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Abstract

Odds ratios and log-linear parameters are not collapsible, meaning that including a
variable into the analysis or omitting one from it, may change the strength of associa-
tion among the remaining variables. Even the direction of association may be reversed,
a fact that is often discussed under the name of Simpson’s paradox. A parameter of
association is directionally collapsible, if this reversal cannot occur. The paper investi-
gates the existence of parameters of association which are directionally collapsible. It
is shown, that subject to two simple assumptions, no parameter of association, which
depends only on the conditional distributions, like the odds ratio does, can be direc-
tionally collapsible. The main result is that every directionally collapsible parameter
of association gives the same direction of association as a linear contrast of the cell
probabilities does. The implication for dealing with Simpson’s paradox is that there
is exactly one way to associate direction with the association in any table, so that the
paradox never occurs.

Keywords: directional collapsibility, odds ratio, Simpson’s paradox, parameterization
of binary distributions, variation independence from marginal distributions

1 Introduction

This paper studies the relationships between certain properties that parameters of associations for
binary distribution may have. Goodman & Kruskal (1954) gave an overview of bivariate parame-
ters of association and they argued that no single concept of association may be used in all research
problems. Interest since then has turned towards the multivariate case and, although there have
been alternative suggestions, see, e.g., Bahadur (1961), Lancaster (1969), applications and theo-
retical work in the last fifty years have concentrated around the odds ratio and quantities derived
from it, mostly because of their relevance in log-linear and other graphical Markov models, see, e.g,
Bishop et al. (1975), Lauritzen (1996). The multivariate version of the odds ratio was first consid-
ered in Bartlett (1935), see also Birch (1963), and Ku & Kullback (1968) for a review of related
approaches. However, not every analyst is entirely satisfied with odds ratios (or their logarithms),
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as parameters of association. First, the standard error of the sample odds ratio, as an estimator,
depends not only on the true value of the odds ratio, but is a monotone function of the sum of
the reciprocals of the cell probabilities, resulting in high variability of estimators. Second, lack
of collapsibility is often cited as an undesirable property, see, e.g., Whittemore (1978), Wermuth
(1987) and Vellaisamy (2014). The fact that even the direction of association may change after
collapsing (e.g., taking the new drug may be associated with recovery for both male and female
patients, but disregarding sex, taking the old drug is associated with recovery) is seen as para-
doxical by many, as shown by the widespread literature on ’Simpson’s paradox’. In addition to
well-known occurrences of Simpson’s paradox in sociology, education and the health sciences, it is
being discussed in genetics (Brimacombe, 2014) and in physics (Li et al., 2013).

As opposed to the vast majority of this literature, Simpson’s paradox is not considered here
as a special, perhaps negative, feature of the data for which it occurs, rather it is considered as a
characteristic of the parameter of association applied, namely the odds ratio, that conditional and
marginal associations may have opposing directions (cf. Wermuth, 1987; Rudas, 2010). Directional
collapsibility means, that such a reversal cannot occur.

The direction of association is readily interpreted for k = 2. If one variable is treatment, the
other is response to it, then the direction of association tells whether the treatment is beneficial
or detrimental to the response. If the two variables are treated on an equal footing, that is, none
of them is assumed to be a response to the other, then the direction of association tells whether
concordant or discordant types of observations are more likely. For more than 2 variables, when one
is response to the others, if all treatments are beneficial when applied individually, the direction
of association may tell whether applying all treatments has additional benefit, or whether it is
beneficial, at all. However, just like there is no single parameter of association, there is also no
single meaning of association. When the variables are treated on an equal footing, one possible
interpretation is given in (6) and in the discussion following it.

The paper investigates the possibility of finding directionally collapsible parameters of associa-
tion, which also provide a parameterizations of multivariate binary distributions. The main results
are obtained under two simple assumptions made for parameters of association, which are described
and motivated in Section 2. These two properties are possessed not only by the odds ratio, but
also by a simple contrast of the cell probabilities defined in (5). It is also shown in Section 2,
that both the odds ratios and the contrasts, associated with all marginal distributions, constitute
a parameterization of the joint distribution.

The main results of the paper are given in Section 3. Variation independence of the odds ratio
from lower dimensional marginal distributions, formulated here as dependence on the conditional
distributions only, which is a very desirable property in other contexts (see, e..g, Rudas, 1998), turns
out to imply the lack of directional collapsibility. More precisely, any parameter of association which
depends only on the conditional distributions, assigns the same direction of association to every
distribution as the log odds ratio does, and, therefore, is not directionally collapsible. On the
other hand, a parameter of association is directionally collapsible, if and only if it assigns the same
direction of association to every distribution, as the contrast of the cell probabilities does.

One is then left with the following simple situation. If the two properties described in Section 2
are assumed, then all parameters of association which depend on the conditional distributions only,
deem the direction of association as the odds ratio does, and are not directionally collapsible. Fur-
ther, all directionally collapsible parameters of association assign the same direction to association
as the contrast does, and the latter also provides a parameterization of the distribution.

Section 4 concludes the paper with a brief discussion of the potential use of the contrast as a
parameter of association and the implications for dealing with Simpson’s paradox. Those analysts
who are interested in the direction of association only, and find the contrast being overly simple,
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failing to properly describe their concept of association, cannot avoid Simpson’s paradox and have
to learn to accept the reversal as not paradoxical. On the other hand, those, whose main concern
remains to avoid Simpson’s paradox, and are ready to use the contrast to determine the direction of
association, will be happy to see that the contrast has very attractive sampling properties, including
that its sampling distribution does not depend on the number of variables involved, rather only on
its population value.

2 Some properties of parameters of association

This paper deals with parameters of the joint distribution of k binary variables. Such distributions
may be written as entries in the cells t of a 2k contingency table, Tk. The cells of such a table
may be identified with sequences of 1’s and 2’s of length k, and the notation t = (j1, j2, . . . , jk)
will be used, where ji is 1 or 2 for all i = 1, 2, . . . , k. The distributions to be considered are not
restricted to probability distributions summing to 1 and not even to frequency distributions with
integer values. The set of any positive entries (p(t), t ∈ Tk) in the contingency tableTk will be
called a distribution.

This paper offers no definition of what is a parameter of association, rather the relationships
between different possible characteristics are investigated. As pointed out by Goodman & Kruskal
(1954), see also Darroch (1974), Streitberg (1990), Rudas & Bergsma (2004), there are several ways
to define parameters of association, which may be relevant in different research context, and these
different parameters may have different characteristics. The properties which will be assumed here,
seem appropriate in the common situations when:

(i) The variables considered describe the presence (category 1) or absence (category 2) of var-
ious characteristics. Association means that these characteristics tend to occur together. If the
joint distribution is uniform, there is no association, and the stronger is the tendency for all the
characteristics to occur together, the stronger is the association.

(ii) Association has a direction, and any pattern of association of k−1 variables, combined with
the presence or the absence of the k-th characteristic imply different directions of association.

These assumptions are formulated as Properties 1 and 2.
Property 1. A parameter of association fk is a continuous real function on the set of distri-

butions (p(t) : t ∈ Tk), such that

fk(p(t) : t ∈ Tk) = 0 if p(t) = c for all t ∈ Tk (1)

and fk is strictly monotone increasing in p(1, 1, . . . , 1).

Property 2. If (p(t), t ∈ Tk) and (q(t), t ∈ Tk) are distributions, such that there is an
i ∈ {1, 2, . . . , k} with

p(j1, . . . , ji−1, ji, ji+1, . . . , jk) = q(j1, . . . , ji−1, j
∗

i , ji+1, . . . , jk),

where j∗i + ji = 3, for all (j1, . . . , ji−1, ji+1, . . . , jk), then

sgn (fk(p(t) : t ∈ Tk)) = −sgn (fk(q(t) : t ∈ Tk)) .

This is not the most parsimonious formulation of these assumptions: Property 2 implies (1).
Let the cells of Tk with an even number of 2’s be denoted by Tke and those with an odd number
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of 2’s by Tko. Swapping the categories of a variable, as described in Property 2, interchanges these
two subsets of the cells.

Interaction parameters which are contrasts between certain functions of the cell entries play a
central role in this paper. More precisely, let h be a monotone increasing continuous real function
and consider

fk(p(t) : t ∈ Tk) =
∑

t∈Tke

h(p(t))−
∑

t∈Tko

h(p(t)). (2)

Because (1, 1, . . . , 1) ∈ Tke, Property 1 holds, and because if

(j1, . . . , ji−1, ji, ji+1, . . . , jk) ∈ Tke,

then
(j1, . . . , ji−1, j

∗

i , ji+1, . . . , jk) ∈ Tko,

and vice versa, Property 2 holds, too, for interaction parameters of the type (2).
If fk is of the form (2), then it may be written as

fk(p(t) : t ∈ Tk) =
∑

t∈Tk

(−1)e
′t−kh(p(t)), (3)

where e′ is the transpose of a column vector of length k, consisting of 1′s.
The following example illustrates parameters of association of the type (2).
Example 1. The k − 1st order odds ratio for a k-dimensional distribution is

ORk(p(t) : t ∈ Tk) =

∏

t∈Tke
p(t)

∏

t∈Tko
p(t)

(4)

and log ORk is an interaction parameter, to be denoted as LORk. The log odds ratios are closely
related to the log-linear parameters of the distribution (see, e.g., Rudas, 1998).

The log odds ratios may also be generated as in (2), by using h = log:

LORk(p(t) : t ∈ Tk) =
∑

t∈Tke

log(p(t))−
∑

t∈Tko

log(p(t)).

The difference parameter of association is

DIk(p(t) : t ∈ Tk) =
∑

t∈Tke

p(t)−
∑

t∈Tko

p(t), (5)

which is obtained from (2) by choosing h as the identity function.
Finally, by choosing h = exp in (2) gives

EXk(p(t) : t ∈ Tk) =
∑

t∈Tke

exp(p(t))−
∑

t∈Tko

exp(p(t)).

Parameters of association of the type (2) are not only contrasts between functions of the entries
in Tke and Tko, but also a comparison of the strengths of association in parts of the table defined by
specific indices of a variable. Let Tk−1(Vi = 1) be the part of the table where the ith variable is 1,
and Tk−1(Vi = 2) be the part of the table where the jith variable is 2. These are k− 1-dimensional
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tables formed by the variables other than Vi. Then, if fk is of the type (2), it may be obtained by
the following recursion, irrespective of the choice of i :

f1(p(t) : t ∈ T1) = h(p(1)) − h(p(2))

fk(p(t) : t ∈ Tk) = (6)

fk−1(p(t) : t ∈ Tk−1(Vi = 1))− fk−1(p(t) : t ∈ Tk−1(Vi = 2)).

To see that (2) and (6) give the same, only the signs of the quantities h(p(t)) need to be checked.
For every t ∈ Tk, the the sign of h(p(t)) in fk in (2) is the same as the sign in fk−1 in (6), if and only
if Vi = 1, and is the opposite when Vi = 2, because the sign depends on the parity of the number of
2’s among the indices. This reversal is introduced in (6) by the negative sign of the second term.

Formula (2) may seem counter-intuitive, even ”wrong”, as it suggests, as implied by Property
2, that large entries in cells with an odd number of 2’s among their indices imply weak association.
Formula (6) shows, that (2) is a comparison, showing, for any variable Vi, the amount by which
association is stronger, when, in addition to all other characteristics, also the one indicated by Vi

is present (ji = 1), as opposed to when it is not (ji = 2).
However, there are functions of the cell entries which possess Properties 1 and 2, but cannot be

written in the form of (2), as illustrated next.
Example 2. Let let d be strictly monotone but non-linear function.Then

d(
∑

t∈Tke

p(t))− d(
∑

t∈Tko

p(t)).

is a parameter of association which cannot be written in the form of (2).
For example, in the case of k = 2, with the usual notation,

(p(1, 1) + p(2, 2))3 − (p(1, 2) + p(2, 1))3

is not a linear contrast of any function of the cell entries.

The next example illustrates parameters of association which do not possess Properties 1 and
2.

Example 3. One may say, that in the following distribution, the three variables (possessing
the three characteristics) do show some association, because it is more likely to have all three
characteristics present, than any other pattern of presence or absence.

0.3140 0.098

0.098 0.098

0.098 0.098

0.098 0.098

Indeed, the Bahadur parameter (Bahadur, 1961) associates the value of 0.103 with this distri-
bution. By the same argument, one might think that the association is stronger in the following
distribution.

0.9965 0.0005

0.0005 0.0005

0.0005 0.0005

0.0005 0.0005

However, the Bahadur parameter associates the value of −5.54 with this distribution, indicating
a negative association among the three variables, thus Property 1 does not hold. On the other hand,
Property 1 does hold for the Bahadur parameter in the cae of k = 2.
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Parameters of association obtained by some normalization of the chi-squared statistic (see
Goodman & Kruskal, 1954) are always nonnegative, thus cannot possess Property 2.

Rudas (2010) discussed treatment selection in the case of a single treatment and a single response
variable. The conditions under which he showed that every decision rule which avoids Simpson’s
paradox for all data sets, chooses the same treatment as DI2 does, are implied by Properties 1 and
2.

An important property of the interaction parameters LORk and DIk is that they constitute a
parameterization of the distributions on the contingency table. Parameterization means that the
vector valued function, which for every distribution on Tk gives its 2k interaction parameters (one
for every subset of the variables), is invertible.

For easier formulation of this fact, these interaction parameters are extended to apply to zero-
dimensional subsets, so that LOR0 is the logarithm of the product of the entries in the table, and
DI0 is their sum.

Theorem 1. Let Tk be a k-dimensional binary contingency table formed by the ranges of the
variables V1, . . . , Vk. Let m be a 0− 1 vector of length k, and let M be the set of all such vectors.
Let Vm be the subset of the variables consisting of those Vi, for which mi is not zero. Finally, let
all the parameters of association

fe′m(p(t) : t ∈ Te′m(Vm)), m ∈ M, (7)

where e′m is the sum of the components of m and Te′m(Vm) is the contingency table with the joint
distribution of the variables in Vm, be given. Then, if fk = LORk or fk = DIk, the distribution on
Tk may be reconstructed.

Proof. In the case, when fk = LORk, (7) is essentially a marginal log-linear parameterizaton
as described by Bergsma & Rudas (2002), with all subsets of the set of variables being a hierarchical
and complete class, and the claim follows from their Theorem 2, where a reconstruction algorithm
based on repeated applications of the Iterative Proportional Fitting procedure was also described.

In the case, when fk = DIk, the given interaction parameter values define a system of linear
equations for the cell entries. To formulate the equations in this system, consider a vector m. Each
entry in the marginal table defined by m, is the sum of those entries of Tk, which are in cells with
such vectors of indices t, that are identical to each other in all the positions that have a 1 in m.
When DIe′m is computed for the marginal table defined by m, all these entries have the same sign,
namely, the sign associated with the marginal entry in the e′m-dimensional table by DIe′m, which
is

(−1)t
′m−1′m,

as implied by (3). Thus, the left hand side of the equation associated with m is

∑

t∈Tk

(−1)t
′m−1′mp(t),

and the right hand side is the value of the parameter of association for the marginal defined by m.
This system of equations does have a positive solution by assumption, and as the 2k × 2k matrix
of coefficients is shown below to be of full rank, it only has one solution.

To see the rank of the coefficient matrix, consider any two of its rows, say, the ones associated
with different vectors m1 and m2. There is a position, where one of these vectors is 1, and the
other one is 0. To simplify notation, it is assumed that m1 is 0 and m2 is 1 in position k. Then,
for any two cells that are identical in the first k − 1 indices, but one has a 1, the other has a 2
in the kth position, exactly 1 will have identical signs in the two rows, and exactly 1 will have
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different signs, because changing the last index from 1 to 2 leaves the sign of the entry in the
row (i.e., equation) associated with m1 unchanged, but changes the sign of the entry in the row
(i.e., equation) associated with m2, as the sign depends on the parity of the number of 2′s among
the indices of the cells. Therefore, half of the entries have identical, and half of the entries have
different signs in the two rows, thus the two rows of coefficients are orthogonal. If any two rows of
the coefficient matrix are orthogonal, then the matrix is of full rank.

Any algorithm to find the solution of a system of linear equations may be used to reconstruct
the distribution in Tk.

3 Directional collapsibility

The central question in this paper is directional collapsibility of parameters of association, which
is now defined formally as Property 3.

Property 3. If for some i ∈ {1, . . . , k},

sgn (fk−1(p(t) : t ∈ Tk−1(Vi = 1))) = sgn (fk−1(p(t) : t ∈ Tk−1(Vi = 2))) ,

then also
sgn (fk−1(p(t) : t ∈ Tk−1(Vi = +)))

= sgn (fk−1(p(t) : t ∈ Tk−1(Vi = 1))) = sgn (fk−1(p(t) : t ∈ Tk−1(Vi = 2))) ,

where Tk−1(Vi = +) is obtained from Tk by collapsing (marginalizing) over Vi

Example 4. It is well known that LORk is not directionally collapsible. On the other hand,
DIk is directionally collapsible. For simplicity of notation, this will be shown now for i = 1. It
follows form (3), that, with e being a vector of 1′s of length k − 1,

DIk−1(p(t) : t ∈ Tk−1(V1 = j)) =
∑

tk−1∈Tk−1

(−1)e
′tk−1−(k−1)p(j, tk−1),

where tk−1 is a cell in Tk−1 and (j, tk−1) is a cell in Tk. Then, with (+, tk−1) being a marginal cell,

DIk−1(p(t) : t ∈ Tk−1(V1 = +)) =
∑

tk−1∈Tk−1

(−1)e
′tk−1−(k−1)p(+, tk−1)

=
∑

tk−1∈Tk−1

(−1)e
′tk−1−(k−1)p(1, tk−1) + (−1)e

′tk−1−(k−1)p(2, tk−1)

= DIk−1(p(t) : t ∈ Tk−1(V1 = 1)) +DIk−1(p(t) : t ∈ Tk−1(V1 = 2)),

and then the sign of the left hand side is equal to the common sign of the terms on the right hand
side, which is what was to be seen. In fact, the argument shows that DIk is not only directionally
collapsible, but is also collapsible.

The first result of this section identifies a property of the LORk, which implies its lack of
directional collapsibility, and, consequently, all parameters of association with this property also
lack directional collapsibility. This property is that the value of the parameter of association
depends on the conditional distributions only, in the sense given in the next definition.

Property 4. If the distributions (p(t), t ∈ Tk) and (q(t), t ∈ Tk) are such, that there exists
a variable Vi, such that its conditional distributions, given the categories of all other variables,
derived from p and q, coincide, then
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fk(p(t) : t ∈ Tk) = fk(q(t) : t ∈ Tk),

The condition for the equality of the conditional distributions, written for the first variable, is
that

p(1, tk−1)

p(+, tk−1)
=

q(1, tk−1)

q(+, tk−1)
, (8)

for all cells tk−1 of the table formed by the ranges of the last k − 1 variables.
A celebrated characteristic of the odds ratio is variation independence of LORk from the

marginal distribution of any k − 1 variables. This property is usually formulated (Rudas, 1998)
by saying that if (r(t), t ∈ Tk) and (s(t), t ∈ Tk) are distributions on Tk, then there always exists
a distribution (u(t), t ∈ Tk), that has the k − 1 dimensional marginal distributions of the first
distribution, and the k − 1st order odds ratio of the second one. This form of definition is applied
to avoid the problems stemming from the k−1 dimensional marginal distributions not being varia-
tion independent for k > 2 among themselves, see Bergsma & Rudas (2002). The theory of mixed
parameterization of exponential families (Barndorff-Nielsen, 1978) implies that there is only one
distribution u. Property 4 implies this variation independence.

Example 5. Obviously, LORk depends on the conditional distributions only but DIk does not
have this property.

The next theorem shows that if Property 4 is assumed, then fk(p(t) : t ∈ Tk) is equal to the
value of fk for a special distribution, derived from p.

Theorem 2. Let fk be a parameter of association with Property 4. Then,

fk(p(t) : t ∈ Tk) = fk(q(t) : t ∈ Tk),

where the distribution (q(t) : t ∈ Tk) is such, that

q(t) = 1 if t 6= (1, . . . , 1)

q(1, . . . , 1)) = ORk(p(t) : t ∈ Tk).

The proof is based on a series of transformations, which are first illustrated for k = 3.
Example 6. For k = 3, write the distribution as follows:

p(111) p(121)

p(211) p(221)

p(112) p(122)

p(212) p(222)

The first transformation is to divide both p(1, j, k) and p(2, j, k) by the latter, for all choices of j
and k, which yields

p(111)
p(211)

p(121)
p(221)

1 1

p(112)
p(212)

p(122)
p(222)

1 1

The conditional distribution of V1, given V2 and V3 in this distribution is the same as in (p(t), t ∈
Tk), thus, if f3 depends on the conditional distributions only, its value remains the same.

The next transformation is to divide the entry in cell (1, 1, k) and in cell (1, 2, k), for all choices
of k, by the latter, yielding

p(111)
p(211)/

p(121)
p(221) 1

1 1

p(112)
p(212)/

p(122)
p(222) 1

1 1

8



As the conditional distribution of the second variable, given the first and the third did not change,
the value of f3 is also unchanged.

The last transformation is to divide the entries in cells (1, 1, 1) and (1, 1, 2) by the latter. This
gives in cell (1, 1, 1)

(

p(111)

p(211)
/
p(121)

p(221)

)

/

(

p(112)

p(212)
/
p(122)

p(222)

)

,

which is the 2nd order odds ratio, and the other cells all contain 1. The value of f3 is still unchanged,
as the last transformation left the conditional distribution of the third variable, given the first two,
unchanged.

Proof. The proof applies a series of transformations to the distribution in Tk, such that each
step leads to a distribution with the same value of fk and at the end of the transformations, the
odds ratio of the k variables appears in cell (1, . . . , 1), and the other cells all contain 1.

To define such a series of transformations, note that if both p(1, tk−1) and p(2, tk−1), for a fixed
tk−1, are multiplied by the same number, the value of fk remains unchanged, because the conditional
distribution of the first variable, conditioned on the last k − 1 variables, remains unchanged, and
similarly for any variable other than V1. There is one transformation for each variable and they
are applied consecutively to the result of the previous transformation.

The transformation for variable V1 is dividing both p(1, tk−1) and p(2, tk−1), by p(2, tk−1), for
all possible choices of the last k − 1 indices. The conditional distribution of V1, given all other
variables, does not change, so fk(p(t) : t ∈ Tk) will remain unchanged, too. The transformation
will change the p(2, tk−1) entries to 1, and the new value of p(1, tk−1) will be

p(1, tk−1)/p(2, tk−1).

The next step is for variable V2. It consists of dividing both p(1, 1, tk−2) and p(1, 2, tk−2) by the
latter entries, for all choices of the k− 2 indices in tk−2. Note that p(2, tk−1) = 1, thus p(2, 1, tk−2)
and p(2, 2, tk−2) are also equal to 1 and need not be divided. This will leave the conditional
distribution of V2, given all other variables, unchanged, so the value of fk(p(t) : t ∈ Tk) is also
unchanged. This transformation does not affect any cell of the form (2, tk−1), thus the entry in any
cell with 2 as the first index remains 1, and, in addition, the entries in every cell with a second
index equal to 2 also become equal to 1.

The ith step is applied to a table with entries in the cells having 2 as any of their 1st, 2nd, ... ,
i−1st indices equal to 1. It consist of dividing all cell entries p(1, . . . , 1, 1, tk−i) and p(1, . . . , 1, 2, tk−i)
by the latter. As the conditional distribution of Vi, given all other variables, remains unchanged,
so does fk(p : p ∈ Tk), too.

The last step of the series of transformations is for variable Vk and it consists of dividing the
entries in cells (1, . . . , 1, 1) and (1, . . . , 1, 2) by the latter. This does not affect the value of the
parameter of association and makes all cell entries, except for the one in (1, . . . , 1) equal to 1.

All steps leave the value of fk(p(t) : t ∈ Tk) unchanged. If an entry was made equal to 1, it is
not changed later during the transformations. After this series of transformations, all original cell
entries appear in a multiplicative formula in cell (1, 1, . . . , 1), and all other entries are made equal
to 1, because these latter cells contain at least one index equal to 2, and were divided by their own
value in step i of the transformation, if their first index equal to 2 is the ith one.

Some of the original entries in (p(t) : t ∈ Tk) appear in the numerator in cell (1, 1, . . . , 1), some
appear in the denominator. The (original) value p(1, 1, . . . , 1) is in the numerator, because there is
no division performed with that entry. All other terms appear in this cell as a result of a number of
consecutive divisions. If during the series of transformations, a value p(tk) goes into the numerator
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of the entry in a cell, the next time, if such exists, when the entry in that cell is used for division,
this value will appear in the denominator. Therefore, whether (the original) p(tk) ends up in the
numerator or in the denominator of the (final) entry in cell (1, 1, . . . , 1), depends on the parity of
times, divisions involving that term occurred. And this is exactly the number of indices equal to
2 in tk. If the number of 2’s is even, the original value in the cell will be in the numerator, if it is
odd, the original value will be in the denominator, which gives (4).

Consequently, if Property 1 is also assumed, then the direction of association can be determined
for parameters of association which depend on the conditional distributions only, as formulated in
the next theorem.

Theorem 3. Let fk be a parameter of association with Properties 1 and 4. Then,

sgn (fk(p(t) : t ∈ Tk)) = sgn (LORk(p(t) : t ∈ Tk)) ,

that is, fk assigns the same direction of association to all distributions as LORk does, and, therefore,
fk is not directionally collapsible.

Proof. Consider the distribution constructed in Theorem 2. If it had 1 in every cell, then fk
would be zero but it has the odds ratio of (p(t) : t ∈ Tk) in cell (1, . . . , 1). Thus, to obtain this
distribution from the one containing 1’s in every cell, the entry in cell (1, . . . , 1) has to be increased
/ left unchanged / decreased, depending on whether the odds ratio is more than / equal to / less
than 1, making fk positive / zero / negative, which is also the sign of LORk.

The second claim of the theorem is implied by the first one.

Theorem 3 says that no parameter of association, which depends on the conditional distributions
only in the sense of Property 4, can avoid Simpson’s paradox for all data sets, if Property 1 is
also assumed to hold. Every such parameter of association assigns the same sign to association
to any distribution, as the LORk does. Consequently, as long as one is only interested in the
direction of association and wishes to use parameters of association which depend on the conditional
distributions only, it is sufficient to use the LORk, but Simpson’s paradox cannot be avoided.

The next example illustrates that there are parameters of association, which do not depend
on the conditional distributions only, yet are not directionally collapsible, thus the converse of
Theorem 3 does not hold.

Example 7. The parameter of association EXk does not depend on the conditional distri-
butions only. In the following two distributions the conditional distribution of V1 given V2 is the
same, yet the value of EX2 for the first one is 79.67, and for the second one is -0.60.

2 3

4 5

0.6 0.6

1, 2 1

In spite of this, EXk is not directionally collapsible. In both of the following tables, EX2 is
positive (259.94 and 143.46, respectively)

6 5

3 3

5 7

1 7

10



but in the collapsed table

11 12

4 10

it is negative (-77694.70). Note that LORk does not exhibit Simpson’s paradox for these data.

The main result of the section is that all directionally collapsible parameters of association
judge the direction of association like DIk does, if Properties 1 and 2 are assumed to hold. First,
a preliminary result is needed.

Theorem 3. Assume that for fk, Properties 1 and 3 hold and let (q(t) : t ∈ Tk) be a distribution
such that

sgn (fk(q(t) : t ∈ Tk)) = 0.

Then, for all distributions (p(t) : t ∈ Tk) ,

sgn (fk(p(t) + q(t) : t ∈ Tk)) = sgn (fk(p(t) : t ∈ Tk)) .

Proof. The distributions (q(t) : t ∈ Tk) and (p(t) : t ∈ Tk) may be seen as distributions in two
layers of a k + 1-dimensional table, of which Tk is the marginal table.

If fk(p(t) : t ∈ Tk) is zero, directional collapsibility implies the result immediately.
If fk(p(t) : t ∈ Tk) is positive, then (p(t) + q(t) : t ∈ Tk) will be written as the sum of two

distributions, so that fk is positive on both, and, then, it is also positive on (p(t) + q(t) : t ∈ Tk).
Because of Property 1, the entry in p(1, 1, . . . 1) may be decreased by a positive amount, such

that the entry remains positive and fk(p(t) : t ∈ Tk) also remains positive. If the entry q(1, 1, . . . 1)
is increased by the same amount, then by (i), fk(q(t) : t ∈ Tk) becomes positive, and by directional
collapsibility, fk(p(t) + q(t) : t ∈ Tk) has to be positive.

If fk(p(t) : t ∈ Tk) is negative, the argument is modified so that p(1, 1, . . . 1) is increased by a
small amount.

Theorem 4. If for a parameter of association fk, Properties 1 and 2 hold, then Property 3
holds for it if and only if, for any distribution,

sgn (fk(p(t) : t ∈ Tk)) = sgn (DIk(fk(p(t) : t ∈ Tk)) .

Proof. The ”if” part follows from the directional collapsibility of DIk. The idea of the proof of
the ”only if” part is to write (p(t) : t ∈ Tk) as the sum of several k-dimensional distributions, such
that fk has, on at least one of them, the same sign as DIk does, and on the others it either has
the same sign or is zero. Then, repeated application of directional collapsibility and of Theorem 3
yields the result.

Let s be the smallest entry in (p(t), t ∈ Tk). Subtract from every entry in (p(t), t ∈ Tk) the
value s, to obtain (p(t) − s, t ∈ Tk), which has non-negative entries and will be denoted as q0(t).
Then

DIk(p(t) : t ∈ Tk) = DIk(q0(t) : t ∈ Tk). (9)

Let (u0(t), t ∈ Tk) be zero in every cell of Tk. If the following condition does not hold for l = 0,

ql(t) = 0 for all t ∈ Tke or ql(t) = 0 for all t ∈ Tke, (10)

then consider the smallest positive entry (or one of the smallest positive ones), of (q0(t), t ∈ Tk).
Suppose it is in cell t1. The cell t1 is either in Tke or in Tko, and there is a cell, say t′1 in the other
subset, so that q0(t

′

1) ≥ q0(t1). Then define

u1(t) = q0(t1), if t = t1 or t = t′1,

11



u1(t) = 0 otherwise,

and set
q1(t) = q0(t)− u1(t), t ∈ Tk.

Continue the procedure of the previous paragraph for q1 instead of q0 to obtain u2 and q2, and
repeat until the condition in (10) wil become true for some l.

Now the entries of ql are all zero, either in Tko or in Tke or in both, and because

l
∑

j=0

∑

t∈Tke

uj(t) =

l
∑

j=0

∑

t∈Tko

uj(t),

this will happen when DIk(p(t) : t ∈ Tk) is positive or negative or zero, respectively.
In case DIk(p(t) : t ∈ Tk) > 0, define for every t′ ∈ Tke, and in case DIk(p(t) : t ∈ Tk) < 0,

define for every t′ ∈ Tko

vt′(t
′) = ql(t

′),

vt′(t
′′) = 0 if t′′ 6= t′.

It follows from the construction that if DIk(p(t) : t ∈ Tk) > 0, then

p(t)− s = q0(t) =
l
∑

0=1

uj(t) +
∑

t′∈Tke

vt′(t),

if DIk(p(t) : t ∈ Tk) < 0, then

p(t)− s = q0(t) =

l
∑

0=1

uj(t) +
∑

t′∈Tko

vt′(t),

and if DIk(p(t) : t ∈ Tk) = 0, then

p(t)− s = q0(t) =
l
∑

0=1

uj(t),

for every t ∈ Tk.
In the first two cases, add to all the enties in te distributions (uj, j = 0, . . . , l), and to all the

entries in the distributions (vt′ , t
′ ∈ Tke) (or (vt′ , t

′ ∈ Tko)), the value of

s

(l + 1)2k + 2k−12k
,

and in the third case, to all the enties in the distributions (uj , j = 0, . . . , l), the value of

s

(l + 1)2k
,

and denote the distributions obtained by u′j , j = 0, . . . , l and v′t′ , t
′ ∈ Tke (or v′t′ , t

′ ∈ Tko), so that
the following holds:

If DIk(p(t) : t ∈ Tk) > 0, then

p(t) =
l
∑

0=1

u′j(t) +
∑

t′∈Tke

v′t′(t), (11)
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if DIk(p(t) : t ∈ Tk) < 0, then

p(t) =

l
∑

0=1

u′j(t) +
∑

t′∈Tko

v′t′(t), (12)

and if DIk(p(t) : t ∈ Tk) = 0, then

p(t) =

l
∑

0=1

u′j(t), (13)

for every t ∈ Tk.
The structures of the distributions in (11), (12) and (13) are as follows:
The distribution u′0 has the same entry in every cell.
Each of the distributions u′j, j = 1, . . . , l has the same entry in every cell, except for one cell

in Tke and one cell in Tko, which have the same value in them (different from the other cells) and
these will be called the specific entries.

Each of the distributions v′t′ , t
′ ∈ Tke (v′t′ , t

′ ∈ Tko) has the same entry in every cell, which will
be called the common value, except for a cell in Tke ( Tko), which has a larger value.

To complete the proof, it will be shown that

fk(u
′

j) = 0, j = 0, 1, . . . l (14)

fk(v
′

t′) > 0, t′ ∈ Tke (15)

fk(v
′

t′) < 0, t′ ∈ Tko (16)

which, together with directional collapsibility, Theroem 3, and (11), (12) and (13), imply the desired
result.

To see (14) for j = 0, note that because all entries are the same, swapping the categories of one
variable does not change the distribution but changes the sign of fk to its opposite by (ii), thus
fk(u

′

0) = 0.
To see (14) for j = 1, . . . , l, consider a series of swaps of indices of variables, which exchanges

the two cells with the specific values. If such a series of swaps exists, it leaves the distribution
unchanged, as all other entries are the same. Such a series of swaps is obtained, if the indices of all
variables are swapped, in an arbitrary order, which are 2 in any one of the cells with specific values
but not in the other one. One of these cells is in Tke, thus has an even number of 2′s, the other cell
is in Tko, thus has an odd number of 2′s. Therefore, the total number of indices equal to 2 in the
two cells is odd. To obtain the number of indices that are equal to 2 in exactly one of the cells,
from the odd total, the number of 2′s in identical positions in the indices has to be subtracted.
This latter number is even, so the total number of swaps is odd. By repeated application (ii), the
sign of fk changes to its opposite during the series of swaps, but because the distribution remains
the same, it cannot change. Thus, fk is zero for u′j , j = 1, . . . l.

To see (15) and (16), note first that if t′ = (1, 1, . . . , 1), then fk is positive, because, as was seen
in the proof of (14) for j = 0, for a distribution with all entries equal, fk is zero, and if the entry
in the cell (1, 1, . . . , 1) is increased to the value v′(1,1,...,1)(1, 1, . . . , 1), then by (i), fk will become
positive.

For any t′ ∈ Tk, other than (1, 1, . . . , 1), write the value of v′t′(t
′) in celll (1, 1, . . . , 1), while

keeping the common value in the other cells. This will give a positive fk. This entry can be moved
into the cell t′ by a series of swaps, while the common value remains in all other cells and also
appears in (1, 1, . . . , 1). This requires an even number of swaps, if t′ ∈ Tke, keeping the positive
value, thus (15) is implied, and an odd number of swaps, if t′ ∈ Tko, yielding a negative value, thus
(16) is implied.
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4 Discussion

This section addresses briefly the meaning and use of the results of the paper.
Odds ratios and log-linear parameters have the very attractive property of being variation

independent from lower dimensional marginals, and, thus, make it possible to identify association
with the information in the joint distribution which is there in addition to the information in the
lower dimensional marginal distribution, see Rudas (1998). In particular, Property 4 implies that
variants of the Iterative Proportional Fitting / Scaling algorithm may be used to obtain maximum
likelihood estimates in various exponential family models that are specified by prescribing the values
of odds ratios (Bishop et al., 1975; Rudas, 1991; Klimova & Rudas, 2014). However, as implied by
Theorem 2, this property makes it impossible to find parameters of association, which are free from
the possibility of Simpson’s paradox, if Properties 1 and 2 are assumed.

The lack of directional collapsibility is considered problematic by most analysts, as testified
not only by a large body of literature about ”avoiding” it, but also by the wide-spread use of the
Mantel-Haensel odds ratio in meta-analysis, which always estimates the common odds ratio to be
in between the lowest and highest conditional odds ratios, even if the marginal odds ratio is outside
of this range.

On the other hand, as implied by Theorem 4, if only the direction of association is of interest, and
one wishes to use parameters of association which are directionally collapsible, then, if Properties
1 and 2 are assumed, there is only one possible choice for this direction, and it is given by DIk.

The simple linear contrast of the cell probabilities, DIk, is not necessarily seen as a meaningful
parameter of association, and those who are not willing to accept the direction of association as
given by it, have to accept that Simpson’s paradox cannot be avoided. Another argument for
using DIk in certain situations, given in Rudas (2010), is that if the data are observational, then
allocation in treatment categories is potentially informative, thus association (effect) should not be
measured by a parameter which is variationally independent of the treatment marginal(s). In such
cases, avoiding Simpson’s paradox is an additional bonus, which comes with using DIk

Whether or not one is ready to adopt DIk to determine the direction of association, it is worth
noting that its sampling behaviour is straightforward, in particular it does not depend on the
individual cell entries, and not even on k. If the population probability (fraction) of cells in Tke is
p, then the probability that sgn(DIk) = 1, which will lead to the correct or incorrect decision as to
the direction of association depending on whether p > 0.5 or p ≤ 0.5, may be obtained as follows.
In the case of multinomial sampling with N observations,

P (DIk > 0) =
N
∑

x=[N/2]+1

(

N

x

)

px(1− p)N−x,

Which, for large sample sizes, may be approximated as

Φ

(

√
N

p− 0.5
√

p(1− p)

)

,

where Φ is the cumulative distribution function of the standard normal distribution. For example,
with a sample size of 1000, and true value of DIk = 0.05, that is p = 0.525, the probability of
correctly deciding that the association is positive is about 0.94, which seems quite certain, even
though the assumed true value is not very far from zero. An important property of the probability
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of correct decision with DIk, is that it (in addition to the sample size), only depends on the true
value of DIk. In contrast, the probability of correct decision with LORk, depends, in addition to
the sample size, also on the individual cell probabilities.
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