
ar
X

iv
:1

40
8.

33
46

v1
  [

m
at

h.
A

G
] 

 1
4 

A
ug

 2
01

4

Frobenius and Monodromy operators in rigid analysis, and

Drinfel’d’s symmetric space

Elmar Grosse-Klönne

Abstract

We define Frobenius and monodromy operators on the de Rham cohomology of K-dagger

spaces (rigid spaces with overconvergent structure sheaves) with strictly semistable reduction

Y , over a complete discrete valuation ring K of mixed characteristic. For this we introduce

log rigid cohomology and generalize the so called Hyodo-Kato isomorphism to versions for

non-proper Y , for non-perfect residue fields, for non-integrally defined coefficients, and for the

various strata of Y . We apply this to define and investigate crystalline structure elements on

the de Rham cohomology of Drinfel’d’s symmetric space X and its quotients. Our results are

used in a critical way in the recent proof of the monodromy-weight conjecture for quotients

of X given by de Shalit [7].

Introduction

Let A be a complete discrete valuation ring of mixed characteristic (0, p), with perfect residue

field k and quotient field K, let A0 = W (k) and K0 = Quot(A0). Let X be a proper strictly

semistable A-scheme. The Hyodo-Kato isomorphism is an isomorphism ρ (depending on the

choice of a uniformizer π ∈ A) between the de Rham cohomology H∗
dR(XK) of the generic fibre

XK of X and the (scalar extended) Hyodo-Kato cohomology H∗
HK(Y ) ⊗K0 K of the special

fibre Xk = Y of X endowed with its canonical log structure. It plays an important role in the

Fontaine-Jannsen conjecture Cst, now proven (independently) by Tsuji and Faltings: ρ provides

H∗
dR(XK) with the structure of a filtered (φ,N)-module in the sense of Fontaine, taking H∗

HK(Y )

as K0-lattice with (φ,N)-structure. Cst says (in particular) that the p-adic étale cohomology
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group H∗
et(XK ,Qp) together with its Gal(K/K)-action can be reconstructed from this filtered

(φ,N)-module.

In this paper we ask for K0-lattices with (φ,N)-structure in the de Rham cohomology of

K-rigid (or dagger) spaces not necessarily proper. That p-adic Hodge theory should encompass

more general K-rigid spaces than just smooth proper K-schemes was already suggested in Tate’s

article [33] and is strongly evidenced by the book [28] of Rapoport and Zink on p-adic period

domains. From the paper [2] of Berkovich it became clear that the study of general rigid spaces

can often be reduced to those having strictly semistable reduction. Since de Rham cohomology of

rigid spaces should be defined using overconvergent functions we work with weak formal schemes

and dagger spaces ([10]) rather than formal schemes and rigid spaces. Thus, we start with a

strictly semistable weak formal A-scheme X with associated K-dagger space XQ and reduction

Y . We allow coefficients: local systems F of K-vector spaces on XQ arising from representations

of Πtop
1 (XQ), the topological fundamental group of (the Berkovich analytic space associated with)

XQ (these F need not be integrally defined, i.e. need not come from crystals on Y ). We do not

require that k be perfect. Yet another new aspect is that besides for (K0, φ,N)-structures on

H∗
dR(XQ, F ) alone we ask for such structures on the entire canonical Cech spectral sequence

Ers
1 = F (]Y r+1[X)⊗K Hs

dR(]Y
r+1[X) =⇒ Hs+r

dR (XQ, F ).(∗)

Here Y t denotes the t-fold intersections of irreducible Y -components, and ]Z[X for a subscheme

Z of Y is the preimage of Z under the specialization map sp : XQ → Y . To motivate this

we mention that Coleman and Iovita use (∗) to describe rigid analytically the Hyodo-Kato

monodromy operator N on H1
dR(XQ) for proper X of relative dimension d = 1; in [12] we ask for

the interaction of (∗) with Frobenius and monodromy if d > 1. Also in work of de Shalit, (∗) is

of central interest, see below.

We define log rigid cohomology of E = sp∗F as the appropriate substitute for log crystalline

cohomology adapted to our purposes. Subschemes Z of Y are endowed with their induced

structure of log scheme over the log point S0 = (Spec(k), 1 7→ 0). The interesting thickenings of

S0 are the bases S0 = (Spf(A0), 1 7→ 0) and Sπ = (Spf(A), 1 7→ π): while RΓrig(Z/S
0, E) is a

(K0, N)-structure, and also a φ-structure if E carries a Frobenius structure, only RΓrig(Z/S
π, E)

can a priori be canonically identified with F (]Z[X)⊗K Hs
dR(]Z[X). We have a spectral sequence

Ers
1 = E(Y r+1)⊗K0 H

s
rig(Y

r+1/S0) =⇒ Hs+r
rig (Y/S0, E).(∗∗)

Theorem 0.1. (a) (Theorem 3.1) Let M be the intersection of some irreducible components of

Y . There is an isomorphism (depending on π)

ρM : RΓdR(]M [X) = RΓrig(M/Sπ) ∼= RΓrig(M/S0)⊗K0 K.

(b) (Theorem 3.4, Corollary 3.7) There is an isomorphism (depending on π)

RΓdR(XQ, F ) = RΓrig(Y/S
π, E) ∼= RΓrig(Y/S

0, E).

It comes along with an isomorphism of spectral sequences (∗) ∼= (∗∗).
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Hence a (K0, N)-structure (resp. (K0, φ,N)-structure) on (∗) since there is such a structure

on (∗∗). Except for abelian varieties the existence of the resulting monodromy operator on

H∗
dR(XQ) seemed to be unknown before (for non-perfect k) even for proper X. If X is proper

we have H∗
rig(Y/S

0) = H∗
HK(Y ) and RΓdR(XQ) coincides with the de Rham cohomology of

the rigid space associated to the dagger space XQ, and with the de Rham cohomology of an

underlying K-scheme if such an algebraization exists; we recover the Hyodo-Kato isomorphism

(for perfect k).

According to the literature, the Hyodo-Kato isomorphism was considered to be a delicate

convergence theorem on Frobenius in the log crystalline cohomology of certain log smooth

and proper varieties over perfect fields, see Hyodo-Kato [15] and Ogus [26]. On the other

hand, the corresponding complex analytic comparison isomorphism relies on a comparison with

singular cohomology, see Steenbrink [32]. Both methods break down in our setting (even if

F = K, Y is proper and k is perfect since for example M is not log smooth over S0; it is

ideally smooth in the sense of Ogus and H∗
crys(M/(Spf(W (k)), 1 7→ 0)) is well behaved, but

H∗
crys(M/(Spf(W (k)), 1 7→ p)) is at present not well understood). We introduce an entirely new

method, in fact a geometric approach. The most conceptual way to describe it is in terms of log

schemes with boundary (see [13]): An S-log scheme with boundary (P, V ) is an S-log scheme V

together with a log schematically dense open immersion V → P . Let S = (Spec(k[t], 1 7→ t) and

S = (Spwf(A0[t]
†), 1 7→ t) (with (.)† denoting weak completion). To the S0-log scheme M we

assign finitely many S-log schemes with boundary (P J ′

M , V J ′

M ) (here J ′ is an index), and to the

S0-log scheme Y we assign canonically a simplicial S-log scheme with boundary (P•, V•). For

these constructions Falting’s interpretation of log structures through line bundles is essential.

We define their log rigid cohomology RΓrig((P
J ′
M , V J ′

M )/S) and RΓrig((P•, V•)/S, E) relative to

S. We have natural restriction maps

RΓrig(M/S0)⊗K0 K ← RΓrig((P
J ′

M , V J ′

M )/S) ⊗K0 K → RΓrig(M/Sπ)

RΓrig(Y/S
0, E)← RΓrig((P•, V•)/S, E)→ RΓrig(Y/S

π, E)

and we prove that they are all isomorphisms; once (P J ′
M , V J ′

M ) and (P•, V•) are found this is by

more or less standard local arguments.

As an illustration of how the full strength of the above generalizations of the Hyodo-Kato

isomorphism can be applied we consider, for K a finite extension of Qp, Drinfel’d’s p-adic

symmetric space X = Ω
(d+1)
K of dimension d over K — the complement in Pd

K of the union of all

K-rational hyperplanes — and its strictly semistable weak formal model Q, which is not proper.

The cohomology of X is of great representation theoretical importance. In [30], P. Schneider

and U. Stuhler computed it as a PGLd+1(K)-representation for an arbitrary cohomology theory

satisfying certain minimal axioms. Examples are de Rham cohomology and ℓ-adic (ℓ 6= p)

cohomology. Moreover they showed that Gal(K/K) acts on Hs
et(X,Qℓ) through the s-th power

of the cyclotomic character. Using Theorem 0.1 we obtain a q-th power Frobenius endomorphism

φ on H∗
dR(X), where |k| = q. We show φ = qs on Hs

dR(X) (Corollary 6.6). The proof relies

on a recent acyclicity theorem of E. de Shalit [6]. We also investigate the (φ,N)-structure on

3



Hd
dR(XΓ, F ) for quotients XΓ = Γ\X of X by (sufficiently small) discrete cocompact subgroups

Γ of PGLd+1(K) and coefficients F defined by finite dimensional K[Γ]-modules F (note Γ =

Πtop
1 (XΓ)). There is a covering spectral sequence

Ers
2 = Hr(Γ,F ⊗K Hs

dR(X)) =⇒ Hr+s
dR (XΓ, F ).(G)π

Only the cohomology Hd
dR(XΓ, F ) in middle degree d is interesting ([29]). Let (F r

Γ)r≥0 be the

filtration which (G)π defines on Hd
dR(XΓ, F ). By the above it must be the slope and the weight

filtration for the Frobenius endomorphism φ on Hd
dR(XΓ, F ). Moreover we show that it also

coincides with the filtration defined by (∗) (with XQ = XΓ there).

Schneider and Stuhler conjectured that (F r
Γ)r≥0 is opposite to the Hodge filtration (F j

Hdg)j≥0.

Our results allow us to reconsider this conjecture in terms of p-adic Hodge theory. For example

we see that it makes a prediction on the p-adic étale cohomology, as a Gal(K/K)-representation,

of the relative Tate module of the universal p-divisible group over X ⊗K K̂ur, cf. page 36.

For d = 1, where the conjecture is known for F which are ”algebraic”, this was exploited in

recent work of Iovita and Spiess. Conversely we give a condition on the filtered (φ,N)-module

Hd
dR(XΓ, F ) which implies the Hodge-type decomposition. In particular we reprove it (Theorem

7.7) in the case F = K (for an earlier and completely different proof see Iovita and Spiess [18].

In case F = K, inserting the computations of the vector space dimensions of the graded

pieces for (F r
Γ)r≥0 given in [29], we also describe the matrix of the monodromy operator N on

Hd
dR(XΓ): If d is odd we let H

d
dR(XΓ) = Hd

dR(XΓ), if d is even we let H
d
dR(XΓ) be the quotient

of Hd
dR(XΓ) by a certain one dimensional subspace. All structure elements pass from Hd

dR(XΓ)

to H
d
dR(XΓ). Then (see 8.5):

Theorem 0.2. (a) The filtrations (F
r
Γ)r≥0 and (F

j
Hdg)j≥0 are opposite.

(b) The filtration (F
r
Γ)r≥0 is stable for φ; we have φ = qd−r on F

r
Γ/F

r+1
Γ .

(c) The filtration (F
r
Γ)r≥0 coincides with both the kernel and the image filtration for N : for all

r we have

F
r
Γ = Ker(N

d+1−r
) = im(N

r
).

For statement (c) we make use of the monodromy-weight conjecture forXΓ which has recently

been proven by T. Ito [19] and independently by E. de Shalit [7]. Ito reduces the problem to

standard cohomological conjectures which he then proves for the particular varieties in question.

The completely different approach of de Shalit to X and XΓ, developed in a series of articles,

is by concepts of harmonic analysis (also the spectral sequence (∗) (for F = K) appears). It

has the advantage of being rather explicit and seems to have some potential for more general

semistable reduction situations. de Shalit’s proof of the monodromy-weight conjecture relies

crucially on our Theorem 0.1. Note that our work also responds to the problems 6.14 and 6.15

posed in Ito’s paper [19].

Coming back to Theorem 0.1 we now sketch how the isomorphisms ρM are constructed in

two particular cases, namely when M is a single irreducible component of Y (case 1), or when

dim(Y ) = 1 and M is the intersection of two distinct irreducible components of Y (case 2).
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These two cases require two different ideas (which for more general M must be merged).

Case 1: LetM♥ be the open subscheme ofM complementary to all other irreducible components.

Then it turns out that the restriction maps

RΓrig(M/S0) −→ RΓrig(M
♥/S0)

RΓrig(M/Sπ) −→ RΓrig(M
♥/Sπ)

are isomorphisms: It is at this point where one must work in the overconvergent setting (weak

formal/dagger), as opposed to the convergent setting (formal/rigid). Now RΓrig(M
♥/S0) resp.

RΓrig(M
♥/Sπ) are in fact canonically isomorphic to the classical (non logarithmic) rigid coho-

mology RΓrig(M
♥/K0) resp. RΓrig(M

♥/K). We take ρM to be the composition of isomorphisms

RΓrig(M/S0)⊗K0 K
∼= RΓrig(M

♥/K0)⊗K0 K
∼= RΓrig(M

♥/K) ∼= RΓrig(M/Sπ).

Case 2: For simplicity we assume M is k-rational and consists of a single point (its underlying

scheme is Spec(k)). Let U be the two dimensional open unit polydisk over K with coordinates

x1, x2, viewed as a dagger- (or rigid) analytic space. Let U0 be its closed subspace where

x1x2 = 0, let Uπ be its closed subspace where x1x2 = π. Let Ω′•
U be the de Rham complex

on U with logarithmic poles along the divisor U0, and let Ω•
U be the quotient of Ω′•

U by its

sub-OU -algebra generated by dlog(x1x2). It restricts to complexes Ω•
U0 on U0 and Ω•

Uπ on

Uπ. Of course, Ω•
Uπ is nothing but the classical de Rham complex on the classically smooth

space Uπ. We may view the S0-log scheme M as exact closed log subscheme of the log smooth

Spf(A0[x1, x2]/(x1x2)) over S0, resp. the log smooth Spf(A[x1, x2]/(x1x2 − π)) over Sπ, with

tube U0 resp. Uπ. Thus

RΓrig(M/S0)⊗K0 K = RΓ(U0,Ω•
U0)

RΓrig(M/Sπ) = RΓ(Uπ,Ω•
Uπ).

Now H∗(U0,Ω•
U0) ∼= H∗(Uπ,Ω•

Uπ) for all ∗ by explicit computations; for example H1(U0,Ω•
U0)

and H1(Uπ,Ω•
Uπ) are one dimensional K-vector spaces generated by the class of dlog(x1). But

we need a construction on the level of complexes. Let

P = (P1
K ×P1

K)an = ((Spec(K[x1]) ∪ {∞}) × (Spec(K[x2]) ∪ {∞}))
an

and let Ω′•
P be the de Rham complex on P with logarithmic poles along the divisor

({0} ×P1
K) ∪ (P1

K × {0}) ∪ ({∞} ×P1
K) ∪ (P1

K × {∞}).

The section dlog(x1x2) ∈ Ω′•
U (U) = Ω′•

P (U) extends canonically to a section dlog(x1x2) ∈

Ω′•
P (P ) and we let Ω•

P be the quotient of Ω′•
P by its sub-OP -algebra generated by dlog(x1x2).

It turns out that the canonical restriction maps

RΓ(U0,Ω•
U0)← RΓ(P,Ω•

P ) −→ RΓ(Uπ,Ω•
Uπ)

are both isomorphisms. This yields the wanted ρM also in this case.

The paper is organized as follows. In section 1 we recall log schemes with boundary and define
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log rigid cohomology. In section 2 we introduce Y and certain canonical projective bundles on

its component intersections M , giving rise to the various (P J ′
M , V J ′

M ). Liftings of these bundles

to characteristic zero are meant to play the role of P in case 2 of the above example. In section

3 the (P J ′
M , V J ′

M ) are glued into a simplicial S-log scheme with boundary. Theorem 0.1 is stated,

and 0.1(a)=⇒0.1(b) is explained. In section 4 we prove 0.1(a) in two steps: first we show that we

may restrict everything to the maximal open subscheme M♥ of M which avoids all irreducible

components of Y not fully containing M — this is analogous to case 1 above. Then it follows

from explicit computations, the crucial point of the whole method is Lemma 4.6. In section 5 we

develop the usual weight-monodromy formalism from [32], [24] for H∗
rig(Y/S

0, E), in particular

write it as the abutment of a spectral sequence which begins with classical, non-logarithmic rigid

cohomology. In sections 6-8 we explain the applications to Ω
(d+1)
K .

Notations: For basics on log algebraic geometry we refer to K. Kato [21]. For a log scheme

(X,NX → OX) we just write X if it is clear from the context to which log structure on X we

refer. In this text, all log schemes and morphisms of log schemes have charts for the Zariski

topology (rather than only for the étale topology; since we are interested in strictly semistable

log schemes, see section 2, this class of log schemes will be enough). By an exactification of a

closed immersion of fine log schemes i′ : X → Y ′, we mean a factorization X
i
→ Y

g
→ Y ′ of i′

with i an exact closed immersion and g log étale. If i has a chart, exactifications exist by the

proof of [21] 4.10. All this similarly for (weak) formal log schemes.

We let A0 be a complete discrete valuation ring with residue field k of characteristic p > 0,

maximal ideal mA0 and fraction field K0 of characteristic zero. If k is perfect, one may take

A0 = W (k), the ring of Witt vectors of k. Write W̃ for both the abstract scheme Spec(A0) and

the log scheme (Spec(A0), trivial log structure). Let A be a complete discrete valuation ring

which is a totally ramified finite extension of A0. Throughout this paper, we fix a uniformizer

π of A. Define the log scheme

S̃ = (Spec(A0[t]), (N→ A0[t], 1 7→ t)).

We will often view t as an element of its log structure. Denote by S (resp. W) the weak

completion (see below) of S̃ (resp. of W̃ ). Let

S0 = (Spf(A0), (N→ A0, 1 7→ 0)), Sπ = (Spf(A), (N→ A, 1 7→ π)),

exact closed (weak) formal log subschemes of S. Denote by S the exact closed log subscheme of

S̃ (or S) defined by (mA0), and by S0 the log point over k, i.e. the exact closed log subscheme of

S defined by (t). Identify S0 with the exact closed log subscheme of Sa defined by the maximal

ideal of OSa (for a ∈ {0, π}). Write K0(0) = K0, K0(π) = K. Often (not always) we tried

to follow this notational pattern: a roman capital (Y , M , V, . . .) denotes a k-scheme, the same

roman capital with superscript ˜ (Ỹ , M̃ , Ṽ , . . .) denotes a scheme flat over A0 together with a

fixed embbeding of that k-scheme, and the corresponding Fraktur capital (Y, M, V, . . .) denotes

the (weak) completion of the -̃scheme. For a section s of a coherent O-module on a scheme,

V(s) denotes the zero set of s.
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1 Log Rigid Cohomology

1.1 For a weak formal A0-scheme (see Meredith [23]) we require that it is locally of the form

Spwf(B) where B is a quotient of some algebra A0[X1, . . . ,Xn]
†, the weak completion with

respect to mA0 of A0[X1, . . . ,Xn]. Weak completions of noetherian A0-algebras or -schemes are

always weak completions with respect to mA0 . In the same way a p-adic formal A0-scheme of

topologically finite type gives rise to a K0-rigid space (”generic fibre”), a weak formal A0-scheme

X gives rise to a K0-dagger space XQ as defined in [10]. In particular, for a weakly complete

algebra B as above, the algebra B ⊗Q is a K0-dagger algebra and gives rise to the affinoid K0-

dagger space Sp(B ⊗ Q) (notation and terminology from [10]). As in the formal/rigid context,

there is a specialization map sp : XQ → X. For a k-subscheme Z of X we write ]Z[X= sp−1(Z),

the tube of Z in X, an admissible open subspace of XQ. All this analogously for A and K instead

of A0 and K0.

Lemma 1.2. Let a ∈ {0, π} and X a fine weak formal Sa-log scheme and let f : Z → X

be a closed immersion of a S0-log scheme Z. Let Z → X′ → X and Z → X′′ → X be two

exactifications of f . Then there is a canonical isomorphism ]Z[X′∼=]Z[X′′.

Proof: Comparing with the tube of Z in an exactification of the diagonal embedding

Z → X′×XX′′, we see that we may assume that there is a log étale map q : X′ → X′′ compatible

with the Z-embeddings and with charts for the Zariski topology. It follows from [21] 3.8 that in

a neighbourhood of Z, q is étale in the classical sense. Let qZ :]Z[X′→]Z[X′′ be the morphism of

dagger spaces induced by q. From [3] we get that the morphism of rigid spaces associated with

qZ — this is the morphism between the tubes of Z in the respective p-adic completions — is an

isomorphism. Therefore qZ is an isomorphism by [10].

1.3 Denote by ∆ the category whose objects are the ordered sets [m] = {0 < . . . < m} for

m ∈ Z≥0 and whose morphisms are the injective order preserving maps of sets. For our purposes,

a simplicial scheme X• is a functor from ∆op to the category of schemes. On objects we write it

as [m] 7→ Xm. Similarly we define simplicial (log)-schemes over a fixed base, simplicial dagger

spaces and so on.

Let a ∈ {0, π}. Let X be a fine S0-log scheme. Suppose we have an open covering X = ∪i∈IVi

and for every i ∈ I an exact closed immersion Vi → Vi into a log smooth weak formal Sa-log

scheme Vi. Choose (perhaps after refining the covering) for each non empty finite subset H ⊂ I

an exactification

VH = ∩i∈HVi
ι
−→ VH

f
−→ ×Sa(Vi)i∈H

of the diagonal embedding VH→×Sa (Vi)i∈H . Let Ω•
VH/Sa be the relative logarithmic de Rham

complex of the morphism of weak formal log schemes VH → Sa. This is a sheaf complex on

VH , and tensoring with Q induces a sheaf complex Ω•
V

H,Q
on the K0(a)-dagger space VH,Q,

the generic fibre of VH , as follows: If Spwf(B) ⊂ VH is open, then the affinoid dagger space

U = Sp(B⊗Q) is admissible open in VH,Q, and Ωq
VH,Q
|U is associated with the coherent B⊗Q-

module Ωq
VH/Sa(Spwf(B))⊗Q. For varying open affines Spwf(B) this construction glues. By 1.2

7



the tube ]VH [VH
and the restriction Ω•

VH,Q
|]VH [VH

= Ω•
]VH [VH

of Ω•
VH,Q

to ]VH [VH
depend only on

the system {Vi → Vi}i, not on the chosen exactification (ι, f). For H1 ⊂ H2 one has a canonical

projection map δH1H2 :]VH2 [VH2
→]VH1 [VH1

and a natural map δ−1
H1H2

Ω•
]VH1

[VH1

→ Ω•
]VH2

[VH2

.

Choosing a well ordering of I we get as usual a simplicial dagger space (]VH [VH
)H⊂J =]V•[V• ;

furthermore, multiplying the transition maps with alternating signs as usual, we get a sheaf

complex Ω•
]V•[V•

on ]V•[V• . Given a locally constant sheaf E of K0(a)-vector spaces on XZar we

form the complex

E ⊗K0(a) Ω
•
]V•[V•

= (sp−1(E|V•)⊗K0(a) Ω
•
]V•[V•

, 1⊗ d)

on ]V•[V• (where sp :]V•[V•→ V• is the specialization map). Now suppose we are given another

set of data X ′ = ∪i∈I′V
′
i with embeddings {V ′

i → V′
i} as above and a S0-morphism f : X ′ → X.

Let E′ = f−1E. For (i, i′) ∈ I × I ′ let V ×
(i,i′) = V ′

i′ ∩ f−1Vi and choose an exactification

V ×
(i,i′) → V×

(i,i′) of the embedding (id×f) : V ×
(i,i′) → V′

i′×Sa Vi. Again we get a simplicial dagger

space ]V ×
• [V×• . There are projection maps pr1 :]V

×
• [V×•→]V•[V• and pr2 :]V

×
• [V×•→]V ′

• [V′• . These

give rise to

pr−1
1 (E ⊗K0(a) Ω

•
]V•[V•

) −→ E′ ⊗K0(a) Ω
•
]V ×• [

V
×
•

(i)

pr−1
2 (E′ ⊗K0(a) Ω

•
]V ′•[V′•

) −→ E′ ⊗K0(a) Ω
•
]V ×• [

V
×
•

.(ii)

Lemma 1.4. RΓ(]V ×
• [V×• , (ii)) is an isomorphism. In particular the definitions

RΓrig(X/Sa, E) = RΓ(]V•[V• , E ⊗K0(a) Ω
•
]V•[

)

RΓrig(X/Sa) = RΓrig(X/Sa,K0(a))

are independent on the covering X = ∪i∈IVi and the embeddings Vi → Vi. There is a natural

map RΓrig(X/Sa, E)→ RΓrig(X
′/Sa, E′).

Proof: That RΓ(]V ×
• [V×• , (ii)) is an isomorphism is a local claim, hence one may assume

E = K0(a). But then the reasoning of [3] carries over: the key is that each projection V×
(i,i′) →

Vi′ is strict and classically smooth near V ×
(i,i′), hence ]V ×

(i,i′)[V×
(i,i′)
→]V ×

(i,i′)[Vi′
is a relative open

polydisk so that the Poincaré lemma applies. Applied to the identity X ′ = X → X we get the

well definedness of RΓrig. The map RΓrig(X/Sa, E)→ RΓrig(X
′/Sa, E′) is the one induced by

(i).

1.5 For a simplicial scheme X• and a ring R denote by LS(X•, R) the category of sheaves

on X• with values in the category of finitely generated R-modules, locally constant on (Xm)Zar

for each m ≥ 0. Let X• be a simplicial fine S0-log scheme and E ∈ LS(X•,K0(a)). Suppose

that there exists an open covering X0 = ∪i∈IVi satisfying the following two conditions:

(1) for any m ≥ 0, any i ∈ I and for any λ : [0] → [m], if σ(λ) : Xm → X0 denotes the

corresponding structure morphism, then σ(λ)−1Vi = Vm,i is independent of the choice of λ.

(2) For any m and i there exists an exact closed embedding ιm,i : Vm,i → Vm,i into a log smooth

weak formal Sa-log scheme Vm,i.
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We wish to define the rigid cohomology RΓrig(X•/S
a, E) of X• with values in E.

For the moment let us fix a non empty finite subset H ⊂ I. Define inductively

Z̃0,H = ×i∈HV0,i, Z̃m+1,H = (×i∈HVm+1,i)× (Z̃m,H)m+2.

With the m + 2 natural projections Z̃m+1,H → Z̃m,H we get a simplicial weak formal Sa-log

scheme Z̃•,H . Let Vm,H = ∩i∈HVm,i and let tm,H : Vm,H → ×i∈HVm,i be the diagonal embedding.

Define inductively embeddings jm,H : Vm,H → Z̃m,H as follows:

j0,H = tm,H , jm+1,H = (tm+1,H × (tm ◦ σ0)× . . . × (tm ◦ σm+1))

where σs : Vm+1,H → Vm,H for s = 0, . . . ,m + 1 are the structure projections (obtained by

restricting those of X•). We have defined a closed embedding of simplicial objects j•,H : V•,H →

Z̃•,H . For any m choose an exactification

Vm,H −→ Zm,H −→ Z̃m,H .

The tubes ]Vm,H [Zm,H
form a simplicial K0(a)-dagger space ]V•,H [Z•,H . Now we vary H: for H1 ⊂

H2 one has a canonical projection map of simplicial K0(a)-dagger spaces δH1H2 :]V•,H2 [V•,H2
→

]V•,H1 [V•,H1
and if we fix a well ordering of I we get as usual a simplicial simplicial K0(a)-dagger

space ]V•,•[Z•,•= (]Vm,H [Zm,H
)m,H (a functor from ∆op to the category of simplicial K0(a)-dagger

spaces). As before there is natural logarithmic de Rham complex E⊗K0(a)Ω
•
]V•,•[V•,•

on ]V•,•[V•,•
and we set

RΓrig(X•/S
a, E) = RΓ(]V•,•[V•,• , E ⊗K0(a) Ω

•
]V•,•[V•,•

).

That this is well defined is shown as before.

We define RΓconv(X•/S
a, E) for E ∈ LS(X•,K0(a)) by the same procedure, using p-adic formal

schemes and rigid spaces instead of weak formal schemes and dagger spaces. Thus, for a fine

S0-log scheme X our RΓconv(X/Sa,K) for the constant coefficient E = K is what Shiho calls

the analytic cohomology of X/Sa in [31]. In particular, by [31] it is isomorphic with the log

convergent cohomology of X/Sa in the sense of Ogus [26], and we have comparison isomorphisms

with log crystalline cohomology if a = 0. For a k-scheme X with trivial log structure, if in all

our constructions we replace the base Sa by the base W̃ and work with the constant sheaf

E = K0 on X, then we obtain cohomology objects which we denote by RΓrig(X/K0) resp. by

RΓconv(X/K0). There is a canonical map from our RΓrig(X/K0) to the object RΓrig(X/K0)

defined by Berthelot [3], and it follows from [10] 5.1 that this is an isomorphism.

1.6 See [13] for details on the following concept. A log scheme with boundary is a morphism

of quasi-compact log schemes i : (X,NX)→ (X,NX) such that

(a) the underlying morphism of schemes is a schematically dense open immersion,

(b) NX → i∗NX is injective, i∗NX = NX and (i∗NX)gp = N gp

X
.

Let T = (T,NT ) = S̃ or T = (T,NT ) = S. A T -log scheme with boundary is a log scheme

with boundary together with a morphism of log schemes X → T . For short we denote it by

(X,X). It is called fine if (X,NX) is fine. Let Ω•
X/W̃

be the logarithmic de Rham complex of
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the morphism of log schemes X → W̃ . The section dlog(t) ∈ Ω1
X/W̃

(X) uniquely extends to a

section dlog(t) ∈ Ω1
X/W̃

(X). We define Ω•
(X,X)/T

as the quotient of Ω•
X/W̃

by its OX -subalgebra

generated by this dlog(t).

A morphism of T -log schemes with boundary f : (X,X)→ (X
′
,X ′) is a morphism of log schemes

f : X → X
′
restricting to a morphism of T -log schemes X → X ′ (in particular X ⊂ f−1(X ′)). It

is called an exact closed immersion if f is one. Taking X to (X,X) is a fully faithful functor from

the category of T -log schemes to the category of T -log schemes with boundary. For fine T -log

schemes with boundary (X1,X1), (X2,X2) there exists a product (X1×TX2,X1 ×T X2) in the

category of fine T -log schemes with boundary: X1×TX2 is the schematic closure of X1 ×T X2

in X1×W̃
X2, endowed with the image of the log structure of X1×W̃

X2 in the push forward log

structure of X1 ×T X2.

1.7 A morphism of T -log schemes with boundary (Y , Y )→ (X,X) is called a boundary exact

closed immersion if Y → X is an exact closed immersion and if for every open neighbourhood

U of Y in X, there exists an open neighbourhood U of Y in X with U schematically dense

in U . A fine T -log scheme with boundary (X,X) is called smooth if it satisfies the following

conditions (1)-(3): (1) X is locally of finite presentation over W̃ . (2) For every morphism

η : (L
′
, L′) → (L,L) such that L′ → L is an exact closed immersion defined by a square zero

ideal in OL and for every morphism µ : (L
′
, L′)→ (X,X) there is étale locally on L a morphism

ǫ : (L,L) → (X,X) such that µ = ǫ ◦ η. (3) For all morphisms (Y , Y ) → (X,X) and all

boundary exact closed immersions (Y , Y )→ (V , V ) of fine T -log schemes with boundary, there

exists étale locally on (X×TV ) an exactification

Y → Z → (X×TV )

of the diagonal embedding Y → (X×TV ) (a morphism of log schemes in the usual sense) such

that the projection Z → (X×TV ) → V is strict and log smooth, or equivalently: strict and

smooth on underlying schemes.

Proposition 1.8. ([13] Proposition 2.6) Let (Y , Y ) → (X i,Xi) be boundary exact closed im-

mersions into smooth T -log schemes with boundary (i in a finite index set I). There exist locally

on ×T (X i)i∈I factorizations

(Y , Y )
ι
−→ (Z,Z) −→ (×T (X i)i∈I ,×T (Xi)i∈I)

of the diagonal embedding such that ι is a boundary exact closed immersion, the map Z →

×T (X i)i∈I is log étale, and the projections pi : Z → Xi are strict and log smooth, hence smooth

on underlying schemes.

1.9 A chart (t ∈ P gp ⊃ P ) for (X,X) over T is a chart λ : P → Γ(X,NX) for (X,NX)

together with an element tP ∈ P gp such that λgp(tP ) = t in Γ(X,NX)gp (with t on the right

hand side the image of t ∈ Γ(T,NT )). In [13] Theorem 2.5 it is shown that (X,X)/T is smooth

if locally on X there are charts (tP ∈ P gp ⊃ P ) satisfying the following two conditions: (i) The

subgroup (tP ) ⊂ P gp generated by tP , as well as the torsion part of P gp/(tP ) are finite groups
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of orders invertible on W̃ . (ii) The morphism of schemes X → Spec(A0[P ]) if T = S̃, resp.

X → Spec(k[P ]) if T = S, is smooth.

1.10 Let (X,X) be a S-log scheme with boundary. Suppose that there exists an open

covering X = ∪i∈IV i and for every i ∈ I, if we set Vi = X ∩ V i, a boundary exact closed

immersion (V i, Vi) → (Ṽ i, Ṽi) into a smooth S̃-log scheme with boundary (Ṽ i, Ṽi). (We do not

know if such local embeddings exist for any S-log scheme with boundary; in our applications

we will have explicit such local embeddings at hand.) Choose (perhaps after localizing) for each

finite subset H ⊂ I a factorization

(V H , VH) = (∩i∈HV i,∩i∈HVi)
ι
−→ (Ṽ H , ṼH)

f
−→ (×

S̃
(Ṽ i)i∈H ,×

S̃
, Ṽi)i∈H)

of the diagonal embedding as in 1.8. Let (VH ,VH) be the weak completion of (Ṽ H , ṼH): this

might be called a weak formal S-log scheme with boundary. Weak completion of the de Rham

complex Ω•

(Ṽ H ,ṼH)/S̃
gives a de Rham complex Ω•

(VH ,VH )/S
on VH . As before, tensoring with

Q induces a sheaf complex Ω•
(VH ,VH )/S

⊗ Q on the generic fibre (as K0-dagger space) of VH .

The tube ]V H [VH
with sheaf complex Ω•

(VH ,VH )/S
⊗ Q|]V H [

VH

is independent on the chosen

exactification (ι, f). For varying H one has natural transition maps, hence a simplicial dagger

space ]V •[V• and, given E ∈ LS(X,K0), a sheaf complex

E ⊗K0 Ω
•
(V•,V•)/S

⊗Q|]V •[V•
= sp−1(E|X•)⊗K0 Ω

•
(V•,V•)/S

⊗Q|]V •[V•

on ]V •[V• . As before one shows that

RΓrig((X,X)/S, E) = RΓ(]V •[V• , E ⊗K0 Ω
•
(V•,V•)/S

⊗Q|]V •[V•
)

is independent of choices. (Caution: Despite what our notation might suggest there is no OS-

action on RΓrig((X,X)/S, E)).

More generally, let (X•,X•) be a simplicial S-log scheme with boundary. Suppose that there is

an open covering X = ∪i∈IV i satisfying the following two conditions:

(1) for any m ≥ 0, any i ∈ I and for any λ : [0] → [m], if σ(λ) : Xm → X0 denotes the

corresponding structure morphism, then σ(λ)−1V i = V m,i is independent of the choice of λ.

(2) For any m and i, if we set Vm,i = Xm∩V m,i, there exists a boundary exact closed immersion

(V m,i, Vm,i)→ (Ṽ m,i, Ṽm,i) into a smooth S̃-log scheme with boundary.

From 1.5 it is now clear how we define

RΓrig((X•,X•)/S, E)

for E ∈ LS(X•,K0).

1.11 Fix q ∈ pN and suppose that σ : A0 → A0 lifts the q-th power Frobenius endomorphism

of k. We also denote by σ the unique endomorphism of the formal log scheme S0 which equals

σ on the structure sheaf and for which multiplication with q on the standard chart N of S0 is

a chart. Let X be a fine S0-log scheme. Denote by F -LS(X,K0) the category of pairs (E,φ),

where E ∈ LS(X,K0) and φ : E → E is a σ-linear automorphism. The datum of φ is equivalent
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with a K0-linear isomorphism φ : E ⊗K0,σ K0 → E. Given (E,φ) ∈ F -LS(X,K0) we define the

σ-linear endomorphism φ on H∗
rig(X/S0, E) as the composite

H∗
rig(X/S0, E)

H∗(σ)
−→ H∗

rig(X
′/S0, E)

H∗(φ′)
−→ H∗

rig(X/S0, E)

with X ′ = X ×S0,σ S0, where H∗(σ) is induced by the base change σ : S0 → S0, and where

H∗(φ′) is induced by the structure map φ : E ⊗K0 K0 → E and the first arrow in the natural

factorization X → X ′ → X of the q-th power Frobenius endomorphism.

2 Natural projective bundles on a semistable scheme

2.1 Our basic object of study in this paper is Y : a strictly semistable log scheme over k. That

is, Y is a fine S0-log scheme (Y,NY ) which allows a Zariski open covering by open subschemes

Y ′ ⊂ Y with the following property: there exist integers m ≥ 1 and charts Nm → NY (Y
′) for

NY |Y ′ such that

(i) if on the log scheme S0 we use the chart N→ k, 1 7→ 0, the diagonal morphism N
δ
→ Nm is a

chart for the structure morphism of log schemes Y ′ → S0, and

(ii) the induced morphism of schemes

f : Y ′ −→ Spec(k)×Spec(k[t]) Spec(k[t1, . . . , tm])

is smooth in the classical sense. If not said otherwise, we endow subschemes of Y with the pull

back structure of S0-log scheme structure induced by that of Y . For simplicity we suppose that

Y is connected. By {Yj}j∈Υ we denote the set of irreducible components of Y : all of them

are classically smooth over k; this follows from the existence of charts as above for the Zariski

topology.

Conversely, suppose for the moment that we require the existence of charts as above only

for the étale topology of Y . We claim that then the classical smoothness of all Yj automatically

implies the existence of charts as above for the Zariski topology of Y . Indeed, let y ∈ Y

be a closed point. Suppose it lies on the irreducible components Y1, . . . , Yr, but not on any

other irreducible component. For any 1 ≤ j ≤ r let tj ∈ OY,y be an element with V(tj) =

Yj ∩ Spec(OY,y). The smoothness of all Yj implies that also Z = Y1 ∩ . . . ∩ Yr is smooth.

Therefore we find an open affine neighbourhood Spec(B) of y in Z together with an étale

morphism of k-algebras b : k[tr+1, . . . , td] → B. Shrinking Spec(B) if necessary we may write

Spec(B) = Spec(C)∩Z for an affine open subscheme Spec(C) of Y with t1, . . . , tr ∈ C. For any

r + 1 ≤ j ≤ d choose a preimage tj ∈ C of b(tj) under the surjection C → B and consider the

map

k[t1, . . . , td]/(t1 · . . . · tr) −→ C, tj 7→ tj.

By construction, it induces an étale map from an open neigbourhood of y in Spec(C) to

Spec(k[t1, . . . , td]/(t1 · . . . · tr)) and our claim is proved.
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For i ≥ 1 we let

Y i =
∐

|J |=i

×Y (Yj)j∈J

(disjoint sum) where J runs through the set of subsets of Υ with precisely i elements. In [21]

p.222/223 it is explained how the log structure on Y gives rise, for every j ∈ Υ, to an invertible

OY -module Lj and a global section sj of Lj with V(sj) = Yj . These data form a log structure

in the sense of Faltings. This assignment goes as follows: For j ∈ Υ let NY,j be the subsheaf of

NY which is the preimage of Ker(OY → OYj
). This NY,j is a principal homogeneous space over

O×
Y , and its associated line bundle is the dual L−1

j of Lj. The section sj is the one corresponding

to NY,j → OY . There is a structure isomorphism OY
∼= ⊗(Lj)j∈Υ which sends 1OY

to ⊗
j∈Υ

sj. It

constitutes the S0-log scheme structure of Y .

2.2 Now fix a non-empty subset J ⊂ Υ of Υ with i elements for some i ≥ 1. Suppose

M = MJ = ∩j∈JYj = ×Y (Yj)j∈J

is non-empty and let Ĵ = Υ − J . For j ∈ Υ denote the restriction of Lj to M by abuse of

notation again by Lj (where we should write Lj ⊗OY
OM ), an invertible OM -module. For j ∈ J

we regard the affine line bundle

V j
M = Spec(SymOM

(L−1
j ))

over M as an open subscheme of the projective line bundle

P j
M = Proj(SymOM

(OM

⊕
L−1
j ))

over M as follows. Let SymOM
(OM ⊕L

−1
j )[1−1

OM
] be the Z-graded algebra obtained by inverting

the degree one element 1OM
of SymOM

(OM ⊕ L
−1
j ), and let SymOM

(OM ⊕ L
−1
j )[1−1

OM
]0 be its

degree zero part. Then Spec(SymOM
(OM ⊕L

−1
j )[1−1

OM
]0) is an open subscheme of P j

M which we

identify with V j
M by means of the isomorphism

SymOM
(L−1

j ) −→ SymOM
(OM

⊕
L−1
j )[1−1

OM
]0, s 7→ 1−1

OM
⊗ s for s ∈ L−1

j .

For a subset J ′ ⊂ J let

P J ′

M = ×M(P j
M )j∈J ′ .

With the above embeddings V j
M → P j

M we may regard

V J ′
M = Spec(SymOM

(
⊕

j∈J ′

L−1
j )) ∼= ×M(V j

M )j∈J ′

as an open subscheme of P J ′
M . (Attention: for j ∈ J do not confuse P {j} resp. V {j} with P j

resp. V j). We let PM = P J
M , VM = V J

M . For j ∈ J let Nj,∞ be the divisor on PM which is

the pullback to PM of the divisor P j
M − V j

M on P j
M . Let Nj,0 be the divisor on PM which is the

pullback to PM of the zero section divisor M → V j
M → P j

M on P j
M . Set

N∞ = ∪j∈JNj,∞ N0 = ∪j∈JNj,0.
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Viewing P J ′
M as a closed subscheme of PM by identifying it with the intersection (in PM ) of all

Nj,0 for j ∈ J − J ′, we get natural closed embeddings

M = P ∅
M → P

J ′1
M → P

J ′2
M

for J ′
1 ⊂ J ′

2 ⊂ J . The divisor M ∩ ∪j∈ĴYj on M defines a divisor DM on PM by pull back via

the structure map PM → M . Endow PM with the log structure NPM
defined by the normal

crossings divisor N0 ∪N∞ ∪DM on PM .

The sections sj of Lj for j ∈ Ĵ define a map ⊗(L−1
j )

j∈Ĵ

η
→ OM . Hence a map

OM
∼= (⊗(L−1

j )j∈J)⊗ (⊗(L−1
j )

j∈Ĵ
)

1⊗η
−→ ⊗(L−1

j )j∈J −→ SymOM
(
⊕

j∈J

L−1
j )

of OM -modules, where the first isomorphism is obtained by dualizing the inverse of the structure

isomorphism OM
∼= ⊗(Lj)j∈Υ (the restriction to M of the global structure isomorphism). By

sending t to the image of 1OM (M) under this map we define a morphism λ : VM → S. We denote

λ∗(t) ∈ SymOM
(⊕j∈JL

−1
j )(M) = OVM

(VM ) again by t. Note M ∩ ∪
j∈Ĵ

Yj = V(
∏

j∈Ĵ
sj) and

thusV(t) = (N0∪N∞∪DM)∩VM , therefore λ is a morphism of log schemes (for the log structure

NPM
|VM

on VM ). The zero section M → VM is an exact closed embedding and its composite

with λ factors as M
κM→ S0 → S where κM is the morphism of log schemes M → Y → S0.

Viewing t as an element of NPM
(VM ) it extends uniquely to an element N gp

PM
(PM ). In fact

(PM , VM ) is an S-log scheme with boundary. Taking pull back log structures, each (P J ′

M , V J ′

M )

for J ′ ⊂ J becomes an S-log scheme with boundary.

2.3 A local description. Let Y ′ ⊂ Y be an open subscheme with a trivialization f as above.

The log structure on Y ′ can be identified with the pullback, via f and the canonical inclusion,

of the log structure NAm
k

on the affine space Am
k = Spec(k[t1, . . . , tm]) given by its divisor

V(t1 . . . tm) ⊂ Am
k . Each tu can be regarded as an element of NAm

k
(Am

k ) and we denote by

t̃u ∈ NY (Y
′) its image. It generates a principal homogeneous space O×

Y ′ .t̃u over O×
Y ′ , and its

associated line bundle is L−1
ru |Y ′ for a uniquely determined ru ∈ Υ. After a change of indexation

we have an inclusion {1, . . . ,m} ⊂ Υ such that ru = u. Now suppose M ∩ Y ′ 6= ∅. Then

J ⊂ {1, . . . ,m} inside Υ. We can view the element ⊗j∈J t̃j ∈ ⊗(L
−1
j )j∈J(Y

′) as a homogeneous

element of degree |J | in SymOY
(⊕j∈JL

−1
j )(Y ′) and by restriction we get a homogeneous element

a1 ∈ SymOM
(⊕j∈JL

−1
j )(M ∩ Y ′) of degree |J |. On the other hand let a′2 =

∏
u f

∗(tu) ∈

OY (Y
′) where the product runs through all 1 ≤ u ≤ m with u /∈ J . Let a2 ∈ OM (M ∩ Y ′)

be its restriction, which we view as an element of degree zero in SymOM
(⊕j∈JL

−1
j )(M ∩ Y ′).

Multiplying we get the element t = a1.a2 ∈ SymOM
(⊕j∈JL

−1
j )(M ∩ Y ′).

2.4 For J ⊂ Υ and M = MJ , each (P J ′
M , V J ′

M ) for J ′ ⊂ J admits locally a boundary

exact closed immersion into a smooth S̃-log scheme with boundary. Indeed, we may suppose

M = Spec(B) is affine and that there is for any j ∈ Ĵ a νj ∈ B such that M ∩ Yj = V(νj), and

for any j ∈ J a µj ∈ L
−1
j (M) which generates L−1

j (so that this is a trivial line bundle) and such

that (
∏

j∈Ĵ νj)(
⊗

j∈J µj) = t in OVM
. Lift B to a smooth affine A0-algebra B̃ (see [8]) and the

elements νj ∈ B to elements ν̃j ∈ B̃ such that V(
∏

j∈Ĵ
ν̃j) is a normal crossings divisor (relative
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W̃ ) on M̃ = Spec(B̃). Define the product of projective bundles

P̃M = ×
M̃
(Proj(B̃[zj,0, zj,1]))j∈J

over M̃ , a smooth A0-scheme. We identify the reduction of P̃M modulo mA0 with PM =

×M (Proj(SymOM
(OM ⊕L

−1
j )))j∈J by viewing zj,1 as a lift of µj and viewing zj,0 as a lift of the

degree one element 1OM
. Define the open subscheme

ṼM = ×
M̃
(Spec(B̃[xj]))j∈J = Spec(B̃[xj ]j∈J) with xj =

zj,1
zj,0

of P̃M . Give P̃M the log structure N
P̃M

defined by the divisor

D̃M ∪ (P̃M − ṼM ) ∪ Ñ0

with D̃M = V(
∏

j∈Ĵ ν̃j) (zero set in P̃M ) and Ñ0 the closure of V(
∏

j∈J xj) in P̃M . As before,

t 7→
∏

j∈Ĵ

ν̃j
∏

j∈J

xj ∈ Γ(ṼM ,O
ṼM

)

defines a morphism of log schemes λ : ṼM → S̃ restricting on VM to λ from 2.2. For J ′ ⊂ J

the composite (P J ′

M , V J ′

M ) → (PM , VM ) → (P̃M , ṼM ) is a boundary exact closed immersion of

S̃-log schemes with boundary. Moreover, applying the criterion 1.9 we see that (P̃M , ṼM )/S̃ is

smooth. Indeed, local charts are of the form P = Ns with tP = ⊕s
n=1 ± 1n ∈ P gp = Zs (some

s ≥ 0).

3 The Hyodo-Kato isomorphisms

Theorem 3.1. For ∅ 6= J ′ ⊂ J ⊂ Υ and a ∈ {0, π} the map

RΓrig((P
J ′
M , V J ′

M )/S) ⊗K0 K0(a)−→RΓrig(M/Sa)

defined by restricting to the zero section M = MJ → P J ′

M and specializing t 7→ a is an iso-

morphism. In particular, we have a natural isomorphism, independent on the choice of J ′ but

depending on the choice of π,

RΓrig(M/S0)⊗K0 K
∼= RΓrig(M/Sπ).

The proof will be given in section 4.

3.2 For m ≥ 0 define

Λm(Υ) = {λ = (J0(λ), . . . , Jm(λ)); ∅ 6= J0(λ) ( J1(λ) ( . . . ( Jm(λ) ⊂ Υ},

(Pλ, Vλ) = (P
J0(λ)
MJm(λ)

, V
J0(λ)
MJm(λ)

) for λ ∈ Λm(Υ).

15



If m > 0 ”forgetting Js(λ)” defines for 0 ≤ s ≤ m a map ds : Λm(Υ) → Λm−1(Υ). We have

natural exact closed embeddings (Pλ, Vλ) → (Pds(λ), Vds(λ)), hence a simplicial S-log scheme

with boundary

(P•, V•) = ((Pm, Vm) =
∐

λ∈Λm(Υ)

(Pλ, Vλ))m≥0.

The simplicial S0-log scheme

M• = (Mm =
∐

λ∈Λm(Υ)

MJm(λ))m≥0

comes with an augmentation M• → Y and a morphism (namely the exact closed immersions

MJm(λ) → P
J0(λ)
MJm(λ)

) of simplicial S-log schemes with boundary

M• → (P•, V•).

It is clear that M• and (P•, V•) are functorial in open subschemes Y ′ of Y : If M ′
• and (P ′

•, V
′
•)

denote the corresponding simplicial S-log schemes (with boundary) constructed from Y ′ instead

of Y , then there are natural open embeddings M ′
• →M• and (P ′

•, V
′
•)→ (P ′

•, V
′
•), and moreover

these open embeddings form cartesian diagrams with the simplicial structure maps: for each of

the m+ 1 structure maps Mm →Mm−1, the pullback via M ′
m−1 →Mm−1 is the corresponding

structure map M ′
m → M ′

m−1; similarly for (P•, V•). On the other hand, Y is covered by open

subschemes Y ′ all of whose component intersections satisfy the hypotheses of 2.4. Hence, the

corresponding objects (P ′
•, V

′
•) can be embedded as in 2.4.

It follows that M• and (P•, V•) satisfy the hypotheses of 1.10 so that we can define their

rigid cohomology.

3.3 Let E ∈ LS(Y,K). For any J ⊂ Υ the pullback E|MJ
to MJ is constant; therefore,

the datum E is equivalent with the collection of the values E(MJ) for each J ⊂ Υ, together

with the restriction maps E(MJ1) → E(MJ2) for J1 ⊂ J2. In particular E gives rise to objects

E ∈ LS(M•,K) and E ∈ LS(P•,K). Restricting scalars we view E also as objects in LS(.,K0).

For a weak formal scheme X and a closed subscheme Z of its special fibre, if Z = ∪i∈IZi is a

finite covering by closed subschemes of Z, then the dagger space covering ]Z[X= ∪i∈I ]Zi[X is

admissible open. This follows from the corresponding formal/rigid fact ([3] 1.1.14.) together

with the comparison principles from [10]. Therefore the closed covering Y = ∪j∈ΥYj leads to

Cech spectral sequences

Ers
1 = E(Y r+1)⊗K0 H

s
rig(Y

r+1/S0) =⇒ Hr+s
rig (Y/S0, E)(1)

Ers
1 = E(Y r+1)⊗K Hs

rig(Y
r+1/Sπ) =⇒ Hr+s

rig (Y/Sπ, E).(2)

Theorem 3.4. For a ∈ {0, π} the natural maps

RΓrig(Y/S
a, E)

αa

−→ RΓrig(M•/S
a, E)

βa

←− RΓrig((P•, V•)/S, E)
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are isomorphisms. In particular, we have a natural isomorphism (depending on π)

RΓrig(Y/S
0, E) ∼= RΓrig(Y/S

π, E).

It comes along with a canonical isomorphism of spectral sequences (1) ∼= (2).

Proof: That βa is an isomorphism follows from 3.1. To see that αa is an isomorphism we

may argue locally, hence assume that there is an exact closed embedding of Y into a smooth weak

formal Sa-log scheme Y. Then RΓrig(M•/S
a, E) can be computed through sheaf complexes on

the tubes ]MJ [Y (for the various J ⊂ Υ) and the claim follows from 3.5. In particular we get

isomorphisms between the abutment terms of (1) and (2). For the E1-terms we get isomorphisms

from 3.1, compatible with the differentials (i.e. restriction maps).

Lemma 3.5. Let X be a (Grothendiek) topological space, X = ∪j∈ΥUj an (admissible) open

covering, K• an abelian sheaf complex on X. For J ⊂ Υ set UJ = ∪j∈JUj . For the simplicial

space U• = (Um =
∐

λ∈Λm(Υ) UJm(λ))m≥0 we have an isomorphism

RΓ(X,K•) ∼= RΓ(U•,K
•|U•).

Proof: This is a variant on usual Cech cohomology. For example one can compare with

the cohomology of the full Cech complex associated with the (highly redundant!) covering

X = ∪J⊂ΥUJ .

3.6 Let X be a strictly semistable weak formal A-scheme: locally for the Zariski topology

it admits étale maps to Spwf(A[X1, . . . ,Xn]
†/(X1 . . . Xr − π)) with 1 ≤ r ≤ n. Its special fibre

Y defines a log structure on X rendering X log smooth over Sπ; pulling back to Y we get a

strictly semistable log scheme over k as in 2.1 for which we keep our previous notations. Denote

by XQ the generic fibre of X, a K-dagger space. Denote by LS(XQ,K) the category of sheaves

F on XK with values in the category of finite dimensional K-vector spaces, with the property

that for each irreducible component Yj of Y , the restriction of F to the tube ]Yj[X is constant.

Since for each ]Yj [X the associated Berkovich analytic space is contractible (see [2]), LS(XQ,K)

is equivalent with the category of locally constant sheaves of finite dimensional K-vector spaces

on the Berkovich analytic space associated with XQ. Moreover, the functors sp∗ and sp−1 induce

an equivalence of categories LS(XQ,K) ∼= LS(Y,K). For F ∈ LS(XQ,K) we let

RΓdR(XQ, F ) = RΓ(XQ, (F ⊗K Ω•
XQ

, 1⊗ d)).

For s ≥ 1 write ]Y s[X=
∐

u]Y
s
u [X where the coproduct runs through the set {Y s

u }u of connected

components of Y s; these components are subschemes of Y . Setting E = sp∗F the spectral

sequence (2) can be identified with

Ers
1 = F (]Y r+1[X)⊗K Hs

dR(]Y
r+1[X) =⇒ Hr+s

dR (XQ, F ).(2X)

Corollary 3.7. There are canonical isomorphisms (1) ∼= (2X) and

RΓdR(XQ, F ) ∼= RΓrig(Y/S
0, E).
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3.8 Let X′ be the completion of X along its special fibre and let X′
Q be its generic fibre, a

K-rigid space. We have spectral sequences

Ers
1 = E(Y r+1)⊗K0 H

s
conv(Y

r+1/S0) =⇒ Hr+s
conv(Y/S

0, E)(1′)

Ers
1 = F (]Y r+1[X)⊗K Hs

dR(]Y
r+1[X′) =⇒ Hr+s

dR (X′
Q, F )(2′X)

with RΓdR(X
′
Q, F ) = RΓ(X′

Q, (F ⊗K Ω•
X′
Q

, 1 ⊗ d)). Now suppose in addition that all irreducible

components of Y are proper over k. Then the tubes ]Y p+1[X are partially proper, so [10] 3.2

(applied to the morphism between the respective Hodge-de Rham spectral sequences) tells us

RΓdR(]Y
j[X) ∼= RΓdR(]Y

j [X′), RΓdR(XQ, F ) ∼= RΓdR(X
′
Q, F ).

On the other hand, 5.6 and 5.3 tell us

RΓrig(Y
j/S0) ∼= RΓconv(Y

j/S0), RΓrig(Y/S
0, E) ∼= RΓconv(Y/S

0, E).

Corollary 3.9. There are canonical isomorphisms (1′) ∼= (1) ∼= (2X) ∼= (2′X) and

RΓdR(X
′
Q, F ) ∼= RΓconv(Y/S

0, E).

3.10 The interest in 3.7, 3.9 is that the spectral sequence (1) (or (1)′) carries additional

structure a priori not present in (2X) (or (2
′
X)). Namely (see section 5):

(i) Each term H∗
rig(Y

m/S0, E) is finite dimensional if Y is quasi-compact; if Y is proper also

H∗
rig(Y/S

0, E) is finite dimensional.

(ii) There is a natural K0-linear monodromy operator N on H∗
rig(Y/S

0, E).

(iii) If q, σ are as in 1.11 and if (E,φ) ∈ F -LS(Y,K0) then we have the σ-linear endomorphism

φ acting on (1). On H∗
rig(Y/S

0, E) it satisfies Nφ = qφN ; in particular, N is nilpotent if

H∗
rig(Y/S

0, E) is finite dimensional. If k is perfect and A0 = W (k), φ is bijective on each term

of (1). If k is finite and if for any component intersection M of Y the eigenvalues of φ acting

on the constant sheaf E|M are Weil numbers, then each term of (1) is a mixed F -isocrystal: the

eigenvalues of φ are Weil numbers.

For the interaction between N and the spectral sequence (1) see [12].

3.11 Suppose k is perfect, A0 = W (k) and that even Y is proper. Let E be the con-

stant sheaf K. Then RΓconv(Y/S
0) can be naturally identified (similarly to [4] 1.9) with

RΓcrys(Y/S
0)⊗A0 K0, where RΓcrys(Y/S

0) is the logarithmic crystalline cohomology of Y/S0.

In [15], the isomorphism H∗
dR(X

′
Q)
∼= H∗

crys(Y/S
0)⊗A0 K is constructed by crystalline methods.

In case K = K0 the method is to find a canonical section s — roughly by requiring that it be

Frobenius compatible — of

H∗
crys(Y/S̃

DP )⊗A0 K0 −→ H∗
crys(Y/S

0)⊗A0 K0,

and then to compose with

H∗
crys(Y/S̃

DP )⊗A0 K0 −→ H∗
crys(Y/S

π)⊗A0 K0 = H∗
dR(X

′
Q).
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Here S̃DP is the DP-envelope of (t) in S̃. In our approach, the section s corresponds to the

composite

H∗
conv(M•/S

0) ∼= H∗
rig(M•/S

0)
(β0)−1

−→ H∗
rig((P•, V•)/S) −→ H∗

crys(Y/S̃
DP )⊗A0 K0.

4 The proof of Theorem 3.1

4.1 We fix ∅ 6= J ′ ⊂ J ⊂ Υ and assume the situation of 2.4. We often drop subscripts M , i.e.

P J ′ = P J ′
M , P̃ = P̃M , Ṽ = ṼM , D̃ = D̃M . Let M, resp. V, resp. P, be the weak completion of

M̃ , resp. of Ṽ , resp. of P̃ , and let Va = V ×S Sa for a ∈ {0, π}. Let MQ (resp. PQ) be the

generic fibre (as K0-dagger space) of M (resp. of P). Write ∇0 =]M[V0 . In

MQ → ∇
0 →]M [P→ PQ

the first two arrows are closed immersions, the last one is an open immersion. Let Ω•
P̃ /W̃

denote

the log de Rham complex of P̃ → W̃ and let

Ω•
P̃
=

Ω•
P̃ /W̃

Ω•−1

P̃ /W̃
∧ dlog(t)

.

Weak completion and tensoring with Q gives a sheaf complex Ω•
P,Q on PQ.

Proposition 4.2. The canonical map

RΓrig(M/S0) = RΓ(∇0, (Ω•
P,Q|]M [P)⊗O∇0) −→ RΓ(MQ, (Ω

•
P,Q|]M [P)⊗OMQ

)

is an isomorphism.

Proof: Step 1: Let B̃[xj ]
†
j∈J be the weak completion of B̃[xj ]j∈J , i.e. V = Spwf(B̃[xj]

†
j∈J).

For subsets G ⊂ Υ = J ⊔ Ĵ define the element

tG = (
∏

j∈G∩Ĵ

ν̃j)(
∏

j∈G∩J

xj) ∈ B̃[xj ]j∈J

and the subset

TG = {ν̃j ; j ∈ G ∩ Ĵ} ∪ {xj ; j ∈ G ∩ J} ⊂ B̃[xj]j∈J .

With our previous identification xj =
zj,1
zj,0

for j ∈ J , we have t = tΥ and

∇0 = {x ∈ Sp(
B̃[xj ]

†
j∈J

(tΥ)
⊗Q); |xj(x)| < 1 for all j ∈ J}.

For ρ ∈ |K×
0 | ⊗Q, ρ < 1, define its admissible open K0-dagger subspace

∇0
ρ = {x ∈ Sp(

B̃[xj ]
†
j∈J

(tΥ)
⊗Q); |xj(x)| ≤ ρ for all j ∈ J}.
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Then ∇0 = ∪ρ<1∇
0
ρ is an admissible open covering and it is enough to show that

RΓ(∇0
ρ, (Ω

•
P,Q|]M [P)⊗O∇0) −→ RΓ(MQ, (Ω

•
P,Q|]M [P)⊗OMQ

)

is an isomorphism for each such ρ (the argument for this is like in step 1 of the proof of 4.6).

We fix such a ρ. Since ∇0
ρ is affinoid, we have

Hm(∇0
ρ, (Ω

l
P,Q|]M [P)⊗O∇0) = 0 = Hm(MQ, (Ω

l
P,Q|]M [P)⊗OMQ

)

for all m > 0, l ≥ 0, see [10]. Each term of Ω• = Γ(∇0
ρ, (Ω

•
P,Q|]M [P) ⊗O∇0) is locally free over

R = Ω0 = Γ(∇0
ρ,O∇0

ρ
). We have a natural map g : B̃[xj]j∈J → R and if for subsets T ⊂ B̃[xj ]j∈J

we set

RT =
R

({g(r); r ∈ T})

then we need to show that Ω• → Ω• ⊗R RTJ
is a quasi-isomorphism.

Step 2: All the following tensor products are taken over R. We claim that for all ∅ 6= J1 ⊂ J2 ⊂ Υ

with J2 − J1 ⊂ J the canonical map

µ : Ω• ⊗RTJ1
−→ Ω• ⊗RTJ2

is a quasi-isomorphism. By induction we may suppose J2 = J1 ∪ {j0} for some j0 ∈ J with

j0 /∈ J1. The ideal in B̃[xj]j∈J generated by TJ1 automatically contains tΥ (because ∅ 6= J1);

therefore, setting L = J1 ∩ Ĵ = J2 ∩ Ĵ we find that RTJm
for m ∈ {1, 2} is the ring of global

sections on the K0-dagger space

{x ∈ Sp(
B̃

({ν̃j ; j ∈ L})
[xj ]

†
j∈J−(Jm∩J)); |xj(x)| ≤ ρ for all j ∈ J − (Jm ∩ J)}.

In particular, RTJ1
is the ring of overconvergent functions on the relative closed disk of radius

ρ over RTJ2
(with coordinate xj0), and the map µ has a natural section. We prove that this

section induces surjective maps in cohomology. Denote again by dlog(xj0) the class of dlog(xj0)

in Ω1 ⊗ RTJ2
. An easy consideration with local coordinates (see for example [13], proof of

Theorem 3.14) shows that, at least after localization on M , we may choose a complement

Ω1
c of the RTJ2

-submodule < dlog(xj0) > of Ω1 ⊗ RTJ2
generated by dlog(xj0) such that Ω•

c ,

the sub-RTJ2
-algebra of Ω• ⊗ RTJ2

generated by Ω1
c , is stable for the differential d. Denoting

< dlog(xj0) >
• the sub-RTJ2

-algebra of Ω• ⊗RTJ2
generated by < dlog(xj0) > we have

Ω• ⊗RTJ2
= Ω•

c⊗ < dlog(xj0) >
• .

Let ω ∈ Ωk ⊗RTJ1
. It can be written as

ω =
∑

λ≥0

aλx
λ
j0dlog(xj0) +

∑

λ≥0

bλx
λ
j0

with aλ ∈ Ωk−1
c and bλ ∈ Ωk

c . Subtracting d(
∑

λ>0 λ
−1aλx

λ
j0
) (the expression

∑
λ>0 λ

−1aλx
λ
j0

exists by overconvergence!) and renaming the coefficients we may write ω modulo exact forms

as

ω = a0dlog(xj0) +
∑

λ≥0

bλx
λ
j0 .
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If dω = 0 we get ω = a0dlog(xj0) + b0 which is an element of Ωk ⊗RTJ2
and the claim follows.

Step 3: Now we can prove the statement to which we reduced the proposition in step 1 by

entirely formal reasoning (which we also applied in a similar situation in [13] Theorem 3.14).

We will show that in

Ω• = Ω• ⊗R
α
−→ Ω• ⊗R{tJ}

β
−→ Ω• ⊗RTJ

both α and β are quasi-isomorphisms. The exact sequences

0 −→ R −→ R{tJ}

⊕
R{t

Ĵ
} −→ R{tJ ,tĴ}

−→ 0

0 −→ R{tJ} −→ R{tJ}

⊕
R{tJ ,tĴ}

−→ R{tJ ,tĴ}
−→ 0

show that, to prove that α is a quasi-isomorphism, it is enough to show that Ω• ⊗ R{t
Ĵ
} →

Ω• ⊗R{tJ ,tĴ}
is a quasi-isomorphism. To see this, it is enough to show that both Ω• ⊗R{t

Ĵ
}

γ
→

Ω• ⊗ R{t
Ĵ
}∪TJ

and Ω• ⊗ R{tJ ,tĴ}
δ
→ Ω• ⊗ R{t

Ĵ
}∪TJ

are quasi-isomorphisms. Consider the exact

sequence

0 −→ R{t
Ĵ
} −→

⊕

j∈Ĵ

R{ν̃j} −→
⊕

G⊂Ĵ
|G|=2

RTG
−→ . . . −→ RT

Ĵ
−→ 0(∗)

Comparison of the exact sequences (∗)⊗Ω• and (∗)⊗R{t
Ĵ
}∪TJ
⊗Ω• shows that to prove that γ is

a quasi-isomorphism, it is enough to show this for Ω•⊗RTG
→ Ω•⊗RTG∪J

for all ∅ 6= G ⊂ Ĵ ; but

this has been done in step 2. Comparison of (∗)⊗R{tJ ,tĴ}
⊗Ω• and (∗)⊗R{t

Ĵ
}∪TJ
⊗Ω• shows that

to prove that δ is a quasi-isomorphism, it is enough to show this for Ω•⊗R{tJ}∪TG

ǫG→ Ω•⊗RTJ∪TG

for all ∅ 6= G ⊂ Ĵ . Consider the exact sequence

0 −→ R{tJ} −→
⊕

j∈J

R{xj} −→
⊕

F⊂J
|F |=2

RTF
−→ . . . −→ RTJ

−→ 0(∗∗)

The exact sequence (∗∗)⊗R{tJ }∪TG
⊗Ω• shows that to prove that ǫG is a quasi-isomorphism, it

is enough to show this for Ω• ⊗RTG∪F
→ Ω•⊗RTG∪J

for all ∅ 6= F ⊂ J ; but this has been done

in step 2. The exact sequence (∗∗) ⊗ Ω• shows that to prove that β is a quasi-isomorphism, it

is enough to show this for Ω• ⊗ RTF
→ Ω• ⊗ RTJ

for all ∅ 6= F ⊂ J ; but this has been done in

step 2.

4.3 For a subset I ⊂ J endow (P1
A0

)I = ×
W̃
(Proj(A0[zj,0, zj,1]))j∈I with the product log

structure, where the individual factors carry the log structure defined by the divisor {0,∞},

the zero and the pole of xj =
zj,1
zj,0

. We always think of (P1
A0

)
I
as a factor of P̃ = M̃ × (P1

A0
)J ,

i.e. as endowed with the projection p : P̃ → (P1
A0

)
I
. (Throughout this section, we denote each

projection map from a fibre product to any of its factors by p, and p∗ always denotes module

theoretic pull back of structure sheaf modules). We denote the weak completion of (P1
A0

)I again

by (P1
A0

)I , and we view the generic fibre (P1
K0

)I as a dagger space. Denote by M̃ ♯ the log scheme

with underlying scheme M̃ and with the log structure defined by the (relative to W̃ ) normal

crossings divisor V(
∏

j∈Ĵ
ν̃j) = D̃ ∩ M̃ on M̃. Let Ω•

(P1
A0

)I
(resp. Ω•

M̃♯
) be the logarithmic de
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Rham complex of (P1
A0

)I → W̃ (resp. of M̃ ♯ → W̃ ), and let Ω•
(P1

K0
)I

(resp. Ω•
M

♯
Q

) be the complex

on (P1
K0

)I (resp. on MQ) obtained by weak completion and tensoring with Q. Thus Ω1
(P1

A0
)I

is

free of rank |I|, a basis is {dlog(xj); j ∈ I}. We have a canonical direct sum decomposition

Ω1
P̃/W̃

= p∗Ω1
M̃♯

⊕
p∗Ω1

(P1
A0

)J .

Now fix ∅ 6= J ′ ⊂ J and j′ ∈ J ′, let J0 = J − {j′}. Then the submodule p∗Ω1
M̃♯
⊕ p∗Ω1

(P1
A0

)J0

of the right hand side maps isomorphically to the quotient Ω1
P̃
= Ω1

P̃/W̃
/dlog(t) of Ω1

P̃/W̃
(note

dlog(t) =
∑

j∈J dlog(xj) +
∑

j∈Ĵ dlog(ν̃j)), i.e.

Ω1
P̃
∼= p∗Ω1

M̃♯

⊕
p∗Ω1

(P1
A0

)J0

Ω•
P̃
∼= p∗Ω•

M̃♯
⊗O

P̃
p∗Ω•

(P1
A0

)J0(∗)

Lemma 4.4. For M♥ = M − (M ∩ ∪j∈ĴYj) and a ∈ {0, π} the restriction maps

RΓrig(M/Sa) −→ RΓrig(M
♥/Sa)(1a)

RΓrig((P
J ′
M , V J ′

M )/S) −→ RΓrig((P
J ′

M♥ , V
J ′

M♥)/S)(2)

are isomorphisms.

Proof: In all three cases this is due to overconvergence: the corresponding statements with

RΓconv instead of RΓrig are false. In general, for a strictly semistable weak formal scheme Y, if

M is the intersection of some of the irreducible components of its reduction and if M♥ is the

maximal open subscheme of M which has empty intersection with all the other components,

then the restriction map H∗
dR(]M [Y) → H∗

dR(]M
♥[Y) is an isomorphism, see [11] Theorem 2.3.

Applied to Y = Vπ we get H∗
rig(M/Sπ) = H∗

dR(]M [Vπ ) = H∗
dR(]M

♥[Vπ ) = H∗
rig(M

♥/Sπ), i.e.

that (1π) is an isomorphism. Now consider (2). Weak completion and tensoring with Q the

decomposition (∗) of Ω•
P̃
in 4.3 gives

Ω•
P,Q = p∗Ω•

M
♯
Q

⊗ p∗Ω•
(P1

K0
)J0 .(∗∗)

Let NJ0,J ′′ be the closed subscheme of the reduction modulo mA0 of (P1
A0

)J0 where all xj for

j ∈ J ′′ = J − J ′ are defined and vanish. Then

]P J ′
M [P= MQ×]NJ0,J ′′ [(P1

A0
)J0×P

1
K0

]P J ′

M♥ [P=]M♥[M×]NJ0,J ′′ [(P1
A0

)J0×P
1
K0

.

Since D̃ ∩ M̃ → M̃ reduces to the embedding (M −M♥)→M , it is immediate from the proofs

of the comparison theorems in [1], [22] that the restriction map

RΓ(MQ,Ω
•
M

♯
Q

) −→ RΓ(]M♥[M ,Ω•
M

♯
Q

)
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is an isomorphism. In view of the above decompositions it follows from Künneth formulas (which

in this case are easily proved, similarly to those in [11]; see also 4.6 below) that the restriction

map

RΓ(]P J ′
M [P ,Ω

•
P,Q) −→ RΓ(]P J ′

M♥ [P ,Ω
•
P,Q)

is an isomorphism. This proves (2). Finally, by 4.2 applied to both M and M♥ we see that to

prove that (10) is an isomorphism we only have to show that of

RΓ(MQ, (Ω
•
P,Q|]M [P)⊗OMQ

) −→ RΓ(]M♥[M , (Ω•
P,Q|]M [P)⊗OMQ

).

But (Ω•
P,Q|]M [P) ⊗ OMQ

decomposes according to the decomposition (∗∗) of Ω•
P,Q|]M [P . Thus

the argument which proved that (2) is an isomorphism works again.

4.5 We keep the setting and notations from 4.1 and assume in addition M ∩ ∪
j∈Ĵ

Yj = ∅,

hence J = Υ. Fix an ordering of J . For a subset I of J let H0
A0,I

= A0 and for s ≥ 1 let Hs
A0,I

be the free A0-module with basis the set of symbols

dlog(xj1) ∧ . . . ∧ dlog(xjs)

with jr ∈ I and j1 < . . . < js, and for s ≥ 0 let Hs
I = Hs

A0,I
⊗A0 K0. Fix a non-empty subset

J ′ ⊂ J , an element j′ ∈ J ′ and let J0 = J −{j′}. Denote by H∗
dR(MQ) the (non-logarithmic) de

Rham cohomology of the dagger space MQ.

Lemma 4.6. For each m ∈ Z we have a canonical isomorphism

Hm
rig((P

J ′

M , V J ′

M )/S) = Hm(]P J ′

M [P,Ω
•
P,Q) =

⊕

m=m1+m2

Hm1
dR (MQ)⊗K0 H

m2
J0

.

Proof: Step 1: For a subset I ⊂ J we identify Spec(A0[xj ]j∈I) with the open affine space

(A1
A0

)I in (P1
A0

)I (cf. 4.3). For δ ∈ |K×
0 | ⊗ Q let DI

δ be the affinoid open subspace of (A1
A0

)I ⊂

(P1
A0

)I where |xj | ≤ δ for all j ∈ I. Let J ′′ = J − J ′ and define

∇J ′

ǫ = MQ × DJ ′′

ǫ × DJ ′

1 .

Let {ǫn}n∈N with ǫn ∈ |K
×
0 | ⊗Q, ǫn < 1, be an increasing sequence tending to 1. The covering

by K0-dagger subspaces

]P J ′
M [P=

⋃

n

∇J ′
ǫn

is admissible open, hence a spectral sequence

Em′,m
2 = Rm′ lim

←
n

Hm(∇J ′

ǫn ,Ω
•
P,Q) =⇒ Hm+m′(]P J ′

M [P,Ω
•
P,Q).

We will show

Hm(∇J ′
ǫ ,Ω•

P,Q) =
⊕

m=m1+m2

Hm1
dR (MQ)⊗K0 H

m2
J0

for arbitrary ǫ ∈ |K×
0 | ⊗Q, ǫ < 1. Granted this it follows in particular that all transition maps

Hm(∇J ′

ǫn ,Ω
•
P,Q) −→ Hm(∇J ′

ǫn′
,Ω•

P,Q)
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for n ≥ n′ are isomorphisms, hence Rm′ lim←
n
Hm(∇J ′

ǫn ,Ω
•
P,Q) = 0 for all m′ 6= 0, hence

Hm(]P J ′

M [P,Ω
•
P,Q) = lim

←
n

Hm(∇J ′

ǫn ,Ω
•
P,Q) = Hm(∇J ′

ǫ ,Ω•
P,Q)

for an arbitrary ǫ ∈ |K×
0 | ⊗Q, ǫ < 1, and the Lemma follows. We now fix such an ǫ.

Step 2: Here we compute the coherent sheaf cohomology Hn(∇J ′
ǫ ,Ωm

P,Q). For this we choose

finite type A0-scheme models for ∇J ′
ǫ and DJ ′′

ǫ and use the scheme theoretic Künneth formula.

Choose r ∈ N and α ∈ A0 such that |α| = ǫr. The scheme

D̃J ′′

ǫ = Spec(
A0[xj , yj]j∈J ′′

(α.yj − xrj)j∈J ′′
)

comes with an obvious map ιǫ to (P1
A0

)J
′′
. Let Ω•

D̃J′′
ǫ

= ι∗ǫΩ
•
(P1

A0
)J′′

, a graded sheaf of coher-

ent O
D̃J′′
ǫ
-modules, and then form the graded sheaf of coherent O

(D̃J′′
ǫ )

M̃

-modules Ω•
(D̃J′′

ǫ )
M̃

=

p∗Ω•
D̃J′′
ǫ

⊗ p∗Ω•
M̃♯

on (D̃J ′′
ǫ )

M̃
= M̃ × D̃J ′′

ǫ . Let J ′
0 = J ′ − {j′} and define

P̃ǫ = (D̃J ′′

ǫ )
M̃
× (P1

A0
)J
′
0 × (P1

A0
){j
′}.

From 4.3 it follows that the graded sheaf Ω•
P̃ǫ

= p∗Ω•
P̃
on P̃ǫ decomposes as

Ω•
P̃ǫ

= p∗Ω•
(D̃J′′

ǫ )
M̃

⊗ p∗Ω•

(P1
A0

)J
′
0
.

Now for the ”missing” factor j′ we haveH0((P1
A0

){j
′},O(P1

A0
){j′}) = A0 andHn((P1

A0
){j
′},O(P1

A0
){j′}) =

0 if n 6= 0. Hence, by the scheme theoretic Künneth formula,

Hn(P̃ǫ,Ω
m
P̃ǫ
) =

⊕

m=m1+m2
n=n1+n2

Hn1((D̃J ′′

ǫ )
M̃
,Ωm1

(D̃J′′
ǫ )

M̃

)⊗A0 H
n2((P1

A0
)J
′
0 ,Ωm2

(P1
A0

)J
′
0
).

For the tensor factors we find: Hn((D̃J ′′
ǫ )

M̃
,Ωm

(D̃J′′
ǫ )

M̃

) = 0 whenever n > 0 since (D̃J ′′
ǫ )

M̃
is affine.

Furthermore

Hn((P1
A0

)J
′
0 ,Ωm

(P1
A0

)J
′
0
) =

⊕

n=
∑

j∈J′0
nj

⊕

m=
∑

j∈J′0
mj

(⊗A0(H
nj ((P1

A0
){j},Ω

mj

(P1
A0

){j}
))j∈J ′0).

Now Ω•
(P1

A0
){j}

is the logarithmic de Rham complex on P1
A0

with logarithmic poles at 0 and ∞,

thus Ωm
(P1

A0
){j}
∼= OP1

A0
ifm ∈ {0, 1}, and Ωm

(P1
A0

){j}
= 0 ifm /∈ {0, 1}. HenceH0((P1

A0
){j},Ω0

(P1
A0

){j}
) =

A0 andH0((P1
A0

){j},Ω1
(P1

A0
){j}

) is freely generated by dlog(xj), andHn((P1
A0

){j},Ωm
(P1

A0
){j}

) = 0 if

n 6= 0 or m /∈ {0, 1}. Therefore Hn((P1
A0

)J
′
0 ,Ωm

(P1
A0

)J
′
0
) = 0 if n > 0, and H0((P1

A0
)J
′
0 ,Ωm

(P1
A0

)J
′
0
) =

Hm
A0,J ′0

. We thus obtain Hn(P̃ǫ,Ω
m
P̃ǫ
) = 0 if n > 0, and

H0(P̃ǫ,Ω
m
P̃ǫ
) =

⊕

m=m1+m2

H0((D̃J ′′
ǫ )

M̃
,Ωm1

(D̃J′′
ǫ )

M̃

)⊗A0 H
m2

A0,J ′0
.
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Let C = Γ((D̃J ′′
ǫ )

M̃
,O(D̃J′′

ǫ )
M̃

) and let C† be its weak completion. Let Pǫ (resp. Ω•
Pǫ
) be the

weak completion of P̃ǫ (resp. of Ω
•
P̃ǫ
). By Meredith’s GAGA-theorem for weak completion ([23]

p.25) applied to the projective morphism P̃ǫ → (D̃J ′′
ǫ )

M̃
we have

Hn(Pǫ,Ω
m
Pǫ
) = Hn(P̃ǫ,Ω

m
P̃ǫ
)⊗C C†.

Since Pǫ (resp. the sheaf Ωm
Pǫ

on it) is an integral model for ∇J ′
ǫ (resp. for the sheaf Ωm

P,Q|∇J′
ǫ

on it), we obtain

Hn(∇J ′

ǫ ,Ωm
P,Q) = Hn(Pǫ,Ω

m
Pǫ
)⊗Q = 0 if n > 0,

H0(∇J ′
ǫ ,Ωm

P,Q) =
⊕

m=m1+m2

H0((D̃J ′′
ǫ )

M̃
,Ωm1

(D̃J′′
ǫ )

M̃

)⊗C C† ⊗A0 H
m2

J ′0
.

Together this means that Hm(∇J ′
ǫ ,Ω•

P,Q) is the m-th cohomology group of the complex of K0-

vector spaces

[
⊕

m=m1+m2

H0((D̃J ′′

ǫ )
M̃
,Ωm1

(D̃J′′
ǫ )

M̃

)⊗C C† ⊗A0 H
m2

J ′0
]m∈Z.

Step 3: Let Ω•
DJ′′
ǫ

(resp. Ω•
MQ×DJ′′

ǫ

) be the logarithmic de Rham complex on the affinoid dagger

space DJ ′′
ǫ (resp. MQ×DJ ′′

ǫ ) with logarithmic poles along the (respective) divisor V(
∏

j∈J ′′ xj).

As in [11] section 2 Lemma 3 one easily proves

Hn(DJ ′′
ǫ ,Ω•

DJ′′
ǫ
) = Hn

J ′′

and the Künneth formula

Hn(MQ × DJ ′′

ǫ ,Ω•
MQ×DJ′′

ǫ
) =

⊕

n1+n2=n

Hn1
dR(MQ)⊗K0 H

n2
J ′′ .

Since MQ × DJ ′′
ǫ is affinoid this is also the n-th cohomology group of the complex

[H0(MQ ×DJ ′′

ǫ ,Ωm
MQ×DJ′′

ǫ
)]m∈Z.

By construction we have

H0(MQ × DJ ′′
ǫ ,Ωm

MQ×DJ′′
ǫ
) = H0((D̃J ′′

ǫ )
M̃
,Ωm

(D̃J′′
ǫ )

M̃

)⊗C C† ⊗Q

and the proof of the lemma is finished in view of what we saw in step 2.

4.7 Suppose the endomorphism φ ofM lifts the q-th power Frobenius endomorphism ofM for

some q ∈ pN. It induces an endomorphism φm,triv of H
m
dR(MQ). Extend φ to an endomorphism of

V by sending xj 7→ xqj . This induces endomorphisms φ of V0 and ∇0 and thus an endomorphism

φm,0 of Hm
rig(M/S0) = Hm(∇0, (Ω•

P,Q|]M [P)⊗O∇0).

Lemma 4.8. Hm
dR(MQ) = Hm

rig(M/K0) (non logarithmic rigid cohomology) and

Hm
rig(M/Sa) =

⊕

m=m1+m2

Hm1
dR (MQ)⊗K0 (H

m2
J0
⊗K0 K0(a)).(∗a)

for a ∈ {0, π}. The decomposition (∗0) is a decomposition into φm,0-stable subspaces, and on the

(m1,m2)-summand φm,0 acts as φm1,triv ⊗ qm2 .
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Proof: Let D0 be the open unit disk, viewed as a K0-dagger space. Let {xj}j∈J be

standard coordinates on the |J |-dimensional polydisk (D0)|J |. Let t be a standard coordinate

on D0 and define λ : (D0)|J | → D0 by sending t 7→ t =
∏

j∈J xj. Endow E = (D0)|J | and

D0 with the log structures defined by the respective normal crossings divisor V(t). Denote by

Ea = V(t − a) → Sp(K0(a)) the morphism obtained by the base change of λ with t 7→ a. Let

Ω•
Ea be the corresponding relative logarithmic de Rham complex (of course, Ω•

Eπ is the usual

de Rham complex, without any additional log poles). Note that Ω1
Ea is a free OEa-module, one

basis is {dlog(xj); j ∈ J0}. Since J = Υ, the t defined here can be identified with the t defined

earlier and we get canonical identifications

∇a =]M [Va= MQ ×Ea

(fibre products of dagger spaces over Sp(K0)) and isomorphisms of complexes

(Ω•
P,Q|]M [P)⊗O∇a ∼= p∗Ω•

M
♯
Q

⊗ p∗Ω•
Ea.

Explicit computations show

Hs(Ea,Ω•
Ea) = Hs

J0 ⊗K0 K0(a).

Thus (∗π) is the Künneth formula for Hm
dR(∇

π) = Hm(∇π, (Ω•
P,Q|]M [P) ⊗ O∇π) proven in [11]

section 2 Lemma 3; its proof can be literally repeated to prove (∗0). The statement on φm,0

holds since φ acts on each dlog(xj) by multiplication with q.

Proof of 3.1: The isomorphy claim is a local statement, so we may assume the setting

of 4.1. Then by 4.4, restriction from M♥ to M does not change the cohomology objects in

question. Therefore we may also assume M ∩∪j∈ĴYj = ∅; but then we may even assume J = Υ.

Choosing an auxiliary j′ ∈ J ′ the theorem follows from the explicit computations in 4.6 and 4.8.

5 Weight filtration and monodromy on H∗rig(./S
0)

Here we explain some statements from 3.8 and 3.10.

5.1 An admissible weak formal lift of the semistable k-log scheme (Y,NY ) is a weak formal

S-log scheme (Z,NZ) together with an isomorphism of S0-log schemes

(Y,NY ) ∼= (Z,NZ)×S S0

satisfying the following conditions: On underlying weak formal schemes Z is smooth over W,

flat over S and its reduction modulo mA0 is generically smooth over S; the fibre Y = V(t)

above t = 0 is a divisor with normal crossings on Z, and NZ is the log structure defined by this

divisor. We denote an admissible weak formal lift by (Z,Y). Locally on Y , admissible lifts exist.

Indeed, by [20] 11.3 we locally find embeddings of Y as a normal crossings divisor into smooth

k-schemes Z. Assuming Z is affine we can lift Z to a smooth affine A0-scheme Z̃, see [8], and
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we let Z be its weak completion. Then we lift equations of Y in OZ (which form part of a local

system of coordinates on Z) to equations in OZ: these define Y.

5.2 Choose an open covering Y = ∪h∈HUh of Y , together with admissible liftings (Zh,Yh) of

the Uh (so Uh is the reduction of Yh). For a subset G ⊂ H let UG = ∩h∈GUh. Let {UG,β}β∈ΥG

be the set of irreducible components of UG. For h ∈ G and β ∈ ΥG let Yh,β be the unique A0-flat

irreducible component of Yh with UG,β = Yh,β ∩ UG. Let K
′
G be the blowing up of ×W(Zh)h∈G

along
∑

β∈ΥG
(×W(Yh,β)h∈G), let KG be the complement of the strict transforms in K′

G of all

Yh0,β × (×(Zh)h∈G−{h0}) (i.e. all h0 ∈ G, all β ∈ ΥG), and let YG be the exceptional divisor

in KG. It is a normal crossings divisor, and its A0-flat irreducible components are indexed by

ΥG: they are the inverse images of the A0-flat irreducible components of Yh, for any h ∈ G.

By construction, the diagonal embedding UG → ×W(Yh)h∈G lifts canonically to an embedding

UG → YG → KG. Viewing KG as a weak formal S-log scheme (with log structure defined by

YG), this is an exact closed embedding of (weak formal) S-log schemes. Denote by ω̃•
KG

the

logarithmic de Rham complex of KG →W. Write θ = dlog(t) and let

ω̃•
YG

= ω̃•
KG
⊗OYG

ω•
YG

=
ω̃•
YG

ω̃•−1
YG
∧ θ

.

So ω•
YG

is the logarithmic de Rham complex of the morphism of weak formal log schemes

YG → S0. Let YG,Q be the generic fibre of YG, a K0-dagger space, and let ω̃•
YG,Q

resp. ω•
YG,Q

denote the sheaf complexes on YG,Q obtained from ω̃•
YG

resp. ω•
YG

by tensoring with Q. Let

E ∈ LS(Y,K0). On the admissible open subspace ]UG[YG
of YG,Q we define the sheaf complexes

E ⊗K0 ω̃
•
YG,Q

= sp−1E ⊗K0 ω̃
•
YG,Q
|]UG[YG

E ⊗K0 ω
•
YG,Q

= sp−1E ⊗K0 ω
•
YG,Q
|]UG[YG

where sp :]UG[YG
→ UG ⊂ Y is the specialization map. For G1 ⊂ G2 we have natural transition

maps ]UG2 [YG2
→]UG1 [YG1

. Hence a site (]UG[YG
)G⊂H =]U•[Y• with sheaf complexes E⊗K0 ω̃

•
Y•

and E ⊗K0 ω
•
Y•

on it. Clearly

RΓrig(Y/S
0, E) = RΓ(]U•[Y• , E ⊗K0 ω

•
Y•).(1)

Now we draw on a construction of Steenbrink [32]. For j ≥ 0 let

Pj ω̃
k
K• = im(ω̃j

K•
⊗ Ωk−j

K•
−→ ω̃k

K•)

where Ω•
K•

denotes the non-logarithmic de Rham complex on the simplicial weak formal scheme

K•. Then let

Pj ω̃
•
Y• =

Pj ω̃
•
K•

ω̃•
K•
⊗ IY•

where IY• is the ideal of Y• in K•. On Y• these complexes give rise to a filtration P•ω̃
•
Y•

of

ω̃•
Y•

. The graded pieces are computed by means of residue maps:

Grj(ω̃
•
YG,Q

) =
⊕

N∈Θj,G

Ω•
NQ

[−j].(2)
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Here the sum runs through the set Θj,G of all intersections N of j different A0-flat irreducible

components of YG, and Ω•
NQ

denotes the non-logarithmic de Rham complex on the smooth

K0-dagger space NQ, the generic fibre of N. The set of A0-flat irreducible components of YG

corresponds bijectively to the set of irreducible components of the reduction of YG, and then

further (intersect with the diagonally embedded UG) to the set of irreducible components of UG.

Using the Poincaré lemma we find

RΓ(]U•[Y• , E ⊗K0 Grj(ω̃
•
Y•))

∼=
⊕

N∈Θj

E(N)⊗K0 RΓrig(N/K0)[−j](3)

Here the sum runs through the set Θj of all intersections N of j different irreducible components

of Y , on the right hand side we mean rigid cohomology with respect to trivial log structures as

in 1.5, and E(Nj) means the value of the restriction of E to Nj (where it is constant). On YG,Q

define the double complex A••
G as follows: let

Aij
G =

ω̃i+j+1
YG,Q

Pj(ω̃
i+j+1
YG,Q

)
,

as differentials Aij
G → A

(i+1)j
G take those induced by (−1)jd, and as differentials Aij

G → A
i(j+1)
G

take those induced by ω 7→ ω ∧ θ. Let A•
G be the associated total complex. We claim that the

augmentation ω̃•
YG,Q

→ A•0
G defined by ω 7→ ω∧ θ induces a quasi-isomorphism ω•

YG,Q
→ A•

G. As

in [32] it suffices to prove that

0 −→ Gr0(ω̃
•
YG,Q

)
∧θ
−→ Gr1(ω̃

•
YG,Q

)[1]
∧θ
−→ Gr2(ω̃

•
YG,Q

)[2]
∧θ
−→ . . .

is exact. In view of (2) this means proving that

0 −→ Ω•
YG,Q

−→
⊕

N∈Θ1,G

Ω•
NQ
−→

⊕

N∈Θ1,G

Ω•
NQ
−→ . . .

is exact; but this is a general fact on differential modules on normal crossings intersections

of smooth spaces. Combining for varying G we get a quasi-isomorphism ω•
Y•
→ A•

• of sheaf

complexes on Y•. Define the weight filtration on A•
• by setting

PkA
ij
G =

P2j+k+1(ω̃
i+j+1
YG,Q

)

Pj(ω̃
i+j+1
YG,Q

)
.

The associated spectral sequence for the cohomology ofA•
• then reads, using the (quasi)isomorphisms

(1) and ω•
Y•
∼= A•

•, and the computation (3):

E−k,i+k
1 =

⊕

j≥0
j≥−k

⊕

N∈Θ2j+k+1

E(N)⊗K0 H
i−2j−k
rig (N/K0) =⇒ H i

rig(Y/S
0, E)(4)

Theorem 5.3. (i) If Y is quasi-compact, H∗
rig(Y/S

0, E) is finite dimensional.

(ii) If all irreducible components of Y are proper, the canonical morphism RΓrig(Y/S
0, E) →
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RΓconv(Y/S
0, E) is an isomorphism.

(iii) If k is perfect, A0 = W (k) and σ are as in 1.11, and (E,φ) ∈ F -LS(Y,K0), then the

endomorphism φ on H∗
rig(Y/S

0, E) is bijective.

(iv) In (iii), if k is finite and if for any intersection N of irreducible components of Y the

eigenvalues of φ acting on E(N) are Weil numbers, then H∗
rig(Y/S

0, E) is a mixed F -isocrystal:

the eigenvalues of φ on H∗
rig(Y/S

0, E) are Weil numbers.

Proof: Assertions (i), (iii) and (iv) follow easily from the spectral sequence (4) (which in

cases (iii) and (iv) is Frobenius equivariant) and the corresponding results for the rigid coho-

mology with constant coefficients of (classically smooth) k-schemes, see [4] [5]. For (ii) observe

that we can repeat all constructions using rigid spaces instead of dagger spaces, obtaining the

spectral sequence

E−k,i+k
1 =

⊕

j≥0
j≥−k

⊕

N∈Θ2j+k+1

E(N)⊗K0 H
i−2j−k
conv (N/K0) =⇒ H i

conv(Y/S
0, E).(4′)

This reduces the problem to proving that the maps H∗
rig(N/K0) → H∗

conv(N/K0) are isomor-

phisms. Since the N are proper, this is done (in view of 1.5) in [4].

5.4 (k arbitrary) By construction, we have a short exact sequence

0 −→ E ⊗K0 ω
•
Y• [−1]

∧θ
−→ E ⊗K0 ω̃

•
Y• −→ E ⊗K0 ω

•
Y• −→ 0.(5)

By definition, the monodromy operator

N : H∗
rig(Y/S

0, E) −→ H∗
rig(Y/S

0, E)

is the connecting homomorphism in cohomology associated with (5).

Proposition 5.5. Suppose q, σ are as in 1.11, and (E,φ) ∈ F -LS(Y,K0). Then we have

Nφ = qφN on H∗
rig(Y/S

0, E).

Proof: Let σ be the unique endomorphism of the weak formal log scheme S which equals

σ on scalars, which sends t to tq, and for which multiplication with q on the standard chart N

of S is a chart. Specializing t 7→ 0 we get the endomorphism σ : S0 → S0 defined in 1.11.

We may assume that for each h ∈ H we are given an endomorphism of the weak formal S-log

scheme Zh which lifts the q-th power Frobenius endomorphism of the reduction of Zh, which

sends equations for the divisors Yh,β on Zh to their q-th powers, and which is compatible with σ

on S. Then we also get an endomorphism of the site (KG)G⊂H . It gives rise to endomorphisms

φ on ω̃•
Y•

and on ω•
Y•

. Tensoring with φ : E → E we get endomorphisms φ on E⊗K0 ω̃
•
Y•

and on

E⊗K0ω
•
Y•

(inducing φ on H∗
rig(Y/S

0, E) as defined in 1.11). The claim now follows from the fol-

lowing fact: If in the exact sequence (5) we act on the first (non-zero) term by qφ, on the second

and the third term by φ, then these actions are compatible with the maps in (5) (note φ(θ) = qθ).
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Proposition 5.6. Let M be the intersection of some irreducible components of Y . If M is

proper, the natural morphism

RΓrig(M/S0) −→ RΓconv(M/S0)

is an isomorphism. Moreover φ on H∗
rig(M/S0) is bijective; if k is finite, then H∗

rig(M/S0) is

mixed.

Proof: This is a slight modification of the proof of 5.3. We keep notations from above. For

G ⊂ H let MG = M ∩ UG, let MG be the intersection of the A0-flat irreducible components of

YG containing MG, and let MG,Q be its generic fibre (as a dagger space). Varying G we get a

site as before. The natural map

RΓrig(M/S0) = RΓ(]M•[Y• , ω
•
Y•) −→ RΓ(]M•[Y• , ω

•
Y• ⊗OM•)(1M )

is an isomorphism. Indeed, one can check this for every G separately; applying the Poincaré

lemma to both sides one reduces to the case where G consists of a single element; but then

the claim is proven in 4.2 (which is formulated only for the embedding of M into a particular

admissible weak formal lift of VM ; but the same proof applies here). For G ⊂ H consider the

filtration of ω̃•
YG,Q

⊗OMG,Q
defined by

Pj(ω̃
•
YG,Q

⊗OMG,Q
) =

Pj ω̃
•
YG,Q

IMG,Q
⊗ ω̃•

YG,Q
∩ Pjω̃•

YG,Q

where IMG,Q
⊂ OYG,Q

is the ideal of MG,Q in YG,Q. From (2) one derives

Grj(ω̃
•
YG,Q

⊗OMG,Q
) =

⊕

N∈Θj,G

Ω•
MG,Q∩NQ

[−j],(2M )

with Ω•
MG,Q∩NQ

the non-logarithmic de Rham complex on the smooth K0-dagger space MG,Q ∩

NQ. Using the Poincaré lemma we this time find

RΓ(]M•[Y• ,Grj(ω̃
•
Y• ⊗OM•))

∼=
⊕

N∈Θj

RΓrig(M ∩N/K0)[−j].(3M )

For G ⊂ H define on YG,Q the double complex A••
M,G as follows: let

Aij
M,G =

ω̃i+j+1
YG,Q

⊗OMG,Q

Pj(ω̃
i+j+1
YG,Q

⊗OMG,Q
)
,

as differentials Aij
M,G → A

(i+1)j
M,G take those induced by (−1)jd, and as differentials Aij

M,G →

A
i(j+1)
M,G take those induced by ω 7→ ω ∧ θ. If A•

M,G is the associated total complex, the

augmentation ω̃•
YG,Q

⊗ OMG,Q
→ A•0

M,G defined by ω 7→ ω ∧ θ induces a quasi-isomorphism

ω•
YG,Q

⊗OMG,Q
∼= A•

M,G. This time this assertion is reduced, using (2M ), to proving that

0 −→ Ω•
MG,Q

−→
⊕

N∈Θ1,G

Ω•
MG,Q∩NQ

−→
⊕

N∈Θ1,G

Ω•
MG,Q∩NQ

−→ . . .
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is exact; see [12] for an elementary proof in a similar situation. Hence, filtering the complex

A•
M,• on Y• analogously as before and applying RΓ(]M•[Y• , .) we get

E−k,i+k
1 =

⊕

j≥0
j≥−k

⊕

N∈Θ2j+k+1

H i−2j−k
rig (M ∩N/K0) =⇒ H i

rig(M/S0).(4M )

Now all this can be literally repeated using rigid spaces instead of dagger spaces. The only point

where the argument must be varied is the proof of the rigid space version of 4.2 (which we need

to get the rigid space version of (1M )). In fact, the rigid space version of 4.2 is even easier: the

reason why in 4.2 we worked with the affinoid covering ∇0
q = ∪ρ<1∇

0
q,ρ is that we do not know

the acyclicity of ∇0
q for coherent O∇0

q
-modules. But for coherent modules over the associated

rigid structure sheaf we know it (by Kiehl’s theorem), i.e. in the rigid space context we simply

do without the passage to the affinoid covering (which, of course, even would not work in the

rigid space context). So we get a spectral sequence

E−k,i+k
1 =

⊕

j≥0
j≥−k

⊕

N∈Θ2j+k+1

H i−2j−k
conv (M ∩N/K0) =⇒ H i

conv(M/S0)(4′M )

and we conclude as in 5.3. We are done.

6 The symmetric space and its weak formal model

We specialize to the case where K is a finite extension of Qp and A0 = W (k). Let q = |k| and

for this q let σ be as in 1.11. We still fix a uniformizer π ∈ A = OK .

6.1 Let d ≥ 2. We describe a weak formal A-scheme Q whose generic fibre is Drinfel’d’s

p-adic symmetric space Ω
(d+1)
K of dimension d over K. (– The description given in [9] which we

work out here is not sufficiently detailed and (strictly speaking) not entirely correct, it seems to

us. –) Let T be the Bruhat-Tits building of PGLd+1(K). We fix a copy Pd
K of projective d-space

over K. The set of vertices of T is in natural bijection with the set of equivalence classes of

pairs (P̃ , φ), where P̃ is an A-scheme isomorphic to Pd
A, and φ is an isomorphism of K-schemes

P̃ ⊗A K ∼= Pd
K . Two pairs (P̃1, φ1) and (P̃2, φ2) are equivalent if there exists an isomorphism

P̃1
∼= P̃2 respecting the φi. For a vertex v in T let (P̃v , φv) be the corresponding pair. Each

k-rational linear subscheme of the reduction Pv of P̃v defines another pair (P̃ ′, φ′); namely, P̃ ′ is

the projective space over A spanned by the kernel of the map of projective coordinate rings to

which the inclusion gives rise. The vertices in T adjacent to v are precisely those corresponding

to the pairs (P̃ ′, φ′) which can be obtained in this way. This remark is used below.

We fix a vertex v0 of T. For n ≥ 0 let Vn be the set of vertices v with d(v0, v) ≤ n. Here we

write d(v0, v) for the minimal number d ≥ 0 for which there is a sequence v0, v1, . . . , vd = v with

vi adjacent to vi−1 for all i ≥ 1. For n ≥ 1 let Wn = Vn − Vn−1. For m ≥ 1 let V m
n be the union

of Vn with the set of vertices v in Wn+1 such that there exists an element w ∈ Vn adjacent to v

such that the subscheme of P̃w corresponding to v has dimension at most m− 1. In particular

V d
n = Vn+1. For a vertex w let Hw be the set of all vertices adjacent to (but different from) w.
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Now we can begin. Blow up Q̃0,0 = P̃v0 in all k-rational points of the reduction Pv0 = P ′
v0 of

P̃v0 = Q̃0,0, call the result Q̃0,1. Then blow up Q̃0,1 in the strict transforms of all k-rational

lines of P ′
v0 , call the result Q̃

0,2; ...; finally blow up Q̃0,d−1 in the strict transforms of all (d− 1)-

dimensional k-rational linear subschemes of P ′
v0 , call the result Q̃0,d = Q̃1,0. For w ∈W1 let P ′

w

be the succesive blowing up of the reduction Pw of P̃w along its subschemes which correspond

to the vertices in Hw ∩ V1 (first blow up the points, then the strict transforms of the lines,

etc.). Taking strict transforms under this blowing up sequence, the vertices of Hw − (Hw ∩ V1)

correspond to subschemes of P ′
w. This k-scheme P ′

w can be identified with a subscheme of Q̃1,0.

Now blow up Q̃1,0 in all subschemes of P ′
w corresponding to vertices in Hw ∩ (V 1

1 − V1), for all

w ∈ W1. Call the result Q̃1,1. Then blow up Q̃1,1 in the strict transforms of all subschemes of

P ′
w corresponding to vertices in Hw ∩ (V

2
1 − V 1

1 ), for all w ∈W1. Call the result Q̃1,2; ...; finally

blow up Q̃1,d−1 in the strict transforms of all subschemes of P ′
w corresponding to vertices in

Hw ∩ (V d
1 − V d−1

1 ), for all w ∈W1. Call the result Q̃1,d = Q̃2,0. Keep going. We get a sequence

. . . −→ Q̃n,0 −→ Q̃n−1,0 −→ . . . −→ Q̃1,0 −→ Q̃0,0.

Remove from Q̃n,0 the centers of the sequence of blowing ups Q̃n+1,0 → Q̃n,0, call the result

Q̃(n). These Q̃(n) form a sequence of open immersions

Q̃(0) −→ Q̃(1) −→ . . . −→ Q̃(n) −→ . . . .

Let Q̃(∞) be its inductive limit and let Q be the weak completion of Q̃(∞).

6.2 From our description of Q we deduce the following facts (cf. [19], sect. 6). It is a strictly

semistable weak formal A-scheme. Let Q be the special fibre of Q. Any non-empty intersection

of distinct irreducible components of Q is isomorphic to the product of k-schemes each of which

results from the following procedure (for some r ≥ 0): First blow up all k-rational points in

projective r-space Pr
k; then blow up the strict transforms (in this blow up) of all k-rational

lines in Pr
k; ...; finally blow up the strict transforms of all k-rational linear subschemes of Pr

k of

dimension r − 2.

Theorem 6.3. Let M be the intersection of i different irreducible components of Q and let

s ≥ 0. Then we have φ = qs on Hs
rig(M/S0).

Proof: Let M♥ be the open complement in M of the intersection of M with the union of

all irreducible components of Q not containing M . Then Hs
rig(M/S0) ∼= Hs

rig(M
♥/S0) by 4.4,

so we need to show φ = qs on Hs
rig(M

♥/S0). In view of 4.8 we only need to show φ = qm

on Hm
rig(M

♥/K0) for all m ≥ 0. Choosing a product decomposition of M according to 6.2 we

get a product decomposition of M♥ into k-schemes each of which is the complement in Pr
k (for

some r) of all k-rational linear hyperplanes. By the Künneth formula we may treat every factor

separately. We claim: For a finite non-empty set G of k-rational linear hyperplanes in Pr, if we

let ∪G = ∪H∈GH, then φ = qm on Hm
rig(P

r
k − ∪G/K0) for all m ≥ 0, all r ≥ 1. We induce on

the cardinality of G. For |G| = 1 we have Pr
k − ∪G = Ar

k, but Hm
rig(A

r
k/K0) = 0 for m > 0,
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and φ = id on H0
rig(A

r
k/K0). If |G| > 1 pick H ′ ∈ G, let G′ = G − {H ′} and consider the

φ-equivariant exact Gysin sequence

Hm
rig(P

r − ∪G′/K0) −→ Hm
rig(P

r − ∪G/K0)→ Hm−1
rig (H ′ − (H ′ ∩ ∪G′)/K0)(−1)

(see [5]). By induction hypothesis we have φ = qm on both outer terms.

6.4 Let Ω
(d+1)
K = X be the generic fibre of Q, a K-dagger analytic space. Since it is a Stein

space its coherent and de Rham cohomology is (by [10]) the same as that of the associated rigid

space, Drinfel’d’s p-adic symmetric space of dimension d over K. With notation ]Qr[Q as in 3.6

we have:

Proposition 6.5. (de Shalit) For any s ∈ Z, the complex

Hs
dR(]Q

1[Q) −→ Hs
dR(]Q

2[Q) −→ Hs
dR(]Q

3[Q) −→ . . .

is a resolution of Hs
dR(X).

Proof: This follows from Theorems 5.7 and 7.7 in the paper [6] of Ehud de Shalit. Strictly

speaking, de Shalit does not work with the (weak) formal scheme Q. Instead, he works with the

Bruhat-Tits building T of PGLd+1(K), so we give some remarks on how his setting translates into

ours. T can be regarded as dual to Q: A vertex v of T corresponds to an irreducible component

Cv of Q. Let C♥
v be the maximal open subscheme of Cv which has empty intersection with all

other irreducible components of Q. There is a ”reduction map” r : X(K)→ |T|. The preimage

of a vertex v under r is the set of K-valued points of the preimage of C♥
v under the specialization

map sp. The preimage of the star of a vertex v under r is the set of K-valued points of the

preimage of Cv under sp. In a similar way, preimages of k-cells (for k ≥ 0) correspond to

preimages of: intersections of k + 1 distinct irreducible components minus their intersection

with other components. Also note that since the spaces ]Qi[Q are partially proper their de

Rham cohomology is the same for the dagger space version as for the rigid space version (by

[10]).

Corollary 6.6. For each s ≥ 0 we have φ = qs on Hs
rig(Q/S0) and there is a canonical

isomorphism Hs
dR(X) ∼= Hs

rig(Q/S0)⊗K0 K.

Proof: For the spectral sequences

Ers
1 = Hs

rig(Q
r+1/S0) =⇒ Hr+s

rig (Q/S0)(U)0

Ers
1 = Hs

dR(]Q
r+1[Q) =⇒ Hr+s

dR (X)(U)π

we have (U)0 ⊗K0 K
∼= (U)π by 3.7. In (U)0 we know φ = qs on E0s

1 by 6.3, so it is enough to

show Ers
2 = 0 whenever r > 0. But this we can equivalently check in (U)π where it follows from

6.5.
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7 Hodge decomposition on quotients of Ω
(d+1)
K = X

7.1 There is a natural action of PGLd+1(K) on Q. We fix a cocompact discrete subgroup

Γ ⊂ PGLd+1(K). Passing to a subgroup with finite index in Γ we may and will assume that Γ

is torsionfree and that the quotient QΓ = Γ\Q has strictly semistable reduction. By [25] it even

algebraizes to a projective A-scheme, and the covering map Q → QΓ is étale. Let XΓ = Γ\X

be the generic fibre, let QΓ = Γ\Q be the special fibre of QΓ. Furthermore we fix a finite

dimensional K[Γ]-module F. It gives rise to an element F ∈ LS(XΓ,K); namely, for admissible

open U ⊂ XΓ let F (U) = FX(X ×XΓ
U)Γ where FX is the constant sheaf on X associated with

F. The main tool in [29] for studying H∗
dR(XΓ, F ) is the covering spectral sequence

Ers
2 = Hr(Γ,F ⊗K Hs

dR(X)) =⇒ Hr+s
dR (XΓ, F ).(G)π

Only the cohomology Hd
dR(XΓ, F ) in middle degree d is interesting ([29]). Let

Hd
dR(XΓ, F ) = F 0

Γ ⊃ F 1
Γ ⊃ . . . ⊃ F d+1

Γ = 0

be the descending filtration which (G)π defines on it. The other analytically defined filtration on

Hd
dR(XΓ, F ) is the canonical Cech filtration: the descending filtration (F r

C)r≥0 on Hd
dR(XΓ, F )

induced by the spectral sequence

Ers
1 = F (]Qr+1

Γ [QΓ
)⊗K Hs

dR(]Q
r+1
Γ [QΓ

) =⇒ Hs+r
dR (XΓ, F ).(C)π

7.2 Letting E = sp∗F ∈ LS(QΓ,K) we may view (E, idE) as an object in F -LS(QΓ,K0). In

particular we get K0-linear endomorphisms φ and N on Hd
rig(QΓ/S

0, E) satisfying Nφ = qφN .

Via the isomorphism

Hd
dR(XΓ, F ) ∼= Hd

rig(QΓ/S
0, E)

from 3.7 we view φ and N as endomorphisms φ and N on Hd
dR(XΓ, F ).

Theorem 7.3. The spectral sequences (G)π and (C)π degenerate in E2. The filtrations (F r
Γ)r≥0

and (F r
C)r≥0 on Hd

dR(XΓ, F ) coincide. They are stable for the action of φ, and we have φ = qd−r

on F r
Γ/F

r+1
Γ = F r

C/F
r+1
C .

Proof: From 3.7 we get an isomorphism of spectral sequences between (C)π and

Ers
1 = F⊗K Hs

rig(Q
r+1
Γ /S0) =⇒ Hr+s

rig (QΓ/S
0, E).(C)0

φ acts on (C)0, and on its Ers
1 -term we have φ = qs, by 6.3. On the other hand, the locally

constant sheaf E on QΓ is obtained by taking Γ-invariants of the constant sheaf on Q associated

with F. Therefore we get a spectral sequence

Ers
2 = Hr(Γ,F ⊗K0 H

s
rig(Q/S0)) =⇒ Hr+s

rig (QΓ/S
0, E).(G)0

The isomorphism RΓdR(X) ∼= K ⊗K0 RΓrig(Q/S0) from 3.7 and hence the obtained isomor-

phism F ⊗K RΓdR(X) ∼= F ⊗K0 RΓrig(Q/S0) is Γ-equivariant and induces the isomorphism
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RΓdR(XΓ, F ) ∼= RΓrig(QΓ/S
0, E) from 3.7 (because the construction 3.7 is local and Q→ QΓ is

étale). Thus (G)π and (G)0 are isomorphic. Also here: φ acts on (G)0, and on its Ers
1 -term we

have φ = qs, by 6.6. By transport of structure, φ acts on the spectral sequences (G)π and (C)π,

and on their Ers-terms it is multiplication with qs. Thus (G)π and (C)π degenerate in E2 for

weight reasons and the induced filtrations on the abutment satisfy the described property with

respect to φ, hence coincide because this property is characterizing.

The degeneration of (G)π was proven by another argument in [29].

7.4 The Hodge filtration (F j
Hdg)j≥0 on Hd

dR(XΓ, F ) is the one induced by the stupid filtration

(F ⊗K Ω•≥j
XΓ

)j≥0 of F ⊗K Ω•
XΓ

. Peter Schneider conjectures [29] that (F j
Hdg)j≥0 is opposite to

(F r
Γ)r≥0, i.e. that we have the Hodge-type decomposition

Hd
dR(XΓ, F ) = F r

Hdg

⊕
F d+1−r
Γ for any r ∈ Z.

We attempt to understand this conjecture in terms of p-adic Hodge theory.

7.5 Let D be a finite dimensional K-vector space, endowed with K-linear automorphisms

φ and N satisfying Nφ = qφN , and with a descending exhaustive and separated filtration

(FiliD)i∈Z. For i ∈ Z define the Hodge number hH(D, i) = dimK(FiliD/Fili+1D). Let P0 =

Quot(W (k)) and denote by σ the functorial lifting to P0 of the q-power map of the algebraic

closure k of k. For α = r/s ∈ Q define the Newton number hN (D,α) = [K : K0]
−1 dimK0 D[α]

where D[α] is the sub K0-vector space of D ⊗K0 P0 generated by the elements x satisfying

(φ⊗ σ)sx = qrx. Then set

tN (D) =
∑

α∈Q

αhN (D,α) tH(D) =
∑

i∈Z

ihH(D, i).

We say D is weakly admissible if tN (D) = tH(D) and if for all sub K-vector spaces D′ ⊂ D

stable for N and φ, if we endow them with the induced filtration, we have tN (D′) ≥ tH(D′).

We say D is ordinary if it is weakly admissible and if hN (D, i) = hH(D, i) for all i in Z, and

hN (D,α) = 0 for all α ∈ Q− N.

In [27] 1.2 it is defined another notion of ordinary filtered (φ,N)-module; in particular, φ in

[27] means a non-iterated Frobenius endomorphism on a K0-lattice. It is easy to see that, given

an ordinary filtered (φ,N)-module in the sense of [27], by taking the K-linear extension of its

logp q-fold iterated Frobenius operator φ we obtain an ordinary object D as defined above.

Clearly, if D is ordinary (in our sense) than the slope filtration (appropriately numbered) asso-

ciated with φ is opposite to (FiliD)i∈Z. Now consider D = Hd
dR(XΓ, F ) with FiliD = F i

Hdg and

with N , φ obtained from the Hyodo-Kato isomorphism, as before. By 7.3 the slope filtration

(w.r.t. φ) is just (F r
Γ)r≥0. So we obtain:

Proposition 7.6. If Hd
dR(XΓ, F ) is ordinary, then the filtrations (F j

Hdg)j≥0 and (F r
Γ)r≥0 on

Hd
dR(XΓ, F ) are opposite.

Theorem 7.7. Hd
dR(XΓ) is ordinary. In particular, the filtrations (F j

Hdg)j≥0 and (F r
Γ)r≥0 on

Hd
dR(XΓ) are opposite.
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Proof: Hyodo defines proper semistable ordinary A-schemes, and explicitly mentions the

A-schemes QΓ as examples ([14] p.544). (– The ordinarity of QΓ also follows from [17] 1.10 (or

[24] 3.23) and the fact that all irreducible strata of QΓ and their intersections are ordinary k-

schemes: this last fact follows from our description 6.2 and [17] 1.6. –) In view of our remarks on

ordinary filtered (φ,N)-modules our claim now follows from the general fact that for a proper

semistable ordinary A-scheme Z in the sense of Hyodo, the de Rham cohomology, endowed

with its Hodge filtration and with N and φ coming from the comparison isomorphism with

Hyodo-Kato cohomology, is an ordinary filtered (φ,N)-module in the sense of [27]. (– We are

not aware of a ”direct” proof of this last fact, one may however argue like this: From [16]

Therorem 2.7 (which is due to Hyodo) it follows that Dst(H
∗
et(Z ⊗A K,Qp)) is an ordinary

filtered (φ,N)-module in the sense of [27]. By the now proven Fontaine-Jannsen conjecture,

Dst(H
∗
et(Z⊗AK,Qp)) is the filtered (φ,N)-module obtained by glueingH∗

crys(Z⊗Ak/S
0)⊗A0K0

with H∗
dR(Z ⊗A K) via the Hyodo-Kato isomorphism.–)

7.8 (i) That (F j
Hdg)j≥0 and (F r

Γ)r≥0 are opposite to each other whenever F admits an integral

lattice has been shown earlier by Iovita and Spiess [18] by completely different methods, and

yet another proof is due to Alon and de Shalit.

(ii) Also for other pure slope Frobenius structures on the sheaf E = sp∗F (i.e. not necessarily the

identity), our arguments show that the filtration (F r
Γ)r≥0 on Hd

dR(XΓ, F ) is the (scalar extended)

slope filtration for the φ-action. For example, the Dieudonné module of the universal p-divisible

group over Q (base extended to the completion of a maximal unramified extension of K; see [28])

defines such a sheaf E with pure slope Frobenius structure. The above Hodge type decomposition

conjecture thus translates into a conjecture on the resulting filtered (φ,N)-module. Via Falting’s

proof of the Cst-conjecture with coefficients it then translates into a conjecture on the p-adic

étale cohomology of the relative Tate module of the universal p-divisible group. We hope to

address this problem in our future work.

Corollary 7.9. The canonical map Hd(XΓ,K)→ Hd(XΓ,OXΓ
) is an isomorphism.

Proof: HereHd(XΓ,K) is to be understood with respect to the rigid Grothendieck topology

on XΓ. It can be identified with the term Ed0
2 in the spectral sequence (C)π (with F = K

there). This follows for example from the fact that the tubes ]Qs
Γ[ for s ≥ 1 are disjoint unions

of contractible spaces, when viewed as analytic spaces in the sense of Berkovich. Now (C)π

degenerates in E2 for weight reasons, thus Ed0
2 = F d

C in Hd
dR(XΓ). From 7.7 it follows that

F d
C = F d

Γ → Hd
dR(XΓ)/F

1
Hdg is an isomorphism. But Hd

dR(XΓ)/F
1
Hdg is Hd(XΓ,OXΓ

), by the

degeneration of the Hodge-de Rham spectral sequence.

8 The monodromy operator

8.1 Specializing to F = K, the trivial representation of Γ, we wish to relate the monodromy

operator N on Hd
dR(XΓ) to the filtration (F r

Γ)r≥0 on Hd
dR(XΓ). As remarked in 3.11 we have a

canonical isomorphism Hd
crys(QΓ/S

0)⊗A0 K0
∼= Hd

rig(QΓ/S
0). Under this isomorphism, N and
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φlogp q on Hd
crys(QΓ/S

0)⊗A0 K0 (with N and φ as defined in [15] or [24]: this φ is a non iterated

Frobenius) correspond to N and φ on Hd
rig(QΓ/S

0) as we defined it. We keep our φ. Associated

with N is the monodromy filtration (Mr)r∈Z on Hd
crys(QΓ/S

0) ⊗A0 K0, the convolution of the

image filtration and the kernel filtration for N . More precisely,

Mr =
∑

i

Ker(N i+1) ∩ im(N i−r).

On the other hand, Hd
crys(QΓ/S

0)⊗A0K0 is a mixed F -isocrystal for the action of φ. Let (Pr)r∈Z

be the corresponding weight filtration on Hd
crys(QΓ/S

0) ⊗A0 K0, shifted by the number d: the

uniquely determined φ-stable filtration such that Pr/Pr−1 is a pure F -isocrystal of weight d+ r.

From 7.3 it follows that for all j ∈ Z we have

P2j−d(H
d
crys(QΓ/S

0)⊗A0 K0) = P2j−d+1(H
d
crys(QΓ/S

0)⊗A0 K0),

and that after tensoring ⊗K0K this subspace corresponds to F d−j
Γ in Hd

dR(XΓ). Equivalently,

Pd−2j = Pd−2j+1 and this corresponds to F j
Γ. The monodromy-weight conjecture for QΓ says

Mr = Pr for all r ∈ Z. It has recently been proven by T. Ito [19], and independently, relying on

our results in the present paper, by de Shalit [7]. We obtain:

Theorem 8.2. The filtration (F j
Γ)j≥0 on Hd

dR(XΓ) coincides with the monodromy filtration for

N on Hd
dR(XΓ):

F j
Γ =

∑

i

Ker(N i+1) ∩ im(N i−d+2j) =
∑

i

Ker(N i+1) ∩ im(N i−d+2j−1).

Lemma 8.3. Let d ∈ N and let N be an endomorphism of an abelian group such that Nd+1 = 0.

Suppose that for all j ≥ 0 we have

∑

i

Ker(N i+1) ∩ im(N i−d+2j) =
∑

i

Ker(N i+1) ∩ im(N i−d+2j−1).

Denote these subgroups by F j . If moreover Ker(N) = F d, then also for all j ≥ 0

Ker(Nd+1−j) = im(N j) = F j .

Proof: First observe that Nd+1 = 0 implies F j ⊂ Ker(Nd+1−j) for all j. By descending

induction on j we prove that this inclusion is an equality. For j = d this is our assumption. Let

now j < d and x ∈ Ker(Nd+1−j). Then x′ = Nx ∈ F j+1 by induction hypothesis. That is, x′ =∑
i x

′
i with x′i ∈ Ker(N i+1)∩ im(N i−d+2j+2). Write x′i = N i−d+2j+2yi and let zi = N i−d+2j+1yi.

Then zi ∈ Ker(N i+2) ∩ im(N i−d+2j+1), thus z =
∑

i zi ∈ (
∑

i Ker(N i+1) ∩ im(N i−d+2j)) = F j.

By construction also x− z ∈ Ker(N) = F d ⊂ F j . Thus x = (x− z) + z ∈ F j . This finishes the

proof of Ker(Nd+1−j) = F j. The identity with im(N j) follows easily from this.

8.4 In Hd
dR(XΓ) we define a subspace Cd as follows. If d is odd, we set Cd = 0. Now let d be

even. From Nφ = qφN it follows that Ker(N) is stable for φ, and together with 7.3 it follows

that F d
Γ is the weight-zero-subspace of Ker(N). Let Cd ⊂ Ker(N) be its φ-stable complement.
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In the proof of 8.5 below we will see — assuming the monodromy-weight conjecture for QΓ —

that

dimK(Cd) = 1, Cd ∩ F
d/2+1
Γ = ∅

(hence φ = qd/2 on Cd). For arbitrary d we define

H
d
dR(XΓ) = Hd

dR(XΓ)/C
d.

In particular H
d
dR(XΓ) = Hd

dR(XΓ) if d is odd. The operators N and φ on Hd
dR(XΓ) induce

operators N and φ on H
d
dR(XΓ). We define: the filtration (F

r
Γ)r≥0 on H

d
dR(XΓ) is the image

of the filtration (F r
Γ)r≥0 on Hd

dR(XΓ); the filtration (F
j
Hdg)j≥0 on H

d
dR(XΓ) is the image of the

filtration (F j
Hdg)j≥0 on Hd

dR(XΓ).

Theorem 8.5. (a) The filtrations (F
r
Γ)r≥0 and (F

j
Hdg)j≥0 are opposite.

(b) The filtration (F
r
Γ)r≥0 is stable for φ; we have φ = qd−r on F

r
Γ/F

r+1
Γ .

(c) The filtration (F
r
Γ)r≥0 coincides with both the kernel and the image filtration for N : for all

r we have

F
r
Γ = Ker(N

d+1−r
) = im(N

r
).

Proof: Assertions (a) and (b) follow from 7.7 and 7.3. For (c) we need the computation

[30] p.93 of the dimensions of the graded pieces for the filtration (F j
Γ)j≥0. Namely, for odd d

and d ≥ j ≥ 0 we have

dimK(F j
Γ/F

j+1
Γ ) = dimK(Hd

dR(XΓ)/F
1
Γ).

If d is even, d = 2t, the same holds for all d ≥ j ≥ 0, j 6= t, and moreover

dimK(F t
Γ/F

t+1
Γ ) = dimK(Hd

dR(XΓ)/F
1
Γ) + 1.

From 8.2 we easily deduce that the iterates of N induce surjective maps

Nk : F j
Γ/F

j+1
Γ −→ F j+k

Γ /F j+k+1
Γ(1)

for all j, k with d − k ≥ j ≥ 0. Now consider first the case where d is odd. Then all maps (1)

must be bijective, for dimension reasons. By descending induction on e we prove F e
Γ = im(N e)

for all d ≥ e ≥ 1. By 8.2 we have

F e
Γ =

∑

i

Ker(N i+1) ∩ im(N i−d+2e).

For the summation index i = d−e we have Ker(N i+1)∩ im(N i−d+2e) = im(N e) since Nd+1 = 0.

For summation indices i > d−e we have Ker(N i+1)∩im(N i−d+2e) ⊂ im(N i−d+2e) ⊂ im(N e). For

summation indices 0 ≤ i < d−e we consider the isomorphism (1) with k = i+1 and j = e: it tells

us Ker(N i+1)∩ im(N i−d+2e) ⊂ F e+1, but by induction hypothesis F e+1 = im(N e+1) ⊂ im(N e);

the induction is finished. That F e
Γ = Ker(Nd+1−e) for all e follows easily from this and the

identities

F e
Γ =

∑

i

Ker(N i+1) ∩ im(N i−d+2e−1)
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from 8.2. Now let d be even, d = 2t. Here we first observe

Ker(N) 6= F d
Γ .(2)

Indeed, if we had Ker(N) = F d
Γ we could apply 8.3 (we know Nd+1 = 0 from [24]) which

in particular would give us F 1
Γ = Ker(Nd) = Ker(N2t), F t

Γ = im(N t) and F t+1
Γ = Ker(N t),

implying that N t induces an isomorphismHd
dR(XΓ)/F

1
Γ
∼= F t

Γ/F
t+1
Γ , contradicting our dimension

estimates. However, for d odd one shows

F e
Γ = im(N e) for all d ≥ e ≥ t+ 1.(3)

Together with the identities

F e
Γ =

∑

i

Ker(N i+1) ∩ im(N i−d+2e−1)

from 8.2 one derives Ker(N) ∩ im(N) ⊂ F e
Γ for all d ≥ e ≥ t + 1 by an easy induction on e

(beginning with e = t + 1); in particular F d
Γ = Ker(N) ∩ im(N). By definition, Cd ⊂ Ker(N)

is the uniquely determined φ-stable complement of the weight-zero-part F d
Γ of Ker(N). From

F d
Γ = Ker(N)∩ im(N) we get Cd∩ im(N) = ∅ which implies Ker(N) = Ker(N) mod Cd for the

operator N = (N mod Cd) on H
d
dR(XΓ). Therefore the identities from 8.2 pass to the identities

F
j
Γ =

∑

i

Ker(N
i+1

) ∩ im(N
i−d+2j

) =
∑

i

Ker(N
i+1

) ∩ im(N
i−d+2j−1

).

Since F t+1
Γ ⊂ im(N) and Ker(N) ⊂ F t

Γ (again from 8.2) we also get Cd∩F t+1
Γ = ∅ and Cd ⊂ F t

Γ.

On the other hand we know Cd 6= 0 from (2). Therefore we obtain the estimates

dimK(F
j
Γ/F

j+1
Γ ) = dimK(F j

Γ/F
j+1
Γ ) = dimK(Hd

dR(XΓ)/F
1
Γ) for all d ≥ j ≥ 0, j 6= t

dimK(F
t
Γ/F

t+1
Γ ) ≤ dimK(F t

Γ/F
t+1
Γ )− 1 = dimK(Hd

dR(XΓ)/F
1
Γ).

Now the same proof as in the case where d is odd gives assertion (c) also in the case where d is

even. We are done.
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