Equivariant crystalline cohomology and base change ELMAR GROSSE-KLÖNNE

Abstract

Given a perfect field k of characteristic p > 0, a smooth proper k-scheme Y, a crystal E on Y relative to W(k) and a finite group G acting on Y and E, we show that, viewed as virtual k[G]-module, the reduction modulo p of the crystalline cohomology of E is the de Rham cohomology of E modulo p. On the way we prove a base change theorem for the virtual G-representions associated with G-equivariant objects in the derived category of W(k)-modules.

1 The Theorem

Let k be a perfect field of characteristic p > 0, let W denote its ring of Witt vectors, let $K = \operatorname{Quot}(W)$. Let Y be a proper and smooth k-scheme and suppose that the finite group G acts (from the right) on Y. Let E be a locally free, finitely generated crystal of $\mathcal{O}_{Y/W}$ -modules and suppose that for each $g \in G$ we are given an isomorphism of crystals $\tau_g : E \to g^*E$ (where g^*E denotes the pull back of E via $g : Y \to Y$) such that $g_2^*(\tau_{g_1}) \circ \tau_{g_2} = \tau_{g_2g_1}$ (equality as maps $E \to (g_2g_1)^*E = g_2^*g_1^*E)$ for any two $g_1, g_2 \in G$. For $s \in \mathbb{Z}$ let $H_{crys}^s(Y/W, E)$ denote the s-th crystalline cohomology group (relative to $\operatorname{Spf}(W)$) of the crystal E, a finitely generated W-module which is zero if $s \notin [0, 2 \dim(Y)]$ (see [1]). On the other hand, the reduction modulo p of the crystal E is equivalent with a locally free \mathcal{O}_Y -module E_k with connection $E_k \to E_k \otimes_{\mathcal{O}_Y} \Omega_Y^1$; here Ω_Y^1 denotes the \mathcal{O}_Y module of differentials of Y/k. Let $\Omega_Y^\bullet \otimes E_k$ denote the corresponding de Rham complex. The cohomology group $H^s(Y, \Omega_Y^\bullet \otimes E_k)$ is a finite dimensional k-vector space which is zero if $s \notin [0, 2 \dim(Y)]$. The isomorphisms τ_g for $g \in G$ provide each $H_{crys}^s(Y/W, E)$, each $H^s(Y, \Omega_Y^\bullet \otimes E_k)$ and each $H^s(Y, \Omega_Y^t \otimes E_k)$ with an action of G (from the left). By

²⁰⁰⁰ Mathematics Subject Classification. 14F30, 13D

Key words and phrases. crystalline cohomology, base change, virtual representation

definition, the reduction modulo p of the K[G]-module $H^s_{crys}(Y/W, E) \otimes_W K$ is the k[G]module obtained by reducing modulo p the G-stable W-lattice $H^s_{crys}(Y/W, E)/(\text{torsion})$ in $H^s_{crys}(Y/W, E) \otimes_W K$.

Theorem 1.1. For any j, the following three virtual k[G]-modules are the same: (i) the reduction modulo p of the virtual K[G]-module $\sum_{s}(-1)^{s}H_{crys}^{s}(Y/W, E) \otimes_{W} K$ (ii) $\sum_{s}(-1)^{s}H^{s}(Y, \Omega_{Y}^{\bullet} \otimes E_{k})$ (iii) $\sum_{s,t}(-1)^{s+t}H^{s}(Y, \Omega_{Y}^{t} \otimes E_{k})$.

An obvious variant of Theorem 1.1 holds in logarithmic crystalline cohomology, for crystals E on the logarithmic crystalline site of Y/W with respect to a log structure defined by a normal crossings divisor on Y. Similarly, the proof which we give below also shows the analog of Theorem 1.1 for the ℓ -adic cohomology ($\ell \neq p$) of constructible ℓ -adic sheaves on Y, even if Y/k is not proper. Of course, the result in the ℓ -adic case (even for non-poper Y/k is well known; it has been used for investigating the reduction modulo ℓ of the Deligne-Lusztig characters of groups $G = \mathbb{G}(\mathbb{F})$, where \mathbb{G} is a reductive group over a finite field \mathbb{F} of characteristic p. In [3] we use the variant of Theorem 1.1 in logarithmic crystalline cohomology to show that these Deligne-Lusztig characters, usually defined via ℓ -adic cohomology of certain \mathbb{F} -varieties which are non-proper in general, can also be expressed through the log crystalline cohomology of suitable log crystals on suitable proper and smooth F-varieties with a normal crossings divisor. Unfortunately, the (more geometric) proof of the ℓ -adic analog of Theorem 1.1 (due to Deligne and Lusztig, see for example [2] Lemma 12.4 and A3.15) breaks down for crystalline cohomology. On the other hand, our proof of Theorem 1.1 contains a result (Theorem 2.1) on G-actions on strictly perfect complexes in the derived category which should be of independent interest.

2 The Proof

PROOF OF THEOREM 1.1: (ii)=(iii) is clear. By [1] we know that the total crystalline cohomology $\mathbb{R}\Gamma_{crys}(Y/W, E)$, as an object in the derived category D(W) of the category of W-modules, is represented by a complex of W-modules of finite tor-dimension and with finitely generated cohomology; by functoriality, G acts on $\mathbb{R}\Gamma_{crys}(Y/W, E)$. Also from [1] we know that the total crystalline cohomology commutes with base change, i.e. that $\mathbb{R}\Gamma_{crys}(Y/W, E) \otimes_W^{\mathbb{L}} k$ is the total crystalline cohomology of the reduction modulo p of E (as a crystal relative to $\operatorname{Spec}(k)$). But the latter is known (see [1] Corollary 7.4) to be the de Rham cohomology of E_k , i.e. its s-th cohomology group is $H^s(Y, \Omega_Y^{\bullet} \otimes E_k)$. Hence (i)=(ii) follows from Theorem 2.1 below. Let A be a complete discrete valuation ring with perfect residue field k of characteristic p > 0 and fraction field K of characteristic 0. Let L^{\bullet} be a complex of A-modules of finite tor-dimension and with finitely generated cohomology; by [1] Lemma 7.15 this is equivalent with saying that L^{\bullet} is quasiisomorphic to a strictly perfect complex, i.e. a bounded complex of finitely generated projective A-modules. Suppose the finite group G acts on L^{\bullet} when L^{\bullet} is viewed as an object in the derived category D(A) of the category of A-modules. Then each cohomology group $H^{i}(L^{\bullet} \otimes_{A} K) = H^{i}(L^{\bullet}) \otimes_{A} K$ (resp. each cohomology group $H^{i}(L^{\bullet} \otimes_{A} k)$) becomes a representation of G on a finite dimensional K-vector space (resp. k-vector space).

Theorem 2.1. The virtual k[G]-module $\sum_i (-1)^i H^i(L^{\bullet} \otimes_A^{\mathbb{L}} k)$ is the reduction (modulo the maximal ideal of A) of the virtual K[G]-module $\sum_i (-1)^i H^i(L^{\bullet}) \otimes_A K$. Equivalently, the restriction of the character of $\sum_i (-1)^i H^i(L^{\bullet}) \otimes_A K$ to the subset of p-regular elements of G is the Brauer character of $\sum_i (-1)^i H^i(L^{\bullet} \otimes_A^{\mathbb{L}} k)$.

We say that the automorphism γ of the finitely generated A-module M is prime to p if and only if the following holds. For any finite extension $A' \supset A$ with a discrete valuation ring A' and for any two $\gamma \otimes_A A'$ -stable submodules N, N' of $M \otimes_A A'$ with $N' \subset N$ and such that N/N' is a cyclic A'-module, the endomorphism which $\gamma \otimes_A A'$ induces on N/N'is of finite order prime to p.

Lemma 2.2. Let γ be an automorphism of the finitely generated A-module M. (a) If M is free then γ is prime to p if and only if the roots of the characteristic polynomial of γ are roots of unity of order prime to p. In particular, $\gamma|_N : N \to N$ is prime to p for each submodule N of M with $\gamma(N) = N$.

(b) Let $M_1 \subset M$ be a submodule with $\gamma(M_1) = M_1$ and such that $M_2 = M/M_1$ is free. Let γ_1 , resp. γ_2 , be the induced automorphism of M_1 , resp. of M_2 . If γ_1 and γ_2 are prime to p, then γ is prime to p.

PROOF: Statement (a) is clear. (b) Let $N' \subset N \subset M \otimes_A A'$ be as in the definition. If $N \subset M_1 \otimes_A A'$ the hypothesis on γ_1 applies. Otherwise, since $M_2 \otimes_A A'$ is free over A'and N/N' is cyclic, N/N' maps injectively to $M_2 \otimes_A A'$ and the hypothesis on γ_2 applies.

PROOF OF THEOREM 2.1: The problem is of course that the $H^i(L^{\bullet})$ may have torsion, i.e. $H^i(L^{\bullet}) \otimes_A k \neq H^i(L^{\bullet} \otimes_A^{\mathbb{L}} k)$ in general. Similarly, the task would be easy if we knew that there is a strictly perfect complex K^{\bullet} quasiisomorphic to L^{\bullet} such that the action of G on L^{\bullet} in D(A) is given by the action of G on K^{\bullet} by true morphisms of complexes (not just by morphisms in D(A)). We introduce some notations. For an automorphism $\gamma: L^{\bullet} \to L^{\bullet}$ in D(A) let $\epsilon_1^i, \ldots, \epsilon_{n(i)}^i$ (with $n(i) = \dim_k H^i(L^{\bullet} \otimes_A^{\mathbb{L}} k)$) denote the roots of the characteristic polynomial of γ acting on $H^i(L^{\bullet} \otimes_A^{\mathbb{L}} k)$ and let $\tilde{\epsilon}_1^i, \ldots, \tilde{\epsilon}_{n(i)}^i$ denote their Teichmüller liftings. On the other hand let $\xi_1^i, \ldots, \xi_{n'(i)}^i$ (with $n'(i) = \dim_K H^i(L^{\bullet}) \otimes_A K$) denote the roots of the characteristic polynomial of γ acting on $H^i(L^{\bullet}) \otimes_A K$. Then let

$$Br(\gamma, H^{\heartsuit}(L^{\bullet} \otimes_{A}^{\mathbb{L}} k)) = \sum_{i} (-1)^{i} \sum_{j=1}^{n(i)} \widetilde{\epsilon}_{j}^{i},$$
$$Tr(\gamma, H^{\heartsuit}(L^{\bullet}) \otimes_{A} K) = \sum_{i} (-1)^{i} \sum_{j=1}^{n'(i)} \xi_{j}^{i}.$$

What we must show is that for all *p*-regular elements $g \in G$ (those whose order in G is not divisible by p), if $\gamma : L^{\bullet} \to L^{\bullet}$ denotes the corresponding automorphism of L^{\bullet} in D(A), then

$$Br(\gamma, H^{\heartsuit}(L^{\bullet} \otimes_{A}^{\mathbb{L}} k)) = Tr(\gamma, H^{\heartsuit}(L^{\bullet}) \otimes_{A} K).$$

Clearly it is enough to show the following statement. For any strictly perfect complex L^{\bullet} of *A*-modules (not necessarily endowed with a *G*-action in D(A)) and for any automorphism $\gamma: L^{\bullet} \to L^{\bullet}$ in D(A) which on the cohomology modules induces automorphisms prime to *p* we have

$$Br(\gamma, H^{\heartsuit}(L^{\bullet} \otimes_{A}^{\mathbb{L}} k)) = Tr(\gamma, H^{\heartsuit}(L^{\bullet}) \otimes_{A} K).$$

We use induction on the minimal $m \in \mathbb{Z}_{\geq 0}$ with the following property: after a suitable degree shift we have $L^i = 0$ for all $i \notin [0, m]$. For m = 0 the statement is clear from Lemma 2.2 (a). Now let $m \ge 1$; shifting degrees we may assume $L^i = 0$ for all $i \notin [0, m]$. Let $d^m : L^{m-1} \to L^m$ denote the differential. Choose a sub-k-vector space N_k^{m-1} of $L^{m-1} \otimes k$ which under $d^m \otimes k$ maps isomorphically to the kernel of $L^m \otimes k \to H^m(L^{\bullet} \otimes k)$ $k = H^m(L^{\bullet}) \otimes k$. Then $N_k^{m-1} = N^{m-1} \otimes k$ for a direct summand N^{m-1} of L^{m-1} . By construction, N^{m-1} maps isomorphically to its image N^m in L^m . Thus, setting $N^i = 0$ if $i \notin \{m-1, m\}$, the subcomplex N^{\bullet} of L^{\bullet} is acyclic. Dividing it out we may therefore assume $L^m \otimes k = H^m(L^{\bullet} \otimes k)$. Since the functor $K^-(\text{proj}-A) \to D(A)$ from the homotopy category of complexes of projective A-modules bounded above to D(A) is fully faithful, the action of γ on L^{\bullet} in D(A) is in fact represented by a true morphism of complexes $\gamma^{\bullet}: L^{\bullet} \to L^{\bullet}$. Base changing to a finite extension of A by a discrete valuation ring (this does not affect the numbers Br and Tr) we may suppose that the characteristic polynomial of $\gamma^m : L^m \to L^m$ splits in A (we remark that γ^m is bijective: this follows from $L^m \otimes k = H^m(L^{\bullet} \otimes k)$ and the fact that γ acts bijectively on $H^m(L^{\bullet} \otimes k)$). We therefore find a γ^m -stable filtration

(1)
$$(0) = F^0 \subset F^1 \subset \ldots \subset F^s = L^m \qquad (s = \operatorname{rk}(L^m))$$

such that $G^e = F^e/F^{e-1}$ is free of rank one, for any $1 \le e \le s$. The cyclic A-module

$$\frac{F^{e}}{(F^{e} \cap \operatorname{im}(d^{m})) + F^{e-1}}$$

is a γ^m -stable subquotient of $H^m(L^{\bullet})$ (it is non-zero because of $L^m \otimes k = H^m(L^{\bullet} \otimes k)$), hence γ^m acts on it by multiplication with a root of unity of order prime to p. Let $\xi_e \in A^{\times}$ denote its Teichmüller lifting. Choose $\ell_e \in F^e$ which represents a basis element of G^e ; then ℓ_1, \ldots, ℓ_s is a basis of L^m . Modulo F^{e-1} the class of $\xi_e \ell_e - \gamma^m(\ell_e) \in F^e$ lies in $\operatorname{im}(d^m)$. Choose a $t_e \in L^{m-1}$ with $d^m(t_e) = \xi_e \ell_e - \gamma^m(\ell_e)$ modulo F^{e-1} . Let $t: L^m \to L^{m-1}$ denote the A-linear map which sends ℓ_e to t_e , for each $1 \leq e \leq s$. Using t we see that we may modify γ^{\bullet} within its homotopy class to achieve that the filtration (1) is still γ^m -stable and such that γ^m acts on each G^e by multiplication with a root of unity of prime-to-*p*-order in A^{\times} . Therefore we may assume that $\gamma^m : L^m \to L^m$ is prime to *p*. Let $L_1^m = L^m$ and $L_1^i = 0$ for $i \neq m$. Then L_1^{\bullet} is a γ^{\bullet} -stable subcomplex of L^{\bullet} and since $Br(\gamma)$ and $Tr(\gamma)$ are additive in exact γ^{\bullet} -equivariant sequences of complexes it suffices to show $Br(\gamma) = Tr(\gamma)$ for the complexes L_1^{\bullet} and $L^{\bullet}/L_1^{\bullet}$. Since these complexes are shorter than L^{\bullet} this follows from the induction hypothesis. Indeed, the prime to p hypothesis is clearly satisfied for L_1^{\bullet} so it remains to show that γ^{\bullet} induces automorphisms prime to p on the cohomology modules of $L^{\bullet}/L_{1}^{\bullet}$. In degrees smaller than m-1 this is clear from the corresponding hypothesis on L^{\bullet} , only $H^{m-1}(L^{\bullet}/L_1^{\bullet})$ is critical. But $H^{m-1}(L^{\bullet})$ is a submodule of $H^{m-1}(L^{\bullet}/L_1^{\bullet})$ and the quotient $Q = H^{m-1}(L^{\bullet}/L_1^{\bullet})/H^{m-1}(L^{\bullet})$ maps isomorphically to a submodule of $L_1^m = L^m$. By Lemma 2.2 (b) it suffices to show that γ^{\bullet} induces automorphisms prime to p on $H^{m-1}(L^{\bullet})$ and on Q. For $H^{m-1}(L^{\bullet})$ this holds by hypothesis, for Q this follows from Lemma 2.2 (a).

References

- P. Berthelot, A. Ogus, Notes on crystalline cohomology. Princeton University Press (1978)
- M. Cabanes, M. Enguehard, Representation theory of finite reductive groups. New Mathematical Monographs, 1. Cambridge University Press, Cambridge (2004)
- [3] E. Grosse-Klönne, On the crystalline cohomology of Deligne-Lusztig varieties, preprint