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The Cech Filtration and Monodromy in Log
Crystalline Cohomology

ELMAR GROSSE-KLONNE

Abstract

For a strictly semistable log scheme Y over a perfect field k of characteristic p
we investigate the canonical Cech spectral sequence (C)r abutting to the Hyodo-
Kato (log crystalline) cohomology H;,,s(Y/T)g of Y and beginning with the log
convergent cohomology of its various component intersections Y*. We compare the
filtration on H}

crys

(Y/T)q arising from (C)r with the monodromy operator N on
H s(Y/T)g. We also express N through residue maps and study relations with
singular cohomology. If Y lifts to a proper strictly semistable (formal) scheme X
over a finite totally ramified extension of W (k), with generic fibre Xx, we obtain
results on how the simplicial structure of X" (as analytic space) is reflected in
Hjp(Xk) = Hyp(XE).

Introduction

Let A be a complete discrete valuation ring of mixed characteristic (0, p), with perfect
residue field k£ and fraction field K, and let K be the fraction field of the ring of Witt
vectors W (k) of k. Let X be a proper strictly semistable A-scheme. Besides its Hodge
filtration the de Rham cohomology H,(Xk) of the generic fibre X of X comes with a
Ky-lattice with a Frobenius operator F' and a nilpotent operator N: these are obtained,

via the Hyodo-Kato isomorphism (which depends on the choice of a uniformizer 7 in A)

(*) H;R(XK) = H:rys(Y/T)Q QKo K
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from the Frobenius operator F' and the nilpotent operator N on the Hyodo-Kato (log crys-
talline) cohomology H,, . (Y/T)q of the special fibre Y of X. It follows from the theorem
of Tsuji and (independently) Faltings that H},(Xk), together with its Hodge filtration
and the operators ' and N on its Ky-lattice defined by (%), allows the reconstruction of
the p-adic étale cohomology group H(Xg,Q,) together with its Gal(K /K )-action. We
have N = 0 if X has good reduction. It is a general and important problem to recon-
struct as much as possible of the N-structure on Hn(Xk) = Hjp(X#) (where X is
the rigid analytic space associated with X ) solely from Xy or X#. For this purpose
the obvious idea is to look at the following spectral sequence (C')g. Let {Y;};er be the
set of irreducible components of Y. Each Y; is (classically) smooth over k. For i > 1 let
V" = [15=(NY))jer where I runs through the set of subsets of R with precisely i ele-
ments. We assume that all connected components of Y are of the same dimension d. For
direct sums E = [ [ E of subschemes E; C Y let |E[x= [[,]Es[x be the direct sum of the
preimages of the E; under the specialization map X% — Y: these |E [x are admissible
open subspaces of X{'. The admissible open covering X" = U,cg|Y;[x is a covering by

contractible spaces in the sense of Berkovich. It gives rise to the spectral sequence
(C)s BV = Hip(Y""'[x) = Hyp'(Xi).

In applications, for example when X is a Shimura variety, (C')s often has arithmetical
meaning. In the case d = 1, Coleman and Tovita [5] gave a description of N on Hjp(Xf)

in terms of (C')g; namely, they proved that it is the composite

Hin(Xi) =% Hip(1Y?[x) = Hip(Xx)

where Res is an explicit residue map and 4 is the connecting homomorphism in (C)g. For
any d, Alon and de Shalit [I] gave a tentative definition of N for varieties X uniformized
by Drinfel’d’s symmetric spaces; their central concept of harmonic cochains on the Bruhat
Tits building is intimately related to (C')s. The observation from [9] that for such varieties
the filtration F2 on Hip(Xk) defined by (C)s is the weight filtration for the Frobenius
action plays a role in de Shalit’s recent proof of the monodromy weight conjecture for
such varieties [6] (another proof was given by Ito [I3]). Besides these example we are not
aware of other investigations of (C')g. The general reference for monodromy operators
arising in semistable families (considered there in the (-adic and in the complex analytic
setting) is [llusie’s article [12]. Specifically, the Cech complex from [12] 2.1.5, 3.2 does not
correspond to (C')g but rather to the canonical Cech spectral sequence

(C)rig EYT = HY.

rig

(Yp—i—l) —_— Hp+¢1(y)

rig

with H*

~ig denoting non logarithmic rigid cohomology.
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In this paper we begin the study of how N interacts with (C')g for general X by using
log convergent cohomology. Since Y is a normal crossings divisor on the regular scheme X
it gives rise to a natural log structure on X, and by pull back to natural log structures on
subschemes of X. Thus, since Y is a log scheme over the log point 77 = (Spec(k), (N —
k,1+ 0)) over k, all subschemes of Y become T}-log schemes. As such we ask for their
log convergent cohomology H}  (./T) relative to T' = (Spf(W(k)), (N — W(k),1 — 0))
which takes values in Ky-vector spaces. For example, HY (Y/T) = H*(Y,Cuwy ) for a
certain logarithmic de Rham complex Cw§ on analytic tubular neighbourhoods of Y in
local T-log smooth liftings. Since Y is log smooth over T} the Hyodo-Kato cohomology

* o(Y/T). There is a natural Cech spectral sequence

H,,(Y/T)q is isomorphic to H,

(C)r BV =HY (YPYT) = HEM(Y/T) = HPYU(Y/T)q.

conv conv crys

By [9], 3.8 and 3.9, the isomorphism () extends to an isomorphism of spectral sequences
(C)s = (C)r ®k, K. In particular, the descending filtration (F¢H,., (Y/T)g)r>0 on

H: (Y/T)q induced by (C)r redefines the descending filtration (F¢Hjz(Xk))r>0 on
Hn(Xg) induced by (C)g (we call them the canonical Cech filtrations). As our main tool
to analyse (C)p we introduce the Cech-double complez B** on'Y (or rather on a simplicial
scheme U, associated with a suitable Zariski open covering of Y') whose total complex B*
Y/T) and whose (k — 1)-st column B**~1 computes HZ  (Y*/T). (Since

conv

computes HY  (

Y*/T} is not log smooth it is doubtful if its log crystalline cohomology (relative to T')
is a useful object.) This means that (C)r is the spectral sequence associated with the
stupid vertical filtration F& of B**. On the other hand we consider a double complex
A** with associated total complex A® which is the straighforward analog (in the log
convergent setting, as opposed to the log crystalline setting) of the Hyodo-Steenbrink-
complex W,A* on Y constructed by Mokrane [I9]. This A* computes H (Y/T)q =
H:,  (Y/T), too. Moreover A® is endowed with an endomorphism v which induces N
on HY  (Y/T)g. The complexes A* and B® can be related in two ways: Firstly, there
is a natural quasiisomorphism ¢ : A®* — B°®. Secondly, there is a third complex C*
endowed with a filtration F5 and an endomorphism v such that: there is a natural
quasiisomorphism A®* — C*° respecting the respective endomorphisms v, and there is a
natural quasiisomorphism B* — C°, filtered with respect to the respective filtrations F{.
In particular, v on C* induces an operator N on (C)r. We prove (cf. 3.6 B8] A.2I):
Theorem: N =0 on H*(Y,B**~') and N(F;'H,,(Y/T)q) C FEH},(Y/T)q for

any k > 0. For i > 0 the i-fold iterated monodromy operator N* on H. (Y/T)g =

crys

H*(Y,Cuwy) = H*(Y, B®) is induced by a composite map of sheaf complexes
Cwy 2 F.B* C B

with an explicit residue map p;.



Retransposing to our lifted situation we derive (cf. [[4):

Theorem: N on H},(Xk) naturally extends to an operator N on (C)s. However,
N =0 on Hip(]Y*[x), and N(FE " Hin(Xg)) C FEH:(Xk)) for any k > 1. Fori >0
the i-fold iterated monodromy operator N* on H}n(Xy) has the form

Hjjp(X) 2% FLH(Xk) C Hip(Xi)

with a residue map Res.

We view this as the generalization, to any d, of the description of N given by lovita
and Coleman in case d = 1. In particular we get an upper bound for the vanishing order of
N described in terms of X#*. We do not know if in general the residue map H},(Xg) fes
FLH;5(Xk)) can be made explicit without involving the log basis T'. However, for i = * =
d there is a natural candidate, generalizing the residue map used by lovita and Coleman
incase i =x=d = 1.

The inclusion Im(N*) C FEH;,(Xf) is an equality if for example the canonical map
(Y) = H},(Y/T)q is strict with respect to canonical Cech filtrations, which on

(Y) is defined through the above spectral sequence (C),;, (see Proposition 5.2). In

H*

rig
H,
general, however, it is not an equality, even if Y is projective, k is finite and the monodromy
weight conjecture holds, see section [ for a counter example.

Yet there is more structure on B®: if k is finite and the monodromy weight conjecture
holds, the monodromy filtration on H,. (Y/T)q is induced from a filtration on B* (The-
orem [L.§)). Moreover B® has a product structure inducing Poincaré-duality (in contrast
to A®, it seems), see section
We also ask how N is related to the singular cohomology H*(Yz.., Q). Note that

H*(Yzar, Q) = H*(X%,Q), see [2]. We show (Theorem [6.3):

Theorem: Suppose Y satisfies the monodromy weight conjecture, is of weak Lefschetz
type (see section[l), and that for each i > 1, each component of Y is geometrically con-
nected. Suppose H'(Yzar,Q) = 0 for alld > i > 0. Then N =0 on H,, (Y/T)q for all
s #d=dim(Y).

We hope that our techniques are useful to further elucidate the constraints which the
homotopy type of X" (as Berkovich space) imposes on N, and to return to this question
in the future. In this connection we mention the work of Le Stum [I8] dealing with the
case of curves. However, in the present paper we work with an abstract strictly semistable

log scheme Y over k£ and only in the final section 7 we consider a lifting X of Y as above.



Notations: For log algebraic geometry we refer to K. Kato [I5]. For a (formal) log
scheme (X, Nx — Ox) we will often just write X if it is clear from the context to which
log structure on X we refer. In this text, all log schemes and morphisms of log schemes
have charts for the Zariski topology. For elements { f;}; in the structure sheaf of a (formal)
scheme we denote by V({f;},) the closed (formal) subscheme defined by dividing out { f;};
from the structure sheaf. We let k be a perfect field of characteristic p > 0 and W (k) its
ring of Witt vectors with Frobenius endomorphism o. For (sheaves of) W (k)-modules M
endowed with a o-linear endomorphism F', and a € N, we denote by M(—a) the same
W (k)-module, but now endowed with the endomorphism p®.F'. We let Ky = Quot(W (k))
and denote by W (k){t} the p-adic completion of W (k)[t]. We need the formal log scheme

T = (Spt(W (k)), (N — W (k), 1 0)).

We denote by T3 its reduction modulo p: the log point. For a p-adic formal W (k)-scheme
F topologically of finite type we denote by Fg its generic fibre, as a Ky-rigid space. For
any such F we write sp for the specialization map Fp — F. For a subscheme F' of F
we denote by |F[r the tube of F' in Fp, i.e. the preimage of F' under sp; thus |F[# is an
admissible open subspace of Fp. We use repeatedly and without further comment Kiehl’s
acyclicity theorem [I7] which implies that for a coherent sheaf M on |F[r and ¢ > 0 the
push forward sheaves R'sp,M on F vanish.

1 The tube cohomology of the strata of Y

1.1 Our basic object of study in this paper is a strictly semistable log scheme Y over k.
By definition, Y is a fine Ti-log scheme (Y, Ny) which allows a Zariski open covering by
open subschemes Y’ C Y with the following property: there exist integers m > 1 and
charts N™ — Ny (Y”) for Ny|ys such that

(i) if on the log scheme T} we use the chart N — k, 1 — 0, the diagonal morphism N 2 Nm
is a chart for the structure morphism of log schemes Y’ — T7, and

(ii) the induced morphism of schemes
Y' — Spec(k) XSpece) SPec(klty, - - tm])

is smooth in the classical sense. If not said otherwise we endow subschemes of Y with
the pull back structure of T-log scheme induced by that of Y. By {Ys}ser we denote the
set of irreducible components of Y. We fix an ordering of R. The existence of charts as
above for the Zariski-topology implies that all Y; are classically smooth. We assume that

all connected components of Y are of the same dimension d. For i € N let S; be the set



of subsets of R with precisely i distinct elements. We identify Sy with R. For o € S; let

Vi = Neo Vs vi=J] v

og€S;

(In Y} the upper index i is redundant, but it reminds us of the cardinality of o)

1.2 Define the formal log scheme V = (Spf(W (k){t}), N — W (k){t},1 — t)). An
admissible lift of the semistable k-log scheme (Y, Ny) is a formal V-log scheme (Z,/Nz)

together with an isomorphism of 73-log schemes
(Y, Ny) = (2,Nz) xv Th

(where T7 — V' is given by ¢ — 0) satisfying the following conditions: On underlying for-
mal schemes Z is smooth over Spf(IW(k)), flat over Spf(W (k){t}) and its reduction mod
(p) is generically smooth over Spec(k|[t]), the fibre Y = V(t) above ¢ = 0 is a divisor with
normal crossings on Z, and Nz is the log structure defined by this divisor. We usually
denote an admissible lift by (Z,)). Locally on Y, admissible lifts exist. Indeed, by [14]
11.3 we locally find embeddings of Y as a normal crossings divisor into smooth k-schemes
Zy. Assuming 7 is affine we can lift Z; to a formally smooth affine formal W (k)-scheme
Z. Then we lift equations of Y in Oy, (which form part of a local system of coordinates

on Zp) to equations in Oz: these define ).

1.3 The following construction of diagonal embeddings in the logarithmic context is
classical, see for example [10], [19]. Choose an open covering Y = Upen Uy, of Y, together
with admissible lifts (25, V) of the Uy (so Uy, is the reduction of )},). For a subset G C H
let Ug = MhegUy. For h € G and s € R we let ), s be the unique W (k)-flat irreducible
component of ), which lifts Y, N Uy; if Ys N U, is empty we also let V),  be the empty
formal scheme. Let K7 be the blowing up of Xy (Z,)neq along Y. p(Xw (Vn,s)nea), let
KCt; be the complement of the strict transforms in K¢, of all Yy s X (X(2Zh)nec—{no}) (i-€.
all hy € G, all s € R), and let Y/, be the exceptional divisor in K.

Let V. be the blowing up of the G-indexed self-product Xy Ve of V' along Xy Theg;
the diagonal embedding V' — Xy Vjeq lifts to an embedding V' — V4. There is a natural
morphism of formal log schemes Y — V¢ and Kg = Ki; xyz, V' is a smooth formal W-
scheme and V-log formal scheme with relative normal crossings divisor Vo = Vi, Xy, T
Given s € Rand any h € G, the closed subscheme Vg s = V) s Xy, Ve of Ve is independent
of h. The non-empty Vg s form the set of W (k)-flat irreducible components of V. By
construction, the diagonal embedding Ug — Xw (Vh)nec lifts canonically to an embedding
Us — K¢, which in turn factors over the closed formal subscheme ) of K. Similarly,
if fori > 1 and o € S; we let V¢, = Nyeoa,s, then Y . maps to V.
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Lemma 1.4. For any ) # G1 C G the maps

Uclye —1Uclyg, »
Ve N Yy, —IUcn Y[y,
are relative open polydisks.

PRrROOF: We give a description in local coordinates. Since the statement is local we

may assume that there are an m with 1 < m < and for all h € G étale maps
Zh — Spf(W(k’){th,l, C. >th,d})
such that Y, = V(t,,) with ¢, = H;nzl tn,; and such that they induce étale maps

Ug — Spec(k) X Spec(rin) Spec(k[tnis - - tha))

which are the same for all h if (for each fixed j) we identify the free variables t;_ ; for all

h. We then obtain an étale map

W (k) {th,- .. 7th,d}h€G)

K Spf
¢ — Spi{ (th — tw)nwea

Here the relations t, = ¢, are due to the base change V' — V. in the definition of Kg. Now
since in the definition of Kf; we removed the strict transforms of all Vo s % (X (Z5)heG—{ho})
we may speak of the global sections tth,:fj in Ok, for all h,h’. Thus, fixing an element
ho € G we may speak of vy, ; = th,jt}:(ij (all h). We then have the étale map

’CG — Spf(W(k‘){tho,l, . ,tho,d, U}:::’Q, . aU}:lt,d}heG—{ho})

(we sold the relations t;, = t; for the price of omitting the terms v}fl). Now )¢ is defined
inside K¢ through t,,, and we may arrange the situation in such a way that y&a is defined

through t5,1,...,%h,:. We get the étale maps

(1) yG — Spf(W(k){tho,la cee atho,da U}:Lt,2> cee ?U}:Lt,d}hEG—{hO}/(tho))a
(2) yé’o — Spf(W(k){tho,l, - 7th0,d7 U}:::’Q, . 7U}:5d}h€G—{ho}/(tho,17 . 7th0,i>>-

The closed immersions Ug — Vg and UgNY,} — yg';70 are defined by p and all vy, ; —1 (all
h e G—{hp}, all 2 <j <d), hence the map () (resp. (2)) induces an isomorphism from
|Uglye (resp. from |UgNY} v ’0) to the tube over the closed subscheme of the right hand
side in () (resp. (@) defined by all v;;, — 1. To compute this tube in the right hand side
we look at the completion along the ideal defined by all v; 5, —1: it is a formal power series
ring over W (k) {tno1,-- - the.d}/(th,) (vesp. over W(k){tnyit1,---sthodt/(thoas---sthei))-
Repeating all this with the subset G; of GG simply means omitting the free variables v;;, —1
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for h € G — (G1 U {ho}): in both cases the difference is a relative formal powers series
ring in the free variables v;; — 1 for h € G — (G U {ho}); but formal power series rings

correspond to open polydisks.

1.5 Endow K¢ with the log structure defined by Vg, and endow ) with the pull back
log structure. Then K¢ (resp. Vg) is log smooth over V' (resp. T), and Us — Vg is
an exact closed embedding of (formal) T-log schemes. Denote by wg. . the logarithmic
de Rham complex of Kg — Spf(W (k)) with the trivial log structure on Spf(W (k)). Let

Py, be the weight filtration on wy.
~k ~j k—j ~k
Pjwk, = Im(Wg,, ® Q) — Wk,,)

where Q% . is the usual de Rham complex of the morphism of schemes underlying K¢ —
Spf(W (k)). For G; C G2 we have natural transition maps Kg, — K¢, , hence a simplicial
formal scheme Ky = {K¢}acn with sheaf complexes Pjwg-, on it. Also we have the closed
simplicial formal sub schemes Yy = {Va}acw and Vi, = {Vi ,}acn fori > 1and o € S;.
Denote by Jy, (resp. Jy; ) the ideal of Y, (resp. of Vi,) in Ok,. Write § = dlog(t).
Using the structure sheaf of the simplicial rigid space |U,[y, we give analytic analogs of
the crystalline definitions from [10], [19]:

~e wlC.
Cuwy, = m ®0y, POy,
P.oos
PCoy, = —2L 24, sp.Op.
J Yo jy ®w’.C Y ] [32.
coe O,
WS —
oocay A

The following definitions which use the structure sheaves of the simplicial rigid spaces
JUe MY [y;  have no analog in [10], [19):

cha;/.i,o = jyl ® (.UI.C ®Oy£’0 Sp*O]U.ﬂY;[yé,o
Pjwg
== = - P &® S *O i
Tyi, @0k, NPy, e I
cy,
Cwty = —2°
Yoo Cuy;' A O



We drop the o in these notations when we sum over all o € S;:

Cuwy; = @ CwYZ Cuwy,; = @P Cwyl ,

og€ES; o€eS;
Cuws,; = @ Cuw$,; CQy, = @ cQy, .
o€S; o€ES;

We view all these sheaf complexes as living on U, = {Ug}s. In our notation we will
frequently drop the subscript bullet below Y (which holds the place for the varying G),
thus we understand

~0 ~e0 ° .
Cuwy = Cuwy,, Cuwy = Cuwy,,
~e ~e ° ~e

CCUYi = CCUYi s CWY; = CWY.@',U,

° L]
Cuwyi = Cwy;, Cuwyi = Cuwy;.

Moreover, to be consistent with the introduction we keep the names of complexes on U,
also for their derived push forward on Y (via the morphism of simplicial schemes U, — Y').
Note that CQ’L computes the non logarithmic convergent (or equivalently: crystalline)
cohomology of the classically smooth k-scheme Y.

Recall from [I1] 3.1 that on the formal log scheme 7" we have a Frobenius action: the
unique endomorphism which equals ¢ on W (k) and multiplication by p on the standard
chart N % W (k). We may assume that for each h € H there is an endomorphism of
(21, Vn) which lifts the Frobenius endomorphism (i.e. the p-power map on the structure
sheaf) of its reduction modulo (p) and which sends equations for the divisors ), s on Z;, to
their p-th power. Then we also get such Frobenius endomorphisms F' on &C,, YV, and y:',o
and on the various logarithmic de Rham complexes defined above. By abuse of notation
we will frequently write RI'(Y, K*®) instead of RI'(Us, K*) for sheaf complexes K* on U,.

Proposition 1.6. The objects RI'(Y, Cwy, ), RI'(Y, P;Cwy, ), RI'(Y, Cw
are independent of the chosen system {(Zn, V) }nen-

Y.‘a) and RU(Y, P; CWY.ZU)
PROOF: Given another system {(Z],, V,) }wen one performs the constructions from

1.3 also for {(Z;,, V) }wren’ and for the union of the systems { (25, Vi) then and {(Z;,, V}) bhen-

We get canonical maps from the cohomology object formed with respect to this union to

those formed with respect to {(Z5, Vi) then and {(Z],, V},) bwen. That these are isomor-

phisms is a local statement and follows from [L.4] and the Poincaré lemma for relative open

polydisks.

1.7 The logarithmic de Rham complex WSJ. T of Y, — T is

o &S)U/T . ~e0 ~e0
Wy /T = =e=1 9 with w3, )7 = Wi, ®ok, Oy,
Wy, /T



The logarithmic convergent cohomology in our context (see Ogus [22] and Shiho [24] for

more general definitions) is given by the objects
R cono(Y/T) = RU(Y, w3, )7 ®oy, 52Oy, )
R cony (Yy/T) = RL(Y, w3, /7 @0y, spOvaavily,)-
Proposition 1.8. (i) We have a canonical isomorphism
R oo (Y/T) 2 Ry (Y/T)g-
(ii) There are canonical isomorphisms
R eony (Y /T) =2 RI(Y, Cuwy; ).

PROOF: (i) is due to a general comparison isomorphism between log convergent and
log crystalline cohomology of a log smooth morphism, see e.g. [24]. In (ii) the canonical
map is induced by the inclusion of simplicial rigid spaces |Us NY;[y; = — JU. N Y]]y, .
That it is an isomorphism can be checked locally, so we may assume that there exists an
affine admissible lift (Z,)) of Y. For s € R let s be the W (k)-flat irreducible component
of Y lifting Y;. For 7 C R let Y, = Ny, Vs if 0 £ 7 and Yy = Y. Then let

O, = (Y7, 05).
Let w3, be the logarithmic de Rham complex of J/T and write L* = I'(Y, w3}, ® Q). Then
R*T pono (Y2 /T) = h*(L* ® Op)

RI(Y,Cwy; ) =h*(L*® O,).

Thus we need to show that L* ® Oy — L* ® O, is a quasiisomorphism. The following
purely formal reduction to Lemma below is literally the same as in [9] Proposition
4.2 or [§] Theorem 3.14. For subsets p C R we may form the closed formal subscheme

VH = Ugse,s of Y (not to be confused with our previous notation )7 for j € N) and write
OF =T(Y N Y yu, Oypu).
Similarly, for two subsets p1, s of R we write
Oz = T(JYE N YN YH2 [y iz, Oy s )

and
oJ
O;’E = F(]Y(f'uuém ny" [3’“10%2 ) Oyﬂlmyﬂz)-
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We will show that in
I'o0 120" 1000,
both o and 8 are quasiisomorphisms. The exact sequences

0— Oy — OO — 077 0

0— 0 — 0 @Ot 5 0%F 7
show that, to prove that « is a quasiisomorphism, it is enough to prove that L*®*® Of— —
L*®@O%1=7 ig a quasiisomorphism. To see this, it is enough to show that both L*@OF~7
L* ® OF and L* ® O%F° 5L ® OF=7 are quasiisomorphisms. Consider the exact

sequence

(+) 0—0""— P o,— P 0,—...— Ope —0
SER—0o pCR—0o
lp|=2

Comparison of the exact sequences (*) ® L® and () ® Of~7 @ L* shows that to prove
that v is a quasiisomorphism, it is enough to show this for L* ® O, — L* ® Oy, for
all ) # p C R — o; but this is Lemma Comparison of (*) ® L* @ O~ and
(*¥) ® L* @ OF~7 shows that to prove that § is a quasiisomorphism, it is enough to show
this for L* @ OF KI® O,ue for all ) # p C R — 0. Consider the exact sequence

(%) 0—>O"—>@OS—>@OV—>...—>OJ—>O
s€o yCo
[v]=2

The exact sequence (k%) ® OF @ L* shows that to prove that €, is a quasiisomorphism, it
is enough to show this for L* ® O,y — L* ® O, for all () # v C o; but this is Lemma
L9 The exact sequence (x*) ® L*® shows that to prove that J is a quasiisomorphism, it
is enough to show this for L* ® O, — L* ® O, for all ) # v C o; but this is Lemma

Lemma 1.9. For any inclusion ) # 71 C 75 C R with 5 — 71 C o the projection
pw:L*®0, — L*® 0,
18 a quasitsomorphism.

PROOF: Also this is as in [9] Proposition 4.2. By induction we may suppose 7 =

71 U {50} for some sy € o with sy ¢ 75. We may assume that there is a smooth morphism

y— Spf(W(k‘)) XSpf(W(k){t}) Spf(W(k‘){tl, s atm})

lifting the situation described in 1.1, and furthermore that ), is the closed formal sub-
scheme of ), defined by U :=t; (both are closed formal subschemes of )’). Then

O, = {Z an U™ a, € Oy, ordy(ay,) — oo}.

m>0

11



Localizing further we may assume that there exist si,...,s, € Oy(Y) (withn+m —1 =
dim(Y")) such that {dsi,...,ds,,dlog(t;),...,dlog(t,_1)} is an Oy(Y)-basis of L'. The
images of these elements (denoted by the same names) in L' ® O,, then form an O, -
basis of L' ® O,, (i = 1,2). Let L}, resp. < dlog(U) >, be the O,,-submodule of
L' ® O,, generated by the set {dsy,...,ds,,dlog(ts),...,dlog(t,_1)}, resp. the single
element dlog(U) = dlog(ty). Let L2, resp. < dlog(U) >* be the sub-O,,-algebra of
L* ® O,, generated by L., resp. by < dlog(U) >. These are in fact subcomplezes and we
have the decomposition
L*® 0, =L:® < dlog(U) >*.

By the above description of O, it follows that the map g in question has a natural
"zero”-section v and it suffices to show that v induces surjective maps in cohomology.
Let w € L¥ ® O,,. It can be written as
W= a,Undlog(U) + Y b, U™

m>0 m>0
with a,, € LF™' and b,, € LF. Subtracting d(}",,.,m 'a,U™) and renaming the coeffi-
cients we may write w modulo exact forms as

w = agdlog(U) + Y _ b, U™

m>0

If dw = 0 we get w = apdlog(U) + by which lies in the image of v.

1.10 Remarks. (1) An idealized log scheme is a log scheme together with an ideal in
its log structure which maps to the zero element of the structure sheaf, see Ogus [21].
There is a notion of ideally log smooth morphisms between idealized log schemes, defined
as usual by a lifting condition over exact closed nilimmersions. For o € S; let F;, C Ny
be the preimage of Ker(Oy — Oy:) in the log structure Ny of Y. On Y] the pair
(Ny, Fio) induces the structure of an idealized log scheme. If we view 77 as an idealized
log scheme by simply taking the zero ideal in its log structure, the morphism Y} — T}
becomes ideally log smooth. One may define the idealized log crystalline site of Y*/T and
will find that the cohomology (tensored with Q) of its structure sheaf is isomorphic to
our RI'(Y, Cw;,.ia). There are also Cartier isomorphisms valid in this context, one may
therefore define 7corresponding de Rham-Witt complexes and everything we develop here
could be done with them as well.
(2) We could similarly define the idealized log convergent cohomology of Y/T': it is iso-
morphic to the non-idealized version, as follows from[[.8 (We do not claim coincidence of
the idealized and the non-idealized log crystalline cohomology of Y!/T’; we suspect that

the latter is not a useful theory.)
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Proposition 1.11. Fork >r > 1 let 7 € Sg, p € S, such that p C 7. Taking the residue
along Y; , defines a map Res, : O, — Wi," @ Oy; . For j > r it extends to a map

. p.Cd , ~q—r
Res, : PjCWY.kT — JDJ_TCwY.kT.

ProOOF: Taking residues involves the choice of local coordinates, the problem is to
show the independence of this choice. We must work on each K¢ (for G C H) separately.
Let us write p = {s1,...,,} with s; < ... < s, in our fixed ordering of R. We assume
that V¢ , # (). Since we work locally we may suppose that there exist t,...,t, € Ok,
such that Vg s, = V(t;) for 1 <i <r. Let

dlog(t,) = dlog(t,) A ... A dlog(ty).

For p C R denote by wg., , the logarithmic differential module on K¢ with logarithmic
poles along Use, Ve s- Let

~p—1 o ~qtl—T ~
Now let w € cT),qCG. It can be written as
w = wo + 1 A dlog(t,)
with wy € P? and 1 € W§ ', We set
Res,(w) =n®1€we, @Oy .

To see that this is well defined consider first another sum decomposition w = w) + 1" A
dlog(t,) with wy € P? and ' € Wi ' ,- Then

(n—n") A dlog(t,) = wy — wp € P?
which implies that at least one of ¢,...,¢, divides n — 7/, hence n® 1 = n ® 1 in
Wi, ® Oy, ,-

To see independence of the chosen system ¢y, ..., ¢, consider another system ¢}, ... ¢ €
Of,, such that Vg, = V(t}) for 1 <14 <r. Any such system ¢, ...t arises from t;,...,t,
by finitely many operations of the following type: multiply ¢; for a single 1 < ¢ < r by
a unit in Ok,. Thus we may assume t;o = e.t;, for some 1 < ip < r and € € O,éc, and
t; = t; for all i # io. We want to show Res)(w) = Res,(w) for the residue map Res,
defined with respect to {t.}1<i<,. Write

w = wo +n Adlog(t,) +n A (dlog(t,) — dlog(t))).
Clearly Res)(wo + n A dlog(t,)) = n. Therefore we need to show Res), (1) = 0 for u =
n A (dlog(t,) — dlog(t],)). Now
—p=nAdlog(t,) A...Adlog(ti,+1) A dlog(e) A dlog(t;,—1) A ... A dlog(ty)

and dlog(e) € PyWx,,, hence p € P? and Res/ (1) = 0.

13



Proposition 1.12. Fori,j > 1, 0 € S; there is a canonical isomorphism

GIJCWYL = @ CQY.\?JT\[ Jl(=7).
TE€S;

PROOF: (Given o € S; and 7 € S; we may form the union ¢ U7 C R, an element
of Sjpur| with |c U | < |o| 4+ |7| =i+ j.) Recall that ), is a relative normal crossings
divisor in the smooth formal simplicial W (k)-scheme Ky and that {V] _ }rcg, is the set of
its j-codimensional intersection strata. In such a situation it is a classical fact that taking
Poincaré residues (our [[I1]in the extreme case j = r) induces an isomorphism

Grjwg, = @Q’H —J1(=7)
€S,

where (Q‘ ,d) denotes the classical de Rham complex on the smooth formal simplicial
W (k)- scheme Y] .. We claim that this isomorphism restricts to an isomorphism between
the Oy,-submodule generated by Jy; ® Wy, N Pjwg., and the Oy, -submodule generated
by (Q;}zi ANd(Tyi ) + ‘73’3,0'95)2,,)[_9']' Indeed, we may work locally around YV CL,JJT‘ for
7€ S; and assume YV, , = V(t,)seo and V] = V(t,)se, for suitable {t,}scour € Ok,.
Then the Oy,-submodule of the above left hand side generated by Jy; ® wg, N Pjwg, is
in fact generated by elements of the form

w=tg,w A /\ dlog(t,)

SET

for some sy € 0 and W' € @,'C:J such that ts,w’ € Pywy. J. If dlog(ts,) divides w’ (in the
graded algebra wg., ) then dt,, divides ¢,,w’ and Res,(w) € Q;}:/\d(jyiﬁa). If dlog(ts, ) does
not divide w’ then v’ € POZD;C:j and Res,(w) € jyi,a'Q;;g - Cénversely, these local consid-
erations show how to fabricate preimages of elements of (Q;}Elf ANd(Ty; ) +‘7y3,a‘952{7) [—7]
under the above isomorphism. The claim is established.

Dividing out these submodules we get the isomorphism

Pjlg, _ o @ 0° ‘mﬂ —)).

Pk, + Ty, ® Wk, N PR,) =g Yeenr

Tensoring over Oy, with sp.Ojy,[,, we get the wanted isomorphism.

2 The Cech double complex B** and the Steenbrink

double complex A°**

21 Fore>1and 7 = {m,7,..., 7.} € Se with 77 < 75 < ... < Tp11 and v € 7 define
pos(y € T) € N by Tpos(yer) = 7. We continue to work with a fixed system {(Z5, Vi) }hen
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as before. Let Cw{, =0if ¢ <0 ori < 0. For s,t € Z we define the bidegree (s,t)-term
of the Cech double complex B*® by

st s s Cw;t+1
B = Cuos = @ Cuto = @ -t
Yr Co;L NG
TESt+1 TESt+1 yit!

The vertical differentials
pBati-1) — Cuwi, _4, gla+n-1) _ ngl/tl
are those of Cwy.;; the horizontal differentials are

B = Cuwi, = @ Cuwf, < B = Cuwi,,, = P Cuwl.,

o€S; TESi+1

(Mo )oes; = (Z(_1)p08(j6T)+q+177(T—j))TESiH'
JET
Here (7 —j) means the element 7—{j} of S;, and by 7,_;) we actually mean the image of
q

%
Y,

7(r—j;) under the obvious restriction map Cw — ng/i +1- We define the augmentation

Cuw} <% Cuw}y = B

as the sum of the canonical restriction maps (similar to the above differentials €, but
without alternating signs). It induces a morphism of complexes Cwy — B® with B® the
total complex of B*®.

2.2 Copying [19] we define the Steenbrink double complex (A"); ; by
~itj+1
Al — G
chaj;-l-]—l—l
if i > 0,7 >0, and = 0 else. The vertical differentials A% — A“*1J are induced by
(—=1)7d : CTT — C@YY™?; the horizontal differentials A% — A»*! are induced by the

assignment w +— w A 6. The augmentation
Cuwy — A, w—wAl
defines a morphism of complexes Cwy. — A® with A® the total complex of A*®.

Proposition 2.3. (1) Cwy — B*® is a quasiisomorphism.

(2) Cwy — A® is a quasiisomorphism.

(8) There is a morphism of double complexes ) : A*® — B*® compatible with the respective
augmentations by Cws-. It induces a quasiisomorphism

b A — B
In particular we may identify H}, (Y/T)q = H*(Y,Cwy) = H*(Y, B*) = H*(Y, A®).
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PROOF: For sheaf complexes K* on Uy = {Ug}pracn and 0 # G C H let (K*)¢g
be the component of K* on Ug. For each G the complex (Cwy )g, resp. (B®)q, resp.
(A®)¢ is quasiisomorphic with the corresponding complex formed with respect to a single
admissible lift of Ug: this follows from Lemma [[.4] and the Poincaré lemma for open
polydisks (applied in the case of (B®*)g, resp. (A®)g to the subquotient complexes (B*7)g,
resp. (A®*7)g for all j). Therefore we may assume for (1) and (2) that we are working
with one global admissible lift (Z,)) and drop G from our notations. To show (1) it is
enough to show that

(%) 0 — Cwj — Cwi, — Cuwi, — ...

is exact for each ¢. Since Cwy, = Cwy ®p, Oy and Cwi is locally free over Oy, this

follows from the exactness (Chinese remainder theorem) of
0—>Oy—>0y1 —>Oy2 — ...

Also statement (2) is reduced to the exactness of (x), literally as [19] 3.16 is reduced
to [19] 3.15.1. Indeed, the proof in [19] 3.16, although written for logarithmic de Rham
Witt complexes, is in fact a completeley general argument valid for logarithmic de Rham
complexes for any (relative) normal crossings divisor on a (relative) smooth (formal)
scheme (note that since we are working with one global admissible lift we are not taking
rigid analytic tubes of proper subschemes, just as in [I9] 3.16 one does not need to deal
with divided power envelopes of proper subschemes).

We turn to (3). The assertion on quasiisomorphy follows from (1) and (2) once 1
with the stated Cwy-compatibility is defined. To do this first note that for o € S

the residue map Res, : @,qcfk — W, ® Oy described in [LTT] induces a residue map
Res, : C&?;’;’k — CWwy,, and by construction the latter vanishes on Pk_lC&?gfk. In

particular me may define

~gtk 4
Aak=1) _ waq;r i) pak=1) _ @ ﬂ
Py CH s Cov NG

n = (agr-Resy(1))oes,

for k > 1, where we set oy, = —11if (¢—1,k) € 2Z x 2Z, and «,, = 1 otherwise. We first
verify that for the horizontal differentials Af of A*® and e of B** we have 1o (Af) = eo ).
This can be done locally, in particular we may forget about distant components. So we
may assume that there are {¢;}1<;<; € O, units {t;}111<i<y € O,éc (with G C H fixed)
and an order preserving identification between R and {1,...,1} such that Vg, = V(¢;)
for all i € R = {1,...,1} and such that dlog(t,), ..., dlog(t,) is an Ok,-basis of b . We
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may more specifically assume (after multiplying one of ¢1,...,¢ by an appropriate unit)
that

t=]] t € Ok

1<i<l
the image of the distinguished element ¢ € Oy. We identify R = {1,...,[l} with the set
Sy of subsets of R = {1,...,l} with precisely one element. Then 6 = >, _,_, dlog(t;) =
> ics, dlog(t;). For e < g we denote by S, the set of subsets of {1,...,9} with precisely
e elements. We write
dlog(t,) = dlog(t,.) A ... Adlog(t,,)

for v € S, with elements v, > ... > v1, and for v € v we define pos(y € v) € N by
Vpos(vev) = 7. By definition, for n € A1E=1) e have

Y AO) = (agrir Y Res-(n Adlog(ti))res,,,

IS

)) = (ogp > (=170 Res_in) s,
1ET
in
Cwyk 1

qk __ q —
B Cka+1 Ti‘?ﬂ C@ikil 0
Now 7 can be written as a sum of elements of the type 5 A dlog(t,) with a € §q+k and
B € C&Y.. Therefore we may assume 1 = (3 A dlog(t,) for some a € Sq—l—k and € Cw
We check equality of the 7-components of the above expressions for fixed 7 € Si14. In
case [T — (aN7)| > 2 both of them vanish. Now consider the case 7 = (N 7) Uig for
some iy ¢ . We have n = ' A dlog(ta—(anr)) A dlog(tans) with ' = 8 or 8 = —f. Then

Qgrr1 Y Res-(n A dlog(t;)) = agrsi Res-(n A dlog(ti,))

IS
= aq,k+1(_1)p03(i0€7—)+1R687— (ﬁ/ /\ dlog(ta_(am_)) /\ leg(tT>)
= aq,k—kl(_l)pos(ioeﬂﬂﬁl A leg(ta—(anT))

and
Qo Z pos(zeT +q+1R68 i = k( 1)pos(io€7)+Q+1B/ AN dlog(ta_(am))

1ET
and we see equality. Finally consider the case 7 C a. We have n = f'Adlog(t,—_.)Adlog(t,)
with 5 = g or f/ = —f. Then

Qg kot Z Res;(n A dlog(t;)) = ag 1 Z Res.(n A dlog(t;))

IS 1€S1—
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= Qg k+1 Z k+1+pos (ici{e=T) +1R687(6 A leg( U(a—T) ) A dlog( ))

1€S1—

= Qg it Z k+pos (i€iu(a—T) 6 /\dlog( U(a— T))

i€EST—a

and
08 ZET “+q+1
Qi Y _(—1)PUEH Res i

1ET

= Qg Z(— DT Res (8" A dlog(ta—r) A dlog(t;) A dlog(t._;))
1ET

— aq,k; Z(_1)k+q+p08(i6iu(a—7))+lﬁl A dlog(tiu(a_T)).
1ET

But in Cwqﬂl (Cw b A 6) the element

B' A dlog(tar) A0 =>_ B Adlog(ta—r) A dlog(t;)

i€S
(3) = ) (—npetEReTIR A dlog(tiya—r))

i€S1—(a—T)
vanishes, thus again we obtain the desired equality and the proof of ¥ o (Af) = €0 ¥ is
finished. The compatibility of ¥ with the vertical differentials d is easy to check.
Now we check ¢y = 1 o (Af) for the augmentation maps €y : Cwy — B and (Af) :
Cuwi — A?. Let n € Cwy. We work with a system of coordinates {¢;} as above, and
again we may assume 7 = 5 A dlog(t,,) for some a € S and 8 € CwY. We find

P(n N 8) = (Res; Z n A dlog(t;))jes, = (Res; Z n A dlog(t;))jes,

(IS i€ES1—a
and we see that for j € S; — « the j-component is 7, i.e. the j-component of €y(7). Now

consider the respective j-components for j € a. We have n = 8’ A dlog(t,) A dlog(t;) with
o=a—jand § = or /= —fF. Then the j-component of )(n A 0) is

Res; Y (=1)P0<D g A dlog(teui) A dlog(t;)

€S —a
_ Z (_l)pOS(ie(JUi))/B//\dlog(to-ui).
1€S1—«

Since

B Adlog(te) NG =Y (—1)PCeDH B A dlog(t )

1E€EST—
vanishes in Cw{.,, we find that also in this case the j-component is 7, i.e. the j-component
of (7).
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2.4 Both B® and A*® are designed to compute Y/T)® Q in terms of cohomology
groups of the components of Y. A first advantage of B® against A® is the following. There

crys(

does not seem to exist an obvious pairing on A®, compatible with the differential in the
usual sense, extending the cup product on Cwy which induces the Poincaré-duality in

cohomology from [10]. By contrast, such a pairing does exist on B*®. Namely, define
Cuwir i1 ® Cwirarn — Cwith
by composing the restriction maps
Cwijyr — Cwiyier and  Cwhoii — Cuwfjyon

(for these we do not use alternating signs as we did in the definition of the differential e
of B*) with the cup product
(30J97+S+1 & (jUJ§j+s+1 — (jUJ§§ﬁ5+1.
2.5 On the double complex B** define the Cech filtration F%B** by setting Ff,BY* =
B*ifr <k+1,and FLB* =0 if r > k+ 1. It gives rise to a spectral sequence
(C)r EYt = HY(Y,B*) = H"™(Y,B*) = HL,1(Y/T)q.

crys

We denote by F2 Y/T)qg the induced filtration on H} (Y/T)q.

crys( crys

2.6 Let v be the bihomogeneous endomorphism of bidegree (-1,1) of A*® such that
(—1)7T'v is the natural projection A — ATLITL By [19] 3.18 it induces the usual
(Y/T)o = H*(Y, A®). (In fact our definition of v differs
from the one written in [19] 3.13 by the sign (—1)°. It seems to us that to ensure that

monodromy operator N on H,, .

[19] 3.18 holds, our definition is the correct one). v anticommutes with the differential of
A*®. Note that the filtration v*A®*® of A®*® by the images of the iterated applications of
v is just the stupid horizontal filtration. Since the morphism 9 from 2.3 sends v" A*® to
FLB** we see:

Corollary 2.7. For all r > 0,

Im(H*(Y, 0" A*) — H,, (Y/T)g) C F

Y/T)q

crys(

in H:. (Y/T)q. In particular InN" C F{,

crys ayJYVTWQZnMde ww(Y/T)

19



3 The Cech-Steenbrink tricomplex

3.1 We now develop another tool to compare B® with A®: the Cech-Steenbrink tricomplex
C***. For k > 0,i > 0,7 > 0 its tridegree (ijk)-term is

T poot
J Yk+1
For other triples (4,4, k) we let C“* = 0. The differentials C7* — CUTD* are those
induced from (—1)’d : CC&;;’:[I — C@;ﬁ? The differentials C%7% — CU+DF are @ +—

w A 6. The differentials C¥*=1 — ik are

~itj+1 ~ i1
.. Cka € .. Cwyk+1
Citk=1) — @ Y ok — @ S £
o€Sy ~J Yk TE€SKy1 ~ 7 yh+!
E __1)\pos(yET)+i+1
(na)aeSk = ( ( 1) n(T—w))'reskH

yer
(here (7 — ) means the element 7 — {7} of Sy, and by 7(._,) we actually mean the image
of (-—-) under the restriction map).
Fix k > 1. The differentials of the tricomplex C**® induce on its subsheaf C***~1 g
structure of double complex; we denote its associated total complex by C**=1)  with the
convention that C7%* =Y s placed in degree i + j. Similarly we can form the complex

k—1)

B**=1 with the convention that B*=V) when regarded as a position in B**~V s placed

in degree i. The augmentation B**~1 — C*0%*=1) i defined by w > w A 6.
Proposition 3.2. This induces a quasiisomorphism B**=1 — C*k=1),
PROOF: It is enough to show that for all ¢ > 0 the sequence
0 — Cuwl, — C?0¢=0 — oob=l) _y o2 (=)

is exact, in other words that

~q+1 ~q+2

~g—1 A y~q AO Clyi no Gy W
Coy.i r Gy — ~gF1 ~q+2
P()C(,dyk Plcwyk

is exact. As in [19] 3.15 this is reduced to proving that

0 — GroCope % G Coga[1] =% Gr,Cog[2] 5 ..

is an exact sequence of complexes. In view of [[.L12] it is enough to show that for each

component Y of Y* the complex

0— COY — P CU.1 0y — P CWzryr — -

teS1 teSa
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is exact. The differentials in this complex are the sums of all restriction maps (with
alternating signs) between the respective summands which make sense. It is then enough

to show that for arbitrary ¢ the complex

= [CQY, — P COys — @cggf/tznysk — ..
tesS teSs

is exact. This is the total complex of the following double complex M*®. Let J = {u €
R|YFcCcY,}and I = R—J. Let

wi- @on,,

t€S; 4
[tnI|=;

for i > 0 and j > 0, and MY = 0 otherwise. The differentials M% — M1J and
M — M%7 are the sums of all restriction maps (with alternating signs) between the
respective summands which make sense. Now it is enough to show that for each fixed j

the complex M*/ is exact. We have a direct sum decomposition of complexes

M =P M;

TGSj
rCI

@ CQY]nYk

tesS;
tCJ

where the differentials M! — M'™! are the sums of identity maps (with appropriate al-
ternating signs) between the respective summands. Since the complexes M? are exact, so
is M*7.

We remark that as in we could also have reduced to the case where we are dealing
with a single global admissible lift. At least in that case the complexes M® are exact in

positive degrees (with M™ in degree 0). We do not need this.

3.3 Let C* be the total complex of the tricomplex C***. The augmentation
Aoo — CooO

is defined as the sum of the canonical restriction maps (similar to the differentials C¥*~1) —
CU* but without alternating signs). By 2.3 and B2l we have:

Corollary 3.4. The augmentations A*® — C**0 and B** — C*°* induce quasiisomor-
phisms A* — C* and B* — C*®. In particular we may identify H7,., (Y/T)q = H*(Y, Cwy,) =
HA(Y, A%) = H'(Y, B*) = H*(Y, C*).
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3.5 Let v be the trihomogeneous endomorphism of tridegree (-1,1,0) of C'**® such that
(—=1)7*1v is the natural projection C¥*=1 — CG=DEFD¢=1 Tt is clear that the resolution
A®* — (C'* is compatible with the endomorphisms v on source and target, thus v on C***
induces the same endomorphism N in cohomology. For fixed k£ > 1 we also denote by N
the operator on H*(Y,Cw},) induced by the endomorphism v : C***=1D — C***+=1 via
the canonical isomorphism H*(Y, C**~V) = H*(Y, B**=D) = H*(Y, Cw},).

Theorem 3.6. For any k > 1 we have N =0 on H*(Y,Cuwy,,).

ProoF: C***~1 is the direct sum, over all o € S}, of the double complexes

Coo(k—l) _ @Cﬂ,j(k—l) with Czy(k—l) _ ( Ca;}j+l ) )
o Ny o o PJC@;;]_Fl 5J

and v is given by endomorphisms v on each of these summands. We will show that on

each summand v is homotopic to zero. Fix o € S, choose an auxiliary v € o and define
Ciik=1) P (i1)j(k-1)
w i (=1) Res,w
(this depends on 7). We claim
(1) v(w) = h7(w) A O — U (w A 6)
for w € CY*V This can be verified locally, in particular we may forget about distant
components. So we may assume that there are {t;}1<;<; € Ok, units {t;}111<i<y € O,éc

(with G C H fixed) and an order preserving identification between R and {1,...,[} such
that Vg, = V(¢;) for all i € R = {1,...,l} and such that dlog(t;),...,dlog(¢,) is an

Ojc-basis of Oy o+ We may more specifically assume (after multiplying one of ¢,,...,%
by an appropriate unit) that
t= H t; € OICG’
1<i<l

the image of the distinguished element ¢ € Oy. We identify R = {1,...,l} with the set
Sy of subsets of R = {1,...,l} with precisely one element. Then 6 = >, _,_, dlog(t;) =
> ies, dlog(t;). For e < g we denote by S, the set of subsets of {1,...,9} with precisely
e elements. We write

dlog(t,) = dlog(t,.) A ... Adlog(t,,)

for v € S, with elements v, > ... > 1, and for v € v we define pos(y € v) € N by
Vpos(yer) = ¥- We may assume that w is represented by Jdlog(t,) for some 8 € ng,k and
p € Sy Incase y € p we find hii (w) = (—1)P>(€)+i Bdlog(t,_,), hence

(i) W) Ag = Y (=10 gdlog(t, ) A dlog(ta).

a€S1—(p—)
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On the other hand w A0 =3 5 Bdlog(t,) A dlog(t,) and hence

(i1) RO AG) = Y (=)0 3dlog(t,—,) A dlog(ta).

acS1—p
The difference (¢) — (44) is (—1)7*Bdlog(t,) = v(w). In case v ¢ p we see h* (w) = 0, while
as before wAf = Y- g _, Bdlog(t,) Adlog(t,) and thus hUHD (wAf) = (—=1)7' Bdlog(t,) =
v(w), so (1) is proved. One also has

(2) d(h” (w)) = A"V (dw) = 0

where d denotes the differential C5** ) — Cf*V**=D Now (1) and (2) together imply
o(k—1) , if d denotes its differential, we have v = doh — hod. This

tells us that the endomorphlsms v of the graded algebra C**~1 which anticommutes

that on the complex Cj,
with 07, induces the zero map in cohomology.

3.7 On C*** define the Cech filtration F5C**® by setting F,C¥F = C* if r < k+1, and
FLCU% =0 if r > k+ 1. Then B2 says that B®* — C* is a filtered quasiisomorphism with
respect to the respective Cech filtrations. In general, for filtrations (on various complexes)
denoted P,, resp. F&, we will use the notation Gr,, resp. Grg, for the associated graded

object.

Corollary 3.8. N(F} Y/T)g) C FEFLH: (Y/T)q for k >0 (sharpening[2.7).

crys( crys

PROOF: It is enough to show that for £ > 0, the image of

H*(v)

H*(Y,FEB®) — H*(Y, FLB®)

is contained in the image of the natural map H*(Y, F5™ B*) 5% H*(Y, FEB*). In view of

the exact sequence
H*(Y,FEB*) - H*(Y, FEB®) X5 H*(Y,Gik.B*)

this is equivalent with showing that the image of H*(v) is contained in Ker(pr). This

follows from 3.6 using the canonical quasiisomorphism B**[k] & Gi¥,B°.

4 Monodromy and weight filtration via the Cech com-

plex B*

4.1 The endomorphisms ® := F’ on the complexes Cwy,; induce a Frobenius endomorphism
® on B*. The Frobenius endomorphism ® on A® is defined by ® := p'F on AY. On A®
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the weight filtration P, A® is defined by

~ 1
}5j+k+l(j Z+]+

P A® = @ PAY P AY = P-CNQJ”H
J

120,720

Denote by Gr,A® the associated graded with respect to P,A®*. We have

GrkA' = @ CQ;/2j+k+1[_2j - k](_] - k)
j=>0
j>—k

via residue maps (see [19] 3.22). Passing to the limit n — oo and tensoring with Q we

get the weight spectral sequence

El—kv“‘k @ Hi=%- Y COojinin) (=] — k) = He, (Y/T)g.

crys

7>0
jz—k

It gives rise to the weight filtration on H},, (Y/T)g. On the other hand, the operator

N on H:, (Y/T)q gives rise to the monodromy filtration on Y/T)q, defined in [19)]

crys

3.26. Consider the statement:

crys(

(MW) The weight spectral sequence degenerates in Fy, and the weight filtration coin-

cides with the monodromy filtration on H;,, (Y/T)q.

The standard conjecture ([19] 3.24, 3.27) in this context states that (MW) holds whenever
Y is the reduction of a projective semistable A-scheme as in section [l Nakkajima [20]
proved the degeneration in Fy unconditionally.

We see that N and the weight filtration on H,. (Y/T)q can be obtained from correspond-

ing structures on A®. The following Theorems (4.2 and [4.§] tell us that we can recover N

and the weight filtration also from structures on B°.

Theorem 4.2. For i > 0 the i-fold iterated monodromy operator N on H:., (Y/T)g =

crys

H*(Y,Cuwy) = H*(Y, B®) is induced by a composite of complex morphisms
Cwy 2 FL,B* - B*,
where p; 18 given by explicit residue maps and v 1s the inclusion.
PrOOF: Consider the quasiisomorphisms
Cwl 2% A*  and A -5 B

The operator N on H} . (Y/T)q is the map in cohomology induced by the composite

Y ov' o (AG). This is the following map of complexes p; : Cwy — F:B*: An element
n € Cwy is sent to

(Resa(n/\ 9))06Sz+1 € @ Cwyb+1 = Bl

O'ESZ+1
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with the sign € = a(g_s), @it1) H;;B(—l)j“ € {£1} (note n A H € CLET™).

4.3 On B** define the canonical filtration by setting

P_1C&y,
(Cwi AO) N P Cwiy

Plcan Bi(k—l) _

for [ > 0. It induces a filtration P{**B® on B°®. On A®® define the canonical filtration as

the kernel filtration for v, i.e.
PlcanAoo — Kel"(l/l - A N A"),

or equivalently Pf" A% = P,_; 1A% for | > 0. For any filtration denoted Pf*" (here and

on various other complexes below) we write Gr¢™ for the associated graded object.

Lemma 4.4. The map ¢ : A* — B® from is a filtered quasiisomorphism with respect

to canonical filtrations.

PROOF: On Cuwy define the canonical filtration by setting

b, Coy PGy

Pcanc 7 — . _ = : ]
LY T CEETAG) NP, Cll | PaCal i A G

for [ > 0. The second equality in this definition can be justified by induction on [, noting

that the natural surjection

Pl_lc(:}g/ . Pl—l(ja]§/
(P_oCay ' A 0) + (P2 CaY) (CO&t AO)N P CWY) + (P, Cwi)

is also injective because its composition with the map

P Ca, o, PCHH
((Cwy " A 0) N P_1Cwi) + (P_oCWi) P, Coyr

is injective by [19] 3.15. Using the second defining expression for Pf**Cwy we get from
[19] 3.15 that Af : Cwy — A® is a filtered resolution w.r.t. canonical filtrations. Using
the first one we get that the same for ¢; : Cwy — B°®. The lemma follows.

For the rest of this section we assume that k is finite and Y is proper and satisfies
(MW). We fix a cohomology degree * and simply write H* for H, (Y/T)q.
Proposition 4.5. (Chiarellotto, [3]) (1) Let r € N. The sequence

H*(Y, P A% — H* X5 H* — H*(Y, Coker(v"))
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18 exact. In particular we have

Im(H*(Y, /" A%) — H*) = Im(H* 25 H*).

(2) We have
H*

rig

(Y) = Hy;y(Y/Ko) = H*(Y, P/ A%).

4.6 Define the Cech filtration on H,

(Y) by setting

s T
FCHrig

(Y) = Im(H*(Y, " FEA%) — Hyo (V)

for s > 0, where we write FEA®* = v*A®. It deserves indeed its name: It is the filtration
arising from the spectral sequence

(C)rig EY? = H;

rig

(Yp—i—l) — Hp+q(Y)

rig

(we do not need this fact). Let H};,

(Y) = H* be the canonical map. By Chiarellotto’s

result [3], since we assume (MW), we have Im(¢) = Ker(N).

Proposition 4.7. For all r > 0 we have

L(FEH:ZQ

(Y)) = Ker(N) N Im(N").

PROOF: This follows formally from the fact that the filtrations F&H;, (Y)
and Ker(N) N Im(N*®) on Im(¢) = Ker(N) are in fact weight filtrations for the Frobenius

actions, with the same strictly monoton increasing sequences of weights on the graded

(Y)on H;

rig

pieces. Indeed, we have
PrGre A® =2 Gr_, A% [—r] = Gr,4, Cwy [1](r 4+ 1) = COSLL

(as in [19] 3.22(2)). Therefore H*(Y, Pf**GrA®) is pure of weight * — r in view of [4],
hence also its subquotient GreH (Y). On the other hand, by (MW) the subquotient
(Ker(N) NIm(N7))/(Ker(N) N Im(N"+1)) of H* is pure of weight * — r.

Theorem 4.8. Denote by Go the convolution of the filtrations P{*" and F¢ on B®, i.e.
the filtration defined by
Gp =) PF B
i>0

Then G, induces the monodromy filtration on H},, (Y/T)q = H*(Y, B*).
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Proor: We will show that H*(Y, Gri""Gry, B®) is pure of weight * — r + &k — 1. This
then implies that the filtration induced by G, is the weight filtration for Frobenius on
H,,(Y/T)q, i.e. the uniquely determined Frobenius stable filtration whose subquotients
are pure and of mutually different weights; but this is the monodromy filtration, by (MW).
Define the double complex

E“ = (C@?ym )q,i

with differentials analoguous to those in 2.1. Let g’, B* be the associated total complexes.
As in 2.5 define the Cech filtration Fég’ by setting Fééi(k_l) = B¢ if p < k, and
Fgéi(k_l) = 0 if » > k. Define the canonical filtration by setting Pf‘méi(k—l) = P_1C&Y,
for I > 0.

Claim: H*(Y,Gr{*"Gr,B*) is pure of weight x —r +k — 1, for all k > 1. For all k > 2
also H*(Y, Gri‘””F@é’) is pure of weight * —r +k — 1.

The assertion in case k = 1 follows from the proof of 4.7 thanks to the isomorphism
1 Peanps = peanpe — peanBe Now let k > 2. We have

GrianGISCE. = Grk—lcw;/sﬂ[_s] = CQ;/s+lﬂYk71 [—S —k+ 1](—]{7 + 1)

So H*(Y,Gr™Grl,B®) is pure of weight * —s —k+1—2(—k+1) = s —r + k — 1.
It follows that H*(Y,Gr{® FrB®) is mixed with weights at most * — r + k — 1, and
H*(Y, Grz‘m(é’/Fgé’)) is mixed with weights at least * — r + k. On the other hand,
Gri‘mg’ is quasiisomorphic with Gry1Cwy via the canonical augmentation Cwy — B,
But Grj41Cwy =2 CQS,;[—7](—j), thus H*(Y, Gr""Cwy) is pure of weight *+k —1. Now

the long cohomology sequence associated to
0 — Gr{"" FiB® — Grj®"B* — Gr{""(B*/F;B*) — 0

gives the second statement of the claim.
To prove that H*(Y, Gri"" GriB®) is pure of weight *« —r +k — 1 it is now enough to show
that for all £ > 1 the natural map

H*(Y, Gr$*"Grl, B*) — H*(Y, Gr$™"Grl, B*)

is surjective. For this we need to show that the connecting maps in cohomology associated

with the short exact sequence
0 — Gr{" Gr.B*! RN Gri‘mGrgg' — Gry""GrgoB* — 0

are zero. This follows from B.6, because as in [19] 3.18 one sees that these connecting

maps are induced by the endomorphism v of Gr-C*.
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5 Cech filtration versus Im(N°*) filtration

We give a sufficient criterion for the equality Im(N") = FLH*, but we also give an example
with Im(N") # FELH* although (MW) holds true.

Lemma 5.1. Let V be an abelian group, m,n € N, n < m, let (0) = F™ C ...C F' C
F° =V be a descending filtration, and let N € Hom(V, V') such that N(F*"') C F" and
Ker(N) NNV = Ker(N) N F® for alli > n. Then N'V = F" for alli > n.

PROOF: Descending induction on i: Let € F~!. Then Nz = N’y for some y
by induction hypothesis, thus x — N*~1y € Ker(N) N Fi~!. By assumption this means

N1z =2 — N7l for some z, i.e. ¥ = N7z —y).

Proposition 5.2. Suppose k is finite, Y is proper and satisfies (MW ). Suppose in addition
that the natural map v : H}, (Y) — H* is strict with respect to the canonical Cech filtra-
tions, i.e. ((FGHY,(Y)) = «(H},(Y)) N EFGH* for all v. Then we have Im(N") = FLH*
for all r > 0.

rig

Proor: By Bl we only need to show Ker(N) N FEH* = Ker(N) N Im(N™) for all r,
but this is obviously implied by strictness of ¢ together with [4.7]

5.3 (1) The condition on ¢ in is formulated in terms of cohomology over the log
base T' (using the double complex B®). But note that, given a lift of Y to a semistable
scheme X over a finite totally ramified extension O of W (k), the filtration FLH* be-
comes the canonical Cech filtration on H},(Xx) induced from (C)g (see section [M), and
the condition on ¢ becomes an entirely analytic condition not involving log structures.
(2) Assuming (MW), the condition on ¢ holds if convoluting the filtrations P and F2
on B*®* commutes with passing to cohomology; by [4.8 this is equivalent to: the convolution
of the filtrations Ker(N*®) and FAH* on H* is a weight filtration on H*.

5.4 Examples. (1) For curves we always have Im(N) = FLH', see [5].
(2) Let Qﬁ?*” be Drinfel’d’s p-adic symmetric space of dimension d over a finite totally
ramified extension K of Ky, let Xr be the quotient of Q%H) by a cocompact discrete
torsionfree subgroup I' < PG L4y 1(K) and let Y be its strictly semistable reduction. It
has interesting cohomology only in degree * = d where it satifies (MW) as was recently
proven by de Shalit [6] and (independently) by Ito [13]. By [9], if d is odd, we have
Im(N") = FLH* for all r. But if d is even we do not always have Im(N") = FL,H*. For
example, let d = 2. On H3,(Xr) we have a covering filtration (Ff),>o and in [9] it is
shown that it coincides with the Cech filtration (FJ),>o on H2,(Xr) (see section [7), and
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moreover that

F{ =Y Ker(N"") N Im(N"2) =Y " Ker(N"") N Im(N'"5+%)

for the monodromy operator N on H2,(Xt) induced from H? (Y/T) by means of

crys

Hip(Xp) = HZ,,(Y/T) @wx K = H? @, K. Observing N* = 0 we get
F} = Ker(N) + Im(N)

F2 = Ker(N) NIm(N) + Im(N?) = Im(N?).
Now assume Im(N) = FLH? in H*> = H2, . (Y/T)g. Then Im(N) = F{ in Hig(Xr).

crys
Combining this with the above identities easily leads to Ker(N) = Im(N?). Therefore N
induces an isomorphism Im(N)/Im(N?) = Im(N?). On the other hand, by the computa-

tions in [23] p.93 we have
dimg (Im(N?)) = dimg (F?) = dimg (F}/FR) — 1 = dimg (Im(N) /Im(N?)) — 1.

Together this is a contradiction, disproving our assumption.

6 N and singular cohomology

6.1 In this section, k is finite and Y is proper. For 5 > 1, irreducible components M of
Y7 and irreducible components N of Y7*! with N C M, denote by

cyn i Hey (M) — H(N)g

crys crys

the natural restriction maps. We say Y is of weak Lefschetz type if for every j > 1, every
pair (N, M) as above, the maps c}; y are isomorphisms if s < (dim N) = d — j, and if
the map c[]i\ﬂv is injective, with Im(cﬁ%) = hi7 C H 41(N)g independent of M. For

example, by [16], Y is of weak Lefschetz type if it is projective and all embeddings N C M

as above are ample divisors on M.

Lemma 6.2. Suppose Y is of weak Lefschetz type, and that for eachi > 1, each component
of Y is geometrically connected. Let s < d — 1 and suppose H(Yyz4,,Q) = 0 for all

d—s>1>0. Then the following sequence is exact:

(%) H: (YN — H: (Y — ... — H: (Y

crys crys crys

PROOF: The geometrical connectedness of each component L of Y for each ¢ implies
H? .(L)g = K for each such L. Therefore the complex (with H?. (Y1) in degree 0)

crys crys

(%) HY (YYg — H® (Yo — ... — H° (Y¥)g —0

crys crys crys
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computes H*(Yz4,, Ko) = H*(Yz4r, Q) ® Ko, thus is exact by our hypothesis when trun-
cated after the degree (d — s) term. Now note that the weak Lefschetz assumption allows
us to naturally identify into one single object H* all the following Ky-vector spaces: the
cohomology groups H,,,(L)q for all components L of Y7 for all 1 < j < d — s, and
the subspaces hj C Hj. . (L)g for all components L of Y*~**!. We therefore obtain the
sequence (x) by tensoring (xx) over K with H*, truncating after the degree (d — s) term
and embedding the degree (d — s) term into HZ. (Y4 5t1)q.

crys

Theorem 6.3. Suppose Y satisfies (MW), is of weak Lefschetz type, and that for each
i > 1, each component of Y is geometrically connected. Suppose H'(Yz4,, Q) = 0 for all
d>1i>0. Then N=0 on H: (Y/T)q for all s # d = dim(Y").

crys

PROOF: First note that we may assume s < d since the assertion for s > d is reduced
to that for 2d — s using Poincaré-duality (which commutes with Frobenius, hence with
weight filtrations, hence — assuming (MW) — with monodromy filtrations). By [B.1] we
need to show Ker(N) NIm(N) = (0) in HS,,(Y/T)q. By &7 we can do this by proving
FLHE,(Y) = 0 (since we assume (MW)). We prove FEH,(Y) = 0 for t > 1 by descending

(Y) = 0 means proving that

rig
induction on t. Proving F4H,

Aot HO(Y, PEFLAYY — HE(Y, P{mA®) = H,

(Y)
is the zero map. In view of the exact sequence
H*(Y, PP FET A — HP (Y, P FLA®) — HP(Y, P{*"Grg A*)

and the vanishing of \;;; by induction hypothesis, it is enough to show that for all = €
H3(Y, Pf* F}A®) there exists a 2/ € H*(Y, Pf*™"FLA®) with k(z) = k(2') and A\(2') = 0.

Consider the sequence
(S)  H*NY, P{mGri ' A%) -2 HY(Y, PPnGriA®) s HoHY(Y, PrnGrif L A®)

where o and [ are the connecting maps in the obvious long exact cohomology sequences.
Note Gr,A* = A% [—j] and P{" A% = Gr;;,Coy[j+1] = COS,.,, together P{*"Grl,A® =2
CQS. ;41 [—J]. Therefore (S) becomes

st (Yt)Q N Hst (Yt-l-l)Q — st (Yt+2)Q,

crys crys crys

hence is exact by 6.2l Since x(x) € Ker(j3), we therefore find y € H*~1(Y, PfanGrl ' A®)

with a(y) = k(x). The image 2’ of y under the composite

H MY, PimGri ' A®) — HO (Y, PR (A® [FLAT)) — HO(Y, P{" FLA®)
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has the desired properties.

6.4 Even if H(Yz4,,Q) = 0 for all # > 0, or even if Y is the reduction of a semistable
scheme X over a finite totally ramified extension Ok of W (k) whose generic fibre is
contractible in the sense of Berkovich spaces (this hypothesis guarantees H(Yz,,, Q) = 0
foralld >7 >0 as required in [6.3]), we can not expect the vanishing of N on the middle

degree cohomology H¢,, .(Y/T)g. However, if we assume in addition that for every j > 1,

(
crys
every irreducible component M of Y7 and every irreducible component N of Y7+ with
N C M, the restriction map

Heo(M)g — HC,\ (N

crys crys

is an isomorphism if s = d — 7, and is injective if s = d — j + 1, with image independent
on M, then we can argue as above to prove N = 0 even on H%, (Y/T)q. For example we

get N=0on H.. .(Y/T)q in case d =1 (for this and a converse of it see also [19] 5.6).

crys

6.5 If Y is geometrically connected for all @ > 1, all ¢ € S;, then H*(Yz4,, Ko) =

FeHE, (Y/T)g. Indeed, FEHE,, (Y/T)qg is the E30-term of the spectral sequence
(C)r EY" = HY(Y,B") = Hp+q(Y, B*) = Hf;;g(Y/T)Q

from 2.5. But ES0 = E Y is the s-th cohomology group of the complex

H (Y'T)— H°

conv conv

(Y2/T) — H° (Y3)T) —

conv

(with H2 (Y'/T) in degree 0). Our assumption implies HY (Y?/T) = K, for all i > 1,
all ¢ € S;, and therefore E5° = H*(Yz,,, Ko).

Now suppose in addition Y is of weak Lefschetz type and satisfies (MW). Suppose that
we have Im(N") = FLH* (cf. section B) and N” =0 on H.  (Y/T)g for all 0 < r < d.

crys

Then necessarily even N =0 on H., (Y/T)g for all 0 < r < d, as follows from

crys

7 Liftings to mixed characteristic

7.1 Let A be a complete discrete valuation ring which is a totally ramified finite extension
of W(k). Let K = Quot(A) and fix a uniformizer 7 in A. Let X be a proper m-adic formal
Spf(A)-scheme with strictly semistable reduction, i.e. Zariski locally it admits étale maps
to SpfA < Xq,..., Xg1 > /(X1... X, — m) for some 1 < a < d~+ 1. It is naturally a log

smooth formal log-scheme over
S = (Spf(A),(N — A, 1 — m)).
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Taking reduction modulo 7 we get a semistable k-log scheme Y as in 1.1. Let Xx be the
reSi]Y;i [x, the direct

sum of the tubes of the Y in X. The covering Xy = Ujesl]le [x is an admissible open

generic fibre of X as a rigid analytic space. For ¢ > 0 let [V [x=]]

covering, it therefore gives rise to the Cech spectral sequence
(C)s EY' = Hip()Y" [x) = Hjp"(Xx).
On the other hand we have from 2.5 the spectral sequence

(C)r BV = HU(Y, B) — H'9(Y, B*) = H4(Y/T)q.

crys

Proposition 7.2. Depending on the choice of © there is an isomorphism of spectral

sequences
(C)s = (C)r ®k, K.

PrROOF: Note H(Y, B*) = H1 (YP+1/T) by IR and HY, (V/T)q = HY, (Y/T).

conv crys

Thus we get the isomorphism from [9].

7.3 By transport of structure the monodromy operator N on H}. (Y/T)q induces
a monodromy operator N on Hj,(Xx) which does not depend on our choice of 7, see
[T1] sect.5. Denote by FLHr(Xk) the filtration on H},(Xf) induced by the spectral
sequence (C)g. Via (C)s = (C)r ®g, K this is the filtration obtained by scalar extension
from the filtration FgHY, (Y/T)g on HY., (Y/T)q. Therefore we get from and [3.8

the following theorem, which in particular gives an upper bound for the vanishing order

of N in terms of the rigid space Xg:

Theorem 7.4. There is a natural operator N acting on (C)s inducing the monodromy
operator N on H;p(Xk). However, we have N = 0 on all Ey-terms. In particular,
Im(N") C N(FG Hjp(Xk)) C FEHp(Xk) in Hip(Xi).

7.5 We do not know if in general the residue map Hj,(Xk) fey FLHp(Xk)) can be

made explicit without involving the log basis T'. However, for ¢ = % = d this map should be
the following (generalizing that of [5]): restrict a class in Hé,(Xg) to Hip(JY 4 [x); there
choose a representing d-form, take its residue and view it as an element in HOp(]Y %! [x).
We mention that also the tentative definition of N given in [I] for varieties Xy uni-
formized by Drinfel’d’s symmetric spaces is based on residue maps, and we expect that

our description of N can be used for a comparison with the N from [IJ.
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