in network families (b)—(d) mostly affect the regime in which
T~ TO(WFP). However, the qualitative behavior of WTM contagions in the (7', o) parameter plane is similar
for all four families of networks.

In Supplementary Fig. 15, we study the effect on p for symmetric WTM maps when we increase the
mean node degrees (dEG)> and (dl(-NG)>. Fixing o = 1/3, we plot p as a function of the threshold 7.
This amounts to examining vertical cross sections of the four panels in Supplementary Fig. 14. We study

the effect of varying mean node degree by showing results for ((dgG)>, <d£NG))) = (6,2) (red triangles),
((dEG)% (dENG») = (12, 4) (blue squares), and ((dEG)>, <d§NG)>) = (24, 8) (magenta x symbols). We also
show results for a 2D Laplacian eigenmap [27] (horizontal dashed lines) and Isomap [23] (horizontal dotted
lines) applied to our (unweighted) networks. Comparing the p values for the WTM maps with various mean
degrees, we note that increasing the mean degrees smoothens the dependence of p versus 7'. Specifically,
for smaller values of T' (e.g., for ' < 0.3), the discontinuous jumps in p become smaller as the mean
degrees increase. Interestingly, increasing heterogeneity in the node degrees also smoothens the curves of p
versus 1. For example, the curves are smoother for network families (b)—(d) than they are for family (a).
Additionally, note in all panels that we observe an abrupt drop in p for T = TéWFP) =1/(2+2a) = 3/8.
However, in more heterogeneous situations, this abrupt drop can shift to smaller values of T". This is most
apparent when comparing the four panels for (<d§G)>, <dENG))) = (6,2) (red triangles): the drop occurs
at T = 3/8 = 0.375 in panel (a), whereas it occurs at approximately at 7 ~ 0.29 in panels (b)—(d). To
contrast this large shift, when comparing the panels for ((dEG)>, <d§NG)>) = (24, 8) (magenta x symbols),
we observe that the change is smaller [i.e.,the abrupt drop in p is at T' = 0.375 in panel (a), whereas it occurs
at 7' ~ 0.35 in panel (d)]. Finally, note in all panels that p increases as we increase the mean degrees, and
we observe similar increases in p for the Laplacian-eigenmap and Isomap algorithms. Thus, in this series of
experiments, increasing mean node degree improves the ability of the maps to translate the geometry of the
underlying manifold to the resulting WTM point cloud.

In Supplementary Fig. 16, we study the geometry of symmetric WTM maps by plotting p versus T’
for networks of various sizes N. We fix <d£G)> = 24 and (dz(-NG)> = 8 (that is, & = 1/3) and plot p
versus the threshold 7" for T € [0,0.6]. In each panel, we show results for several choices of network
size N € [200,2000] to illustrate how p depends on N. As N increases, we observe that p systematically
decreases for WTM maps that correspond to contagions in which WFP is not the dominant phenomenon.
However, for WTM maps in which WFP dominates (e.g., when 7' € [0.2,0.25]), we find that p remains
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above 0.85. This provides strong evidence that, for this parameter regime, WTM maps translate the geom-
etry of the underlying ring manifold to the resulting point cloud for a wide range of network sizes (with the
other parameters held constant). One does not obtain such independence with network size when using a
Laplacian eigenmap or Isomap. In those cases, we find that p systematically decreases as IV increases (with
the other parameters held constant).
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Supplementary Figure 14: We study the geometry of symmetric WTM maps by calculating a Pearson cor-
relation coefficient p to compare node-to-node distances for the WTM map {z(?} € RY to those for the
node locations {w(?} € R? on the ring manifold. (See Sec. III D of the main manuscript.) We show these
(NG)>
i

values of p in the (7', o) parameter plane, where « is the ratio of the number N (d /2 of non-geometric

edges to the number N (dEG)> /2 of geometric edges. Panels (a)—(d), respectively, illustrate results for net-
work families (a)—(d). For each panel, we construct a noisy ring network with N = 1000 nodes and mean

geometric degree (d') = 40, and we vary the mean non-geometric degree (dl(-NG)) € [0,40] to study the
parameter range « € [0, 1]. The solid and dashed curves, respectively, give the theoretical approximations

from Egs. (3) and (4) with § (@) _ 5§NG) = 0. See 8 for further discussion.

)

59



(3) Ring with constant d'%) and constant di(:) (b) Ring with constant dj(;) and varying diNG)

1
0.9 0.9
0.8 0.8
50 %077———— -4 ---F-H------=====- al® =24
S =206k
% 0.6 g 0.6
g g
=05 =05
2 2
= =04l
E 0.4r E 0.4]
< 03] .
0.3 0.
0.1 04l [ 1 1%
0 . . . . . 0 . . . . .
0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
threshold (T') threshold (T")
(C) Ring with varying dEG) and constant r]ENG)

Ring with varying dic) and varying diNG)

o
3

o
o

o4
3

o
~

correlation coefficient (p)

o

o

o

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5
threshold (T) threshold (T)

Supplementary Figure 15: We study the geometry of symmetric WTM maps by calculating a Pearson cor-
relation coefficient p as a function of WTM threshold 7' to compare node-to-node distances for the WTM
map {z(V} € RY to those for the node locations {w(?)} € R? on a ring manifold. Panels (a)—(d), re-
spectively, illustrate results for network families (a)—(d), and they amount to vertical cross sections of the
corresponding contour plots in Supplementary Fig. 14 (i.e., for a constant value of «). In each panel, we
study WTM maps on a noisy ring network with N = 1000 nodes with « = 1/3 for several choices of
mean node degrees: ((dEG)>, (dENG)>) = (6,2) (red triangles), (<d5G)), (diNG)>) = (12,4) (blue squares),
and ((dZ(»G)>7 <dl(.NG))) = (24, 8) (magenta x symbols). We also plot p for a 2D Laplacian eigenmap [27]
(dashed lines) and for the Isomap algorithm [23] (dotted lines). In all panels and for all mapping algorithms,
increasing mean node degree tends to increase p, so the ability of the maps to translate the underlying ring
manifold’s geometry to a point cloud improves with increasing mean node degree for these experiments.
Additionally, note that the curves for the largest mean degree (magenta x symbols) remain more consistent
across the panels. See 8 for further discussion.
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Supplementary Figure 16: We study the geometry of symmetric WTM maps by calculating a Pearson cor-
relation coefficient p as a function of WTM threshold 7' to compare node-to-node distances for the WTM
map {z(i)} € RY to those for the node locations {w(i)} € R? on a ring manifold. Panels (a)~(d), re-
spectively, illustrate results for network families (a)—(d), and they amount to vertical cross sections of the
corresponding contour plots in Supplementary Fig. 14 (i.e., for a constant value of «), although we show
results for several choices of network size N. In each panel, we study WTM maps on a noisy ring network
with (dEG)> = 24 and <dENG)) = 8 (i.e., @ = 1/3), and we show curves of p versus 7" for networks of sizes
N = {200, 500, 1000, 1500, 2000}. We also plot p for a 2D Laplacian eigenmap [27] (dashed lines) and
for the Isomap algorithm [23] (dotted lines). In all panels and for all mapping algorithms, increasing the

network size N tends to decrease p, except for WTM maps that are characterized by WFP and little (or no)
ANC. See 8 for further discussion.
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Numerical Results for Dimensionality

In this section, we examine the dimensionality of point clouds that result from symmetric WTM maps
that we apply to networks on a ring manifold. As we discussed in Sec. IIl E and 7, we study their “em-
bedding dimension” P, which we define for a point cloud to be the smallest dimension p such that the
residual variance R, for the projection onto R” is small. In practice, we use PCA for such projections, and
we specify “small” as being (strictly) less than 0.05. (In other words, we lose less than 5% of the variance
after the projection.) Importantly, if the point cloud is a noisy sample of points on a manifold, then P is an
approximation for the embedding dimension of the manifold.

We show our results for embedding dimension of point clouds resulting from WTM maps in Supplemen-
tary Figs. 17-18. Panels (a)—(d), respectively, give our results for network families (a)—(d). In Supplemen-

tary Fig. 17, we plot P in the (7', o) parameter plane for networks with N = 200 nodes, mean geometric
(G) (NG

/) = 20, and various mean non-geometric degrees (d; )>. We also plot the approximate bifur-

cation curves given by Egs. (3) and (4) with 5i(G) = 5§NG) = (. Note that panel (a) is similar to the plot in
Supplementary Fig. 6(b) of the main text. We observe in all panels that WTM maps for the contagion regime
that we expect to exhibit WFP but no ANC yield point clouds {z(i)} with a small embedding dimension of
P =~ 2. This result is expected, because a ring manifold is exactly the unit circle in R?. That is, it is a
one-dimensional manifold that requires at least two dimensions to be embedded in a Euclidean space. Note
that this low dimensionality persists into the regime that we expect to exhibit both WFP and ANC, although
the embedding dimension P increases as one moves away from the regime exhibiting WFP and no ANC.
In Supplementary Fig. 18, we continue our investigation of the dimensionality of point clouds that
result from the application of symmetric WTM maps to networks on a ring manifold by showing their
embedding dimension P as a function of threshold 7". One can construe the curves of P versus 1" as a
vertical cross section of the contour plots in Supplementary Fig. 17; we show results for several choices of

mean node degrees: ((dl(.G)>, <d§NG)>) = (6,2) (red triangles), (<d§G)), (dENG)>) = (12,4) (blue squares),

and ((dEG)>, <d§NG)>) = (18,6) (magenta x symbols). We also show values (horizontal dotted lines) of P
versus 1" for the point clouds that we obtain by applying Isomap [23] to the networks. We obtain horizontal
lines because Isomap does not include any dependence on T'. We do not investigate the dimensionality of
the 2D Laplacian eigenmaps, as we fix their dimension to 2 in our study.

Note that the curves in panels of Supplementary Fig. 18 are rather similar to each other. In particular,
for all panels, we find the smallest embedding dimension P for the regime in which we expect a WTM
contagion to exhibit WFP without ANC [i.e., for T" € (1/4,3/8)]. Additionally, we consistently identify
the correct embedding dimension (i.e., P = 2) for this regime as long as mean degrees are sufficiently
large (e.g., see the magenta X symbols). For smaller mean degrees, we still observe that P is small for
a similar range of the threshold 7. However, the curves of P versus 7' tend to suggest that smaller mean
degrees lead to larger embedding dimensions in our numerical experiments. For Isomap (in which we map
nodes based on shortest paths), we observe in our experiments that the embedding dimension P is always
at least 10. Additionally, the embedding dimension P for Isomap appears to decrease systematically as the
mean degrees increase. Thus, using shortest paths to map nodes for network families (a)—(d) leads to point
clouds with a dimensionality that is higher than P = 2; however, it might be possible to recover the correct
embedding dimension of a ring manifold when the mean degrees are sufficiently large (keeping all other
parameters fixed). Finally, note that P < 20 in all panels. Recall that this is the maximum value of P that
we can observe because it is the largest projection that we consider.

degree (d
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Supplementary Figure 17: We examine the dimensionality of point clouds that result from symmet-
ric WTM maps that we apply to networks on a ring manifold by studying their embedding dimension
P = min{p|R, < 0.05}, where R, denotes the residual variance for the projection onto R”. (See Sec. IIl E
of the main manuscript.) We plot P in the (7', o) parameter plane for networks with N = 200 nodes,
mean geometric degree (dEG)) = 20, and various values of the non-geometric degree (dENG)). As before,
panels (a)—(d), respectively, illustrate the results for network families (a)-(d). We use solid and dashed
curves, respectively, to indicate the theoretical critical threshold values given by Egs. (3) and (4) with
51-(G) = 6§NG) = 0. In all panels, we see that WTM maps for the contagion regime that we predict to
be characterized by WFP but no ANC yield point clouds with an embedding dimension of P ~ 2, which
agrees with the fact that a ring manifold is embedded in R?. This low-dimensional structure persists into
the regime that we predict has both WFP and ANC, although the embedding dimension P increases as one

moves away from the regime that exhibits WFP and no ANC. See 8 for further discussion.
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Supplementary Figure 18: We study the dimensionality of point clouds that result from symmetric WTM
maps by showing their embedding dimension P as a function of 7" for networks with N = 200 and o = 1/3.
One can construe these curves of P versus 1" as vertical cross sections for the contour plots in Supplementary
Fig. 17; we show results for several choices of mean node degrees: ((dgG)>, <d(NG)>) = (6,2) (red trian-

(]
gles), (<d§G)), (dENG))) = (12,4) (blue squares), and ((dEG)>, (dl(-NG)>) = (18,6) (magenta X symbols).
As before, panels (a)—(d) correspond to network families (a)—(d). In all panels, we identify the correct di-
mension (i.e., P = 2) for the regime that we expect WTM contagion to exhibit WFP without ANC [i.e.,
T € (1/4,3/8)] if the mean node degrees are sufficiently large (see magenta x symbols). The curves for
the other mean degrees also consistently depict small values of P for a similar range of threshold 7. We
also plot P versus 1" for the point clouds that we obtain by mapping the nodes based on shortest paths, as in
Isomap [23] (horizontal dotted lines). For these experiments, P > 10 from Isomap in all panels, although it
appears to decrease systematically with increasing mean node degrees. See 8 for further discussion.
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Numerical Results for Topology

In this section, we study the topology of point clouds that result from symmetric WTM maps applied to
noisy geometric networks on a ring manifold. As we discussed in Sec. III F and 7, we examine the difference
A = l; — I between the largest lifetimes for 1D features (i.e., 1-cycles). We determine the persistence of
these 1-cycles across spacial scales using a Vietoris-Rips filtration of the point cloud [17, 16, 15]. We
normalize the difference in lifetimes so that A € [0, 1]. We show our results in Supplementary Figs. 19-20.
Panels (a)—(d), respectively, give our results for network families (a)-(d).

In Supplementary Fig. 19, we plot A in the (7', o) parameter plane. We show results for networks with

N = 200 nodes, mean geometric degree of <d§G)) = 20 and various mean non-geometric degrees (dENG)> €
[0, 20]. In each panel, the solid and dashed curves indicate, respectively, our approximate bifurcation curves
from Eqgs. (3) and (4) with 52-((}) = 5§NG) = (. Note that panel (a) is similar to Supplementary Fig. 6(c)
from the main text. Variations in A appear to correspond closely with the theoretical curves. For example,

(ANC)
0

fixing a < 0.5 and increasing 7', we observe an increase in A as T’ surpasses 7 and a decrease in A

as 7' surpasses TéWFP). For all four network families, A is largest for WTM maps that correspond to the
contagion regime that we predict to be characterized by WFP without ANC. By comparing the panels, we
see that the identifiability of the underlying ring topology (as indicated by A = 1) decreases as we increase
the heterogeneity in the nodes’ degrees. For example, panel (a) includes parameter values (7', ) for which
A > 0.9, but A < 0.6 in panel (d) for the same portion of the parameter plane (7', c).

In Supplementary Fig. 20, we continue our investigation of the topology of the point clouds that result
from symmetric WTM maps by fixing « = 1/3 and plotting A as a function of 7. One can construe these
curves of A versus 7" as examining vertical cross sections from the panels in Supplementary Fig. 19 with
several choices of mean degrees: ((dl(-G)>, <d£NG))) = (6,2) (red triangles), (<d§G)), (dgNG))) = (12,4)
(blue squares), and ((dEG)>, (dl(-NG)>) = (24, 8) (magenta x symbols). As before, the networks have N =
200 nodes. Observe in Supplementary Fig. 20 that A tends to decrease as the heterogeneity of the network
increases. For example, the values of A in panels (b) and (c) tend to be smaller than those in panel (a),
and the A values in panel (d) tend to be even smaller than those in panels (b) and (c). This decrease makes
it harder to successfully identify the ring topology in the point clouds. This is most evident for the curves
that correspond to (<d§G)>, (dENG)>) = (6,2) (red triangles). Although we observe large values of A in
panels (a) and (b) for the point clouds for the contagion regime that we predict to exhibit WFP without
ANC [ie., T € (1/4,3/8)], we find that the values of A for this regime are much smaller in panels (c)
and (d). In this experiment, A does not depend on mean node degrees in a simple manner. In network
family (a), for example, when comparing the A versus 7" curve for ((d(G)>, (dZ(NG)>) = (12,4) to that

i
for (<d§G)), (dl(-NG)>) = (6,2), we observe larger A values when increasing the mean degrees. However,
restricting out attention to the range 7" € (1/4, 3/8), the curve of A versus 7" for (<dEG)>, <d§NG)>) = (24,8)

yields A values that are smaller than those for ((dEG)>, <d§NG)>) = (12,4). This nontrivial behavior might
be due to the relatively small differences in magnitude between the mean node degrees and the network size
(N = 200) that we use for this experiment. In this experiment, we also compute A for Isomap, and we find
that A ~ 0 in all cases. We thus omit these results from Supplementary Fig. 20.
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Supplementary Figure 19: We study the topology of symmetric WTM maps by calculating the difference
A = l; — lo between the largest lifetimes for 1D features (i.e., for 1-cycles); see Sec. III F of the main
manuscript. We normalize the lifetime difference so that A € [0,1]. Panels (a)—(d), respectively, show
results for network families (a)—(d). Each network has N = 200 nodes, a mean geometric degree of

<d(G)> = 20, and various mean non-geometric degrees (d(NG)) € [0,20]. The solid and dashed curves,

(2 (2

respectively, give the approximate bifurcation curves from Egs. (3) and (4) with (51-(G) = 5§NG) = (. Panel
(a) is similar to Fig. 6(c) of the main manuscript. In all panels, we observe evidence that the point clouds
that result from WTM maps that correspond to contagions with WFP but no ANC lie on a ring manifold.
However, this evidence becomes weaker (as indicated by smaller values of A) as the networks become more

heterogeneous [e.g., compare panel (d) to panel (a)]. See 8 for further discussion.
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Supplementary Figure 20: We study the topology of symmetric WTM maps by plotting A as a function of T’
for N = 200 and o = 1/3. As before, panels (a)—(d) correspond, respectively, to network families (a)—(d).
One can construe the curves of A versus 7" as vertical cross sections of the contour plots in Supplementary
Fig. 19; we consider several different choices of mean node degrees: (<d§G)), (dl(-NG))) = (6,2) (red tri-
angles), ((dEG)% (dENG)>) = (12,4) (blue squares), and ((dEG)>, (dl(-NG)>) = (24, 8) (magenta x symbols).
Note that introducing heterogeneity tends to decrease the ability to identify the ring topology in the point
cloud with A. For example, note that the values of A in panels (b) and (c) are smaller than those in panel
(a), and the values of A in panel (d) are smaller than those in panels (b) and (c). Additionally, in panel (¢)
and panel (d), we see that when the mean degrees are too small (e.g., see red triangles), then A = 0 for all

thresholds 7'. Thus, we do not find evidence of the ring topology for these point clouds. See 8 for further
discussion.
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Non-Uniform Sampling of a Ring Manifold

In our numerical experiments thus far, we have investigated symmetric WTM maps for four families
of noisy geometric networks on a ring manifold. (See 3 for their descriptions.) Network families (c¢) and
(d) allow heterogeneity in the node locations along a ring manifold through the placement of nodes via
unevenly-spaced angles {6;} along the unit circle. Recall that each node ¢ has an associated angle 0; =
2Ti+ §0;, where we draw 66; ~ N (0, (s2%)?) from a Gaussian distribution with a standard deviation of s27.
Note that QW” is the spacing between the /N nodes if they are spaced uniformly on the ring. Consequently, by
varying the parameter s, one can tune the level of heterogeneity in node location and thus the heterogeneity
of the geometric degrees {dEG) }. Recall that s — oo corresponds to sampling locations on the unit circle
uniformly at random. In our previous experiments, we let s = 1/2 for network families (c¢) and (d). In this
section, we investigate the effect of varying s. Because s > 0 introduces heterogeneity in the geometric
degrees, we consider both the case in which the nodes’ non-geometric degrees are identical and the case in
which they are heterogeneous. That is, the networks that we now consider are generalizations of network
families (c¢) and (d), but we now also vary the level of heterogeneity in the geographic spacing of nodes on
the ring.

In Supplementary Fig. 21, we show results for the (left column) geometry, (center column) dimension-
ality, and (right column) topology of symmetric WTM maps, where we fix « = 1/3 and N = 200 and we

vary the threshold 7T". We consider networks with N = 200 nodes, mean geometric degree of <d§G)) = 24,
ENG)) =38,and s € {0,1/2,1,3/2,2,5/2,00}. The top row corresponds
to generating noisy geometric edges so that every node has exactly dENG) = <d§NG)> non-geometric edges,
and the bottom row corresponds to generating noisy geometric edges uniformly at random so that the non-
geometric degree dENG) of a node ¢ is a binomially-distributed random variable. See the descriptions of the
network families in 3. Using horizontal dashed lines, we show results for the mapping of nodes for Isomap
(i.e., based on shortest paths). We omit these results from panels (c) and (f), because we obtain A =~ 0 in
these cases. The dashed lines in panels (a) and (d) give values of p for a 2D Laplacian eigenmap. (It is 2D
by construction, so we do not investigate its embedding dimension P.)

Increasing network heterogeneity by increasing s has a significant effect on the structure of the point
clouds that result from symmetric WTM maps. For example, we see in panels (a) and (d) that increasing s
shifts the abrupt drop-off in the Pearson correlation coefficient p, which originally occurs near its expected
value of TéWFP) = 3/8, to progressively smaller values of T'. In fact, we see in all panels that increasing s
causes the curves of p versus T to shift to the left. Additionally, in panels (a) and (d), we see for sufficiently
large s that there is a regime in which p is small for all threshold values 7T'. In panels (b) and (e), we still
obtain regimes in which the WTM maps are low-dimensional (i.e., P =~ 2). However, as s increases, the
range of 1" values for which P indicates low dimensionality becomes smaller and shifts to the left. In panels
(c) and (f), one can also observe that the ability to identify the ring topology becomes more difficult with
increasing s. In panel (c), we obtain large 1-cycle lifetimes A when 7" € (1/4, 3/8) for s = 0; this provides
strong evidence that the point cloud lies on a ring manifold. For small s (e.g., 0 < s < 3/2), we also obtain
large values of A, but the range of thresholds T that produce large A are smaller and have shifted to the left.
However, when s is large (e.g., s = o0), A remains small for all threshold values 7" in panels (c). There is

even less evidence of the ring topology in panel (f), as A remains small for all values of s and T

mean non-geometric degree of (d

68



(a) Ring with constant d(N®) (b) Ring with constant d(N¢) (0) Ring with constant d¥%
! 7 X E _
Bs= a
0.9r _—g_s =1 181 -
: 5=3 o8
s 4FR Si% 16} ;’:0'5
El bl o
s = )
3
_ 2 0.4
S <
= - 03p
g B
g Ed
g 2
202
B
g
z
B
£
£ 0.1
=}
0 : ‘ ‘ ‘ 0 ‘ ‘ . ‘ ‘ o e
0 0.1 02 03 0.4 05 0 0.1 02 0.3 0.4 05 0.2 0.3 0.4 05
threshold (T') threshold (T') threshold (T')

Ring with varying

(f) Ring with varying diG)

o
o

I
IS

o
w

correlation (p)

o
N

o

difference in longest lifetimes of 1-cycles (A)

Sy

0 0.1 0.2 0.3 0.4 0.5 0 0.1 0.2 0.3 0.4 0.5 0.2 0. U4
threshold (T') threshold (T) threshold (T')

Supplementary Figure 21: We study the (left column) geometry, (center column) dimensionality, and (right
column) topology for symmetric WTM maps applied to noisy geometric networks with node locations
{w(i)} that we sample randomly from a ring manifold, where the parameter s controls the amount of het-
erogeneity that we introduce into the spacing of the nodes along the ring. (Recall that we used s = 1/2 to
define network families (c) and (d).) We show results for various values of the threshold 7" for networks with
N = 200 nodes, mean geometric degree (dgG)> = 24, and mean non-geometric degree (dgNG)> = 8. We
consider both non-geometric degrees that are (top row) constant across the nodes, as in network family (c)
and (bottom row) heterogeneous, as in family (d). Note that increasing heterogeneity in node spacing on the
manifold, which in turn increases the heterogeneity in the geometric degrees {dl(-G)} (although their mean
is constant), tends to lead to a decrease in the ability of the symmetric WTM maps to recover the properties
of the underlying manifold in the resulting point cloud. One sees this mostly clearly when examining the
geometry and topology, as there are significant drops in p and A as s increases. The dotted lines in panels
(a), (b),(d), and (e) indicate the values that we observe for the mapping of nodes based on shortest paths, as
in the Isomap algorithm. The dashed lines in panels (a) and (d) indicate values for a 2D Laplacian eigenmap.
See 8 for further discussion.
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Summary of Experiments with a Ring Manifold

We have conducted an extensive investigation of the geometry, dimensionality, and topology of sym-
metric WTM maps for several families of noisy geometric networks on a ring manifold. We now briefly
summarize our results.

We demonstrated that the structure (e.g., geometry, dimensionality, and topology) of WTM maps de-
pends strongly on the contagion threshold 71" and the network parameters (e.g., the number of nodes NV,
the geometric degrees {dEG)}, and the non-geometric degrees {dEG)}). Consequently, the extent to which
a WTM contagion exhibits wavefront propagation (WFP) versus the appearance of new clusters (ANC) of
contagions also depends on these parameters. Bifurcation analysis did a good job of predicting which param-
eter regimes have similar point-cloud structures. This is particularly evident in the (7', o) parameter plane in
Supplementary Figs. 14, 17, and 19, where we observed that the geometry, dimensionality, and topology of
WTM maps align well with our theoretical predictions for the occurrence of bifurcations in the dynamics of
a WTM contagion. We found such agreement even for networks with heterogeneity in geometric degrees,
non-geometric degrees, and/or node locations along a ring manifold. As we discussed in 3, we interpret our
bifurcation analysis for the noisy ring lattice as an approximate bifurcation analysis for the networks with
heterogeneous structures. As expected, we also observed that the accuracy of our approximation increases
as the mean node degrees increase. However, its accuracy is sensitive to a variety of factors—including the
threshold 7', the network size IV, and the particular type of structural heterogeneity in the network. In many
of our numerical experiments, we compared the structure of point clouds that result from WTM maps to
those that result from a 2D Laplacian eigenmap [27] and Isomap [23], which map the network nodes based
on diffusion dynamics and shortest paths, respectively. Our approach provides a nice complement to these
methods.
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9 Supplementary Discussion

In this Supplementary Discussion, we further consider the implications of our study for three research areas
that have diverse motivations and goals but which share a common interest in understanding spreading
processes on networks.

High-Dimensional Data Analysis of Contagions and Other Dynamics

Research on network epidemiology [28, 29, 30, 31] underscores the importance of the perspective that
we have taken in the present paper. For example, Brockmann and Helbing [28] recently defined node-to-
node distances based on a stochastic model for contagions that takes into account human mobility patterns in
the worldwide airline network, and they reported that such a notion of distance did a good job of predicting
global contagions. In their study, Brockmann and Helbing reported that node-to-node distances are insensi-
tive to the contagion parameters in their model. By contrast, we find that the geometry, dimensionality, and
topology of contagions depends sensitively on the contagion parameters (e.g., the threshold T7) of the WTM.
This appears to arise from the thresholding process, so we expect it to be relevant for complex contagions
in general because of the importance of social reinforcement [32, 33, 34, 35].

Our perspective can be applied to study other spreading processes [21], where it has the potential to offer
insights into phenomena such as information seeding [36] and targeted immunization [37, 38]. Moreover, a
large variety of other processes—including some of the most heavily investigated dynamical processes (e.g.,
k-core percolation and other types of percolation) [21, 39], more intricate complex-contagion models [40],
and even some local methods for community detection [41]—also satisfy filtration conditions that are based
on node states and the dynamics of such states. One can thus construct contagion maps for these processes
and study them using the approach that we have illustrated. Computational homology offers a promising
(and novel) approach for studying all of those situations.

Dimension Reduction of Networks

In the present paper, we used the fact that WTM contagions satisfy a filtration condition. This makes
it possible to study networks from the perspective of computational topology [42, 43, 44, 45]. One can
thus construct a metric space based on when nodes adopt a contagion for different choices of initial con-
ditions. (See 4.) WTM contagions thereby allow the simultaneous study of network topology, geometry,
and dimensionality. Such manifold learning has numerous applications, including inference of missing and
spurious edges [6, 7, 8, 9, 10], efficient routing of information [46, 47], and identification of attributes that
are responsible for edge formation [48]. To provide a step in this direction, in 2, we compared the denois-
ing of networks via WTM maps—a “global” approach for identifying spurious edges—to a popular “local”
approach based on the statistics of subgraphs [4].

An important future direction is to improve the computational efficiency of constructing contagions
maps. As we discussed in 5, the typical computational complexity for our construction of a WTM map
with all possible initial conditions with clustering seeding is currently O(N M), where M is the number
of edges in a network. Approximation schemes based on ideas such as network sampling [41] and random
projections [49] offer promising approaches for improving computation speed.
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Dimension Reduction of Point-Cloud Data

Although we focused on manifold structure in networks, our approach extends naturally to point-cloud
data (e.g., images, videos, and time series)—the traditional setting for manifold learning—if one first infers
a proximity network using, for example, a k-nearest neighbor distance thresholding [27, 50, 51, 52]. In this
endeavor, a central pursuit has been the development of techniques that are robust to noise [51, 52, 53].
It is well-known that diffusion distances are more robust than shortest-path distances to noisy edges, so
maps that are based on diffusion [27, 50] can be preferable to the Isomap algorithm [23] for noisy data
[53]. However, noisy edges can still be problematic for diffusion distances, so some techniques attempt to
denoise a network prior to mapping it [7]. The robustness to noisy edges for WTM maps with contagions
dominated by WFP makes them appealing, and it would be interesting to explore applications with noisy
data. An important distinction of WTM maps from prior work is that our research is based on nonlinear
and nonconservative dynamics (in particular, on complex contagions) rather than on linear and conservative
dynamics such as diffusion (e.g., random walks) [6, 7, 27, 50, 51, 52]. These different classes of dynamics
can behave very differently, and it is known that they give very different answers for questions like which
nodes are most important [54] and what network structures constitute bottlenecks to such dynamics [55]
(which is closely related to which network structures yield dense communities of nodes [41]). Comparing
WTM maps to Laplacian eigenmaps [27] and Isomaps [23] (see 8) illustrates that these different dynamics
lead to differences in the results of dimension reduction. It is thus important to explore dynamics other than
diffusion for the analysis of point-cloud data.
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