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Equivariant crystalline cohomology and base change

Elmar Grosse-Klönne

Abstract

Given a perfect field k of characteristic p > 0, a smooth proper k-scheme Y ,

a crystal E on Y relative to W (k) and a finite group G acting on Y and E, we

show that, viewed as virtual k[G]-module, the reduction modulo p of the crystalline

cohomology of E is the de Rham cohomology of E modulo p. On the way we prove a

base change theorem for the virtual G-representions associated with G-equivariant

objects in the derived category of W (k)-modules.

1 The Theorem

Let k be a perfect field of characteristic p > 0, let W denote its ring of Witt vectors,

let K = Quot(W ). Let Y be a proper and smooth k-scheme and suppose that the finite

group G acts (from the right) on Y . Let E be a locally free, finitely generated crystal

of OY/W -modules and suppose that for each g ∈ G we are given an isomorphism of

crystals τg : E → g∗E (where g∗E denotes the pull back of E via g : Y → Y ) such that

g∗2(τg1) ◦ τg2 = τg2g1 (equality as maps E → (g2g1)
∗E = g∗2g

∗
1E) for any two g1, g2 ∈ G.

For s ∈ Z let Hs
crys(Y/W,E) denote the s-th crystalline cohomology group (relative to

Spf(W )) of the crystal E, a finitely generated W -module which is zero if s /∈ [0, 2 dim(Y )]

(see [1]). On the other hand, the reduction modulo p of the crystal E is equivalent with a

locally free OY -module Ek with connection Ek → Ek ⊗OY
Ω1

Y ; here Ω1
Y denotes the OY -

module of differentials of Y/k. Let Ω•
Y ⊗Ek denote the corresponding de Rham complex.

The cohomology group Hs(Y,Ω•
Y ⊗ Ek) is a finite dimensional k-vector space which is

zero if s /∈ [0, 2 dim(Y )]. The isomorphisms τg for g ∈ G provide each Hs
crys(Y/W,E),

each Hs(Y,Ω•
Y ⊗ Ek) and each Hs(Y,Ωt

Y ⊗ Ek) with an action of G (from the left). By
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definition, the reduction modulo p of the K[G]-module Hs
crys(Y/W,E)⊗W K is the k[G]-

module obtained by reducing modulo p the G-stable W -lattice Hs
crys(Y/W,E)/(torsion)

in Hs
crys(Y/W,E)⊗W K.

Theorem 1.1. For any j, the following three virtual k[G]-modules are the same:

(i) the reduction modulo p of the virtual K[G]-module
∑

s(−1)sHs
crys(Y/W,E)⊗W K

(ii)
∑

s(−1)sHs(Y,Ω•
Y ⊗ Ek)

(iii)
∑

s,t(−1)s+tHs(Y,Ωt
Y ⊗Ek).

An obvious variant of Theorem 1.1 holds in logarithmic crystalline cohomology, for

crystals E on the logarithmic crystalline site of Y/W with respect to a log structure de-

fined by a normal crossings divisor on Y . Similarly, the proof which we give below also

shows the analog of Theorem 1.1 for the ℓ-adic cohomology (ℓ 6= p) of constructible ℓ-adic

sheaves on Y , even if Y/k is not proper. Of course, the result in the ℓ-adic case (even for

non-poper Y/k) is well known; it has been used for investigating the reduction modulo ℓ

of the Deligne-Lusztig characters of groups G = G(F), where G is a reductive group over

a finite field F of characteristic p. In [3] we use the variant of Theorem 1.1 in logarith-

mic crystalline cohomology to show that these Deligne-Lusztig characters, usually defined

via ℓ-adic cohomology of certain F-varieties which are non-proper in general, can also

be expressed through the log crystalline cohomology of suitable log crystals on suitable

proper and smooth F-varieties with a normal crossings divisor. Unfortunately, the (more

geometric) proof of the ℓ-adic analog of Theorem 1.1 (due to Deligne and Lusztig, see

for example [2] Lemma 12.4 and A3.15) breaks down for crystalline cohomology. On the

other hand, our proof of Theorem 1.1 contains a result (Theorem 2.1) on G-actions on

strictly perfect complexes in the derived category which should be of independent interest.

2 The Proof

Proof of Theorem 1.1: (ii)=(iii) is clear. By [1] we know that the total crystalline

cohomology RΓcrys(Y/W,E), as an object in the derived category D(W ) of the category

of W -modules, is represented by a complex of W -modules of finite tor-dimension and

with finitely generated cohomology; by functoriality, G acts on RΓcrys(Y/W,E). Also

from [1] we know that the total crystalline cohomology commutes with base change, i.e.

that RΓcrys(Y/W,E) ⊗L

W k is the total crystalline cohomology of the reduction modulo

p of E (as a crystal relative to Spec(k)). But the latter is known (see [1] Corollary 7.4)

to be the de Rham cohomology of Ek, i.e. its s-th cohomology group is Hs(Y,Ω•
Y ⊗ Ek).

Hence (i)=(ii) follows from Theorem 2.1 below. �

2



Let A be a complete discrete valuation ring with perfect residue field k of characteristic

p > 0 and fraction field K of characteristic 0. Let L• be a complex of A-modules of

finite tor-dimension and with finitely generated cohomology; by [1] Lemma 7.15 this is

equivalent with saying that L• is quasiisomorphic to a strictly perfect complex, i.e. a

bounded complex of finitely generated projective A-modules. Suppose the finite group G

acts on L• when L• is viewed as an object in the derived category D(A) of the category

of A-modules. Then each cohomology group H i(L• ⊗A K) = H i(L•) ⊗A K (resp. each

cohomology group H i(L• ⊗L

A k)) becomes a representation of G on a finite dimensional

K-vector space (resp. k-vector space).

Theorem 2.1. The virtual k[G]-module
∑

i(−1)iH i(L• ⊗L

A k) is the reduction (modulo

the maximal ideal of A) of the virtual K[G]-module
∑

i(−1)iH i(L•)⊗A K. Equivalently,

the restriction of the character of
∑

i(−1)iH i(L•)⊗AK to the subset of p-regular elements

of G is the Brauer character of
∑

i(−1)iH i(L• ⊗L

A k).

We say that the automorphism γ of the finitely generated A-module M is prime to p if

and only if the following holds. For any finite extension A′ ⊃ A with a discrete valuation

ring A′ and for any two γ ⊗A A′-stable submodules N,N ′ of M ⊗A A′ with N ′ ⊂ N and

such that N/N ′ is a cyclic A′-module, the endomorphism which γ⊗A A′ induces on N/N ′

is of finite order prime to p.

Lemma 2.2. Let γ be an automorphism of the finitely generated A-module M .

(a) If M is free then γ is prime to p if and only if the roots of the characteristic polynomial

of γ are roots of unity of order prime to p. In particular, γ|N : N → N is prime to p for

each submodule N of M with γ(N) = N .

(b) Let M1 ⊂ M be a submodule with γ(M1) = M1 and such that M2 = M/M1 is free.

Let γ1, resp. γ2, be the induced automorphism of M1, resp. of M2. If γ1 and γ2 are prime

to p, then γ is prime to p.

Proof: Statement (a) is clear. (b) Let N ′ ⊂ N ⊂ M ⊗A A′ be as in the definition.

If N ⊂ M1 ⊗A A′ the hypothesis on γ1 applies. Otherwise, since M2 ⊗A A′ is free over A′

and N/N ′ is cyclic, N/N ′ maps injectively to M2⊗AA
′ and the hypothesis on γ2 applies.�

Proof of Theorem 2.1: The problem is of course that theH i(L•) may have torsion,

i.e. H i(L•)⊗A k 6= H i(L• ⊗L

A k) in general. Similarly, the task would be easy if we knew

that there is a strictly perfect complex K• quasiisomorphic to L• such that the action

of G on L• in D(A) is given by the action of G on K• by true morphisms of complexes

(not just by morphisms in D(A)). We introduce some notations. For an automorphism

γ : L• → L• in D(A) let ǫi1, . . . , ǫ
i
n(i) (with n(i) = dimk H

i(L• ⊗L

A k)) denote the roots of

the characteristic polynomial of γ acting on H i(L• ⊗L

A k) and let ǫ̃i1, . . . , ǫ̃
i
n(i) denote their
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Teichmüller liftings. On the other hand let ξi1, . . . ξ
i
n′(i) (with n′(i) = dimK H i(L•)⊗A K)

denote the roots of the characteristic polynomial of γ acting on H i(L•)⊗A K. Then let

Br(γ,H♥(L• ⊗L

A k)) =
∑

i

(−1)i
n(i)∑

j=1

ǫ̃ij ,

T r(γ,H♥(L•)⊗A K) =
∑

i

(−1)i
n′(i)∑

j=1

ξij.

What we must show is that for all p-regular elements g ∈ G (those whose order in G

is not divisible by p), if γ : L• → L• denotes the corresponding automorphism of L• in

D(A), then

Br(γ,H♥(L• ⊗L

A k)) = Tr(γ,H♥(L•)⊗A K).

Clearly it is enough to show the following statement. For any strictly perfect complex L• of

A-modules (not necessarily endowed with a G-action in D(A)) and for any automorphism

γ : L• → L• in D(A) which on the cohomology modules induces automorphisms prime to

p we have

Br(γ,H♥(L• ⊗L

A k)) = Tr(γ,H♥(L•)⊗A K).

We use induction on the minimal m ∈ Z≥0 with the following property: after a suitable

degree shift we have Li = 0 for all i /∈ [0, m]. For m = 0 the statement is clear from

Lemma 2.2 (a). Now let m ≥ 1; shifting degrees we may assume Li = 0 for all i /∈ [0, m].

Let dm : Lm−1 → Lm denote the differential. Choose a sub-k-vector space Nm−1
k of

Lm−1 ⊗ k which under dm ⊗ k maps isomorphically to the kernel of Lm ⊗ k → Hm(L• ⊗

k) = Hm(L•) ⊗ k. Then Nm−1
k = Nm−1 ⊗ k for a direct summand Nm−1 of Lm−1. By

construction, Nm−1 maps isomorphically to its image Nm in Lm. Thus, setting N i = 0

if i /∈ {m − 1, m}, the subcomplex N• of L• is acyclic. Dividing it out we may therefore

assume Lm⊗k = Hm(L•⊗k). Since the functorK−(proj−A) → D(A) from the homotopy

category of complexes of projective A-modules bounded above to D(A) is fully faithful,

the action of γ on L• in D(A) is in fact represented by a true morphism of complexes

γ• : L• → L•. Base changing to a finite extension of A by a discrete valuation ring

(this does not affect the numbers Br and Tr) we may suppose that the characteristic

polynomial of γm : Lm → Lm splits in A (we remark that γm is bijective: this follows

from Lm ⊗ k = Hm(L• ⊗ k) and the fact that γ acts bijectively on Hm(L• ⊗ k)). We

therefore find a γm-stable filtration

(0) = F 0 ⊂ F 1 ⊂ . . . ⊂ F s = Lm (s = rk(Lm))(1)

such that Ge = F e/F e−1 is free of rank one, for any 1 ≤ e ≤ s. The cyclic A-module

F e

(F e ∩ im(dm)) + F e−1
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is a γm-stable subquotient of Hm(L•) (it is non-zero because of Lm ⊗ k = Hm(L• ⊗ k)),

hence γm acts on it by multiplication with a root of unity of order prime to p. Let ξe ∈ A×

denote its Teichmüller lifting. Choose ℓe ∈ F e which represents a basis element of Ge;

then ℓ1, . . . , ℓs is a basis of L
m. Modulo F e−1 the class of ξeℓe−γm(ℓe) ∈ F e lies in im(dm).

Choose a te ∈ Lm−1 with dm(te) = ξeℓe − γm(ℓe) modulo F e−1. Let t : Lm → Lm−1 de-

note the A-linear map which sends ℓe to te, for each 1 ≤ e ≤ s. Using t we see that

we may modify γ• within its homotopy class to achieve that the filtration (1) is still

γm-stable and such that γm acts on each Ge by multiplication with a root of unity of

prime-to-p-order in A×. Therefore we may assume that γm : Lm → Lm is prime to p.

Let Lm
1 = Lm and Li

1 = 0 for i 6= m. Then L•
1 is a γ•-stable subcomplex of L• and since

Br(γ) and Tr(γ) are additive in exact γ•-equivariant sequences of complexes it suffices to

show Br(γ) = Tr(γ) for the complexes L•
1 and L•/L•

1. Since these complexes are shorter

than L• this follows from the induction hypothesis. Indeed, the prime to p hypothesis

is clearly satisfied for L•
1 so it remains to show that γ• induces automorphisms prime

to p on the cohomology modules of L•/L•
1. In degrees smaller than m − 1 this is clear

from the corresponding hypothesis on L•, only Hm−1(L•/L•
1) is critical. But Hm−1(L•)

is a submodule of Hm−1(L•/L•
1) and the quotient Q = Hm−1(L•/L•

1)/H
m−1(L•) maps

isomorphically to a submodule of Lm
1 = Lm. By Lemma 2.2 (b) it suffices to show that

γ• induces automorphisms prime to p on Hm−1(L•) and on Q. For Hm−1(L•) this holds

by hypothesis, for Q this follows from Lemma 2.2 (a). �
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