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AsstrAcT. Let E ¢ R™, n > 2, be a uniformly rectifiable set of dimension
Then bounded harmonic functions 1 := R™! \ E satisfy Carleson measure
estimates, and ares“approximable”. Our results may be viewed as general-
ized versions of the classical F. and M. Riesz theorem, simeestimates that
we prove are equivalent, in more topologically friendlytisgfs, to quantitative
mutual absolute continuity of harmonic measure, and senfagasure.
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1. INTRODUCTION

In this paper, we establish generalized versions of a clalsgieorem of F. and
M. Riesz RR], who showed that for a simply connected dom@iim the complex
plane, with a rectifiable boundary, harmonic measure islatedp continuous with
respect to arclength measure. Our results are scaledamahigher dimensional
versions of the result of§R], whose main novelty lies in the fact that we com-
pletely dispense with any hypothesis of connectivity. Despecent successes of
harmonic analysis on general uniformly rectifiable setsaftong time connectiv-
ity seemed to be a vital hypothesis from the PDE point of viemteed, Bishop and
Jones BJ] have produced a counter-example to show that the F. and é4zRihe-
orem does not hold, in a literal way, in the absence of coivigctthey construct
a one dimensional (uniformly) rectifiable sEtin the complex plane, for which
harmonic measure with respectto= C \ E, is singular with respect to Hausdbr
H! measure orE. The main result of this paper shows that, in spite of Bishop-
Jones counterexample, suitable substitute estimatesromohie functions remain
valid in the absence of connectivity, in general uniformégtifiable domains. In
more topologically benign environments, the latter areawlequivalent to (scale-
invariant) mutual absolute continuity of harmonic measur@nd surface measure
o 0noQ.

Let us be more precise. In the setting of a Lipschitz dongaia R™*, n > 1,
for any divergence form elliptic operatar = — div AV with bounded measurable
codficients, the following are equivalent:

(i) Every bounded solution, of the equatioriLu = 0 in Q, satisfies th&€arleson
measure estimatg..2) below.

(i) Every bounded solution, of the equatiorLu = 0 in Q, is e-approximable
for everye > 0 (see Definitior.8).

(i) w € Ax(o) onoQ (see Definitionl.14).

(iv) Uniform Square functiofNon-tangential maximal functiofiS/N”) estimates
hold locally in “sawtooth” subdomains @1.

Item (jii ) says, of course, that harmonic measure and surface measuraitu-
ally absolutely continuous, in a quantitative, scale-itarst way. We will not give
a precise definition of the terms in itenv), since these estimates are not the pri-
mary concern of the present paper (but see, é)jK], as well as our forthcoming
companion paper to this one). On the other hand, the Carl@sasure estimate
(1.2) is a special case (which in fact implies the other caseshefdirection of the
S/N estimates (the directiorS'< N”, in which one controls the square function, in
someLP norm, in terms of the non-tangential maximal function). Welkdiscuss
the connections among these four properties in more dettihb

In the present work, we show that@ := R™! \ E, whereE c R is a
uniformly rectifiable set (see Definitioh.6) of co-dimension 1, theni)and i)
continue to hold (see Theorensl and 1.3 below), even thoughii() may now
fail, by the example of BJ] mentioned above. Moreover, we develop a general
technique that yields transference from NTA sub-domairtheéacomplement of a
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uniformly rectifiable set and ultimately will allow us to atk a wide range of PDE
questions on uniformly rectifiable domains. In a forthcogngrquel to the present
paper, we shall show that in this setting, both local and&@l68 < N” estimates
hold for harmonic functions and for solutions to generapétt PDESs (topological
obstructions preclude the opposite direction). We shatl ptesent there a general
transference principle by which one may transmit Carleseasure estimates and
S < N bounds from Lipschitz sub-domains to NTA domains (as a canapeto the
transference from NTA sub-domains to the complement of toumly rectifiable
set achieved here).

The main results of this paper are as follows. The terminpologed in the
statements of the theorems will be defined momentarily, Guhéw let us note
that in particular, a UR set is closed by definition, so fdat= R™! \ E is open,
but need not be a connected domain. For the sake of notatonaénience, we
sets(X) := dist(X, E). As usual,B(x,r) will denote the Euclidean ball of cent&r
and radiug in R™?,

Theorem 1.1. Let E ¢ R™! be a UR (uniformly rectifiable) set of co-dimension
1. Suppose that u is harmonic and boundedin= R™?! \ E. Then we have the
Carleson measure estimate

(1.2) sup o [[ WPV AY < €y,
rn B(x.r)

XeE, O<r<oco

where the constant C depends only upon n and the “UR charaofet.

Theorem 1.3. Let E ¢ R™! be a UR set of co-dimension 1. Suppose that u is
harmonic and bounded € := R™!\ E, with||ul|.~ < 1. Then u iss-approximable
for everye € (0, 1).

We conjecture that converses to Theorelhisand 1.3 (or perhaps the combi-
nation of the two), should hold. Such results would be ansgsgf our work in
[HMU].

Let us now define the terms used in the statements of our timsordhe fol-
lowing notions have meaning in co-dimensions greater thawutLhere we shall
discuss only the co-dimension 1 case that is of interest to tnés work.

Definition 1.4. (ADR) (akaAhlfors-David regulay. We say that a s c R™?, of
Hausdoff dimensiom, is ADR ifitis closed, and if there is some uniform constant
C such that

(1.5) %r” <o(A(xr)) <Cr", Vre (0,diamE)), x < E,

where diamE) may be infinite. HereA(x,r) := E N B(x,r) is the “surface ball”
of radiusr, ando := H"|g is the “surface measure” di, whereH" denotesn-
dimensional Hausdéirmeasure.

Definition 1.6. (UR) (akauniformly rectifiabl¢. An n-dimensional ADR (hence
closed) seE ¢ R™! is UR if and only if it contains “Big Pieces of Lipschitz
Images” ofR" (“BPLI"). This means that there are positive constatend M,

such that for eacl € E and eachr € (0, diam(E)), there is a Lipschitz mapping
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o = pxr - R" — R™1L with Lipschitz constant no larger thavio, such that

H”(Em B(x1)Np (izeR": |2 < r})) > 0.

We recall thatn-dimensional rectifiable sets are characterized by thegptpp
that they can be covered, up to a setttf measure 0, by a countable union of
Lipschitz images oR"; we observe that BPLI is a quantitative version of this fact.

We remark that, at least among the class of ADR sets, the WRasefprecisely
those for which all “séiciently nice” singular integrals afe?-bounded PS1]. In
fact, for n-dimensional ADR sets ilR™?, the L? boundedness of certain special
singular integral operators (the “Riesz Transforms”¥fisas to characterize uni-
form rectifiability (see MV ] for the casen = 1, and NToV] in general). We
further remark that there exist sets that are ADR (and thext &rm the boundary
of a domain satisfying interior Corkscrew and Harnack Cleainditions), but that
are totally non-rectifiable (e.g., see the construction aifrdtt’s “4-corners Cantor
set” in [DS2, Chapterl]). Finally, we mention that there are numerobsrothar-
acterizations of UR sets (many of which remain valid in higt@ dimensions); cf.
[DS1, DST.

Definition 1.7. (“UR character” ). Given a UR seE c R™?, its “UR character” is
just the pair of constant®,(Mp) involved in the definition of uniform rectifiability,
along with the ADR constant; or equivalently, the quanitiabounds involved in
any particular characterization of uniform rectifiability

LetQ := R™!\ E, whereE c R™! is ann-dimensional ADR set (hence closed);
thusQ is open, but need not be a connected domain.

Definition 1.8. Let u € L*(Q), with ||ull < 1, and lete € (0,1). We say that

u is e-approximable, if there is a constant,, and a functionp = ¢* € W,%;é(Q)
satisfying

(1.9) lu—ellLe@) < €,
and
1
(1.10) sup  — [Vo(Y)dY < C,.
n
xeE, O<r<co I B(xr)

We observe thatl(10 is an “enhanced” version of the Carleson estimaté)(
On the other hand, even in the classical case @hit a half-space or a ball, one
cannot expect that the! Carleson measure boundl. {0 should hold, in general,
with a bounded harmonic functianin place ofy (there are counter-examples, see
[Gar, Ch. VIII]).

The notion ofe-approximability was introduced by Varopoulogaf], and (in
sharper form) by Garnettdai, who were motivated in part by its connections
with both theH/BMO duality theorem of Ferman FS], and the “Corona The-
orem” of CarlesonCai. In particular, thes-approximability property is the main
ingredient in the proof of Varopoulos’s extension theoravhjch states that ev-
ery f € BMO(R" has an extensiof € C®(R"1), such thafVF(x,t)|dxdtis a
Carleson measure. Using ideas related to the proof of ther@aheorem, Gar-
nett showed that the-approximability property is enjoyed, for adl € (0, 1),
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by bounded harmonic functions in the half-space. Garneth thses this fact
to establish a “quantitative Fatou theorem”, which prodidiee first hint thate-
approximability is related to quantitative properties afinonic measure.

As we have noted, the propertig¥-(iv) listed above are equivalent, given suit-
able quantitative connectivity d@. Let us recall, for example, the known results
in the setting of a Lipschitz domain. In that setting, Dahfpfbad obtained an
extension Garnett’s-approximability result, observing thav) implies (i)*. The
explicit connection ok-approximability with theA,, property of harmonic mea-
sure, i.e., thati{) = (iii), appears inKKPT] (where this implication is estab-
lished not only for the Laplacian, but for general divergerfarm elliptic opera-
tors). That i) implies (v) is proved for harmonic functions iDg2?, and, for null
solutions of general divergence form elliptic operatons]0JK]. Finally, Kenig,
Kirchheim and ToroKKT] have recently shown thai)(implies (ii) in a Lipschitz
domain, whereas, on the other handl,nfay be seen, via good-lambda and John-
Nirenberg arguments, to be equivalent to the local versfame direction of i)
(the “S < N” direction)’.

The results of the present paper should also be comparedde df the papers
[HMU] and [AHMNT] (see also the earlier papéll12]) which say, in combina-
tion, that for a “1-sided NTA” (aka “uniform”) domaig (i.e., a domain in which
one has interior Corkscrew and Harnack Chain conditions,3&finitions1.11,
1.12), with ADR boundary, thedQ is UR if and only ifw € A, (o) if and only
if Qis an NTA domain (DefinitiorL.13. We refer the reader to these papers for
details and further historical context. This chain of ircptions underlines the
strength of the UR of the boundary under the background Ingsi that the do-
main is 1-sided NTA, which serves as a scale-invariant cctiviy. The present
paper, on the other hand, introduces a general mechaniswiradl one to dispose
of the connectivity assumption and still obtain Carlesorasuee bounds ane
approximability. We would like to emphasize that in this pape work with a UR
setE, for which the open s&™?! \ E fails to satisfy the Harnack chain condition.
Otherwise, we would have th&af""! \ E is a 1-sided NTA domain (the Corkscrew
condition holds sinc& is ADR), and thus NTA, by [AHMNT]. This cannot happen
sinceR™1 \ E has null exterior.

1.1. Further Notation and Definitions.

e We use the letters, C to denote harmless positive constants, not necessarily the
same at each occurrence, which depend only on dimensiothamdhstants ap-
pearing in the hypotheses of the theorems (which we refes thex“allowable
parameters”). We shall also sometimes watg b anda ~ b to mean, respec-
tively, thata < Cband O< ¢ < a/b < C, where the constantsandC are as
above, unless explicitly noted to the contrary. At times shall designate biv

IThis implication holds more generally for null solutionsdif¥ergence form elliptic equations,
see KKPT] and HKMP].

2And thus all three properties hold for harmonic functioniipschitz domains, by the result of
[Da1l.

3The latter equivalence does not require any connectivipothesis, as we shall show in a forth-
coming sequel to the present paper.
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a particular constant whose value will remain unchangeoutmout the proof
of a given lemma or proposition, but which may have fiedent value during
the proof of a diferent lemma or proposition.

e Given a closed seE ¢ R™?!, we shall use lower case lettexsy, z, etc., to
denote points o, and capital letter, Y, Z, etc., to denote generic points in
R™! (especially those i@\ E).

e The openii + 1)-dimensional Euclidean ball of radiuswill be denotedB(x, r)
when the centex lies onE, or B(X, r) when the centeX € R™!\ E. A “surface
ball” is denotedA(x, r) := B(x,r) N 0Q.

e Given a Euclidean baB or surface ball, its radius will be denotedg or ry,
respectively.

e Given a Euclidean or surface b&l= B(X,r) or A = A(X,r), its concentric dilate
by a factor ofk > O will be denotedB := B(X, xr) or kA := A(X, k).

e Given a (fixed) closed s& c R™?!, for X € R™?!, we sets(X) := dist(X, E).

e We letH" denoten-dimensional Hausd@irmeasure, and let ;= H"
the “surface measure” on a closed Betf co-dimension 1.

|E denote

e For a Borel sefA c R™1 we let 15 denote the usual indicator function Afi.e.
Ia(xX)=1if xe A,and ly(x) =0 if x ¢ A.

e For a Borel seA ¢ R™1, we let int(A) denote the interior of.

e Given a Borel measurg, and a Borel sef, with positive and finite: measure,
we seth fdu = (A1 S fdu.

¢ We shall use the lettér(and sometimes) to denote a closed¢1)-dimensional
Euclidean dyadic cube with sides parallel to the co-ordireies, and we l&(1)
denote the side length of If £(1) = 27K, then we sek; := k. Given an ADR set
E c R™1, we useQ to denote a dyadic “cube” of. The latter exist (cf.[PS1],
[Ch), and enjoy certain properties which we enumerate in Lerhirh&below.

Definition 1.11. (Corkscrew condition). Following [JK], we say that a domain
Q c R™1 satisfies the “Corkscrew condition” if for some uniform ctargc > 0
and for every surface ball := A(x,r), with x € Q and 0< r < diam@Q), there
is a ballB(Xx, cr) c B(x,r) N Q. The pointX, c Q is called a “Corkscrew point”
relative toA. We note that we may allow < C diam@Q) for any fixedC, simply
by adjusting the constaat

Definition 1.12. (Harnack Chain condition). Again following [JK], we say that
Q satisfies the Harnack Chain condition if there is a uniformstantC such that
for everyp > 0, A > 1, and every pair of pointX, X’ € Q with 6(X), 6(X’) > p
and|X — X’| < A p, there is a chain of open balB, ..., By € Q, N < C(A), with
X € By, X’ € By, BxN By,1 # @ andC~tdiamBy) < dist(By, Q) < C diam(By).
The chain of balls is called a “Harnack Chain”.

Definition 1.13. (NTA). Again following [JK], we say that a domai® c R™!
is NTA (“Non-tangentially accessible”) if it satisfies theathack Chain condition,
and if bothQ andQey := R™* \ Q satisfy the Corkscrew condition.
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Definition 1.14. (A.). Given an ADR se€E c R™!, and a surface balhy :=
Bo N E, we say that a Borel measytedefined ork belongs toA.(Ao) if there are
positive constant€ andd such that for each surface ball= BN E, with B C By,

we have
o(F)\’
(1.15) u(F)<C <@> u(A), for every Borel sefF c A.

Lemma 1.16. (Existence and properties of the “dyadic grid”) [DS1, DSZ,
[Chr]. Suppose that E R™?! is closed n-dimensional ADR set. Then there exist
constants @¢> 0, vy > 0 and G < oo, depending only on dimension and the ADR
constant, such that for each&kZ, there is a collection of Borel sets (“cubes”)

Dy = {QCE: je 3,

whereJy denotes some (possibly finite) index set depending on kfysag

(i) E=u;Q¥ for each ke Z.

(i) If m >k then either @ c Q¥ or Q" n Q¥ = @.
(iii) For each(j, k) and each nx k, there is a unique i such that‘j(@ QM.

(iv) diam(Q¥) < Cy27k,

(v) Each q contains some “surface ballA(x'j‘, ap27%) = B(x'j‘, a2 ) NE.
(vi) H'({x € Q¥ : dist(x, E\ Q%) < 027¥}) < C10” H"(Q¥). for all k, j and for

all o € (0, ap).
A few remarks are in order concerning this lemma.

¢ In the setting of a general space of homogeneous type, thigéehas been
proved by ChristChr], with the dyadic parameter/2 replaced by some constant
6 € (0,1). In fact, one may always take = 1/2 (cf. [HMMM, Proof of
Proposition 2.12]). In the presence of the Ahlfors-Daviogarty (L.5), the
result already appears iDE1, DSZ.

e For our purposes, we may ignore thdse Z such that 2¢ > diam(), in the
case that the latter is finite.

o We shall denote by = D(E) the collection of all relevan®, i.e.,
D = UgDy,
where, if diamE) is finite, the union runs over thogesuch that 2k < diam(E).

e Propertiesi¢) and ¢) imply that for each cub® € Dy, there is a poinkg € E,
a Euclidean balB(xq, r) and a surface bal(xq,r) := B(Xq,r) N E such that
r ~ 2K~ diam(@Q) and

(1.17) A(Xq,r) € Q c A(xq,Cr),
for some uniform constar@@. We shall denote this ball and surface ball by
(1.18) BQ = B(XQ, r, AQ = A(XQ, r),

and we shall refer to the point, as the “center” ofQ.
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e For a dyadic cub&® € Dy, we shall set(Q) = 27%, and we shall refer to this
guantity as the “length” o€. Evidently, £(Q) ~ diam(@).

e For a dyadic cub&) € D, we letk(Q) denote the “dyadic generation” to which
Q belongs, i.e., we sét= k(Q) if Q € Dy; thus,£(Q) = 27KQ),

2. A BILATERAL CORONA DECOMPOSITION

In this section, we prove a bilateral version of the “coroeaamposition” of
David and Semme<$)S1, DSZ. Before doing that let us introduce the notions of
“coherency” and “semi-coherency”:

Definition 2.1. [DSZ. Let Sc D(E). We say thaGis “coherent” if the following
conditions hold:

(@) S contains a uniqgue maximal elemeQ{S) which contains all other ele-
ments ofS as subsets.

(b) If Qbelongs tcS, and ifQ c Q c Q(S), thenQ € S.

(c) Given a cube& € S, either all of its children belong t8, or none of them
do.

We say thaS is “semi-coherent” if only conditionsaj and @) hold.

We are now ready to state our bilateral “corona decompasitio

Lemma 2.2. Suppose that E R™! is n-dimensional UR. Then given any positive
constantsy < 1 and K > 1, there is a disjoint decompositiab(E) = G U B,
satisfying the following properties.

(1) The “Good"collectionG is further subdivided into disjoint stopping time
regimes, such that each such regiBis coherent (cf. Definitio2.1).

(2) The “Bad” cubes, as well as the maximal cubegSRsatisfy a Carleson
packing condition:

Y @)+ Y o(QY) = Cuka(Q). YQeD(E).
QcQ,Qe8 SIQ(ScQ
(3) For eachsS, there is a Lipschitz grapRs, with Lipschitz constant at most
n, such that, for every @ S,

(2.3) supdist(x,T's) + sup distly, E) < n£(Q),
xeA*Q yeB*Qﬂl"S

where B, := B(Xq, K{(Q)) andAg := BN E.

Before proving the lemma, we recall the “Bilateral Weak Getmo Lemma”
[DS2 p. 32].
Lemma 2.4([DS?). Let E c R™! be a closed, n-dimensional ADR set. Then E
is UR if and only if for every pair of positive constants« 1 and K > 1, there
is a disjoint decompositio®(E) = Go U By, such that the cubes iB; satisfy a
Carleson packing condition

(2.5) Y (@) < Cua(Q), VYQeD(E),
QcQ,QeBy
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and such that for every @ Gy, we have

(2.6) inf | supdist(x, H) + sup distly,E) | < n¢(Q),

Ho\ xeay yeHNBy,
where the infimum runs over all hyperplanes H, and whegeBd A, are defined
asin Lemma&.2

Proof of Lemma&.2. A “unilateral” version of Lemma2.2 has already appeared
in [DS7], i.e., by [DS]], we know that Lemma.2 holds, but with the bilateral
estimate 2.3) replaced by the unilateral bound
(2.7) supdist(x, I's) < n€(Q), VQeS

xeA’é
The proof of Lemma&.2will be a rather straightforward combination of this result
of [DS]], and Lemma2.4.

We choose; > 1, andn; < Kl‘l, and letb = G U B4, andD = G U By, be,
respectively, the unilateral corona decomposition]], and the decomposition
of Lemmaz2.4, corresponding to this choice gfandK. GivensS, a stopping time
regime of the unilateral corona decomposition, weAét denote the set of) €
SN Go for which eitherQ = Q(S), or else the dyadic parent €, or one of the
brothers ofQ, belongs taBy. For eachQ € Ms, we form a new stopping time
regime, call itS, as follows. We seQ(S) := Q, and we then subdivid&®(S')
dyadically, stopping as soon as we reach a sub&ibsuch that eithe@’ ¢ S, or
elseQ’, or one of its brothers, belongs $#y. In any such scenari@)’ and all of
its brothers are omitted froi®, and the parent d@’ is then a minimal cube &'.
We note that each su@i enjoys the following properties:

(i) S c SN Go (by definition).
(i) S is coherent, in the sense of Lemr2 (1) (by the stopping time con-
struction).

If Q € SN By, for someS, then we add to our new “bad” collection, call it
B, i.e.,B = B1 U By. Then clearlyB satisfies a packing condition, since it is the
union of two collections, each of which packs. Moreover, ¢biection{Q(S)}s
satisfies a packing condition. Indeed, by construction

{QES)}s c{QS)IsU My,

whereM; denotes the collection of cub&shaving a parent or brother . Now
for {Q(S)}s we already have packing. For the cubesyifi, and for anyR € D(E),
with dyadic parenR*, we have

Y d@s D> o zoR) 0,

QeM1:QcR QeBy: QcR*

whereQ is either the parent or a brother § belonging toBy, and where we
have used the packing condition 8p, and the doubling property of. Setting
G = D(E) \ 8, we note that at this point we have verified properties (1)@paof
Lemma2.2, for the decompositio®(E) = G U B, and the stopping time regimes
{S'}. It remains to verify property (3).
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To this end, we consider one of the new stopping time regi8igsvhich by
construction, is contained in sonte Setl's = I's, and fixQ € S'. Let us now
prove @.3). The bound
(2.8) supdist(x,I's’) < n14(Q)

xeA*Q
is inherited immediately from the unilateral conditich4). We now claim that for
m < K,
(2.9) sup distly, E) < CKyin1€(Q).
ye%B*le"s
Taking the claim for granted momentarily, and having spedifiome;, K, we may
obtain @.3) by choosingK; := 2K, andny := n/(CKy) < n.

We now establish the claim. By construction®f Q € Go, so by @.6), there is
a hyperplanéig such that
(2.10) supdist(x, Hg) + sup distly,E) < n1£(Q).

xeAg yeHQNBg
There is another hyperplartés = Hg such that, with respect to the co-ordinate
system{(z t) : ze Hs,t € R}, we can realizd’s as a Lipschitz graph with constant
no larger thamy, i.e.,I's = {(z ¢s(2) : z € Hs}, with [l¢|lLip < 71. Let g be the
orthogonal projection ontblg, and seig := mg(Xg). Thus|xg — Xol < 71£(Q), by
(2.10. Consequently, fon; small, we have

3 7
B]_ =B <XQ, ZKlf(Q)) C éBQ,

and
1, 7

Therefore, by 2.10
(2.12) distg, E) < m{(Q), Vy e B1NHgq,
and also, foiK large,

- 15
A= {xe E: dist(x, BN Hg) < ¢(Q)} EBB'

Thus,A; € Ag, so that, in particular, fox € A;, we have dis, I's) < 71£(Q), by
(2.7). Combining the latter fact with2(12) and the definition of\;, we find that

(2.13) disty, I's) < 2714(Q), Vy e BiNHg.

We cover (78)B; N Hg by non-overlappingr-dimensional cube®By ¢ B1 N Hg,
centered ayy, with side length 16,£(Q), and we extend these along an axis per-
pendicular tdHg to construct i+ 1)-dimensional cubelg, of the same length, also
centered ayk. By (2.13), eachly meetsI's. Therefore, fom; small, Hg “meets”
Hs at an angle satisfying

6~ tand < n,

andI's is a Lipschitz graph with respect tég, with Lipschitz constant no larger
thanCny. Also, by .13, applied toy = Xgq, there is a poinyg € I's with
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IXq = Yol < 271€(Q). Thus, fory € (1/2)By N T's c (7/8)B1 N I's (where we have
used R.11)), we have

(2.14) disty, Hg) < CKin1€(Q) < €(Q),
so thatrq(y) € B1 N Hq € By N Hq. Hence,

(2.15) disteo(y). E) < mf(Q),
by (2.10. Combining 2.14) and @.15), we obtain 2.9), as claimed. O

3. CoroNA TYPE APPROXIMATION BY NTA poMmaINs wiTH ADR BOUNDARIES

In this section, we construct, for each stopping time reg8me Lemma2.2, a
pair of NTA domainsQg, with ADR boundaries, which provide a good approxi-
mation toE, at the scales withis, in some appropriate sense. To be a bit more
precise Qs = Qf U Qg will be constructed as a sawtooth region relative to some
family of dyadic cubes, and the nature of this constructidglhbve essential to the
dyadic analysis that we will use below. We first discuss sorerpinary matters.

Let W = W(R™! \ E) denote a collection of (closed) dyadic Whitney cubes
of R™1\ E, so that the cubes i’ form a pairwise non-overlapping covering of
R™1\ E, which satisfy

(3.1) 4 diam() < dist(4, E) < dist(l, E) < 40diam(), VIew

(just dyadically divide the standard Whitney cubes, asttaoted in Bte Chapter
V1], into cubes with side length/& as large) and also

(1/4) diam(1) < diam(;) < 4diam(q),
wheneveril; andl, touch.

Let E be ann-dimensional ADR set and pick two parameters 1 andK > 1.
Define

B.2) W= {leW: g"*(Q) < (1) < KM?¢(Q), dist(l, Q) < KY?¢(Q)} .

Remark3.3. We note that(WOQ is non-empty, provided that we choogesmall
enough, anK large enough, depending only on dimension and the ADR cohsta
of E. Indeed, given a closed-dimensional ADR sekE, and givenQ € D(E),
consider the balBg = B(Xq, r), as defined in1.17)-(1.18, with r ~ £(Q), so that
Aq = BgnNE c Q. By [HM2, Lemma 5.3] , we have that for sor@e= C(n, ADR),

Y e R™\E: 6(Y) < er} N Bg| < Cer™,

for every 0< € < 1. Consequently, fixing & e < 1 small enough, there exists
Xq € 1 Bg, with §(Xg) > er. Thus,B(Xq,&r/2) ¢ Bg \ E. We shall refer to
this pointXq as a “Corkscrew point” relative tQ. Now observe thaKq belongs
to some Whitney cubk € ‘W, which will belong toW%, for n small enough and
K large enough.

Assume now thaE is UR and make the corresponding bilateral corona decom-
position of Lemma2.2with n <« 1 andK > 1. GivenQ € D(E), for this choice
of n andK, we set (as aboveB, := B(xq, K{(Q)), where we recall thatq is the
“center” of Q (see (.17)-(1.18). For a fixed stopping time regint® we choose
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a co-ordinate system so thBg = {(z ¢s(2)) : z € R"}, wheregs : R" - R is a
Lipschitz function withllel|Lip < 7.

Claim3.4. If Qe S, andl € W%, thenl lies either above or belows. Moreover,
dist(l, T's) > n2¢(Q) (and therefore, by.3), dist(,I's) ~ dist(l, E), with implicit
constants that may depend pandK).

Proof of Claim3.4. Suppose by way of contradiction that disi{s) < 7%/2¢(Q).
Then we may choosge I's such that

dist(l,y) < n*?¢(Q).
By construction of Wy, it follows that for allZ € I, |Z - y| s K¥2¢(Q). Moreover,
|1Z - xql < KY2£(Q), and therefordy — xql < KY2£(Q). In particulary € By NTs,
so by @.9), distly, E) < n£(Q). On the other hand, choosirfy € | such that
1Zo -yl = dist(l,y) < n%/2¢(Q), we obtain dist(, E) < 2p%2¢(Q). Forn small, this
contradicts the Whitney construction, since disf) ~ £(1) > n¥/*£(Q). O

Next, givenQ e S, we augmentWd. We split W9 = Wg" U W, where
| e W' if I lies abovel's, and| € W~ if | lies belowI's. ChoosingK large
andn small enough, by4.3), we may assume that bortW%i are non-empty. We
focus on'Wg", as the construction folg” is the same. For eadhe Wg*, let
X, denote the center df Fix one particulatg € Wt with centerX5 = X,. Let

Q denote the dyadic parent @, unlessQ = Q(S); in the latter case we simply set
Q = Q. Note thatQ € S, by the coherency db. By Claim 3.4, for eachl in wo

orin ’W%*, we have

dist(l, E) ~ dist(l, Q) ~ dist(l,I's),
where the implicit constants may dependmpandK. Thus, for each such we
may fix a Harnack chain, call i, relative to the Lipschitz domain

Of = {(xt) e R™ 1 t> pg(x)} ,

connectingX; to X§. By the bilateral approximation conditio@.@), the definition

of ‘W%, and the fact thak'? <« K, we may construct this Harnack Chain so
that it consists of a bounded number of balls (depending andK), and stays a
distance at least)'/?¢(Q) away fromI's and fromE. We Iet(WB* denote the set of

all J € ‘W which meet at least one of the Harnack chafiswith | € ‘W%*uw%’*
(or simplyl € W' if Q = Q(9)), i.e.,

(ij* = {JEW: El EW%+U(W%+ for which H| mJ;tQ)},

where as a~bove(§ is the dyadic parent oD, unlessQ = Q(S), in which case we
simply setQ = Q (so the union is redundant). We observe that, in particekch
| e ‘W%* U ‘W%* meetsH,, by definition, and therefore

0,+ 0,+ *,4
(3.5) W UWg" cwg'.
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Of course, we may construfwg‘ analogously. We then set
. sk, + *,—
Woi=Wg UWg .

It follows from the construction of the augmented collema'cngi that there are
uniform constantg andC such that

(3.6) cnt26(Q) < £(1) < CKY2¢(Q), VI € W5,
dist(l, Q) < CKY2(Q), VI € W,

Observe that‘W’gji and hence alsdVg have been defined for ar that be-
longs to some stopping time regingethat is, for anyQ belonging to the “good”
collectionG of Lemma2.2. On the other hand, we have defin@ﬂ% for arbitrary

Qe D(E).

We now set

(3.7) wo =] Mo 95C
' 7 ) W, Qem

and forQ € G we shall henceforth simply writé’5 in place of(iji.

Next, we choose a small parametgr > 0, so that for any € ‘W, and any
7 € (0, 7g], the concentric dilaté*(7) := (1+ 1)l still satisfies the Whitney property

(3.8) diaml ~ diam!*(r) ~ dist(1*(r), E) ~ dist(I,E), O<7t<7o.

Moreover, forr < 7o small enough, and for any J € ‘W, we have that *(r)
meetsJ*(r) if and only if | andJ have a boundary point in common, and that, if
I # J, thenl*(r) misses (34)J. Given an arbitraryQ € D(E), we may define an
associated Whitney regiddq (not necessarily connected), as follows:

(3.9) Ug=Uqgr:= |J I"D)
leWq

For later use, it is also convenient to introduce some fatteversion ofUq: if
0<1<10/2,

(3.10) Ug=Uqa- = | J I"(27).
leWq

If Q € G, thenUq splits into exactly two connected components

(3.11) Us=Ug. = |J I".
Ie(Wé

When the particular choice afe (0, 7o] is not important, for the sake of notational
convenience, we may simply writé, Uq, andU3 in place ofl*(r), Ugr, andUg,.
We note that foQ € G, eachUg is Harnack chain connected, by construction (with
constants depending on the implicit parametersandK); moreover, for a fixed
stopping time regimé, if Q" is a child ofQ, with bothQ’, Q € S, thenU§, U US4

is Harnack Chain connected, and similarly tg, U Ug,.
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We may also define “Carleson Boxes” relative to &y D(E), by

(3.12) To=Tor:=int| [J Uqr| .
QeDq
where
(3.13) Dq = {Q eD(E): Q' c Q}.
Let us note that we may chookelarge enough so that, for eve@
(3.14) To € By := B (x0. Ké(Q)) .

For future reference, we also introduce dyadic sawtootlionsgas follows.
Given a family# of disjoint cubes(Qj} c D, we define theglobal discretized
sawtoothrelative toF by

(315) D}‘ =D\ UDQJ R
?

i.e.,Dg is the collection of allQ € D that are not contained in ar; € #. Given
some fixed cub®), thelocal discretized sawtoothrelative toF by

(3.16) Dy q :=Dqo\ | JDg = Dr NDq.
7_‘
Note that in this wayDq = Dg .

Similarly, we may define geometric sawtooth regions as ¥eloGiven a fam-
ily # of disjoint cubes{Q;} c D, we define theglobal sawtoothand thelocal
sawtoothrelative toF by respectively

(3.17) QF = int< U UQ,>, Qr o= int< U UQ,>.
QeDyr

Notice thatQg o = Tq. For the sake of notational convenience, given a pairwise
disjoint family ¥ € D, and a cub& € D¢, we set

(3.18) Wr= | Wo. Weo:= |J Wo.
Qebg Q€D
so that in particular, we may write

(3.19) szint< U |*>.

|E(W7-"Q
It is convenient at this point to introduce some additioeairtinology.

Definition 3.20. Given Q € G, and hence in som8, we shall refer to the point
X4 specified above, as the “center”df, (similarly, the analogous poiXg, lying
belowTs, is the “center” ofUg). We also selg = Xé, and we call this point
the “modified center” oUé, where as above is the dyadic parent o, unless
Q= Q(S), inwhich caseQ = Q, andY$ = X3.
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Remark3.21 We recall that, by construction (cf3.6), (3.7)), (W%i c Wq, and

thereforeYg e UGN Ué. Moreover, since/g is the center of somee W, we
have that dist(g, 0U3) ~ dist(Y5, 6U %) ~ {(Q) (with implicit constants possibly
depending om andor K)

Remark3.22 Given a stopping time regim8 as in Lemma2.2, for any semi-
coherent subregime (cf. Definitichl) S’ c S (including, of courses itself), we
now set

(3.23) f =int | JUg| .
Qes

and letQg = Qf U Qg. Note that implicitly,Qs depends upom (sinceUg has
such dependence). When it is necessary to consider the ebtuexplicitly, we
shall writeQg (7).

Our main geometric lemma is the following.

Lemma 3.24. LetSbe a given stopping time regime as in Lemr and letS’ be

any nonempty, semi-coherent subregimé&.oThen for0 < t < g, with rg small
enough, each a3 is an NTA domain, with ADR boundary. The constants in the
NTA and ADR conditions depend only arr,m, K, and the ADRJR constants for

E.

Proof. We fix a smallr > 0 as above, defining the dilated Whitney cubgsand
we leave this parameter implicit.

We note that in the notation 08(17), Qg is the dyadic sawtooth regidds o(s),
whereQ(S) is the maximal cube it¥’, and¥ is the family consisting of the sub-
cubes ofQ(S) that are maximal with respect to non-membershif’inThendQg
satisfies the ADR property, by Appendixbelow. The upper ADR bound for each
of 0Q¢ and dQg is then trivially inherited from that 06Qg and E. With the
upper ADR property in hand, we obtain that in particular,reafQg is a domain
of locally finite perimeter, by the criterion irE[G, p. 222]. The lower ADR bound
then follows immediately from the local isoperimetric ingdjty [EG, p. 190],
once we have established that eactfgf enjoys a 2-sided Corkscrew condition.
Alternatively, the lower ADR bound faRg can be deduced by carefully following
the relevant arguments in Appendlx and observing that they can be applied to
each ofQg individually.

We now verify the NTA properties faR¢, (the proof forQg is the same).

Corkscrew conditionWe will show thatB(x, r) contains both interior and exterior
Corkscrew points fof2§,, for anyx € 9Qg,, and 0< r < 2diamQ(S). LetM be a
large number to be chosen, depending only on the variousnedeas given in the
statement of the lemma. There are several cases. We regial(¥) := dist(X, E).

Case 1 r < Md(X). In this casex lies on a face of a fattened Whitney cubje
whose interior lies 2§, but alsox € J for someJ ¢ W(S') := Uges Wq. By
the nature of Whitney cubes, we haf{¢) ~ £(J) > r/M, soB(x,r) N Q& contains
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an interior Corkscrew point ifi*, andB(x,r) \ Q& contains an exterior Corkscrew
point in J (with constants possibly depending bf).

Case 2 r > M§(X). We recall thatS' c S, for some regimeés as in Lemma2.2.
Note that

(3.25) 5(X) ~ dist(x,I's), Vx e Q& (henceVx e Qf);
indeed the latter holds foX € Qf, by Claim 3.4 and the construction d®s, and
therefore the same is true fare 0Q3.
Case 2a 6(X) > 0. In this casex lies on a face of som&’, with | € ‘W(S), so
| € (Wal , for someQ, € S'. We then have

Q) ~ (1) ~ 6(X) ~dist(l, Q) s r/M <,

if M is large depending opandK. Thus,Q, c B(x, M~Y/?r). The semi-coherency
of S allows us to choos® € S, with £(Q) » M4, such thatQ, c Q. Set
B = B(xs ,£(Q)), and observe that fo large, B c B(x,r/2). Therefore, it is

enough to show thaB N QZ andB \ Qf each contains a Corkscrew point at the

scale(Q). To this end, we first note that sin€ee S c S, (2.3 implies that there
is a pointzg € I's such that

- 751 < n€(Q).
Viewing I's as the grapl = ¢s(y), so thatz»Qv =1 (¥, os(¥)), we set
(3.26) Z5 = (% es®) £ 1°0(Q) -

Then by the triangle inequality
125 - %ol s m%0(Q).
In particular,Z?(_‘5 € B c B(x,r/2). Moreover, for; small, by @.3) and the fact that
the graph’s has small Lipschitz constant, we have
(3.27) 5(Z5) ~ dist@3. I's) ~ 73¢(Q).
Consequently, there exikt € ‘W such thalZé e l* and
(3.28) £01%) ~ dist(*, Q) ~ n¥8¢(Q).
Thus,|I* € (W% soz?(5 el* cint(l+7)I* c Qg, and therefore
(3.29) distZ3, 9Q5) 2 7((1%) ~ m80(Q) ~ tpBM Y4y .

ConsequentIyZT(j andZ?Q5 are respectively, interior and exterior Corkscrew points
for Qg, relative to the balB(x, r).

Remark3.30 We note for future reference that the previous construatepended
only upon the fact tha® € S’ c S: i.e., for any such), we may construcia as
in (3.26), satisfying 8.27) and .29, and contained in somig € ‘W satisfying
(3.28.
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Case 2b §(x) = 0. In this casex € ENT's, by (3.25. Suppose for the moment that
there is a cub&); € S, with maxdiam(@Qu), £(Q1)} < r/100, such thak € Qu
in this case we choos® € S, containingQy, with £(Q) ~ r, and B(Xg Q) c
B(x,r/2), and we may then repeat the argument of Case 2a. We thereded
only show that there is always suclQa.

Sincex € aszs,, there exists a sequen¥y} c QF, with [Xm — x| < 27™. For
eachm, there is som&,, € S, with Xy, € I}, andlpy, € (Wam. By construction,

{(Qm) ~ {(Im) = dist(l};,, Qm) ~ dist(l;;, E) < dist(l;5, X) < [Xm—X <2,
where the implicit constants may depend ugamdK. Thus,
dist@Qm, X) < C,k2 M <,

for m sufficiently large. For each suah, we choose&Qf" with Qy ¢ Q' c Q(S)
(henceQ" € S'), andcor < max{diam@Y"), ¢(Qf")} < r/100, for some fixed con-
stantcy. Since each sucRf' c B(x,r), there are at most a bounded number of
distinct suchQY’, so at least one of these, call@;, occurs infinitely often as
m — oo. Hence dist§, Q;) = 0, i.e.,x € Q.

Harnack Chain condition Fix X1, Xo € Qf. SupposgX; — Xp| =: R. Then

R < KY2£(Q(S)). Also, there are cube®;, Q, € S, and fattened Whitney boxes
17, 15 (corresponding td; € ’Wa, i =1,2), such thal; € I Ua, i=12, and
therefores(X;) ~ €(Q;) (depending om andK). We may suppose further that

R< M72((Q(S)),

whereM is a large number to be chosen, for otherwise, we may conketd
X via a Harnack path througKQ(S,) (the “center” ofUQ(S,), cf. Definition 3.20
above).

Case 1 max@(X1), (X)) > MY?R; say WLOG thais(Xy) > MY2R. Then also
5(X2) > (1/2)MY2R, by the triangle inequality, sindX; — Xo| = R. For M large
enough, depending opandK, we then have that mifi(l1), £(I2)) > MY*R. Note
that dist(3, I5) < R. By the Whitney construction, for fiiciently small choice of
the fattening parameter if dist(l3, 15) < min(¢(11), £(12)), then the fattened cubes
I; andl; overlap. In the present case, the latter scenario holslsisf chosen large
enough, and we may then clearly form a Harnack Chain commeXii to X».

Case 2 max@(X1), 6(X»)) < MY?R. Then, since
Q) = €(li) = 6(Xi) = dist(li, Q)

(depending om andK), we have that dis@;, Q>) < M¥“R, for M large enough.
We now choos&); € S, with Q; ¢ Q;, such that(Q:) = £(Q2) ~ MR. Then

(3.31) distQ1, Q) < M¥*R~ M~Y4¢(Q), i=12.
For M large enough, it then follows th&a.tT(51 meetsUéz, by construction. Indeed,

let ZTQ1 denote the point defined i8.06), relative to the cub&; € S ¢ S. Then
Zfdl belongs to somé € ‘W, with

(1) ~ dist(l, Q1) ~ n*8¢(Qy)
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(cf. Remark3.30). This clearly implies that Wg,- On the other hand by3(31)
and since’(Q1) ~ £(Q,), for M large enough we have

dist(, Qo) < dist(, Q1) + £(Qu) + dist(Q1. Q2) < €(Q2) < VK £(Qy),
and thereford € ’Wg C Wg,. Consequentlyl € Wg NnWg , sol” C UQ N

U+ We may therefore form a Harnack Chain from to X2 by passing through
Zél. m|

4. CARLESON MEASURE ESTIMATE FOR BOUNDED HARMONIC FUNCTIONS: PROOF OF
TueorEM 1.1

In this section we give the proof of Theoreml. We will use the method of
“extrapolation of Carleson measures”, a bootstrappinggutare for lifting the
Carleson measure constant, developed by J. L. Lell4][ and based on the
Corona construction of Carleso@di] and Carleson and Garnet£ (5] (see also
[HL], [AHLT], [AHMTT], [HM1], [HM2]).

Let E c R™! be a UR set of co-dimension 1. We fix positive numbgrs: 1,
andK > 1, and for these values gf and K, we perform the bilateral Corona
decomposition oD(E) guaranteed by Lemma2. Let M := {Q(S)}s denotes the
collection of cubes which are the maximal elements of thpta time regimes
in G. Given a cub& € D(E), we set

_{d@,WQeMUﬂ
(YQ =

4.1
(4.1) 0, otherwise

Given any collectiorD’ c D(E), we define

4.2) m(D’) := Z Q.

QeD

We recall thalDq is the “discrete Carleson region relative@0, defined in 8.13).
Then by Lemm&.2(2), we have the discrete Carleson measure estimate

43) m(Dg):i= > @)+ > (A9 < Co(Q),
QcQ Qe8 SQ(S)cQ

YQ e D(E).
Given a familyF := {Qj} c D(E) of pairwise disjoint cubes, we recall that the

“discrete sawtoothD¢ is the collection of all cubes iD(E) that are not contained
inanyQj € ¥ (cf. (3.19), and we define the “restriction af to the sawtoottDg"

by

(4.4) mp(D) =mD NDg) = Y aq
QeD'\(Us Do)

We shall use the method of “extrapolation of Carleson measun the follow-
ing form.
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Lemma 4.5. Let o be a non-negative, dyadically doubling Borel measure on E,
and letm be a discrete Carleson measure with respectrta.e., there exist non-
negative cogicientsaq so thatm is defined as irf4.2), and a constant M < oo,
with

m(D
(4.6) Imllc == sup (Do) < M.
oen(e) o(Q)
Letm be another non-negative measurel®(E) as in(4.2), say
(4.7) M) = > Bo. P20, YD cD(E)
Qeb’
where for some uniform constant;Mand for each cube Q,
(4.8) Bq < M1 (Q).

Suppose that there is a positive constaisuch that for every @ D(E) and every
family of pairwise disjoint dyadic subcubgs= {Q;} c Dq verifying

m (DQ/ \ (Ug DQj)) -

(4.9) Imzlle = QiJDFZ) Q) <Yy,
we have thatns (defined as ir{4.4), but with cogficientsBg) satisfies
(4.10) ir(Dg) < M1o(Q).
Thenm is a discrete Carleson measure, with
(4.11) il = sup 2P <y,
QenE) (Q)

for some M < « depending on fMp, M1,y and the doubling constant of.

Let us momentarily take the lemma for granted, and use it togpiTheorem
1.1 We begin with a preliminary reduction, which reduces matte working
with balls of radiusg < Cdiam(); i.e., we claim that the desired estimate?] is
equivalent to

1
(4.12) sup = f f IVU(X)?6(X) dX < Cllull?, .
yeE, 0<r<100 diamEg) B(y,r)

Of course, ifE is unbounded the equivalence is obvious. Thus, we suppase th
diam(E) < oo, and that 4.12) holds. Letu be bounded and harmonic ki1 \ E.

We may assume thétl||., = 1. Fix a ballB(y, r), withy € E, andr > 100 diamE).
Setrg := 10diamE). By (4.12),

f f IVu(X)?6(X)dX < Cr < Cr".
B(Y.ro)

Moreover,

f f IVu(X)[26(X) dX
B(Y.")\B(y.ro)

< IVU(X)|?6(X) dX
Z fj;kros|X—y|<2k+1ro ( ) ( )

0<k<logy(r/ro)
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< > (29" =M,
0<k<log,(r/ro)
where in the second inequality we have used Caccioppotguality, the normal-
ization||ull = 1, and the fact that(X) ~ |X—y| in the regimgX—y| > 10 diamE).
Thus, @.12) implies (and hence is equivalent td).9), as claimed.

We shall apply Lemmé&.5with, as usualg := H”\E, and withm as above, with
codficientsaq defined as in4.1), so that ¢.6) holds withMg = C, x, by Lemma
2.2 (2). For us,m will be a discretized version of the measuy¥i(X)[25(X)dx,
whereu is bounded and harmonic @ := R™1\ E. We now claim that1.2) is
equivalent to the analogous bound

(4.13) sup 1 IVu(X)?6(X) dX < Cllull?, .

QenE) o(Q) JJ1,
That (1.2) implies @.13) is obvious by 8.14). The converse implication reduces
to showing that4.13) implies @.12), since, as noted above, the latter estimate is
equivalent to {.2). We proceed as follows. Fix a ba#i(x,r), with x € E, and
r < 100diamg). We choose a collection of dyadic cubg}t.;, with £(Qx) ~
Mr (unlessr > diam(E)/M, in which case our collection is comprised of only one
cube, namel@; = E), whereM is a large fixed number to be chosen, such that

B(x,10) N E c | J Q«.
k

Note that the cardinalitil of this collection may be taken to be uniformly bounded.
We claim thatuxTq, coversB(x,r) \ E, in which case it follows immediately that
(4.13 implies @.12. Let us now prove the claim. Giverie B(x,r) \ E, there is a
Whitney box| € W containingY, so that

Ny ~6(Y)<|x=Y|<r.

Lety € E satisfy|Y — §| = 4(Y), and choos&) € D(E) containingy so that
£(Q) = £(1) (unless diam() ~ diam(), in which case we just s&) = E). Note
also that dist(, Q) ~ £(Q) with harmless constants, so that ’W% c Waq. Thus,
Y € Uqg (cf. (3.9)). Moreover, by the triangle inequality,€ B(x, 2r) n E, whence
it follows (for M chosen large enough) th@is contained in one of the cub€x
chosen above, call y,. Consequentlyy e Ty, (cf. (3.12). This proves the
claim. Therefore, it is enough to prové.{3.

To the latter end, we discretizé.(3 as follows. By normalizing, we may
assume without loss of generality thiat|., = 1. We fix a smallr € (0, r9/2), and
setUq :=Uqr, Tg :=Tgrasin @.9) and @.12. We now set

(4.14) Bao = / /U IVu(X)[2 5(X) dX,
Q

and definem as in @.7). We note that4.8) holds by Caccioppoli’s inequality
(applied in each of the fattened Whitney boxes comprisigg, and the definition

of Ug and the ADR property oE. Moreover, the Whitney regiondq have the

bounded overlap property:

(4.15) > 1ug(X) < Cn,apr.
QeD
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Consequently, for every pairwise disjoint famify c D(E), and everyQ € Dy,
we have

(4.16) fitr(Dq) =~ / /Q IVu(X)|? §(X) dX
o

where we recall that (seé&.(L7))

Qq:’Q = int U UQ/
Q’EDQﬂDf
In particular, takingF = @, in which caséDy = D(E), and thusQg o = Tg,
we obtain that4.13 holds if and only ifm satisfies the discrete Carleson measure
estimate 4.11).

For eachQ € G, we setljé i= Ug s a@s in B.11), and for each stopping time
regimeS c G, we define the corresponding NTA subdomaiis = Q5(2r) as in
(3.23 (with ' = S). Letm be the discrete Carleson measure defined.i){(4.2).
Our goal is to verify the hypotheses of Lemrh&. We have already observed that
(4.8) holds, therefore, we need to show thatdf implies @.10), or more precisely,
that given a cub® < D(E) and a pairwise disjoint family™ c Dq, for which (4.9)
holds with suitably smalj, we may deduce4(10.

Let us therefore suppose that.§) holds for someF, and someQ, and we
disregard the trivial casg = {Q}. By definition ofm, and ofmg (cf. (4.1)-(4.4)),
if v is suficiently small, therDg N D¢ does not contain an§’ € M U B (recall
that M := {Q(S)}s is the collection of the maximal cubes of the various stogpin
time regimes). Thussvery Q € Dg N Dy belongs tqz, and moreover, all suc
belong to thesamestopping time regim&, sinceQ € Do N D¢ unlessf = Q, the
case that we excluded above. Consequefdlyo, and more precisely, eathy,
with Q" € Dg N D¢, splits into two pieces, call themi’Q, andua, contained in
Q3. ForQ' e Do N Dy, we make the corresponding splitting&a intoﬁa so that

(4.17) B = / /U ) IVu(X)? 5(X) dX,
5

and forD’ c Dq, we set
D)= Y By
Q’ED’QDf
For the sake of specificity, we shall considegt’Q, and observe thaﬂz;’Q may be
treated by exactly the same arguments.

Since we have constructéth with parameterr, andﬂ(i2 with parameter 2, for
X e Q;’Q, we have that
0(X) = 6.(X),
whered, (X) := dist(X, 0Q%), and where the implicit constants dependrorCon-

sequently (cf. 4.16),
(Do) ~ / /Q ) IVu(X)2 5.(X) dX.
F.Q
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As above, seB, := B(Xq, K¢(Q)). Note tha@;’Q c By N Q§, by construction of
Q;’Q and @.14). Thus, one can find a balij centered abQ§ and with radius of
the order oft(Q), such that

(4.18) W @a) < [ WU0Ps00dX < o(Q).

B5NQY
where in the last step we have used fagtis an NTA domain with ADR boundary,
and is therefore known to satisfy such Carleson measumats (recall that we
have normalized so th3t|l., = 1). Indeed, by DJ], for any NTA domain with
ADR boundary, harmonic measure belongsAtg with respect to surface mea-
sureo on the boundary, and therefore one obtains Carleson meestimeates for
bounded solutions byJJK]. Since a similar bound holds fait- (Dg), we obtain
(4.10. Invoking Lemmad4.5, we obtain 4.11), and thus equivalently, as noted
above, £.13.

It remains to prove Lemmé.5. To this end, we shall require the following result
from [HM2].

Lemma 4.19([HM2, Lemma 7.2]) Suppose that E is ADR. Fix ©D(E) andm

as above. Let & Oand b> 0, and suppose that(Dg) < (a+b) o(Q). Then there

is a family# = {Q;} c Dq of pairwise disjoint cubes, and a constant C depending
only on dimension and the ADR constant such that

(4.20) Imzlle < Ch,
a+b
(4.21) o(B) < T o(Q),

where B is the union of those;@ # such thatn(Dg, \ {Qj}) > ac(Q)).

We refer the reader tdHM2, Lemma 7.2] for the proof. We remark that the
lemma is stated inHM2] with E = 9Q, the boundary of a connected domain, but
the proof actually requires only th&thave a dyadic cube structure, and thdte
a non-negative, dyadically doubling Borel measurdzon

Proof of Lemmat.5. The proof proceeds by induction, following¥1], [AHLT],
[AHMTT], [HMZ2]. The induction hypothesis, which we formulate for any 0,
is as follows:

There existy; € (0,1) and G, < oo such that, for every & D(E)
satisfyingm(Dq) < ac(Q), there is a pairwise disjoint famil{Py} c
DQ, with

H@] | (4.22) o (Q\ (UPW) = 12 (Q),
such that
(4.23) i (Dg \ (UkDp,)) < Cac(Q).

It suffices to show thalti(a) holds witha = My. Indeed, once this is done, then
invoking (4.6), we will obtain that there are constamts= n(Mg) andC,; = C(Mp),
such that for everyQ € D(E), there is a family{Px} c Dq as above for which
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(4.22 and @.23 hold. We may then invoke a standard John-Nirenberg lemma
for Carleson measures (whose proof iterates these estimatesums a geometric
series) to conclude that (11) holds, as desired.

In turn, to obtainH(Mg), we proceed in two steps.
Step 1 establishH(0).
Step 2 show that there is a constant> 0, depending only upon the specified
parameters in the hypotheses of Lenming such thaH (a) impliesH(a + b).

Once steps 1 and 2 have been accomplished, we then ¢btilp) by iterating
Step 2 roughlyMg/b times.

Proof of Step 1: H(0) holds. If m(Dg) = O then @.9) holds, with¥ = @,
and fory as small as we like. Thus, by hypothesis, we have that(( holds,
with my = m (since in this casé is vacuous). Hence#(22-(4.23 hold, with
{Px} = 9, no = 1/2, andCqy = M.

Proof of Step 2: H(@ =— H(a + b) Suppose thaa > 0 and thatH(a) holds.
We setb := y/C, wherevy is specified in 4.9), andC is the constant in4.20).
Fix a cubeQ such thatm(Dq) < (a + b)o(Q). We then apply Lemm&.19to
construct a familyF with the stated properties. In particular, by our choicdo,of
(4.20 becomes4.9).

We may suppose that< My, otherwise we are done. Thus

a+b - Mo +Db g1

a+2b~ Mg+2b '
Definen := 1-6. We setA := Q\ (U Qj), and letG := (U#Qj) \ B. Then, ¢.21)
gives

(4.24) oc(AUG) > no(Q).

We consider two cases.

Case 1 o(A) > (n/2)o(Q). In this case, we tak@Py} := F, so that 4.22) holds
with na.p = n/2. Moreover, since4.9) holds by our choice ob, we obtain by
hypothesis that4.10 holds. The latter is equivalent td.3), sinceF = {Py},

with C4,p = M3. Thus,H(a + b) holds in Case 1.

Case 2 o(A) < (n/2)(Q). In this case, by4.24), we have that

(4.25) a(G) = (n/2)o(Q).

By definition, G is the union of cubes in the subcollectifgooq € 7, defined by
Fgood = {Qj € F : m(Dg, \ {Qj}) < ac(Qy)} .

For future reference, we s€haq := ¥ \ Fgood- We Note that by pigeon-holing, each
Qj € Fgood has at least one dyadic child, caIQq, such that

m(Dg) < ac(Q))

(if there is more than one such child, we simply pick one). § e may invoke the
induction hypothesi$i(a), to obtain that for each sudf;, there exists a pairwise
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disjoint family {P}} c Dgy, with

(4.26) o (Q\ (UPD) = 1a0(Q) 2 72 (Q))
(where in the last step we have used ihas$ dyadically doubling), such that
(4.27) iit (Do \ (UDp))) < Cac(@).

GivenQ; € Fgood WE defineG’-'j’ to be the collection of all the dyadic brothers
of Qj; i.e., 7 is comprised of all the dyadic children &fj, exceptQ;. We then
define a collectior{Py} c Dq by

{Pk} = ¢bad U (UQjeq:goode,) U (UQjE?-good{Plj(}) :
We note that4.22 holds for this collectior{Py}, with na.p = 7an/2, by @.25 and
(4.206):
c(UP)=a@®+ Y. o(@Q\Q)+ > o(ucPY

Qj E7"good Qj E7"good
=o(B) +(G) - > o(Q\UP))
Qj€7:good
<0(Q) - cnac(G)

<o(@-cnay0(Q

It remains only to verify 4.23. To this end, we write
m (DQ \ (UkDpk))
= it (Do \ (UrDg) + Y (W(UQ + 1 (Do \ (WD ) )

Qj 67'-good

=D+ Y. (B +it (Do \ (D) )

Qj e7:good

<@+ Y, Q) 5 oQ,

Qj 67'-good

where in third line we have used the definitionsnef (cf. (4.4)) and ofm, and
in the last line we have used.(0), (4.8), and @.27), along with the pairwise
disjointness of the cubes fA. m|

Remark4.28 We note that, in fact, the proof of Theorehl did not require har-
monicity of u per se Indeed, a careful examination of the preceding argument
reveals that we have only used the following three propedfer 1) u € L*(Q);

2) u satisfies Caccioppoli’s inequality ®2; 3) u satisfies Carleson measure esti-
mates in every NTA sub-domain ©f with ADR boundary.

5. &-APPROXIMABILITY. PROOF OF THEOREM 1.3

In this section we give the proof of Theoreh8. Our approach here combines
the technology of the present paper (in particular, thetdoiéh Corona decompo-
sition of Lemma2.2), with the original argument ofGai, and its extensions in
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[Da3 and HKMP]). Moreover, we shall invoke Theorefinl at certain points in
the argument.

The first (and main) step in our proof will be to establish adiyaversion, i.e.,
givenu harmonic and bounded i := R™!\ E, with ||ull» < 1, and givers € (0, 1)

andQ € D(E), we shall construap := ¢§, defined on the “Carleson terifq, such
that|lu - ¢llL~(ro) < &, and

1
(5.1) sup ff V| < &72.
Q| JJry

Once we have establishefdl.{), it will then be relatively easy to construgt glob-
ally defined o2, and satisfying propertied (9) and (L.10) of Definition 1.8

We begin by refining the bilateral Corona decomposition ahb&2.2. We fix
n < 1landK > 1, and we make the constructions of Lemin3 corresponding to
this choice ofy andK. We also fixe € (0, 1), and a parametere (0, 7o/10). For
eachQ € D(E), we form the Whitney regionlg = Ug, as above, and we split
eachUq into its various connected componemg.

Letu be a bounded harmonic function = R™1\ E, with lulle@) < 1. We
say thatU'Q is a “red component” if

(5.2) 0sgi U := maxu(Y) — min u(Y) > i,

Q YeUl YeUp, 10
otherwise we say thaﬂiQ is a “blue component”. We also say th@te D(E) is
a “red cube” if its associated Whitney regitly has at least one red component,
otherwise, if OSGiQ u < £/10 for every connected componeh:llg, 1<i<N,then
we say thatQ is a “blue cube”.

Remarks.3. The numbeiN = N(Q) of component$J‘Q is uniformly bounded, de-
pending only ony, K and dimension, since each componghtcontains a fattened
Whitney boxI* with £(1) ~ ¢(Q), and since all such* satisfy dist(*, Q) < £(Q).
Of course, as noted above (cB.11)), if Q € G, thenUq has precisely two com-
ponentsJg.

We now refine the stopping time regimes as follows. Gi8engG as constructed
in LemmaZ2.2, setQ® = Q(S), and letGy = Go(S) := {Q% be the “zeroeth
generation”. We subdivid®® dyadically, and stop the first time that we reach a
cubeQ c QP for which at least one of the following holds:

(1) QisnotinS.

(2) (YY) = U(YEp)| > £/10.

(3) IU(YQ) ~ U(Ygp)| > £/10.
(where we recall tha‘t’é is the “modified center” of the Whitney regidné; see
Definition 3.20and Remark3.21).

Let 71 = 71(Q°) denote the maximal sub-cubes@f extracted by this stopping
time procedure, and note that the collection of@IE Q° that are not contained
in any Q; € 71, forms a semi-coherent (cf. Definitidhl) subregime of5, call it
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S = S(QY), with maximal elemenQ(S) := Q°. Clearly, the maximality of the
cubes infF; implies that evenQ € S’ belongs tdS, and moreover

(5.4) max(|u(Y5) — U(Ygo) IU(Yo) - u(Y50)|) <&/10, VQeS.

Let G; = G1(Q°) := 71 n Sdenote the first generation cubes. We observe@hat
may be empty, sinc&; may not contain any cubes belongingSo In this case,
we simply haveS'(Q%) = S. On the other hand, iB; is non-empty, then for each
Q! € G4(QY), we repeat the stopping time construction above (\@thin place
of Q°), except that in criteria (2) and (3) we repla’e%0 by Yél (criterion (1) is
unchanged, so we continue to work only with cubes belongin§)t For each
Q! € G1(Q%), we may then define first generation cul@gQ?) in the same way;,
and thus, we may define recursively

G = |J GuU@y,
QteG1(QP)
and in general (modifying the stopping time criteria (2) &Bpdmutatis mutandi

Gu1(@Q) = |J Gi(Q). k=o.
QkeGk(Q)
where the cas& = 0 is a tautology, sinc&(Q° := {Q°, and where the set of
indices{k}x=0 may be finite or infinite. In addition, bearing in mind ti@k = Q(S),
we shall sometimes find it convenient to emphasize the depeedonS, so with
slight abuse of notation we write

GK(S) 1= GK(Q°) = Gk(Q(S)). k=>0.
We also set
G :=Jes. G =]Jc(s).
k=0 S
to denote, respectively, the set of generation cube&s end the collection of all
generation cubes.

Remark5.5. We record some observations concerning the “generatioestub
Given S as in Lemma2.2, our construction produces a decompositionSahto
disjoint subcollections
s= |J 5@,
QeG(9)
where eachS'(Q) is a semi-coherent subregime 8fwith maximal elemenQ.
Moreover,

(5.6) max(Ju(Yg) — u(YO) lu(Yy) — u(Yg)l) < £/10, YQ € S(Q).

Next, we establish packing conditions for the red cubes,fanthe generation
cubes. We consider first the red cubes. Our goal is to provédhall Qo € D(E)

(5.7) Y Q<= Ce%0(Q).

QcQo:Qisred
whereC depends upom, K, 7,n and the ADRUR constants oE. To this end,
let Q be any red cube, ldlg = Ug, be its associated Whitney region, and let
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UQ = Ugp, be a fattened version @Jo. Note that/(Q)™?! ~ Ugl ~ |UQ|, and
similarly for each connected component of the Whitney negidBy definition, if
Qis red, therJg has at least one red componelg, and every rectiJ'Q satisfies

(5.8) &2 < (oquiQu)z < (Q)+" f fa VU2 < (Q) f fﬁ IVU(Y)2s(Y) dY,
Q Q

where we have use® (2), local boundedness estimates of Moser type, Poincaré’s
inequality, and the fact tha@(Y) ~ ¢(Q) in UQ. We leave the details to the reader
(or cf. [HM2, Section 4]), but we remark that the key fact is that the Hekr@Zhain
condition holds in each componeldtg. Here, the various implicit constants may
depend upon, n andK. By the ADR property, §.8) implies that

-2 2
> sty [ VP ay

QcQp: Qisred QcQo
<o [ mumBamaY < & 2@,
B
Qo

where in the second inequality we have used that the WhiEgi;amsUQ have the
bounded overlap property, and fQrc Qo, are contained i, = B(Xq,, K¢(Q))
by (3.14); the third inequality is Theorer.1, sincel|ull. < 1.

We now augment the “bad” collectidB from Lemma2.2 by setting
(5.9 B :=8BU{QeD(E): Qisred.

Since the collectioB is already endowed with a packing condition, estiméate)(
immediately improves to the following

(5.10) > o(Q<Ce?r(Q).
QcQo: QeB*
where agairC = C(n, K, 7, n, ADR/UR).
Let us now turn to the packing condition for the generatiobesu We first
establish the following.

Lemma 5.11. Let S be one of the stopping time regimes of Leniza and for
k>0, let @ e G(S) be a generation cube. Then

Z o(Q) < Ce™2 f fg IVu(Y)2s(Y) dY,

QeG1(Q) $@Q9

where S (Q¥) is the semi-coherent subregime with maximal eleménfc) Re-
mark5.5), Qg (qx is the associated “sawtooth” domain (cf. Rema&R2), and C
depends o, K, 7, n, and the ADRJR constants for E.

To prove the lemma, we shall need to introduce the non-tdizjenaximal
function. Given a domai2’ ¢ R™*, andu e C(Q'), for x € QY set

N¥u(x) := sup Ju(Y)l,
YEFQ/(X)

where for some > 0,
(5.12) T (X) :={YeQ 1Y - X < (1+«)dist(Y,00Q")} .
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Proof of Lemm&.11 Let Q € G1(QK), so in particularQ € Gi,1(S), and letQ be
the dyadic parent of). We note thal € S'(Q¥), by maximality of the generation
cubes (more precisely, by maximality of the stopping tirmaifa #1(QX) that con-
tains G1(QY)). By the stopping time construction, sin€ebelongs toS, we must
have

max (Ju(YS) - UYL lu(Yg) - U(Ygal ) > &/10.
Let G], G] denote the subcollections 6f,(QK) for which the previous estimate
holds with “+”, and with “~", respectively (if both hold, then we arbitrarily assign

Qto G7). For the sake of specificity, we tre@t; the argument foG] is the same.
For everyQ € G}, we have

&2
— <
100 —
To simplify notation, we se€)’ = Qg,(Qk). By construction (cf. Definitior8.20

and Remark$.21and3.29), sinceQ € S'(Q¥), we have thatr§ € intU(+5 c Y,
and

(5.13) U(Y8) = u(YGII®.

Q) < dist(Yg, 0U ) < dist(Yg, 92) < 5(YQ) ~ dist(Yg, Q) < €(Q),

with implicit constants possibly depending grand K. Consequently, there is a
pointzg, € 0Q', with |25 - Y& ~ £(Q) ~ [xq— Y4, where as usualg is the “center”
of Q. For eachQ € Gj, we setBj, := B(z, {(Q)), B := B(Xq, M{(Q)), and we
fix M large enough (possibly depending pandK), thatBj, c Bj. By a standard
covering lemma argument, we can extract a subsé&jofcall it G;*, such that
By, andBg, are disjoint, hence alsBg, andBy,, are disjoint, for any pair of cubes
Q1, Q2 € Gi*, and moreover,

(5.14) Y o@=<Cu > o(Q=Cu > Q.
QeGy QeGi* QeGi*

We may now fix the parameteiarge enough ing.12), so thatYa e Ty (2), for all
ze BynoCY'. Combining .13 and 6.14), we then obtain

Y Qs D Q)

Q<G; Q<Gy*
< Y u(YE) ~u(Y§IP o(Q)
QeGi*
= Y YD) -uYEIPr@ £ d
0eGr BLNoQY
(X + 2 n (o) + 2 n
s Y (N (u-uvg0)) dHrs [ (N (u-uvg))) dHe,
o BHNoQY oY
QeG] Q

where in the last two inequalities, we have used #6¥tis ADR (by Lemma3.24),
and that the ball8, are disjoint, forQ € G*. The implicit constants depend on
n andK. Now, by Lemma3.24, Q’ is NTA with an ADR boundary, and therefore
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harmonic measure fdp’ = Qg,(Qk) is A, with respect to surface measure @m’,
by [DJ]. Consequently, bylpJK], we have

615 &2 Y o@x [ (NWe-uwe) s [ mumpsmay.

)

QeGj Py (@
Combining the latter estimate with its analogue@{ranng,(Qk), we obtain the
conclusion of the lemma. O

We are now ready to establish the packing property of the rgéna cubes.
Recall thatG* denotes the collection of all generation cubes, running allé¢he
stopping time regimeS constructed in Lemma.2

Lemma 5.16. Let @y € D(E). Then

(5.17) Y o(Q = Ce%0(Q).
QcQo: QG

Proof. Fix Qg € D(E). Let M(Qg) be the collection of maximal generation cubes
contained inQy, i.e.,Q1 € M(Qp) if Q1 € G*, and there is no othd)’ € G* with

Q1 c Q c Qp. By maximality, the cubes iM(Qp) are disjoint, so it is enough to
prove 6.17) with Qg replaced by an arbitrar®, € M(Qp), i.e., to show that for

any suchQq,
(5.18) Y o(Q = Ce%0(Qy).
QcQu: QeG*
SinceQ is a generation cube, it belongs, by construction, to spsaySy. Let
S = &(Qq) be the collection of all stopping time regim&s excludingSy, such

that Q(S) meetsQ; and S contains at least one subcube@f. Then necessarily,
Q(S) ¢ Qq, for all Se &. The left hand side ofy 18 then equals

Yo @+ D Q=1+,
QcQu: QeG(So) Se& QeG(9)

We treat terml first. We defineGo(Q1) = {Q1}, G1(Q1), G2(Q4), ..., etc., by
analogy to the definitions aB,(Q°) above (indeed, this analogy was implicit in
our construction). We then have

1= Y d@=0c@Q)+>, >, D cQ=0cQ)+I"

k>0 QeGy(Q1) k>1 Q'eGk-1(Q1) QeG1(Q)
By Lemma5.1],

’ -2 2
<2y ) f fg » IVU(Y)125(Y) dY

k>1 Q' €Gk-1(Q1)

-2 2
<2y Y N )foQ|Vu(Y)| s(Y)dY

k>1 QeGk-1(Q1) QeS(Q’

_2 2 -2
<e ffTQl [Vu(Y)[“s(Y)dY < £ 0(Qq),
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where in the second inequality we have used the definitidasdfQ’) (cf. Remark
3.22), and in the third inequality that the triple sum runs oveamity of distinct
cubes, all contained iQ; (cf. Remark5.5), and that the Whitney regionsg have
bounded overlaps; the last inequality is Theoréry by virtue of (3.14), since
Ul < 1. Thus, we have establishe®l 18) for term1.

Consider now ternhl . The inner sum il for a givens, is

Yo o@=> Y Q.

QeG(9) k=0 QeG(S)

But by definition,Gg(S) = Gk(Q(S)), so this inner sum is therefore exactly the
same as ternh above, but withQ(S) in place ofQ;. Consequently, we obtain,
exactly as for tern, that

Y o(Q 5 &% ().
QeG(9)

Plugging the latter estimate into terih and using the definition o€, we have

Nse? > o(A9) s e%r(Qu).
S QO

by the packing condition for the maximal cub@$S), established in Lemma.2
m|

Our next task is to define the approximating functignTo this end, fixQg €
D(E). We shall first define certain auxiliary functiops, ¢1, which we then blend
together to getr. We are going to find an ordered family of cubi€¥}k-1 € G
and to introduce the first cub®; let us consider two cases. In the first case we
assume tha@Q ¢ G and letQ; be the subcube a, of largest “side length”,
that belongs t@. By the packing condition fof3, there must of course be such
a Q. It may be thatQy has more than one proper subcubegginall of the same
maximum side length, in this case we just pick one. TkRanbeing inG, and
hence in somé&, must therefore belong to some subregi®gcf. Remark5s.5),
and in factQ; = Q(S)) (since the dyadic parent @, belongs taDg, N B). The
second case correspondQe e G. Then, in particularQg belongs to som&, and
therefore to som&], and again we s&D; = Q(S]). In this caseQp could be a
proper subset dD,, or elseQ; = Qp. Once we have construct€l € G in the two
cases, we then |€, denote the subcube of maximum side lengtiin(NG)\ S;,
etc., thus obtaining an enumerati@Qa, Q,, ...€ G such that

Q1) 2 0(Q2) 2 £(Q3) > ...,

Qk = Q(S), andg N Dq, C Uk=1S,. The latter property follows easily from the
construction, since from one step to the next one, we takbawith maximal side
length inG N Dq, that is not in the previous subregimes. This procedure estiau
the collection of cubeg N Dq,. Further, we note tha® N Dg, = Uk=1S, when
Q1 © Qo. We point out that, certainly, the various subreginggsieed not all be
contained in the same original regirBeWe define recursively
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so that the setéy are pairwise disjoint. Note thaI‘J?:lAj = Ulj‘leS}. We also set

Qp = UiQg = UkAx,
and
+._ Of - +._ Ot k-1
AL =055 AC=08\ (UTA) L k=2,
which induces the corresponding splittifig = Qf U Qg, whereQg = J, Ac. We
now definepg on Qg by setting

w0 = Zk: (u(¥&) 18 + u(¥a) 1) -

Next, let{Q(k)} be some fixed enumeration of the cubesinn Dq, (cf. (5.9
for the definition ofB*). We define recursively
V1 :=Ugqu; Vi i=Ugu \ (Ulj(;]]:Vj) , k>=2.

For eachQ(k), we split the corresponding Whitney regiblg) into its connected
componentd)ok) = UiU'Q(k) (note that the number of such components is uni-
formly bounded; cf. Remark.3), and we observe that this induces a corresponding
splitting _ _ ' _
- Vi=Uggs o Vie=Uge\ (VY k=2,
On eachv, we define
oy(Y) = u(y), if U'Q(k) isred
u(Xi), if Uy isblue

where for each blue componeldtg(k) we have specified a fixed Whitney bbxc
UiQ(k), with centerX,. In particular, we have thus defined on

. YeV,

(5.19) Q; = int (uQemDQOUQ> — int (U Vi) .

We extendpg ande; to all of T, by setting each equal to 0 outside of its original
domain of definition. The supports gf andy1 may overlap: it is possible that a
red cube may belong t¢ as well as taB*, and in any case the various Whitney
regionsUg may overlap (in a bounded way) forftiirent cube€). On the other
hand, note that, up to a set of measurd@ g, c Qo U Q1 (with equality, again up
to a set of measure 0, holding in the case tBaic Qg). Finally, we definep as a
measurable function ofg, by setting

(Y) . QDO(Y) s Y e TQo \Q_l
L aM, Yea,.

Then||lu - g0|||_oo(-|-Q0) < &. Indeed, iQ4, ¢ is equal either ta, or else tau(X,), with
X in some “blue” component with small oscillation; otherwigeY € Tq, \ Q1
then (modulo a set of measure §)lies in someA; c Qa, and moreoverY also
lies in some bludJg ¢ Qg,(, whence it follows thati(Y) — ¢(Y) = u(Y) — u(Yg,) is
small by construction.

It remains to verify the Carleson measure estimate for thasome|Ve(Y)(dY.

We do this initially forgg and¢, separately. Le@Q’ c Qq, and consider firspo.
We shall require the following:
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Lemma 5.20. Fix Q € D(E), and its associated Carleson box.TLet GQ) be
the collection of all generation cubes’ Qwith £(Q") > ¢(Q), such thatQg(q)
meets |. Then there is a uniform constang Buch that the cardinality of ®) is
bounded by l

Proof. Let Q" € G*, and suppose thd(Q’) > £(Q), and thatQgq) meetsTq.
Then there are two cub&s € S'(Q’), andP c Q, such that there is somes Wp,
andJ € ‘Wp, for which I* meetsJ* (of course, it may even be that= J, but not
necessarily). By construction of the collectiohigg,

dist(P’, P) < £(P") = {(1) ~ €(J) ~ £(P) < £(Q) < £(Q').

By the semi-coherency & (Q’), we may then choos® € S'(Q’) such thatP’ c
R c @, with £(R) ~ £(Q). Note that distR’, Q) < ¢(Q). The various implicit
constants are of course uniformly controlled, and theesfloe number of sudR’ is
also uniformly controlled. There exists suchRirfor everyQ’ € G(Q); moreover,
a givenR’ can correspond to only org, since the regimeS’ are pairwise disjoint.
Thus, the cardinality o&(Q) is uniformly bounded by a numbéi, that depends
on the ADR constant. O

Suppose now thatt < k, hencef(Q;) > £(Qx). SinceQg C Tg(s) by construc-
tion (cf. Remark3.22), QS} meetsQg only if QS} meetsTq,. By Lemmas5.2Q
the number of indice$ for which this can happen, witkfixed, is bounded bNp.
Consequently, sincef1A; = Ulj(ng}, it follows that for eactk > 2, there is a
subsequenciy, jo, ..., jng) € {1,2,...,k—=1}, with sug N(k) < No, such that

Ac=05\ (UP0g ) .
and hence,
(5.21) A C 90% U (@ n (U aQS;i)) .
Observe that by definition @fg, in the sense of distributions

Voo =3 (u(Y8) Vi + u(Yg)Vix ) .
k

so that, sincéjul|., < 1,

[ fT LZEDY [ fT ) (V11 + V14 1)
< > HYTg NoAY) + Y H(Tg NaA) =: 1T +17.
k k
Considerl ", which we split further into
"= > H(TgnoA) + Y H'TgnoA)=:1{+15.
kQueQ ke QEQ
We treatl; first. Note that by PropositioA.2 in AppendixA below, and $.21),

0A; satisfies the upper ADR bound, because it is contained inrtle wf a uni-
formly bounded number of sets with that property. In additidA c Qg , which
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has diameter diarfils;) < ¢(Qx). Therefore,

1T Y )"~ > o(Q)se?r(Q),
k:Quc QY k:Quc QY
by the packing conditions(17), since eacl®) is a generation cube.
Next, we considel. Recall thatA, c @ and note that

(5.22) Tq meetsQg = dist(Q’, Q) < min(¢(Q"), £(Qx))

(with implicit constants depending opandK). By Lemmab.20, the number of
such Qg with £(Qx) > ¢(Q’) is uniformly bounded (depending opK, and the
ADR constant). Moreover, as noted abowéy satisfies the upper ADR bound.
Thus,
> H(To NIA)) < (diam(Tg))" ~ o(Q).

kQeQ, {(Qu0=(Q)
On the other hand, #(Qyx) < £(Q’), then by 6.22), every relevant) is contained
either in @', or in some “neighbor'Q” of Q’, of the same “side length”, with
dist(Q’, Q”) < C¢(Q’) for some (uniform) constar€. Since the number of such
neighborsQ” is uniformly bounded, the terms i with £(Qx) < £(Q’) may be
handled exactly like terry.

The terml~ may be handled just like", and therefore, combining our estimates
for 1%, we obtain the Carleson measure bound

1
(5.23) sup— Vol < &72.
QCQO |Q| TQ

Next, we considep;. Again letQ” c Qo. Recall thatvi ¢ Ug, and note that

(5.24)  Uqur meetsUqr) = dist(Q(K), Q(k')) < £(Q(K)) ~ £(Q(K)),

and thus, for any give@(k), there are at most a uniformly bounded number of such
Q(K') for which this can happen. Therefore, singe,V; = U*_;Uqyj, it follows
that for eachk > 2, there is a subsequengp, j2,..., jnw) € {1,2,...,k =1},
with sup, N’(kK) < N§, such that

Vie=Uq \ <Ui|\:|/£k)UQ(ii)) ,
and hence
Vi€ Uon U (Vo N (U9 Uqq)) ) -
where each)(j;) has side length comparable to that@fk). Consequently, by
construction of the Whitney region8Vy is covered by the union of a uniformly

bounded number of faces of fattened Whitney bdxegsach with/(1*) ~ £(Q(K)),
so that

(5.25) H™(0Vi) < €(Q(K)" ~ o(Q(K)) -

Remark5.26 Recall that suppfy) ¢ Q1 = UV (cf. (5.19), and note that since
Vi € Ug), the closure of a giveW, can meefTo only if £(Q(k)) < ¢(Q’) and
distQ(k), Q) < €(Q’), thus, there is a collectiow(Q’), of uniformly bounded
cardinality, comprised of cub&d* with £(Q*) ~ ¢(Q’), and distQ*, Q") < £(Q’),
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such thatQ(k) c Q* for someQ* € N(Q’), whenevel, meetsTy. Here, the
various implicit constants may depend upgriK and the ADR bounds.

Using the notation of the Rematk26 we then have that

f f Vel = f f Vel
TQ/ TQ/QQJ_

< ¥ zf Vo= 30 zz[ Veul.

Q eN(Q) QcQ* Q eN(Q) Qk)cQ* i
If UiQ(k) is a blue component, then, singd|., < 1,

[ 1we= [[ g1 Hr@v) < @V < (@),
Vi Vi

where in the last step we have uséd2g). Since for allQ, the number of compo-
nentsUb is uniformly bounded (cf. Remark.3), we obtain

2, 22> ffleo1I< > Y QK s Q).

Q'eN(Q) QWCQ" i:Uly, blue Q'eMQ) QEQ*

by the packing condition faB* (cf. (5.10, and recall thatQ(k)} is an enumeration
of 8*NDq,), and the nature of the cub€s in A'(Q’) along with the ADR property.

On the other hand, Iﬂ‘Q(k) is a red component (cf5(2), then by 6.8) and the
ADR property,

(5.27) QM) 5 &7 f fu VUCYV)ZS(Y) dY .
QK

whereUqg = Uqu.2- is a fattened version di o). Consequently, for any red
componenU'Q(k), bearing in mind thad(Y) ~ £(Q(K)) in Ugg), we have

ff [Veoal —f Vul < (ff |Vu|2>l QR
( f f IVu(Y)|26(Y)dY> v HQI)"2 < &1 f fu . VUY)R5(Y) dY .

where in the last step we have uséd()) and the ADR property. Thus,

DD f Ve
Q eN(Q) QKcQ* i: U'Q(k) red
LYY f f IVu(Y)[2s(Y) dY

QeN(Q) QR VYV

-1 2 -1 ’
< f fB FUVPAAY < 7o),
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whereBg, = B(Xq, K{(Q')), and in the last two steps we have used the bounded

overlap property of the Whitney regiomAi;Q, the nature of\N(Q’), and Theorem
1.1 Combining these estimates, we obtain the Carleson mebsurel

1
(5.28) sup— Vi < &72.
QcQ 1QI JJ1q

Finally, we considet. By definition, in the sense of distributions,
V(,o = (V(,Oo) 1TQ0\§Tl + (V(,DJ_) 191 + J,

whereJ accounts for the jump acroé$)1. The contributions of the first two terms
on the right hand side may be treated by2Q) and 6.28), respectively. To handle
the termJ, note thatp has a uniformly bounded jump acra3$Q,, since||ull. < 1,
and note also that we need only account for the jump adiQssn the interior of
Tq,, thus, across the boundary of soivie Note also thabVy meetsTq only if
Q(k) c Q*, for someQ* € N(Q) (see Remark.26). Hence, forQ c Qop, we have

ff 131 s H'(Tq N 6Q) < > H(Tq N aVi)
To K

< Y > H@Ws D) Y o(QW) £e7r(Q),

QeN(Q) QK)cQ Q eN(Q QKcQ*

where in the last two steps we have usB®f), the packing condition fo3* (cf.
(5.10), and the nature of the cub€s in N(Q) along with the ADR property. Since
Qo € D(E) was arbitrary, we have therefore established the existehg = ¢,
satisfying||u — ¢l|L~(To) < &£ and 6.1), for everyQ.

The next step is to construct, for eaghe E and each balB = B(x,r), and
for everye € (0,1), an appropriate = ¢§ defined onB \ E. Suppose first that
r < 100diamg). Exactly as in the proof that4(13 implies @.12), there is a
collection{Q}, of uniformly bounded cardinality, such th&iQx) ~ r, for eachk,
and such thaB \ E c UcTq,. For eachQy, we construct;ogk as above. Following
our previous strategy, we recursively define

S1:=Tg,, andSy :=Tg, \ (Ulj(ﬁsj) ’

and we defing@ = ¢f 1= >, 90, Lsy- The bound|u—-¢l|_~(s\g) follows immediately
from the corresponding bounds fef, in Tg,. Moreover, we obtain the Carleson

measure estimate
1
sup = f f Ve(Y)dY < 672
zeE,s>0,B(z5)cB S B(z9)

from the corresponding bounds fef, along with a now familiar argument to
handle the jumps across the boundaries of the Sgtaising that the latter are
covered by the union of the boundaries of the Carleson b®xgswhich in turn
are ADR by virtue of PropositioA.2. We omit the details.

Next, if diam(E) < oo, andr > 100 diamE), we setB := B(x, 10 diam§)), and

¢ =g = p5lge + Ulg g,
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and we repeanutatis mutandihe argument used above to show tHal ) implies
(1.2), along with our familiar arguments to handle the jump as@B. Again we
omit the details.

Finally, we construct a globally defined= ¢* onQ, satisfying (.9) and (L.10),
as follows. Fixxg € E, let By := B(x0,2¢), k = 0,1,2, ..., and seR, := By, and
R¢ := Bk \ Bk1,k = 1. Definep = ¢ = 2§10¢‘§k1Rk. The reader may readily
verify thaty satisfies {.9) and (1.10. This concludes the proof of Theorehs.

Remark5.29 We note that the preceding proof did not require harmoniafty,
per se but only the following properties af: 1) u € L®(Q), with |jull. < 1; 2)

u satisfies Moser’s local boundedness estimateQ;i8) u satisfies the Carleson
measure estimatd (2).

APPENDIX A. SAWTOOTH BOUNDARIES INHERIT THE ADR PROPERTY

A.1l. Notational conventions. Let us set some notational conventions that we
shall follow throughout this appendix. If the setunder consideration is merely
ADR, but not UR, then we seWq = WOQ as defined ind.2). If in addition,
the setE is UR, then we definélWq as in @.7). In the first case, the constants
involved in the construction oWq depend only on the ADR constantand K,
and in the UR case, on dimension and the ADR constants (compar&.Q) and
(3.6)). Therefore there are numberg € Z,, Cp € R, with the same dependence,
such that

A1) 2™¢Q) < (1) < 2™¢(Q), and dist(, Q) < Col(Q). VI € Wo.

This dichotomy in the choice oW q is convenient for the results we have in mind.
The main statements will pertain to the inheritance of theRAWoperty by local
sawtooth regions and Carleson boxes whose definitions dlteupon the exact
choices ofWq's described above, fierent for the ADR-only and ADRJIR case.

We fix a small parameter > 0, and we define the Whitney regiokk,, the
Carleson boxe3 g and sawtooth regionQ« g, as in Sectior8 (see 8.9), (3.12),
(3.16 and @.17), relative to'Wq as in the previous paragraph. We recall that if
7o IS chosen small enough, then fox 7o, and forl,J € ‘W, if | # J, thenl*(t)
misses (34)J.

For anyl € ‘W such that/(l) < diam(E), we write Q; for the nearest dyadic
cube tol with £(1) = £(Qy) so thatl € Wq. Notice that there can be more
than one choice o®y, but at this point we fix one so that in what folloW@ is
unambiguously defined.

A.2. Sawtooths have ADR boundaries.

Proposition A.2. Let E ¢ R™! be a closed n-dimensional ADR %efThen all
dyadic local sawtooth®# o and all Carleson boxesdJ have n-dimensional ADR
boundaries. In all cases, the implicit constants are umifand depend only on
dimension, the ADR constant of E and the parametegramd G.

“Thus,E may be UR, or not; in the former case, the parametgrandC, may depend implicitly
on n and the UR constants &, as well as om andK; in either case, we follow the notational
convention described above.
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The proof of this result follows the ideas from[[12, Appendix A.3] (see also

[HMM]).

We now fixQp € D and a family# of disjoint cubesf” = {Q;} c Dq, (for the
casef = @ the changes are straightforward and we leave them to thderesso
the casef = {Qo} is disregarded since in that caQg o, is the null set). We write
Q, = Qg g, andX = 9Q, \ E. GivenQ € D we set

Ro= |J Wo. and EQ:ZH( U I).
QeDq leRa

Let C; be a stficiently large constant, to be chosen below, depending, ¢ime
ADR constant ofe, my andCg. Let us introduce some new collections:

i = {Q e D\ {Qo} : £(Q) = £(Qo), dist(Q, Qo) < C1¢(Qo) },
Fr:={Q eD:dist(Q’, Qo) < C1£(Qo), €(Qo) < £(Q') < C1£(Qu)}.
Fiii={QeF:2q# @} ={QeF: Il eRgsuchthatn| # B},
F i={QeF :Zg# @} ={QeF :3l eRgsuchthat n| + B},
We also set

R = | Ra. Ri= J Ro. Re= ) Wa
QeF™ QeFyf QeF+

LemmaA.3. SetWs ={l e W : | NZX # @} and define

Wi= ) Weq Wh= | Wroo WI={leWs:Q eF}.
o Qe

where for every G 7 U F" we set
(WE,Q = {| € Ws . QT € DQ};

and where we recall that Qis the nearest dyadic cube to | witiil) = ¢(Q)) as
defined above. Then

(A.4) Ws = Ws U Wl uwy,
where
(A.5) WicR, WLcRr, W Ry

As a consequence,

(A.6) z:zLuz”uzT:z( U zm)U( U zm)U( U zm).

leWs I e(WQ leWy

Proof. Let us first observe that ife ‘Ws, thatis,| € ‘W is such thatnX # @, then
int(1*) meetsR™1\ Q, and therefore (84) c R™1\Q,. In particularl ¢ Wq, for
anyQ € D¢ q,. Also, | meets a fattened Carleson bdxsuch that intf*) c Q,.
Then there existQ; € D¢ g, such that) € Woq;.

As above, letQ; denote the nearest dyadic cubd taith £(1) = £(Qy) so that
| € Wq . Then necessarifQ; ¢ Dy g, = Dy N Dq,.
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Case 1:Q; ¢ D#. Thisimplies thatthere iIQ € ¥ such thaQj c Q. Thenl € Rq,
sincel € Wq, and alsaQ € 7~ sinceX N | # @. Hencel € Wy q c Ws.

Case 2:Q; € Dy. We must hav&; ¢ Dq,. SinceQ; c Qg we have

Q) = (1) ~ {(3) ~ {(Qu),  maxe(Qy), £(Qu). £(1), ¢(J)} < C1{(Q),

and

dist(Qy, Qo) < d(Qy. 1) + £(1) + £(J) + dist(d, Qy) + £(Qo) < C1£(Qo).

where the implicit constants depend mrthe ADR constant oE, my andCy, and
C; is taken large enough depending on these parameters.

Sub-case 2al{(Q)) < £(Qo). We necessarily hav®; c Q € 7. Thenl € Rqg
sincel € Wq; and alsoQ € 7" sinceZ N | # @. Hencel € Wyq C WL

Sub-case 2b((Qy) > £(Qo). We observe that

€(Qo) < £(Q) <C16(Qp)  and distQ}, Qo) < C1£(Qo),
and therefor&] € ¥+ and thud € Wy.

This completes the proof ofA(4). Note that A.5) follows at once by our con-
struction. Let us note that for further reference the thete ®/s, (Wg and Wy
are pairwise disjoint by the nature of the familigs 7 and 7.

To prove A.6) we observe thak consists of (portions of) faces of certain fat-
tened Whitney cubed*, with int(J*) c Q,, which meet somé& € W —there
could be more than onkbut we chose just one— for which¢ Wq, for any
Q € Ds g, (so that (34)] c R™1\ Q,) andl N T # @. In particular we can apply
(A.4) and A.6) follows immediately. O

Lemma A.7. Given | € Wy, we can find Q € D, with Q c Qy, such that
(1) = €(Qy), dist(@Q,, ) ~ £(1), and in addition,

(A.8) > 1o slg.  forany Qe FrUF,
leWs o
and
(A.9) Z 1o < e nEs
lewy

where the implicit constants depend on n, the ADR constaii, ofy and G,
and where B = B(Xq,, C¢(Q)) with C large enough depending on the same
parameters.

Proof. Fix | € Wy, takeQj and note that, as observed befo@, ¢ D q,. As
in the previous proof meets a fattened Carleson bdksuch that int{*) c Q,.
Then there existQ; € Dy q, such that] € Wy, .

We start with the cask e Ws o with Qf € Dg andQ € #*. Notice thatQj is
not contained irQ and therefore, upon a moment’s reflection, one may readdy se
that distQj, E \ Q) < ¢(Q)).



UNIFORM RECTIFIABILITY, CARLESON MEASURE ESTIMATES, AND PROXIMATION 39

We claim that we may select a descendan®pfcall it Q;, of comparable size,
in such a way that

(A.10) distQ, E\ Q) = £(1) ~ £(Qy),

while of course retaining the property that d@t(l) ~ ¢(1). Indeed, letM be a
suficiently large, but uniformly bounded integer to be chosemoatarily, and let
Qi be the cube of “length?(Q;) = 2-M¢(Qy), that containq: ( the “center” of
Q). Since there is a baBq: := B(xq, ), withr =~ £(Qy), such thaBg: NE ¢ Q,
we may chooséM to be the smallest integer that guarantees that dpng r/2,
and the claim holds.

Once we have selected, ¢ Q; ¢ Q with the desired properties we shall see
that the cube§Q) } 1w, , have bounded overlap. Indeed, giv@n suppose tha®,/
meetsQ,. By (A.10), £(1) =~ £(1”) in which case dist(1’) < ¢(I). Butthe properties
of the Whitney cubes easily imply that the number of slids uniformly bounded
and therefore th€, have bounded overlap.

We now consider the cases Wy g with Q € Dg andQ € #". As beforeQ,
is not contained irQ sinceQ; c Qg andQ e #; means thaQ # Qo and{(Q) =
£(Qo). Then, as before, dig}{,E \ Q) < ¢(Q}) and we may select a descendant
of Qyf, call it Q,, of comparable size, such that.(0) holds and distQ,, |) ~ £(1).
Notice thatQ, c Qf c Q and the fact that the cubé®}ew,, have bounded
overlap follows as before.

Finally letl € ‘W{ thenQ; € #+. In this case we s&p, = Q; which clearly
has the desired properties. It is trivial to show tat ¢ B . To obtain the
bounded overlap property we observe thajfn Q; # @ with Q,, Q| € #+ then
(1) ~ Q1) = €(Qo) ~ €(Q) =~ £(I") and also disi(,1”) < ¢(1). Thus only for
a bounded number df's we can have tha®,y meetsQ,. This in turns gives the
bounded overlap property. O

Lemma A.11. For every xe 0Q, and0 < r < €(Qo) ~ diam,), if Q e F* U F
then

(A.12) > H' (B NENI) s (minfr,6Q))",

leWs o

where the implicit constants depend on n, the ADR constagt of, Co.

Proof. We setB := B(x,r). We first assume that(Q) < r. Then we use the
estimateH"(Z N 1) < £(1)" (which follows easily from the nature of the Whitney
cubes), Lemma.7 and the ADR property OE to obtain as desired that

d>TOHYBAzAN s Y )"x D> HQ)"x > Q) so(Q s Q"
leWs o leWs o leWs o leWs o
Suppose next thad(Q) > r and thats(x) > r (in particularx ¢ E). By the nature
of the Whitney cubef N X n | consists of portions (of diameter at mos) df
faces of Whitney boxes and only a bounded numbersotan contribute in the
sum. Hence,

> HYBNENIl) <™
leWs o
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Finally, consider the case wheféQ) > r and thats(x) < r (which includes the
casex € E). Pick X € E such thatix — X = §(x). Letl N B # @ and pick
zelNnB#@. Then

(1) = dist(l,E) < |z— X +d6(X) s 1.

Also, by LemmaA.7 we have thatQ, c B(X,Cr) for some uniform constants
C > 1: for everyy € Q; we have

ly =X < {Q) + dist@, 1) + (1) + lz= X + X=X < 1.
Proceeding as before, Lemmar and the ADR property o yield
Y H'@Bnznhs Y o(Q) s 0'( U Q|) <o(B(RCrNE) <.
leWs o leWs o leWs o
m|
Proof of PropositionA.2 Upper ADR boundWe are now ready to establish that
for everyx € 0Q, and O< r < £(Qp) we have that
(A.13) H"(B(x,1) N Q) <"
where the implicit constant only depends on dimension, tB&RAonstant ofe
and the parametersy; andCy.
Write B := B(x, r) and note first that
H"(BNdQ,) < H'(BNdQ, NE) + H'(BNX).

For the first term in the right hand side, we may assume thae tbeistsx’ €
BN dQ, N E in which case we have th&8(x,r) c B(X, 2r) and therefore

H"(BN dQ, NE) < H"(B(X,2r)NnE) < 1",
by the ADR property o sincer < £(Qq) < diam(E).

Let us then establish the bound for the portion correspgntdiz. We use A.6)
to write

H'BNZ)< Y HYBNEnl)+ > HYBNEZnl)+ > HY(BNINI).

lews Ie(WQ lewy
<> ) HYBNInl)+ > HYBNEINI)=:S;+S,,
Qefp ' €Wro lewd

where#s is the collection of cubes i € F* U F such that there is € Ws q
withBNnXnl # @. ForS; we write

Fe=F1UT2:={QeFp: {(Q <r}u{QeFp: Q) >r}.
Suppose first tha® € F1 c 77'5 and pickze BNnX Nl with | € Ws . Then, for
anyy € Q we have

ly—X < €Q)+dist@Q, 1)+ (1) +]z—X <r
and therefore) c B* = B(x,Cr). Then @A.12) gives
Y > HBAZANS Y Q" s H”< U Q) <H"(B*NE)<r",

QeF1leWs g Qef1 Qef1
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where we have used th@y c ¥ U 7 and each family is comprised of pairwise
disjoint sets. In the last estimate we have employed Eh& ADR: note that
althoughB* is not centered at a point i, we have that eitheB* N E = @ (in
which case the desired estimate is trivial)Birc B(x’,2Cr) for somex’ € E (in
which case we can legitimately use the ADR condition).

We next see that the cardinality b is uniformly bounded. LeQ1, Q, € #»

and assume, without loss of generality, that £(Q1) < £(Q). Fori = 1,2 pick
z e BnZnljwith I € Wy q. Then

{(I2) = dist(l2, E) < [z, — z1] + dist(z1, E) < 1 + {(11) < €(Qa) + £(Qj,) < {(Qu)
and consequently

dist(Q2, Q1) < dist(Qj,, 12) + £(12) + |22 — z1] + £(11) + dist(@Qy,, 11) < €(Qu).
Therefore, for any paiQ1, Q. € ¥> we have that dis@, Q2) < min{£(Q1), £(Q2)}

and, since the cubes i/ are disjoint we clearly have that the cardinalityfef is
uniformly bounded. ThusA(.12) easily gives the desired estimate

> Y HBnZnl)ssup > HY(BNINI) <"

QETQ |E(W2'Q Q€7:2 IE(WE,Q
This and the corresponding estimate fargives thatS; < r".

We next conside8;. We first observe that#/’y is uniformly bounded. Indeed
if 1,1 e W{ thenQJ, Q;, € ¥+ and therefore(l) ~ £(Q)) = £(Qo) = {(Q}) =
£(1") and also disi( ") < ¢(Qo). This readily implies that#/;y < C. On the other
hand for everyl € W{ we have that(l) ~ ¢(Qo) and, since O< r < ¢(Qo), we
clearly have thaH"(BNXn 1) < r". Thus,

S2= Y HBNZNI)s supHBNZNI)<r".
lew] lewd

This completes the proof of the upper ADR condition. O

The following results are adaptations of some auxiliaryrteam from HM2].

Proposition A.14. Suppose that E is a closed ADR set. Fix © D, and let
¥ c Dg, be a disjoint family. Then

(A15) Qo \ (Uq:QJ) cEn aQT,QO - @\ (Uq: Int(QJ))

Proof. We first prove the right hand containment. Suppose xhatE N 0Q¢ q, .
Then there is a sequeni € Qg o, with Xk — x. By definition ofQg g, eachXX
is contained if}; for somely € Wi g, (cf. (3.19-(3.19), so that/(lx) = 6(X¥) —
0. Moreover, again by definition, eatf belongs to somé¥ Q¢ e D q, SO
that,

dist(QX, 1) < Co &(Q) ~ Co £(I) — 0.
Consequently, dis@*, x) — 0. Since eaclQX c Qp, we havex € Qg. On the
other hand, ifx € int(Q;), for someQ; € ¥, then there is am > 0 such that
dist(x, Q) > € for everyQ € D¢ g, With £(Q) < €, because n@ € Dy g, can be
contained in any);. Since this cannot happendfQ¥) + dist(Q¥, x) — 0, the right
hand containment is established.
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Now suppose thak € Qg \ (U£Qj). By definition, if x € Q € Dq,, then
Q € Dg q,- Therefore, we may choose a sequef@¥ c D# q, shrinking tox,
whence there exidk € W« ¢ Wi g, (Where we are using that/ o« # &) with
dist(lx, X) — 0. The left hand containment now follows. O

Lemma A.16. Suppose that E is a closed ADR set. fetc D be a pairwise
disjoint family. Then for every @ Qj € ¥, there is a ball B ¢ R™!\ Q,
centered at E, with radius r~ £(Q)/Cq, andA’ := B ' N E c Q.

Proof. Recall that there exisBg := B(Xg,r) andAq = Bg N dQ c Q where
r ~ £(Q). We now set

B' =B (xq.(MCo)r) ,
whereM is a suficiently large number to be chosen momentarily. We need only
verify thatB’ nQ¢ = @. Suppose not. Then by definition ©f-, there is a Whitney
cubel € Wy (see 8.18) such that * meetsB’. Sincel* meetsB’, there is a point
Y, € I n B’ such that

{(1) = dist(1*, 0Q) < 1Y) — Xgl < /(M Cop) = £(Q)/(M Cy).
On the other hand, sindee W, there is &, € D¢ (henceQ; is not contained

in Qj) with £(1) = £(Qy), and distQy, Y;) ~ dist(Qy, 1) < Co(l) < £(Q)/M. Then
by the triangle inequality,

ly - Xol S €Q)/M,  VyeQ.
Thus, if M is chosen large enougl)) c Aq c Q c Qj, a contradiction. O

Lemma A.17. Suppose that E is a closed ADR set. There eRistsc < 1 de-
pending only in dimension, the ADR constant of E apd@g such that for every
Qo € D, for every disjoint family# c Dq,, for every surface balh, = A, (X, r) =
B(X,r) N 0Qg g, With X € Qs o, and0 < r < £(Qp) there exists X, such that
B(Xa,,Cr) € B(X, 1) N Qg q-

This result says that the open St o, satisfies the (interior) corkscrew condi-
tion.

Proof. We fix Qg € D, and a pairwise disjoint familyQ;} = ¥ c Dq,. Set
Ay = A(X 1) == B(X, 1) N 0QF qps
with r < £(Qo) andx € 0Qy q,.

We suppose first that € 0Q# o, N E. Let M > 1 large enough to be chosen.
Following the proof of Propositior.14 we can findk > 1 such that distQ, x) +
0(Q%) < r/M2 with Q¢ € Dy q,. In particular, we can pick’ € QX such that
Ix — x| < r/M2. We now take an ancestor g, we call it Q, with the property
that£(Q) ~ r/M < £(Qp). ClearlyQ¥ e Dy q, implies thatQ € Dy q,. Let us pick
lg € Wq (sinceWq is not empty) and writeX(lg) for the center ofq.

SetXa, = X(lg) and we shall see thd8(Xa,,r/M?) c B(x.r) N Qg q, pro-
vided M is large enough. First of all, by constructibg c Qg o, and therefore
B(Xa,,r/M?) ¢ Qg q, sincer/M? ~ £(Q)/M < 2™ ¢(Ig)/M < {(lg)/4 if M is
large. On the other hand for eveYye B(X,,,r/M?) we have
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Y =X <Y = X, |+ €(lg) + dist(lg, Q) + £(Q) + X' — X

mo
LN A
providedM is taken large enough depending on dimension, AB§RandCy. This
completes the proof of the cages Q¢ g, N E.

Next, we suppose thate 0Q# o, \ E, where as abova, = A,(x,r). Then by
definition of the sawtooth regiorx, lies on a face of a fattened Whitney cubbe=
(1+7)l, with | € W, for someQ € Dy q,. If r < £(1), then trivially there is a point
X* e 1" such thatB(X*, cr) c B(x,r) nint(1*) c B(x,r) N Q¢ q,- This X* is then
a Corkscrew point fon,. On the other hand, (1) < r/M, with M suficiently
large to be chosen momentarily, then there @ & Dy q,, with £(Q’) ~ r/M, and
Q C Q. Now fix I € Wq and setX, = X(lg). We see thaB(X,,,r/M?) c
B(x,r) N Qg q, provided M is large enough. By constructidiy c Qg g, and
thereforeB(Xa,,r/M?) c Qg q, sincer/M? = €(Q')/M < 2™ ((Ig)/M < €(1q)/4
providedM is large. On the other hand for eveYye B(X,,,r/M?) we have

Y =X <Y = Xp, |+ (lg) + dist(lg, Q) + £(Q) + £(Q) + dist(@, I) + £(1)

< #+(2"’0+Co)(f(Q’)+f(l)) < # " (ZW"TCO)" .

if we take M large enough depending on dimension, ADig,andCy. O

<3+ @™+ C Q) <

Proof of PropositionrA.2 Lower ADR boundWe are now ready to establish that
for everyx € 0Q, and 0< r < £(Qp) we have that

(A.18) H"(B(x,1) N Q) 2 1"
where the implicit constant only depends on dimension, tB&RAonstant ofe
and the parametersy; andCy.

Write B := B(X,r) andA, = A.(xr) := BN dQ,. We consider two main cases.
As usual,M denotes a diiciently large number to be chosen.
Case 1 6(X) > r/(M Cp). In this case, for somé with int(J*) c Q,, we have that
x lies on a subsef of a (closed) face of*, satisfyingH"(F) > (r/(M Cy))", and
F c Q.. Thus,H"(Bn dQ,) > HY(BN F) > (r/(M Cp))", as desired.
Case 2 §(x) < r/(MCp). In this case, we have that digtQp) < r/M. Indeed, if
X € ENdQ,, then by Propositioi.14, x € Qq, so that dist, Qg) = 0. Otherwise,
there is some cub® € Dy g, such thatx lies on the face of a fattened Whitney
cubel”, with | € Wg, and{(Q) ~ £(1) = 6(X) < r/(M Cq). Thus,

dist(x, Qo) < dist(l, Q) < Co(Q) < r/M.

Consequently, we may chooge= Qg such thatx — X < r/M. Fix now@ € Dq,
with X € 6 and 5(@) ~ r/M. Then for M chosen large enough we have that
6 c B(x,r/ YM) c B(x,r). We now consider two sub-cases.

Sub-case 2aB(% r/ VM) meets Qj € ¥ with £(Q;) > r/M. Then in particular,
there is aQ C Qj, with £(Q) ~ r/M, andQ c B(% 2r/ VM). By LemmaA.16,
there is a balB’ ¢ R™Y\ Q,, with radiusr’ ~ £(Q)/Co =~ r/(Co M), such that
B'NE c Q, and thus als® c B (for M large enough). On the other hand,
we can apply Lemma&.17 to find B” = B(Xa,,Cr) ¢ B(x,r) N Q,. Therefore,
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by the isoperimetric inequality and the structure theorenséts of locally finite
perimeter (cf. EG], pp. 190 and 205, resp.) we hat#'(A,) > cc,r" (note
that 9Q, is of local finite perimeter since we have already shown theeupDR

property).
Sub-case 2fthere is naQ; as in sub-case 2a. Thus @ € 7 meetsB(X,r/ VM),
then£(Qj) < r/M. Sincexe Qo, there is a surface ball

(A.19) A1 := A(xq, cr/ VM) € Qo N B(X, r/ VM) c Qp N B.

Let #1 denote the collection of thos@; € ¥ which meetA;. We then have the
covering

A1 € (URQj) U (A1) (URQ))) .
If

(A.20) - (%Al \ (uﬁQj)) > 2o @Al) o
then we are done, sinae, \ (Ur, Qj) € (Qo \ (U#Qj)) N B c Ay, by Proposition
A.14,

Otherwise, if A.20) fails, then
(A.21) > @)z

QiF{

where7 is the family of cube®; € 71 meeting%Al.

We apply LemmaA.16 with Q = Q; and there is a baB; = B(xj,rj) ¢ R™!\
Qg c R™\ Q, with x; € E (indeed; is the “center” ofQ)), rj ~ ¢(Q;)/Co and

Bj N E c Q;. Also, the dyadic parer@j of Qj belongs taD# q,. Thus, we can
find1j € Wg so thatlj c Q.. If we write X(1;) for the center of; we have

IXj = X(1;)] < €Q;) + dist(@;, 1) + £(1;) < (2™ + Co) £(Q;).
Note thatX(l;) € I} c Q, andx; € R\ Q,. Thus we can find € 0Q, in the
segment that joing; andX(l). We now consideBj = B(x}, C (2™ + Co) £(Qj))
which is a ball centered @Q,. We first see thaB; c Bj* \ Q,. We already know
thatB; c R™1\ Q, and on the other handyfe Bj we have
ly = X1 < Iy = Xjl + % = X[ < 1+ [x; = X(Ij)] £ (2™ + Co) £(Q)),
and therefords; c Bj. On the other hand, we can also show B@X(l ), ¢(1})/4) c
Bj* N Q,. Indeed,B(X(Ij), £(1;)/4) c 1} c Q, and for everyy € B(X(l;), £(1;)/4)
we have
ly = X1 < ly = XL+ IX(1) = X1 < £(15) + 1X(15) = xj1 < (2™ + Co) £(Q;)

which yields thaB(X(l}), £(1;)/4) c B}. Therefore, by the isoperimetric inequality
and the structure theorem for sets of locally finite periméte [EG], pp. 190 and
205, resp.) we have

(A.22) H(B} N 9Q4) 2 Ceomel(Q))" » o(Qj).

(note thatdQ, is of local finite perimeter since we have already shown thgeup
ADR property).
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On the other hand, if we writBqg, = B(xq,, C1 £(Q;)) such thatQ; c Bg, N E
(see (.17) we can findN = N(mp, Co) such thaB* c N Bg,. Indeed ifY € BY
we have

(A.23) Y — XQj| <|Y- XT| + |XT - Xj| < C(an + Co)f(Qj) + |X(|j) - Xj|
< C' (2™ + Co)l(Qj) < NC1L(Qy),
where we have used thaf = xq;.
From (A.21) it follows that we can find a finite family, c 77 such that

1
(A.24) > o@Q)z5 >, @)z
QjeT2 Qjefy
From#>, following a typical covering argument, we can now take acsilbction
F3 so that the family{N Bq, g is disjoint and also satisfies thatQfj € 72 \ 3

then there exist@ € 73 such thar (Bg,) > r(Bg,) andN Bg, meetsN Bq,. Then
it is trivial to see that

U Q;c U I§QJ. C U (2N+1)I§QJ.
QjeF2 QjeF2 Qjef3

Notice that the fact that the familyN BQJ}QJET3 is comprised of pairwise disjoint
balls yields that the ballBf}qcr, are also pairwise disjoint. Thus the previous
considerations and\(22) give

H'( U B nao.) = > H'(Bfna) 2 > o(Q)

Qjefs Qjefs Qjefs
ZU( J @N+1)Bqg, mE) Z(r( U Qj) => @)z
QjeT3 QjeF2 Qjef2

To complete the proof give@; € 73 ¢ #{ ¢ ¥ we have thaQ); meets%Al and
we can pickz; belonging to both sets. Notice that by.{9) in the present subcase
we must have/(Qj) < r/M. This, (A.19) and A.23) imply that for everyY € By
we have

IY =X < [Y=Xq, | +IXq, =Zjl+1zj = Xa|+ X1 = K| +[X=X| < ﬁ+ﬁ < ﬁ <r
providedM is large enough, and therefol?.1$ c B. This in turn gives as desired
that

H'(B N0, = H'( | Bf noo) 21
QjeFs
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