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A NOTE ON THE GAUSS-BONNET-CHERN

THEOREM FOR GENERAL CONNECTION

HAOYAN ZHAO

Abstract. In this paper, we prove a local index theorem for the
DeRham Hodge-Laplacian which is defined by the connection com-
patible with metric. This connection need not be the Levi-Civita
connection. When the connection is Levi-Civita connection, this
is the classical local Gauss-Bonnet-Chern theorem.

1. Introduction

The Gauss-Bonnet-Chern theorem is an index theorem about rela-
tionship between topology and geometry on a compact manifold. It
has been proved by Allendoerfer-Weil [7] in 1940s. Later, Chern [8]
has given a proof by intrinsic computation. The refined local Gauss-
Bonnet-Chern theorem was proved by Patodi [9] in 1971, which was
conjectured by Mckean-Singer [10]. In the above theorem, the DeRham
operator and Hodge-Laplacian are defined by Levi-Civita connection.
Recently, Beneventano-Gilkey-Kirsten-Santangelo [4] have studied the
Gauss-Bonnet theorem for general connection and corresponding heat
trace’s asymptotic expansion. Bell [5] has given Gauss-Bonnet theorem
for vector bundle whose rank is equal to the dimension of underlying
manifold. There have been also some works about Gauss-Bonnet-Chern
theorem’s generalization in Finsler geometry (see Bao-Chern-Shen [15],
Lackey [16], Zhao [17] and so on).

Now we state the main theorem in this article.

Theorem 1.1. Let M be a compact Riemannian manifold of even di-
mension d (d = 2l) with metric g, which has a metric compatible con-
nection D. Let ε(e) denote exterior multiplication by differential form
e and ι(e) denote interior multiplication by e. Then we may define
DeRham Dirac operator, for exterior form bundle section f:

Df = (ε(ei)− ι(ei))Deif

Where {ei}is tangent vector frame, {ei} is its dual frame. Let h(t,x,y)
be the heat kernel (fundamental solution) for the following DeRham
Hodge-laplacian equation:

∂

∂t
f = −

1

2
D2f
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Then we have

lim
t→0

Str{h(t, x, x)}dm =
1

(2π)l
Pf(−R), (1.1)

where Str denote supertrace, dm is the volume element, R is the
Riemannian curvature corresponding to D, Pf is Pfaffian.
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2. geometric preliminares

Let D̂ denote Levi-Civita connection, {ei} be orthonormal tangent

frame. D̃(ei) = Γ̂s
lie

l ⊗ es, (D)(ei) = Γs
lie

l ⊗ es. Let

∧T ∗
xM = ∧+T ∗

xM ⊕ ∧−T ∗
xM,

for x ∈ M , where ∧+T ∗
xM consists of even degree forms, ∧−T ∗

xM con-
sists of odd degree forms. For a ∈ End(∧T ∗

xM), define

Str(a) = trace(a∧+)− trace(a∧−).

The fundamental solution’s asymptotic expansion in (x, x) is deter-
mined by local condition around x (see [4] chapter 2). So we may
assume M is spin manifold, whose spinor bundle is denoted by S, dual

bundle is denoted by S∗. For connection D̂ and D respectively, S

and S∗ have lifted connections, which are denoted by D̂S and D̂S∗

,
DS and DS∗

. There is a linear isomorphism between Clifford bundle
Cl(T ∗M) and exterior form bundle Ω∗(M), which is not an algebraic
isomorphism:

Cl(T ∗M) ∼= Ω∗(M). (1.2)

The isomorphism (1.2) is denoted by by c , the inverse of c by σ .
We still denote complexified Clifford algebra bundle by Cl(T ∗M).

Cl(T ∗M) has an action on S. The lifted connection on S is compatible
with this Clifford action. There is also an isomorphism between the
complexified Clifford algebra bundle Cl(T ∗M) and the endmorphism
bundle S ⊗ S∗ of S:

Cl(T ∗M) ∼= S ⊗ S∗. (1.3)
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This isomorphism is an algebraic isomorphism. For a orthonormal base
{ei} ∈ T ∗

xM , we define a chirality element:

Γ = ilc(e1)c(e2)...c(ed).

By computations , one could get Γ2 = 1. Let

S+ = {a|Γa = a, a ∈ Sx},

S− = {a|Γa = −a, a ∈ Sx}.

By isomorphism (1.2) and (1.3), there is:

Ω∗(M) ∼= S ⊗ S∗. (1.4)

As exterior form bundle, Ω∗(M) has a connection which is from T ∗M ’s
connection, a graded structure in terms of even and odd degree. Cl(T ∗M)
has an action on it. As tensor product of S and S∗, S ⊗ S∗ has an
connection from S, a graded structure

((S+ ⊗ S∗+)⊕ (S− ⊗ S∗−))
⊕

((S+ ⊗ S∗−)⊕ (S− ⊗ S∗+)).

Cl(T ∗M) also has an action on it. Under the above isomorphism
(1.4), these two connections, graded structure, action are identical (see
Berline-Getzler-Vergne [6] Chapter 3 and 4). So from now we will al-
ways consider exterior form bundle Ω∗(M) as twisted Clifford module
bundle S ⊗ S∗.

Lemma 2.1. Let T denote Berezin integral (see Berline-Getzler-Vergne
[6]). For a ∈ End(Sx) ∼= Cl(T ∗

xM), b ∈ End(S∗
x)

∼= Cl(T ∗
xM),

End(Sx)⊗ End(S∗
x)

∼= End(∧∗(T ∗
xM ⊗R C)),

Str(a) = tr(Γa) = (−2i)lT ◦ σ(a),

Str(b) = tr(Γ∗b) = (2i)lT ◦ σ(b),

Str(a⊗ b) = tr(Γa)tr(Γ∗b).

For the Dirac operator DS associated with DS :

DS = c(ei)DS
ei
,

there exist unique 1-form a = aie
i, 3-formB = Bs

ile
i ∧ el ∧ es, such that

DS = D̂S + c(a) + c(B).

Define
DS,B

ei
= D̂S

ei
+Bs

ilc(e
l)c(es),

then DS,B = D̂S + c(B).
LetW be a complex bundle equipped with connectionDW , curvature

be F . Define the connections D̂S⊗W , DS⊗W , DS⊗W,B, DS⊗W,3B, whose

corresponding Dirac operator are D̂S⊗W ,DS⊗W ,DS⊗W,B,DS⊗W,3B:

D̂S⊗W = D̂S ⊗ 1 + 1⊗DW ,

DS⊗W = DS ⊗ 1 + 1⊗DW ,
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DS⊗W,B = DS,B ⊗ 1 + 1⊗DW ,

DS⊗W,3B = DS,3B ⊗ 1 + 1⊗DW .

A useful formula on the square of D is from Bismut [1].

Lemma 2.2. (Bismut [1])

(DS⊗W,B)2 = −△S⊗W,3B +
s

4
+ c(F ) + c(dB)− 2|B|2.

(DS⊗W )2 = (DS⊗W,B)2 − 2(a, ei)D̂S⊗W
ei

+ c(D̂a)− 2c(ι(a)B)− |a|2

= −△S⊗W,3B − 2(a, ei)DS⊗W,3B
ei

+ C,

where C = s
4
+c(F )+c(dB)−2|B|2+c(D̂a)−|a|2, s is scalar curvature.

Define the connections D̂S⊗S∗

, DS⊗S∗

, DS⊗S∗,B, DS⊗S∗,3B on S ⊗S∗,

and corresponding Dirac operators are noted by D̂S⊗S∗

,DS⊗S∗

,DS⊗S∗,B,

DS⊗S∗,3B:

D̂S⊗S∗

= D̂S ⊗ 1 + 1⊗DS∗

,

DS⊗S∗

= DS ⊗ 1 + 1⊗DS∗

,

DS⊗S∗,B = DS,B ⊗ 1 + 1⊗DS∗

,

DS⊗S∗,3B = DS,3B ⊗ 1 + 1⊗DS∗

.

When consider Ω∗(M) as S ⊗S∗, DS⊗S∗

and DS⊗S∗

are respectively D

and D defined in theorem 1.1. So we can get the expression of D2 by
lemma 2.2. This is the key step.

3. the proof of the main theorem

In the following proof, we use Feynman-Kac formula and the gener-
alized Wiener functional which are included in stochastic analysis. In
the course of studying Malliavin theory, the generalized Wiener func-
tional and its applications were introduced and studied by Malliavin,
Kusuoka-Stroock [14], Watanabe [11] [12], Ikeda-Watanabe [13] and so
on. In this paper we adopt the definition and processing mode as in
Watanabe [12]. Watanabe [12] proved the local Gauss-Bonnet-Chern
theorem and signature theorem by this method. About more details on
generalized Wiener functional and its applications, the readers could
refer to Ikeda-Watanabe [13]. The probabilistic proof on index theorem
was provided firstly by Bismut [2]. Base on probabilistic method , Bis-
mut [1] proved a local index theorem on non Kähler manifold. There
was still a stochastic proof for the local Gauss-Bonnet-Chern theorem
in Elton Hsu [19]. If not using stochastic method , the main theorem
in this article should be also able to be proved by Getzler’s rescaling
method as in Berline-Getzler-Vergne [6] and Getzler [20]. The most
notations in our computations are the same as Watanabe [12].

Furthermore, we assume M be Rd, with metric g, which is equal to
the standard Euclidean metric outside of some sufficient big ball, the
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natural coordinate on Rd be identical to normal coordinate around the
original point .

Let{ei} be natural tangent frame, {fi}, {gi} be orthonormal frames
respectively by parallel translations along the radial lines from original
point under connections D3B, D on M , {ei}, {f i}, {gi} are respectively
their dual frames. Let connection D3B = (Γ3B)sile

i ⊗ fs ⊗ f l, under
frame {fi} ; connection D = Γs

ile
i ⊗ gs ⊗ gl under frame {gi}. By

virtue of the above frames, we could get the trivialization of S ⊗ S∗:
Rd × (S ⊗ S∗), where S is the spinor space of Euclidean space Rd.

Let Ci =
1

4
(Γ3B)silc(f

l)c(f s)⊗1+1⊗(−1

4
Γs
il)c

∗(gs)c∗(gl), bi = −glsΓ̂i
ls+

2(a, ei), then according to lemma 2.2, the Hodge-Laplacian heat equa-
tion expression in the natural coordinate is:
{

∂f

∂t
=

1

2
gij(

∂

∂xi
+ Ci)(

∂

∂xj
+ Cj)f +

1

2
bi(

∂

∂xi
+ Ci)f −

1

2
Cf, (t, x) ∈ (0,∞)× Rd

f(0, x) = ϕ(x), x ∈ Rd

Let smooth real symmetric positive matrix σi
k make

∑

k

σi
kσ

l
k = gil,

then consider the following stochastic differential equation valued in
Rd × (Cl(Rd)⊗ Cl(Rd))× (Cl(Rd)⊗ Cl(Rd)),





dX i(t) = σi
k(X(t))dwk(t) +

1

2
bi(X(t))dt,

de(t) = e(t)Ci(X(t)) ◦ dX i(t),

dM(t) = −
1

2
M(t)e(t)C(X(t))e−1(t)dt,

e(0) = 1,M(0) = 1, X(0) = x,

e(t) are inverse almost everywhere (see Stroock [18]), so e−1(t) are well
defined.

By Itō formula and properties of generalized Wiener functional ,

f(t, x) = E[M(t)e(t)ϕ(Xx(t))],

h(t, x, y) = E[M(t)e(t)δy(X(t))],

where δy is a generalized function: the Dirac delta function associated
with y. It is difficult that compute directly asymptotic expansion for t
according to the above formula. As in Bismut [2], Watanabe [12], we
consider the stochastic differential equations with parameter ε:





dX i(t) = εσi
k(X(t))dwk(t)−

ε2

2
bi(X(t))dt,

de(t) = e(t)Ci(X(t)) ◦ dX i(t), i, j, k = 1, 2, ...d.
(X(0), e(0) = (0, 1),
{

dM(t) = −
ε2

2
M(t)e(t)C(X(t))e−1(t)dt,

M(0) = 1,
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let us denote the solution by rε(t) = (Xε(t), eε(t),Mε(t)), then

h(ε2, 0, 0) = E[Mε(1)eε(1)δ0(X
ε(1))].

Lemma 3.1. (see Berline-Getzler-Vergne [6])

Γi(x) = −
1

2

∑

j

R(∂i, ∂j)(0)x
j +O(|x|2).

Γ3B
i (x) = −

1

2

∑

j

R3B(∂i, ∂j)(0)x
j +O(|x|2).

Lemma 3.2. (see Watanabe [11] [12]) Let D∞ be the space consists
of Rd valued Wiener functionals whose any order Malliavin derivatives
are Lp integrable, for all p > 1, D̃−∞ be its dual space.

Xε(1) = εw(1) +O(ε2)

in D∞.

δ0(X
ε(1)) = ε−dδ0(w(1)) +O(ε−d+1)

in D̃−∞.

E[δ0(w(1)) · Φ(w)] = (2π)−lE[Φ(w)|w(1) = 0], Φ ∈ D̃∞.

Let

θε(t) =

∫ t

0

Ci(X
ε(t)) ◦ d(Xε)i(s)

= ε2(C1

ij(t)c(f
i)c(f j)⊗ 1 + 1⊗ C2

ij(t)c
∗(gi)c∗(gj)) +O(ε3),

in which

C1

ij(t) =
1

8
R3B

mkij(0)

∫ t

0

wk(s) ◦ dwm(s),

C2

ij(t) =
1

8
Rmkij(0)

∫ t

0

wk(s) ◦ dwm(s),

Rmkij = (R(em, ek)gj, gi), R
3B
mkij = (R3B(em, ek)fj , fi).

let

Bε(t) = θε(t)−

∫ t

0

ε2

2
C(Xε(s))ds.
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Mε(1)eε(1) = 1 +

∫
1

0

Mε(s)eε(s) ◦ dθε(s) +

∫
1

0

Mε(s)eε(s)(−
ε2

2
C(Xε(s)))ds

= 1 +Bε(1) +

∫
1

0

∫ t1

0

Mε(t2)e
ε(t2) ◦ dB

ε(t2) ◦ dB
ε(t1)

= 1 +Bε(1) +

∫
1

0

Bε(t1) ◦ dB
ε(t1)

+

∫
1

0

∫ t1

0

∫ t2

0

Mε(t3)e
ε(t3) ◦ dB

ε(t3) ◦ dB
ε(t2) ◦ dB

ε(t1)

= 1 + A1 + A2 + ...+ Al +O(ε2l+2)

in D∞(Cl(Rd)⊗End(Rs)),
in which

Am =

∫
1

0

∫ t1

0

∫ t2

0

...

∫ tm−1

0

◦dBε(tm) ◦ dB
ε(tm−1) ◦ ... ◦ dB

ε(t1)

= ε2m
∫

1

0

∫ t1

0

...

∫ tm−1

0

◦dC̃(tm) ◦ dC̃(tm−1) ◦ ... ◦ dC̃(t1) +O(ε2m+1)

in D∞(Cl(Rd)⊗End(Rs)),

C̃(t) = C1

ij(t)c(f
i)c(f j)⊗ 1 + 1⊗ C2

ij(t)c
∗(gi)c∗(gj)−

∫ t

0

1

2
C(0)dt.

Note lemma 2.1, when m < l,

Str(Am) = 0,

m = l,

Str(Am) = Str(Al),

m > l,

Str(Am) = O(ε2l+3) = O(εd+3).

Str(Al) =
ε2l

l!
Str{(−

1

2
C(0))l}+O(ε2l+1)

=
ε2l

l!
Str{(−

1

2
c(F )(0))l}+O(ε2l+1)

=
ε2l

l!
Str{(−

1

4
(
1

4
Rijnm(0)c(g

i)c(gj)c∗(gm)c∗(gn)))l}+O(ε2l+1)

= ε2l(−2i)2l(−1)lPf(−
1

4
R(0)) +O(ε2l+1)

= ε2lPf(−R(0)) +O(ε2l+1)

Note lemma 3.2, when ε → 0

Str[h(ε2, 0, 0)]e1 ∧ e2 ∧ ... ∧ ed =
1

(2π)l
Pf(−R(0)) +O(ε).

Therefore, we get
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lim
t→0

Str[h(t, 0, 0)]e1 ∧ e2 ∧ ... ∧ ed =
1

(2π)l
Pf(−R(0)).
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