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The Čech Filtration and Monodromy in Log

Crystalline Cohomology

Elmar Grosse-Klönne

Abstract

For a strictly semistable log scheme Y over a perfect field k of characteristic p

we investigate the canonical Čech spectral sequence (C)T abutting to the Hyodo-

Kato (log crystalline) cohomology H∗
crys(Y/T )Q of Y and beginning with the log

convergent cohomology of its various component intersections Y i. We compare the

filtration on H∗
crys(Y/T )Q arising from (C)T with the monodromy operator N on

H∗
crys(Y/T )Q. We also express N through residue maps and study relations with

singular cohomology. If Y lifts to a proper strictly semistable (formal) scheme X

over a finite totally ramified extension of W (k), with generic fibre XK , we obtain

results on how the simplicial structure of Xan
K (as analytic space) is reflected in

H∗
dR(XK) = H∗

dR(X
an
K ).

Introduction

Let A be a complete discrete valuation ring of mixed characteristic (0, p), with perfect

residue field k and fraction field K, and let K0 be the fraction field of the ring of Witt

vectors W (k) of k. Let X be a proper strictly semistable A-scheme. Besides its Hodge

filtration the de Rham cohomology H∗
dR(XK) of the generic fibre XK of X comes with a

K0-lattice with a Frobenius operator F and a nilpotent operator N : these are obtained,

via the Hyodo-Kato isomorphism (which depends on the choice of a uniformizer π in A)

H∗
dR(XK) ∼= H∗

crys(Y/T )Q ⊗K0
K(∗)
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from the Frobenius operator F and the nilpotent operator N on the Hyodo-Kato (log crys-

talline) cohomology H∗
crys(Y/T )Q of the special fibre Y of X . It follows from the theorem

of Tsuji and (independently) Faltings that H∗
dR(XK), together with its Hodge filtration

and the operators F and N on its K0-lattice defined by (∗), allows the reconstruction of

the p-adic étale cohomology group H∗
et(XK̄ ,Qp) together with its Gal(K̄/K)-action. We

have N = 0 if X has good reduction. It is a general and important problem to recon-

struct as much as possible of the N -structure on H∗
dR(XK) = H∗

dR(X
an
K ) (where Xan

K is

the rigid analytic space associated with XK) solely from XK or Xan
K . For this purpose

the obvious idea is to look at the following spectral sequence (C)S. Let {Yj}j∈R be the

set of irreducible components of Y . Each Yj is (classically) smooth over k. For i ≥ 1 let

Y i =
∐

|I|=i(∩Yj)j∈I where I runs through the set of subsets of R with precisely i ele-

ments. We assume that all connected components of Y are of the same dimension d. For

direct sums E =
∐
Es of subschemes Es ⊂ Y let ]E[X=

∐
s]Es[X be the direct sum of the

preimages of the Es under the specialization map Xan
K → Y : these ]Es[X are admissible

open subspaces of Xan
K . The admissible open covering Xan

K = ∪j∈R]Yj [X is a covering by

contractible spaces in the sense of Berkovich. It gives rise to the spectral sequence

Epq
1 = Hq

dR(]Y
p+1[X) =⇒ Hp+q

dR (XK).(C)S

In applications, for example when XK is a Shimura variety, (C)S often has arithmetical

meaning. In the case d = 1, Coleman and Iovita [5] gave a description of N on H1
dR(XK)

in terms of (C)S; namely, they proved that it is the composite

H1
dR(XK)

Res
−→ H0

dR(]Y
2[X)

δ
−→ H1

dR(XK)

where Res is an explicit residue map and δ is the connecting homomorphism in (C)S. For

any d, Alon and de Shalit [1] gave a tentative definition of N for varieties XK uniformized

by Drinfel’d’s symmetric spaces; their central concept of harmonic cochains on the Bruhat

Tits building is intimately related to (C)S. The observation from [9] that for such varieties

the filtration F •
C on Hd

dR(XK) defined by (C)S is the weight filtration for the Frobenius

action plays a role in de Shalit’s recent proof of the monodromy weight conjecture for

such varieties [6] (another proof was given by Ito [13]). Besides these example we are not

aware of other investigations of (C)S. The general reference for monodromy operators

arising in semistable families (considered there in the ℓ-adic and in the complex analytic

setting) is Illusie’s article [12]. Specifically, the Cech complex from [12] 2.1.5, 3.2 does not

correspond to (C)S but rather to the canonical Cech spectral sequence

Epq
1 = Hq

rig(Y
p+1) =⇒ Hp+q

rig (Y )(C)rig

with H∗
rig denoting non logarithmic rigid cohomology.
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In this paper we begin the study of how N interacts with (C)S for general X by using

log convergent cohomology. Since Y is a normal crossings divisor on the regular scheme X

it gives rise to a natural log structure on X , and by pull back to natural log structures on

subschemes of X . Thus, since Y is a log scheme over the log point T1 = (Spec(k), (N →

k, 1 7→ 0)) over k, all subschemes of Y become T1-log schemes. As such we ask for their

log convergent cohomology H∗
conv(./T ) relative to T = (Spf(W (k)), (N → W (k), 1 7→ 0))

which takes values in K0-vector spaces. For example, H∗
conv(Y/T ) = H∗(Y,Cω•

Y ) for a

certain logarithmic de Rham complex Cω•
Y on analytic tubular neighbourhoods of Y in

local T -log smooth liftings. Since Y is log smooth over T1 the Hyodo-Kato cohomology

H∗
crys(Y/T )Q is isomorphic to H∗

conv(Y/T ). There is a natural Čech spectral sequence

Epq
1 = Hq

conv(Y
p+1/T ) =⇒ Hp+q

conv(Y/T ) = Hp+q
crys(Y/T )Q.(C)T

By [9], 3.8 and 3.9, the isomorphism (∗) extends to an isomorphism of spectral sequences

(C)S ∼= (C)T ⊗K0
K. In particular, the descending filtration (F r

CH
∗
crys(Y/T )Q)r≥0 on

H∗
crys(Y/T )Q induced by (C)T redefines the descending filtration (F r

CH
∗
dR(XK))r≥0 on

H∗
dR(XK) induced by (C)S (we call them the canonical Čech filtrations). As our main tool

to analyse (C)T we introduce the Čech-double complex B•• on Y (or rather on a simplicial

scheme U• associated with a suitable Zariski open covering of Y ) whose total complex B•

computes H∗
conv(Y/T ) and whose (k− 1)-st column B•k−1 computes Hq

conv(Y
k/T ). (Since

Y k/T1 is not log smooth it is doubtful if its log crystalline cohomology (relative to T )

is a useful object.) This means that (C)T is the spectral sequence associated with the

stupid vertical filtration F •
C of B••. On the other hand we consider a double complex

A•• with associated total complex A• which is the straighforward analog (in the log

convergent setting, as opposed to the log crystalline setting) of the Hyodo-Steenbrink-

complex W•A
• on Y constructed by Mokrane [19]. This A• computes H∗

crys(Y/T )Q =

H∗
conv(Y/T ), too. Moreover A• is endowed with an endomorphism ν which induces N

on H∗
conv(Y/T )Q. The complexes A• and B• can be related in two ways: Firstly, there

is a natural quasiisomorphism ψ : A• → B•. Secondly, there is a third complex C•

endowed with a filtration F •
C and an endomorphism ν such that: there is a natural

quasiisomorphism A• → C• respecting the respective endomorphisms ν, and there is a

natural quasiisomorphism B• → C•, filtered with respect to the respective filtrations F •
C .

In particular, ν on C• induces an operator N on (C)T . We prove (cf. 3.6, 3.8, 4.2):

Theorem: N = 0 on H∗(Y,B•k−1) and N(F k−1
C H∗

crys(Y/T )Q) ⊂ F k
CH

∗
crys(Y/T )Q for

any k ≥ 0. For i ≥ 0 the i-fold iterated monodromy operator N i on H∗
crys(Y/T )Q =

H∗(Y,Cω•
Y ) = H∗(Y,B•) is induced by a composite map of sheaf complexes

Cω•
Y

ρi−→ F i
CB

• ⊂ B•

with an explicit residue map ρi.
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Retransposing to our lifted situation we derive (cf. 7.4):

Theorem: N on H∗
dR(XK) naturally extends to an operator N on (C)S. However,

N = 0 on H∗
dR(]Y

k[X), and N(F k−1
C H∗

dR(XK)) ⊂ F k
CH

∗
dR(XK)) for any k ≥ 1. For i ≥ 0

the i-fold iterated monodromy operator N i on H∗
dR(XK) has the form

H∗
dR(XK)

Res
−→ F i

CH
∗
dR(XK) ⊂ H∗

dR(XK)

with a residue map Res.

We view this as the generalization, to any d, of the description of N given by Iovita

and Coleman in case d = 1. In particular we get an upper bound for the vanishing order of

N described in terms of Xan
K . We do not know if in general the residue map H∗

dR(XK)
Res
−→

F i
CH

∗
dR(XK)) can be made explicit without involving the log basis T . However, for i = ∗ =

d there is a natural candidate, generalizing the residue map used by Iovita and Coleman

in case i = ∗ = d = 1.

The inclusion Im(Nk) ⊂ F k
CH

∗
dR(XK) is an equality if for example the canonical map

H∗
rig(Y ) → H∗

crys(Y/T )Q is strict with respect to canonical Čech filtrations, which on

H∗
rig(Y ) is defined through the above spectral sequence (C)rig (see Proposition 5.2). In

general, however, it is not an equality, even if Y is projective, k is finite and the monodromy

weight conjecture holds, see section 5 for a counter example.

Yet there is more structure on B•: if k is finite and the monodromy weight conjecture

holds, the monodromy filtration on H∗
crys(Y/T )Q is induced from a filtration on B• (The-

orem 4.8). Moreover B• has a product structure inducing Poincaré-duality (in contrast

to A•, it seems), see section 2.

We also ask how N is related to the singular cohomology H∗(YZar,Q). Note that

H∗(YZar,Q) = H∗(Xan
K ,Q), see [2]. We show (Theorem 6.3):

Theorem: Suppose Y satisfies the monodromy weight conjecture, is of weak Lefschetz

type (see section 6), and that for each i ≥ 1, each component of Y i is geometrically con-

nected. Suppose H i(YZar,Q) = 0 for all d > i > 0. Then N = 0 on Hs
crys(Y/T )Q for all

s 6= d = dim(Y ).

We hope that our techniques are useful to further elucidate the constraints which the

homotopy type of Xan (as Berkovich space) imposes on N , and to return to this question

in the future. In this connection we mention the work of Le Stum [18] dealing with the

case of curves. However, in the present paper we work with an abstract strictly semistable

log scheme Y over k and only in the final section 7 we consider a lifting X of Y as above.
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Notations: For log algebraic geometry we refer to K. Kato [15]. For a (formal) log

scheme (X,NX → OX) we will often just write X if it is clear from the context to which

log structure on X we refer. In this text, all log schemes and morphisms of log schemes

have charts for the Zariski topology. For elements {fj}j in the structure sheaf of a (formal)

scheme we denote by V({fj}j) the closed (formal) subscheme defined by dividing out {fj}j

from the structure sheaf. We let k be a perfect field of characteristic p > 0 and W (k) its

ring of Witt vectors with Frobenius endomorphism σ. For (sheaves of) W (k)-modules M

endowed with a σ-linear endomorphism F , and a ∈ N, we denote by M(−a) the same

W (k)-module, but now endowed with the endomorphism pa.F . We let K0 = Quot(W (k))

and denote by W (k){t} the p-adic completion of W (k)[t]. We need the formal log scheme

T = (Spf(W (k)), (N −→W (k), 1 7→ 0)).

We denote by T1 its reduction modulo p: the log point. For a p-adic formal W (k)-scheme

F topologically of finite type we denote by FQ its generic fibre, as a K0-rigid space. For

any such F we write sp for the specialization map FQ → F . For a subscheme F of F

we denote by ]F [F the tube of F in FQ, i.e. the preimage of F under sp; thus ]F [F is an

admissible open subspace of FQ. We use repeatedly and without further comment Kiehl’s

acyclicity theorem [17] which implies that for a coherent sheaf M on ]F [F and i > 0 the

push forward sheaves Risp∗M on F vanish.

1 The tube cohomology of the strata of Y

1.1 Our basic object of study in this paper is a strictly semistable log scheme Y over k.

By definition, Y is a fine T1-log scheme (Y,NY ) which allows a Zariski open covering by

open subschemes Y ′ ⊂ Y with the following property: there exist integers m ≥ 1 and

charts Nm → NY (Y
′) for NY |Y ′ such that

(i) if on the log scheme T1 we use the chart N → k, 1 7→ 0, the diagonal morphism N
δ
→ Nm

is a chart for the structure morphism of log schemes Y ′ → T1, and

(ii) the induced morphism of schemes

Y ′ −→ Spec(k)×Spec(k[t]) Spec(k[t1, . . . , tm])

is smooth in the classical sense. If not said otherwise we endow subschemes of Y with

the pull back structure of T -log scheme induced by that of Y . By {Ys}s∈R we denote the

set of irreducible components of Y . We fix an ordering of R. The existence of charts as

above for the Zariski-topology implies that all Yj are classically smooth. We assume that

all connected components of Y are of the same dimension d. For i ∈ N let Si be the set

5



of subsets of R with precisely i distinct elements. We identify S1 with R. For σ ∈ Si let

Y i
σ = ∩s∈σYs Y i =

∐

σ∈Si

Y i
σ .

(In Y i
σ the upper index i is redundant, but it reminds us of the cardinality of σ)

1.2 Define the formal log scheme V = (Spf(W (k){t}), (N −→ W (k){t}, 1 7→ t)). An

admissible lift of the semistable k-log scheme (Y,NY ) is a formal V -log scheme (Z,NZ)

together with an isomorphism of T1-log schemes

(Y,NY ) ∼= (Z,NZ)×V T1

(where T1 → V is given by t 7→ 0) satisfying the following conditions: On underlying for-

mal schemes Z is smooth over Spf(W (k)), flat over Spf(W (k){t}) and its reduction mod

(p) is generically smooth over Spec(k[t]), the fibre Y = V(t) above t = 0 is a divisor with

normal crossings on Z, and NZ is the log structure defined by this divisor. We usually

denote an admissible lift by (Z,Y). Locally on Y , admissible lifts exist. Indeed, by [14]

11.3 we locally find embeddings of Y as a normal crossings divisor into smooth k-schemes

Z1. Assuming Z1 is affine we can lift Z1 to a formally smooth affine formal W (k)-scheme

Z. Then we lift equations of Y in OZ1
(which form part of a local system of coordinates

on Z1) to equations in OZ : these define Y .

1.3 The following construction of diagonal embeddings in the logarithmic context is

classical, see for example [10], [19]. Choose an open covering Y = ∪h∈HUh of Y , together

with admissible lifts (Zh,Yh) of the Uh (so Uh is the reduction of Yh). For a subset G ⊂ H

let UG = ∩h∈GUh. For h ∈ G and s ∈ R we let Yh,s be the unique W (k)-flat irreducible

component of Yh which lifts Ys ∩ Uh; if Ys ∩ Uh is empty we also let Yh,s be the empty

formal scheme. Let K′′
G be the blowing up of ×W (Zh)h∈G along

∑
s∈R(×W (Yh,s)h∈G), let

K′
G be the complement of the strict transforms in K′′

G of all Yh0,s × (×(Zh)h∈G−{h0}) (i.e.

all h0 ∈ G, all s ∈ R), and let Y ′
G be the exceptional divisor in K′

G.

Let V ′
G be the blowing up of the G-indexed self-product ×WVh∈G of V along ×WTh∈G;

the diagonal embedding V → ×WVh∈G lifts to an embedding V → V ′
G. There is a natural

morphism of formal log schemes Y ′
G → V ′

G and KG = K′
G ×V ′

G
V is a smooth formal W -

scheme and V -log formal scheme with relative normal crossings divisor YG = Y ′
G ×V ′

G
T .

Given s ∈ R and any h ∈ G, the closed subscheme YG,s = Yh,s×Yh
YG of YG is independent

of h. The non-empty YG,s form the set of W (k)-flat irreducible components of YG. By

construction, the diagonal embedding UG → ×W (Yh)h∈G lifts canonically to an embedding

UG → KG, which in turn factors over the closed formal subscheme YG of KG. Similarly,

if for i ≥ 1 and σ ∈ Si we let Y i
G,σ = ∩s∈σYG,s, then Y i

G,σ maps to Y i
G,σ.
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Lemma 1.4. For any ∅ 6= G1 ⊂ G the maps

]UG[YG
−→]UG[YG1

,

]UG ∩ Y i
σ [Yi

G,σ
−→]UG ∩ Y i

σ [Yi
G1,σ

are relative open polydisks.

Proof: We give a description in local coordinates. Since the statement is local we

may assume that there are an m with 1 ≤ m ≤ i and for all h ∈ G étale maps

Zh −→ Spf(W (k){th,1, . . . , th,d})

such that Yh = V(th) with th =
∏m

j=1 th,j and such that they induce étale maps

UG −→ Spec(k)×Spec(k[th]) Spec(k[th,1, . . . , th,d])

which are the same for all h if (for each fixed j) we identify the free variables th,j for all

h. We then obtain an étale map

KG −→ Spf(
W (k){th,1, . . . , th,d}h∈G

(th − th′)h,h′∈G
).

Here the relations th = th′ are due to the base change V → V ′
G in the definition of KG. Now

since in the definition of K′
G we removed the strict transforms of all Yh0,s×(×(Zh)h∈G−{h0})

we may speak of the global sections th,jt
−1
h′,j in OKG

for all h, h′. Thus, fixing an element

h0 ∈ G1 we may speak of vh,j = th,jt
−1
h0,j

(all h). We then have the étale map

KG −→ Spf(W (k){th0,1, . . . , th0,d, v
±
h,2, . . . , v

±
h,d}h∈G−{h0})

(we sold the relations th = th′ for the price of omitting the terms v±h,1). Now YG is defined

inside KG through th0, and we may arrange the situation in such a way that Y i
G,σ is defined

through th0,1, . . . , th0,i. We get the étale maps

YG −→ Spf(W (k){th0,1, . . . , th0,d, v
±
h,2, . . . , v

±
h,d}h∈G−{h0}/(th0)),(1)

Y i
G,σ −→ Spf(W (k){th0,1, . . . , th0,d, v

±
h,2, . . . , v

±
h,d}h∈G−{h0}/(th0,1, . . . , th0,i)).(2)

The closed immersions UG → YG and UG∩Y
i
σ → Y i

G,σ are defined by p and all vh,j−1 (all

h ∈ G−{h0}, all 2 ≤ j ≤ d), hence the map (1) (resp. (2)) induces an isomorphism from

]UG[YG
(resp. from ]UG ∩Y i

σ [Yi
G,σ

) to the tube over the closed subscheme of the right hand

side in (1) (resp. (2)) defined by all vj,h− 1. To compute this tube in the right hand side

we look at the completion along the ideal defined by all vj,h−1: it is a formal power series

ring over W (k){th0,1, . . . , th0,d}/(th0) (resp. over W (k){th0,i+1, . . . , th0,d}/(th0,1, . . . , th0,i)).

Repeating all this with the subset G1 of G simply means omitting the free variables vj,h−1

7



for h ∈ G − (G1 ∪ {h0}): in both cases the difference is a relative formal powers series

ring in the free variables vj,h − 1 for h ∈ G − (G1 ∪ {h0}); but formal power series rings

correspond to open polydisks.

1.5 Endow KG with the log structure defined by YG, and endow YG with the pull back

log structure. Then KG (resp. YG) is log smooth over V (resp. T ), and UG → YG is

an exact closed embedding of (formal) T -log schemes. Denote by ω̃•
KG

the logarithmic

de Rham complex of KG → Spf(W (k)) with the trivial log structure on Spf(W (k)). Let

P•ω̃
•
KG

be the weight filtration on ω̃•
KG

:

Pjω̃
k
KG

= Im(ω̃jKG
⊗ Ωk−jKG

−→ ω̃kKG
)

where Ω•
KG

is the usual de Rham complex of the morphism of schemes underlying KG →

Spf(W (k)). For G1 ⊂ G2 we have natural transition maps KG2
→ KG1

, hence a simplicial

formal scheme K• = {KG}G⊂H with sheaf complexes Pjω̃
•
K•

on it. Also we have the closed

simplicial formal sub schemes Y• = {YG}G⊂H and Y i
•,σ = {Y i

G,σ}G⊂H for i ≥ 1 and σ ∈ Si.

Denote by JY• (resp. JYi
•,σ
) the ideal of Y• (resp. of Y i

•,σ) in OK• . Write θ = dlog(t).

Using the structure sheaf of the simplicial rigid space ]U•[Y• we give analytic analogs of

the crystalline definitions from [10], [19]:

Cω̃•
Y• =

ω̃•
K•

JY• ⊗ ω̃•
K•

⊗OY•
sp∗O]U•[Y•

PjCω̃
•
Y• =

Pjω̃
•
K•

JY• ⊗ ω̃•
K•

⊗OY•
sp∗O]U•[Y•

Cω•
Y• =

Cω̃•
Y•

Cω̃•−1
Y•

∧ θ
.

The following definitions which use the structure sheaves of the simplicial rigid spaces

]U• ∩ Y i
σ [Yi

•,σ
have no analog in [10], [19]:

Cω̃•
Y i
•,σ

=
ω̃•
K•

JYi
•,σ

⊗ ω̃•
K•

⊗O
Yi
•,σ
sp∗O]U•∩Y i

σ [Yi
•,σ

PjCω̃
•
Y i
•,σ

=
Pjω̃

•
K•

+ JYi
•,σ

⊗ ω̃•
K•

JYi
•,σ

⊗ ω̃•
K•

⊗O
Yi
•,σ
sp∗O]U•∩Y i

σ [Yi
•,σ

=
Pjω̃

•
K•

JYi
•,σ

⊗ ω̃•
K•

∩ Pjω̃•
K•

⊗O
Yi
•,σ
sp∗O]U•∩Y i

σ [Yi
•,σ

Cω•
Y i
•,σ

=
Cω̃•

Y i
•,σ

Cω̃•−1
Y i
•,σ

∧ θ

CΩ•
Y i
•,σ

= P0Cω̃
•
Y i
•,σ
.
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We drop the σ in these notations when we sum over all σ ∈ Si:

Cω̃•
Y i
•
=

⊕

σ∈Si

Cω̃•
Y i
•,σ

PjCω̃
•
Y i
•
=

⊕

σ∈Si

PjCω̃
•
Y i
•,σ
,

Cω•
Y i
•
=

⊕

σ∈Si

Cω•
Y i
•,σ

CΩ•
Y i
•
=

⊕

σ∈Si

CΩ•
Y i
•,σ
.

We view all these sheaf complexes as living on U• = {UG}G. In our notation we will

frequently drop the subscript bullet below Y (which holds the place for the varying G),

thus we understand

Cω̃•
Y = Cω̃•

Y• , Cω•
Y = Cω•

Y• ,

Cω̃•
Y i
σ
= Cω̃•

Y i
•,σ
, Cω•

Y i
σ
= Cω̃•

Y i
•,σ
,

Cω̃•
Y i = Cω̃•

Y i
•
, Cω•

Y i = Cω•
Y i
•
.

Moreover, to be consistent with the introduction we keep the names of complexes on U•

also for their derived push forward on Y (via the morphism of simplicial schemes U• → Y ).

Note that CΩ•
Y i
σ
computes the non logarithmic convergent (or equivalently: crystalline)

cohomology of the classically smooth k-scheme Y i
σ .

Recall from [11] 3.1 that on the formal log scheme T we have a Frobenius action: the

unique endomorphism which equals σ on W (k) and multiplication by p on the standard

chart N
0
→ W (k). We may assume that for each h ∈ H there is an endomorphism of

(Zh,Yh) which lifts the Frobenius endomorphism (i.e. the p-power map on the structure

sheaf) of its reduction modulo (p) and which sends equations for the divisors Yh,s on Zh to

their p-th power. Then we also get such Frobenius endomorphisms F on K•, Y• and Y i
•,σ

and on the various logarithmic de Rham complexes defined above. By abuse of notation

we will frequently write RΓ(Y,K•) instead of RΓ(U•, K
•) for sheaf complexes K• on U•.

Proposition 1.6. The objects RΓ(Y,Cω•
Y•
), RΓ(Y, PjCω̃

•
Y•
), RΓ(Y,Cω•

Y i
•,σ
) and RΓ(Y, PjCω̃

•
Y i
•,σ
)

are independent of the chosen system {(Zh,Yh)}h∈H .

Proof: Given another system {(Z ′
h′ ,Y

′
h′)}h′∈H′ one performs the constructions from

1.3 also for {(Z ′
h′,Y

′
h′)}h′∈H′ and for the union of the systems {(Zh,Yh)}h∈H and {(Z ′

h′,Y
′
h′)}h′∈H′ .

We get canonical maps from the cohomology object formed with respect to this union to

those formed with respect to {(Zh,Yh)}h∈H and {(Z ′
h′,Y

′
h′)}h′∈H′ . That these are isomor-

phisms is a local statement and follows from 1.4 and the Poincaré lemma for relative open

polydisks.

1.7 The logarithmic de Rham complex ω•
Y•/T

of Y• → T is

ω•
Y•/T =

ω̃•
Y•/T

ω̃•−1
Y•/T

∧ θ
with ω̃•

Y•/T = ω̃•
K•

⊗OK•
OY• .
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The logarithmic convergent cohomology in our context (see Ogus [22] and Shiho [24] for

more general definitions) is given by the objects

RΓconv(Y/T ) = RΓ(Y, ω•
Y•/T ⊗OY•

sp∗O]U•[Y•
),

RΓconv(Y
i
σ/T ) = RΓ(Y, ω•

Y•/T ⊗OY•
sp∗O]U•∩Y i

σ [Y•
).

Proposition 1.8. (i) We have a canonical isomorphism

RΓconv(Y/T ) ∼= RΓcrys(Y/T )Q.

(ii) There are canonical isomorphisms

RΓconv(Y
i
σ/T )

∼= RΓ(Y,Cω•
Y i
•,σ
).

Proof: (i) is due to a general comparison isomorphism between log convergent and

log crystalline cohomology of a log smooth morphism, see e.g. [24]. In (ii) the canonical

map is induced by the inclusion of simplicial rigid spaces ]U• ∩ Y i
σ [Yi

•,σ
→ ]U• ∩ Y i

σ [Y• .

That it is an isomorphism can be checked locally, so we may assume that there exists an

affine admissible lift (Z,Y) of Y . For s ∈ R let Ys be theW (k)-flat irreducible component

of Y lifting Ys. For τ ⊂ R let Yτ = ∩s∈τYs if ∅ 6= τ and Y∅ = Y . Then let

Oτ = Γ(]Y
|τ∪σ|
τ∪σ [Yτ

,OYτ
).

Let ω•
Y be the logarithmic de Rham complex of Y/T and write L• = Γ(Y, ω•

Y ⊗Q). Then

R∗Γconv(Y
i
σ/T ) = h∗(L• ⊗O∅)

RΓ(Y,Cω•
Y i
•,σ
) = h∗(L• ⊗Oσ).

Thus we need to show that L• ⊗ O∅ → L• ⊗ Oσ is a quasiisomorphism. The following

purely formal reduction to Lemma 1.9 below is literally the same as in [9] Proposition

4.2 or [8] Theorem 3.14. For subsets µ ⊂ R we may form the closed formal subscheme

Yµ = ∪s∈µYs of Y (not to be confused with our previous notation Yj for j ∈ N) and write

Oµ = Γ(]Y i
σ ∩ Yµ[Yµ,OYµ).

Similarly, for two subsets µ1, µ2 of R we write

Oµ1,µ2 = Γ(]Y i
σ ∩ Yµ1 ∩ Yµ2 [Yµ1∩Yµ2 ,OYµ1∩Yµ2 )

and

Oµ1
µ2

= Γ(]Y
|σ∪µ2|
σ∪µ2 ∩ Yµ1 [Yµ1∩Yµ2

,OYµ1∩Yµ2
).
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We will show that in

L• ⊗O∅
α

−→ L• ⊗Oσ β
−→ L• ⊗Oσ

both α and β are quasiisomorphisms. The exact sequences

0 −→ O∅ −→ Oσ ⊕OR−σ −→ Oσ,R−σ −→ 0

0 −→ Oσ −→ Oσ ⊕Oσ,R−σ −→ Oσ,R−σ −→ 0

show that, to prove that α is a quasiisomorphism, it is enough to prove that L•⊗OR−σ →

L•⊗Oσ,R−σ is a quasiisomorphism. To see this, it is enough to show that both L•⊗OR−σ γ
→

L• ⊗ OR−σ
σ and L• ⊗ Oσ,R−σ δ

→ L• ⊗ OR−σ
σ are quasiisomorphisms. Consider the exact

sequence

0 −→ OR−σ −→
⊕

s∈R−σ

Os −→
⊕

ρ⊂R−σ
|ρ|=2

Oρ −→ . . . −→ OR−σ −→ 0(∗)

Comparison of the exact sequences (∗) ⊗ L• and (∗) ⊗ OR−σ
σ ⊗ L• shows that to prove

that γ is a quasiisomorphism, it is enough to show this for L• ⊗ Oρ → L• ⊗ Oρ∪σ for

all ∅ 6= ρ ⊂ R − σ; but this is Lemma 1.9. Comparison of (∗) ⊗ L• ⊗ Oσ,R−σ and

(∗)⊗ L• ⊗OR−σ
σ shows that to prove that δ is a quasiisomorphism, it is enough to show

this for L• ⊗Oσ
ρ

ǫρ
→ L• ⊗Oρ∪σ for all ∅ 6= ρ ⊂ R− σ. Consider the exact sequence

0 −→ Oσ −→
⊕

s∈σ

Os −→
⊕

γ⊂σ
|γ|=2

Oγ −→ . . . −→ Oσ −→ 0(∗∗)

The exact sequence (∗∗)⊗Oσ
ρ ⊗L• shows that to prove that ǫρ is a quasiisomorphism, it

is enough to show this for L• ⊗Oρ∪γ → L• ⊗Oρ∪σ for all ∅ 6= γ ⊂ σ; but this is Lemma

1.9. The exact sequence (∗∗) ⊗ L• shows that to prove that β is a quasiisomorphism, it

is enough to show this for L• ⊗Oγ → L• ⊗Oσ for all ∅ 6= γ ⊂ σ; but this is Lemma 1.9.

Lemma 1.9. For any inclusion ∅ 6= τ1 ⊂ τ2 ⊂ R with τ2 − τ1 ⊂ σ the projection

µ : L• ⊗Oτ1 −→ L• ⊗Oτ2

is a quasiisomorphism.

Proof: Also this is as in [9] Proposition 4.2. By induction we may suppose τ2 =

τ1 ∪ {s0} for some s0 ∈ σ with s0 /∈ τ2. We may assume that there is a smooth morphism

Y −→ Spf(W (k))×Spf(W (k){t})
Spf(W (k){t1, . . . , tm})

lifting the situation described in 1.1, and furthermore that Yτ2 is the closed formal sub-

scheme of Yτ1 defined by U := t1 (both are closed formal subschemes of Y). Then

Oτ1 = {
∑

m≥0

amU
m; am ∈ Oτ2 , ordp(am) −→ ∞}.
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Localizing further we may assume that there exist s1, . . . , sn ∈ OY(Y) (with n+m− 1 =

dim(Y )) such that {ds1, . . . , dsn, dlog(t1), . . . , dlog(tm−1)} is an OY(Y)-basis of L1. The

images of these elements (denoted by the same names) in L1 ⊗ Oτi then form an Oτi-

basis of L1 ⊗ Oτi (i = 1, 2). Let L1
c , resp. < dlog(U) >, be the Oτ2-submodule of

L1 ⊗ Oτ2 generated by the set {ds1, . . . , dsn, dlog(t2), . . . , dlog(tm−1)}, resp. the single

element dlog(U) = dlog(t1). Let L•
c , resp. < dlog(U) >• be the sub-Oτ2-algebra of

L• ⊗Oτ2 generated by L1
c , resp. by < dlog(U) >. These are in fact subcomplexes and we

have the decomposition

L• ⊗Oτ2 = L•
c⊗ < dlog(U) >• .

By the above description of Oτ1 it follows that the map µ in question has a natural

”zero”-section ν and it suffices to show that ν induces surjective maps in cohomology.

Let ω ∈ Lk ⊗Oτ1 . It can be written as

ω =
∑

m≥0

amU
mdlog(U) +

∑

m≥0

bmU
m

with am ∈ Lk−1
c and bm ∈ Lkc . Subtracting d(

∑
m>0m

−1amU
m) and renaming the coeffi-

cients we may write ω modulo exact forms as

ω = a0dlog(U) +
∑

m≥0

bmU
m.

If dω = 0 we get ω = a0dlog(U) + b0 which lies in the image of ν.

1.10 Remarks. (1) An idealized log scheme is a log scheme together with an ideal in

its log structure which maps to the zero element of the structure sheaf, see Ogus [21].

There is a notion of ideally log smooth morphisms between idealized log schemes, defined

as usual by a lifting condition over exact closed nilimmersions. For σ ∈ Si let Fi,σ ⊂ NY

be the preimage of Ker(OY → OY i
σ
) in the log structure NY of Y . On Y i

σ the pair

(NY ,Fi,σ) induces the structure of an idealized log scheme. If we view T1 as an idealized

log scheme by simply taking the zero ideal in its log structure, the morphism Y i
σ → T1

becomes ideally log smooth. One may define the idealized log crystalline site of Y i
σ/T and

will find that the cohomology (tensored with Q) of its structure sheaf is isomorphic to

our RΓ(Y,Cω•
Y i
•,σ
). There are also Cartier isomorphisms valid in this context, one may

therefore define corresponding de Rham-Witt complexes and everything we develop here

could be done with them as well.

(2) We could similarly define the idealized log convergent cohomology of Y i
σ/T : it is iso-

morphic to the non-idealized version, as follows from 1.8. (We do not claim coincidence of

the idealized and the non-idealized log crystalline cohomology of Y i
σ/T ; we suspect that

the latter is not a useful theory.)
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Proposition 1.11. For k ≥ r ≥ 1 let τ ∈ Sk, ρ ∈ Sr such that ρ ⊂ τ . Taking the residue

along Yr
•,ρ defines a map Resρ : ω̃

q
K•

→ ω̃q−rK•
⊗OYr

•,ρ
. For j ≥ r it extends to a map

Resρ : PjCω̃
q

Y k
•,τ

−→ Pj−rCω̃
q−r

Y k
•,τ
.

Proof: Taking residues involves the choice of local coordinates, the problem is to

show the independence of this choice. We must work on each KG (for G ⊂ H) separately.

Let us write ρ = {s1, . . . , sr} with s1 < . . . < sr in our fixed ordering of R. We assume

that Yr
G,ρ 6= ∅. Since we work locally we may suppose that there exist t1, . . . , tr ∈ OKG

such that YG,si = V(ti) for 1 ≤ i ≤ r. Let

dlog(tρ) = dlog(tr) ∧ . . . ∧ dlog(t1).

For µ ⊂ R denote by ω̃•
KG,µ

the logarithmic differential module on KG with logarithmic

poles along ∪s∈µYG,s. Let

Pq = Im[ω̃r−1
KG

⊗ ω̃q+1−r
KG,R−ρ

−→ ω̃qKG
].

Now let ω ∈ ω̃qKG
. It can be written as

ω = ω0 + η ∧ dlog(tρ)

with ω0 ∈ Pq and η ∈ ω̃q−rKG,R−ρ
. We set

Resρ(ω) = η ⊗ 1 ∈ ω̃q−rKG
⊗OYr

G,ρ
.

To see that this is well defined consider first another sum decomposition ω = ω′
0 + η′ ∧

dlog(tρ) with ω
′
0 ∈ Pq and η′ ∈ ω̃q−rKG,R−ρ

. Then

(η − η′) ∧ dlog(tρ) = ω′
0 − ω0 ∈ Pq

which implies that at least one of t1, . . . , tr divides η − η′, hence η ⊗ 1 = η′ ⊗ 1 in

ω̃q−rKG
⊗OYr

G,ρ
.

To see independence of the chosen system t1, . . . , tr consider another system t′1, . . . , t
′
r ∈

OKG
such that YG,si = V(t′i) for 1 ≤ i ≤ r. Any such system t′1, . . . , t

′
r arises from t1, . . . , tr

by finitely many operations of the following type: multiply ti for a single 1 ≤ i ≤ r by

a unit in OKG
. Thus we may assume t′i0 = ǫ.ti0 for some 1 ≤ i0 ≤ r and ǫ ∈ O×

KG
, and

t′i = ti for all i 6= i0. We want to show Res′ρ(ω) = Resρ(ω) for the residue map Res′ρ
defined with respect to {t′i}1≤i≤r. Write

ω = ω0 + η ∧ dlog(t′ρ) + η ∧ (dlog(tρ)− dlog(t′ρ)).

Clearly Res′ρ(ω0 + η ∧ dlog(t′ρ)) = η. Therefore we need to show Res′ρ(µ) = 0 for µ =

η ∧ (dlog(tρ)− dlog(t′ρ)). Now

−µ = η ∧ dlog(tr) ∧ . . . ∧ dlog(ti0+1) ∧ dlog(ǫ) ∧ dlog(ti0−1) ∧ . . . ∧ dlog(t1)

and dlog(ǫ) ∈ P0ω̃
1
KG

, hence µ ∈ Pq and Res′ρ(µ) = 0.
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Proposition 1.12. For i, j ≥ 1, σ ∈ Si there is a canonical isomorphism

GrjCω̃
•
Y i
•,σ

∼=
⊕

τ∈Sj

CΩ•

Y
|σ∪τ |
•,σ∪τ

[−j](−j).

Proof: (Given σ ∈ Si and τ ∈ Sj we may form the union σ ∪ τ ⊂ R, an element

of S|σ∪τ | with |σ ∪ τ | ≤ |σ| + |τ | = i + j.) Recall that Y• is a relative normal crossings

divisor in the smooth formal simplicial W (k)-scheme K• and that {Yj
•,τ}τ∈Sj

is the set of

its j-codimensional intersection strata. In such a situation it is a classical fact that taking

Poincaré residues (our 1.11 in the extreme case j = r) induces an isomorphism

Grjω̃
•
K•

∼=
⊕

τ∈Sj

Ω•
Yj
•,τ
[−j](−j)

where (Ω•
Yj
•,τ
, d) denotes the classical de Rham complex on the smooth formal simplicial

W (k)-scheme Yj
•,τ . We claim that this isomorphism restricts to an isomorphism between

the OY•-submodule generated by JYi
•,σ

⊗ ω̃•
K•

∩ Pjω̃•
K•

and the OY•-submodule generated

by (Ω•−1

Yj
•,τ

∧ d(JYi
•,σ
) + JYi

•,σ
.Ω•

Yj
•,τ
)[−j]. Indeed, we may work locally around Y |σ∪τ |

•,σ∪τ for

τ ∈ Sj and assume Y i
•,σ = V(ts)s∈σ and Yj

•,τ = V(ts)s∈τ for suitable {ts}s∈σ∪τ ∈ OK• .

Then the OY•-submodule of the above left hand side generated by JYi
•,σ

⊗ ω̃•
K•

∩ Pjω̃
•
K•

is

in fact generated by elements of the form

ω = ts0ω
′ ∧

∧

s∈τ

dlog(ts)

for some s0 ∈ σ and ω′ ∈ ω̃•−j
K•

such that ts0ω
′ ∈ P0ω̃

•−j
K•

. If dlog(ts0) divides ω′ (in the

graded algebra ω̃•
K•
) then dts0 divides ts0ω

′ andResτ (ω) ∈ Ω•−1

Yj
•,τ
∧d(JYi

•,σ
). If dlog(ts0) does

not divide ω′ then ω′ ∈ P0ω̃
•−j
K•

and Resτ (ω) ∈ JYi
•,σ
.Ω•

Yj
•,τ
. Conversely, these local consid-

erations show how to fabricate preimages of elements of (Ω•−1

Yj
•,τ

∧d(JYi
•,σ
)+JYi

•,σ
.Ω•

Yj
•,τ
)[−j]

under the above isomorphism. The claim is established.

Dividing out these submodules we get the isomorphism

Pjω̃
•
K•

Pj−1ω̃
•
K•

+ (JYi
•,σ

⊗ ω̃•
K•

∩ Pjω̃•
K•
)
∼=

⊕

τ∈Sj

Ω•

Y
|σ∩τ |
•,σ∩τ

[−j](−j).

Tensoring over OY• with sp∗O]U•[Y•
we get the wanted isomorphism.

2 The Čech double complex B•• and the Steenbrink

double complex A••

2.1 For e ≥ 1 and τ = {τ1, τ2, . . . , τe} ∈ Se with τ1 < τ2 < . . . < τk+1 and γ ∈ τ define

pos(γ ∈ τ) ∈ N by τpos(γ∈τ) = γ. We continue to work with a fixed system {(Zh,Yh)}h∈H
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as before. Let CωqY i = 0 if q < 0 or i ≤ 0. For s, t ∈ Z we define the bidegree (s, t)-term

of the Čech double complex B•• by

Bst = CωsY t+1 =
⊕

τ∈St+1

Cωs
Y t+1
τ

=
⊕

τ∈St+1

Cω̃s
Y t+1
τ

Cω̃s−1

Y t+1
τ

∧ θ
.

The vertical differentials

Bq(i−1) = CωqY i

d
−→ B(q+1)(i−1) = Cωq+1

Y i

are those of Cω•
Y i ; the horizontal differentials are

Bq(i−1) = Cωq
Y i =

⊕

σ∈Si

Cωq
Y i
σ

ǫ
−→ Bqi = Cωq

Y i+1 =
⊕

τ∈Si+1

Cωq
Y i+1
τ

(ησ)σ∈Si
7→ (

∑

j∈τ

(−1)pos(j∈τ)+q+1η(τ−j))τ∈Si+1
.

Here (τ−j) means the element τ −{j} of Si, and by η(τ−j) we actually mean the image of

η(τ−j) under the obvious restriction map Cωq
Y i
τ−j

→ Cωq
Y i+1
τ

. We define the augmentation

Cω•
Y

ǫ0−→ Cω•
Y 1 = B•0

as the sum of the canonical restriction maps (similar to the above differentials ǫ, but

without alternating signs). It induces a morphism of complexes Cω•
Y → B• with B• the

total complex of B••.

2.2 Copying [19] we define the Steenbrink double complex (Aij)i,j by

Aij =
Cω̃i+j+1

Y

PjCω̃
i+j+1
Y

if i ≥ 0, j ≥ 0, and = 0 else. The vertical differentials Aij → Ai+1,j are induced by

(−1)jd : Cω̃i+j+1
Y → Cω̃i+j+2

Y ; the horizontal differentials Aij → Ai,j+1 are induced by the

assignment ω 7→ ω ∧ θ. The augmentation

Cω•
Y −→ A•0, ω 7→ ω ∧ θ

defines a morphism of complexes Cω•
Y → A• with A• the total complex of A••.

Proposition 2.3. (1) Cω•
Y → B• is a quasiisomorphism.

(2) Cω•
Y → A• is a quasiisomorphism.

(3) There is a morphism of double complexes ψ : A•• → B•• compatible with the respective

augmentations by Cω•
Y . It induces a quasiisomorphism

ψ : A• −→ B•.

In particular we may identify H∗
crys(Y/T )Q = H∗(Y,Cω•

Y ) = H∗(Y,B•) = H∗(Y,A•).
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Proof: For sheaf complexes K• on U• = {UG}∅6=G⊂H and ∅ 6= G ⊂ H let (K•)G

be the component of K• on UG. For each G the complex (Cω•
Y )G, resp. (B•)G, resp.

(A•)G is quasiisomorphic with the corresponding complex formed with respect to a single

admissible lift of UG: this follows from Lemma 1.4 and the Poincaré lemma for open

polydisks (applied in the case of (B•)G, resp. (A
•)G to the subquotient complexes (B•,j)G,

resp. (A•,j)G for all j). Therefore we may assume for (1) and (2) that we are working

with one global admissible lift (Z,Y) and drop G from our notations. To show (1) it is

enough to show that

0 −→ CωqY −→ CωqY 1 −→ CωqY 2 −→ . . .(∗)

is exact for each q. Since Cωq
Y i = CωqY ⊗OY

OYi and CωqY is locally free over OY , this

follows from the exactness (Chinese remainder theorem) of

0 −→ OY −→ OY1 −→ OY2 −→ . . . .

Also statement (2) is reduced to the exactness of (∗), literally as [19] 3.16 is reduced

to [19] 3.15.1. Indeed, the proof in [19] 3.16, although written for logarithmic de Rham

Witt complexes, is in fact a completeley general argument valid for logarithmic de Rham

complexes for any (relative) normal crossings divisor on a (relative) smooth (formal)

scheme (note that since we are working with one global admissible lift we are not taking

rigid analytic tubes of proper subschemes, just as in [19] 3.16 one does not need to deal

with divided power envelopes of proper subschemes).

We turn to (3). The assertion on quasiisomorphy follows from (1) and (2) once ψ

with the stated Cω•
Y -compatibility is defined. To do this first note that for σ ∈ Sk

the residue map Resσ : ω̃q+kK•
→ ω̃qK•

⊗ OYk
•,σ

described in 1.11 induces a residue map

Resρ : Cω̃q+kY → Cω̃q
Y k
σ
, and by construction the latter vanishes on Pk−1Cω̃

q+k
Y . In

particular me may define

Aq(k−1) =
Cω̃q+kY

Pk−1Cω̃
q+k
Y

ψ
−→ Bq(k−1) =

⊕

σ∈Sk

Cω̃q
Y k
σ

Cω̃q−1
Y k
σ

∧ θ

η 7→ (αq,k.Resσ(η))σ∈Sk

for k ≥ 1, where we set αq,k = −1 if (q−1, k) ∈ 2Z×2Z, and αq,k = 1 otherwise. We first

verify that for the horizontal differentials ∧θ of A•• and ǫ of B•• we have ψ ◦ (∧θ) = ǫ◦ψ.

This can be done locally, in particular we may forget about distant components. So we

may assume that there are {ti}1≤i≤l ∈ OKG
, units {ti}l+1≤i≤g ∈ O×

KG
(with G ⊂ H fixed)

and an order preserving identification between R and {1, . . . , l} such that YG,i = V(ti)

for all i ∈ R = {1, . . . , l} and such that dlog(t1), . . . , dlog(tg) is an OKG
-basis of ω̃1

KG
. We
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may more specifically assume (after multiplying one of t1, . . . , tl by an appropriate unit)

that

t =
∏

1≤i≤l

ti ∈ OKG
,

the image of the distinguished element t ∈ OV . We identify R = {1, . . . , l} with the set

S1 of subsets of R = {1, . . . , l} with precisely one element. Then θ =
∑

1≤i≤l dlog(ti) =∑
i∈S1

dlog(ti). For e ≤ g we denote by S̃e the set of subsets of {1, . . . , g} with precisely

e elements. We write

dlog(tν) = dlog(tνe) ∧ . . . ∧ dlog(tν1)

for ν ∈ S̃e with elements νe > . . . > ν1, and for γ ∈ ν we define pos(γ ∈ ν) ∈ N by

νpos(γ∈ν) = γ. By definition, for η ∈ Aq(k−1) we have

ψ(η ∧ θ) = (αq,k+1

∑

i∈S1

Resτ (η ∧ dlog(ti)))τ∈Sk+1

ǫ(ψ(η)) = (αq,k
∑

i∈τ

(−1)pos(i∈τ)+q+1Resτ−iη)τ∈Sk+1

in

Bqk = Cωq
Y k+1 =

⊕

τ∈Sk+1

Cω̃q
Y k+1
τ

Cω̃q−1

Y k+1
τ

∧ θ
.

Now η can be written as a sum of elements of the type β ∧ dlog(tα) with α ∈ S̃q+k and

β ∈ Cω̃0
Y . Therefore we may assume η = β ∧ dlog(tα) for some α ∈ S̃q+k and β ∈ Cω̃0

Y .

We check equality of the τ -components of the above expressions for fixed τ ∈ Sk+1. In

case |τ − (α ∩ τ)| ≥ 2 both of them vanish. Now consider the case τ = (α ∩ τ) ∪ i0 for

some i0 /∈ α. We have η = β ′ ∧ dlog(tα−(α∩τ)) ∧ dlog(tα∩τ ) with β
′ = β or β ′ = −β. Then

αq,k+1

∑

i∈S1

Resτ (η ∧ dlog(ti)) = αq,k+1Resτ (η ∧ dlog(ti0))

= αq,k+1(−1)pos(i0∈τ)+1Resτ (β
′ ∧ dlog(tα−(α∩τ)) ∧ dlog(tτ ))

= αq,k+1(−1)pos(i0∈τ)+1β ′ ∧ dlog(tα−(α∩τ))

and

αq,k
∑

i∈τ

(−1)pos(i∈τ)+q+1Resτ−iη = αq,k(−1)pos(i0∈τ)+q+1β ′ ∧ dlog(tα−(α∩τ))

and we see equality. Finally consider the case τ ⊂ α. We have η = β ′∧dlog(tα−τ )∧dlog(tτ )

with β ′ = β or β ′ = −β. Then

αq,k+1

∑

i∈S1

Resτ (η ∧ dlog(ti)) = αq,k+1

∑

i∈S1−α

Resτ (η ∧ dlog(ti))
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= αq,k+1

∑

i∈S1−α

(−1)k+1+pos(i∈i∪(α−τ))+1Resτ (β
′ ∧ dlog(ti∪(α−τ)) ∧ dlog(tτ ))

= αq,k+1

∑

i∈S1−α

(−1)k+pos(i∈i∪(α−τ))β ′ ∧ dlog(ti∪(α−τ))

and

αq,k
∑

i∈τ

(−1)pos(i∈τ)+q+1Resτ−iη

= αq,k
∑

i∈τ

(−1)k+1+q+1Resτ−i(β
′ ∧ dlog(tα−τ ) ∧ dlog(ti) ∧ dlog(tτ−i))

= αq,k
∑

i∈τ

(−1)k+q+pos(i∈i∪(α−τ))+1β ′ ∧ dlog(ti∪(α−τ)).

But in Cω̃q+1

Y k+1
τ

/(Cω̃q
Y k+1
τ

∧ θ) the element

β ′ ∧ dlog(tα−τ ) ∧ θ =
∑

i∈S1

β ′ ∧ dlog(tα−τ ) ∧ dlog(ti)

=
∑

i∈S1−(α−τ)

(−1)pos(i∈i∪(α−τ))β ′ ∧ dlog(ti∪(α−τ))(3)

vanishes, thus again we obtain the desired equality and the proof of ψ ◦ (∧θ) = ǫ ◦ ψ is

finished. The compatibility of ψ with the vertical differentials d is easy to check.

Now we check ǫ0 = ψ ◦ (∧θ) for the augmentation maps ǫ0 : CωqY → Bq0 and (∧θ) :

CωqY → Aq0. Let η ∈ CωqY . We work with a system of coordinates {ti} as above, and

again we may assume η = β ∧ dlog(tα) for some α ∈ S̃q and β ∈ Cω0
Y . We find

ψ(η ∧ θ) = (Resj
∑

i∈S1

η ∧ dlog(ti))j∈S1
= (Resj

∑

i∈S1−α

η ∧ dlog(ti))j∈S1

and we see that for j ∈ S1 − α the j-component is η, i.e. the j-component of ǫ0(η). Now

consider the respective j-components for j ∈ α. We have η = β ′∧dlog(tσ)∧dlog(tj) with

σ = α− j and β ′ = β or β ′ = −β. Then the j-component of ψ(η ∧ θ) is

Resj
∑

i∈S1−α

(−1)pos(i∈(σ∪i))β ′ ∧ dlog(tσ∪i) ∧ dlog(tj)

=
∑

i∈S1−α

(−1)pos(i∈(σ∪i))β ′ ∧ dlog(tσ∪i).

Since

β ′ ∧ dlog(tσ) ∧ θ =
∑

i∈S1−α

(−1)pos(i∈(σ∪i))+1β ′ ∧ dlog(tσ∪i)

vanishes in CωqY 1 , we find that also in this case the j-component is η, i.e. the j-component

of ǫ0(η).
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2.4 Both B• and A• are designed to compute H∗
crys(Y/T )⊗Q in terms of cohomology

groups of the components of Y . A first advantage of B• against A• is the following. There

does not seem to exist an obvious pairing on A•, compatible with the differential in the

usual sense, extending the cup product on Cω•
Y which induces the Poincaré-duality in

cohomology from [10]. By contrast, such a pairing does exist on B•. Namely, define

CωiY j+1 ⊗CωkY s+1 −→ Cωi+kY j+s+1

by composing the restriction maps

CωiY j+1 −→ CωiY j+s+1 and CωkY s+1 −→ CωkY j+s+1

(for these we do not use alternating signs as we did in the definition of the differential ǫ

of B•) with the cup product

CωiY j+s+1 ⊗CωkY j+s+1 −→ Cωi+kY j+s+1 .

2.5 On the double complex B•• define the Čech filtration F •
CB

•• by setting F r
CB

ik =

Bik if r < k + 1, and F r
CB

ik = 0 if r ≥ k + 1. It gives rise to a spectral sequence

Epq
1 = Hq(Y,B•p) =⇒ Hp+q(Y,B•) = Hp+q

crys(Y/T )Q.(C)T

We denote by F •
CH

∗
crys(Y/T )Q the induced filtration on H∗

crys(Y/T )Q.

2.6 Let ν be the bihomogeneous endomorphism of bidegree (-1,1) of A•• such that

(−1)j+1ν is the natural projection Ai,j → Ai−1,j+1. By [19] 3.18 it induces the usual

monodromy operator N on H∗
crys(Y/T )Q = H∗(Y,A•). (In fact our definition of ν differs

from the one written in [19] 3.13 by the sign (−1)i. It seems to us that to ensure that

[19] 3.18 holds, our definition is the correct one). ν anticommutes with the differential of

A••. Note that the filtration ν•A•• of A•• by the images of the iterated applications of

ν is just the stupid horizontal filtration. Since the morphism ψ from 2.3 sends νrA•• to

F r
CB

•• we see:

Corollary 2.7. For all r ≥ 0,

Im(H∗(Y, νrA•) −→ H∗
crys(Y/T )Q) ⊂ F r

CH
∗
crys(Y/T )Q

in H∗
crys(Y/T )Q. In particular ImN r ⊂ F r

CH
∗
crys(Y/T )Q inside H∗

crys(Y/T )Q.
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3 The Čech-Steenbrink tricomplex

3.1 We now develop another tool to compare B• with A•: the Čech-Steenbrink tricomplex

C•••. For k ≥ 0, i ≥ 0, j ≥ 0 its tridegree (ijk)-term is

C ijk =
Cω̃i+j+1

Y k+1

PjCω̃
i+j+1
Y k+1

.

For other triples (i, j, k) we let C ijk = 0. The differentials C ijk → C(i+1)jk are those

induced from (−1)jd : Cω̃i+j+1
Y k+1 → Cω̃i+j+2

Y k+1 . The differentials C ijk → C i(j+1)k are ω 7→

ω ∧ θ. The differentials C ij(k−1) → C ijk are

C ij(k−1) =
⊕

σ∈Sk

Cω̃i+j+1
Y k
σ

PjCω̃
i+j+1
Y k
σ

ǫ
−→ C ijk =

⊕

τ∈Sk+1

Cω̃i+j+1

Y k+1
τ

PjCω̃
i+j+1

Y k+1
τ

(ησ)σ∈Sk
7→ (

∑

γ∈τ

(−1)pos(γ∈τ)+i+1η(τ−γ))τ∈Sk+1

(here (τ − γ) means the element τ −{γ} of Sk, and by η(τ−γ) we actually mean the image

of η(τ−γ) under the restriction map).

Fix k ≥ 1. The differentials of the tricomplex C••• induce on its subsheaf C••(k−1) a

structure of double complex; we denote its associated total complex by C•(k−1), with the

convention that C ij(k−1) is placed in degree i + j. Similarly we can form the complex

B•(k−1) with the convention that Bi(k−1), when regarded as a position in B•(k−1), is placed

in degree i. The augmentation B•(k−1) → C•0(k−1) is defined by ω 7→ ω ∧ θ.

Proposition 3.2. This induces a quasiisomorphism B•(k−1) → C•(k−1).

Proof: It is enough to show that for all q ≥ 0 the sequence

0 −→ Cωq
Y k −→ Cq,0,(k−1) −→ Cq,1,(k−1) −→ Cq,2,(k−1) −→ . . .

is exact, in other words that

Cω̃q−1
Y k

∧θ
−→ Cω̃q

Y k

∧θ
−→

Cω̃q+1
Y k

P0Cω̃
q+1
Y k

∧θ
−→

Cω̃q+2
Y k

P1Cω̃
q+2
Y k

∧θ
−→ . . .

is exact. As in [19] 3.15 this is reduced to proving that

0 −→ Gr0Cω̃
•
Y k

∧θ
−→ Gr1Cω̃

•
Y k [1]

∧θ
−→ Gr2Cω̃

•
Y k [2]

∧θ
−→ . . .

is an exact sequence of complexes. In view of 1.12 it is enough to show that for each

component Y k
s of Y k the complex

0 −→ CΩ•
Y k
s
−→

⊕

t∈S1

CΩ•
Y 1
t ∩Y k

s
−→

⊕

t∈S2

CΩ•
Y 2
t ∩Y k

s
−→ . . .
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is exact. The differentials in this complex are the sums of all restriction maps (with

alternating signs) between the respective summands which make sense. It is then enough

to show that for arbitrary q the complex

M• = [CΩq
Y k
s
−→

⊕

t∈S1

CΩq
Y 1
t ∩Y k

s
−→

⊕

t∈S2

CΩq
Y 2
t ∩Y k

s
−→ . . .]

is exact. This is the total complex of the following double complex M••. Let J = {u ∈

R| Y k
s ⊂ Yu} and I = R− J . Let

M ij =
⊕

t∈Si+j
|t∩I|=j

CΩq
Y i+j
t ∩Y k

s

for i ≥ 0 and j ≥ 0, and M ij = 0 otherwise. The differentials M ij → M i+1,j and

M ij → M i,j+1 are the sums of all restriction maps (with alternating signs) between the

respective summands which make sense. Now it is enough to show that for each fixed j

the complex M•j is exact. We have a direct sum decomposition of complexes

M•j =
⊕

r∈Sj
r⊂I

M•
r

M i
r =

⊕

t∈Si
t⊂J

CΩq
Y j
r ∩Y k

s

where the differentials M i
r → M i+1

r are the sums of identity maps (with appropriate al-

ternating signs) between the respective summands. Since the complexes M•
r are exact, so

is M•j .

We remark that as in 2.3 we could also have reduced to the case where we are dealing

with a single global admissible lift. At least in that case the complexes M i• are exact in

positive degrees (with M i0 in degree 0). We do not need this.

3.3 Let C• be the total complex of the tricomplex C•••. The augmentation

A•• −→ C••0

is defined as the sum of the canonical restriction maps (similar to the differentials C ij(k−1) →

C ijk, but without alternating signs). By 2.3 and 3.2 we have:

Corollary 3.4. The augmentations A•• → C••0 and B•• → C•0• induce quasiisomor-

phisms A• → C• and B• → C•. In particular we may identifyH∗
crys(Y/T )Q = H∗(Y,Cω•

Y ) =

H∗(Y,A•) = H∗(Y,B•) = H∗(Y, C•).
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3.5 Let ν be the trihomogeneous endomorphism of tridegree (-1,1,0) of C••• such that

(−1)j+1ν is the natural projection C ij(k−1) → C(i−1)(j+1)(k−1). It is clear that the resolution

A• → C• is compatible with the endomorphisms ν on source and target, thus ν on C•••

induces the same endomorphism N in cohomology. For fixed k ≥ 1 we also denote by N

the operator on H∗(Y,Cω•
Y k) induced by the endomorphism ν : C••(k−1) → C••(k−1) via

the canonical isomorphism H∗(Y, C•(k−1)) = H∗(Y,B•(k−1)) ∼= H∗(Y,Cω•
Y k).

Theorem 3.6. For any k ≥ 1 we have N = 0 on H∗(Y,Cω•
Y k).

Proof: C••(k−1) is the direct sum, over all σ ∈ Sk, of the double complexes

C••(k−1)
σ =

⊕

i,j

C ij(k−1)
σ with C ij(k−1)

σ = (
Cω̃i+j+1

Y k
σ

PjCω̃
i+j+1
Y k
σ

)i,j

and ν is given by endomorphisms ν on each of these summands. We will show that on

each summand ν is homotopic to zero. Fix σ ∈ Sk, choose an auxiliary γ ∈ σ and define

C ij(k−1)
σ

hij
−→ C(i−1)j(k−1)

σ

ω 7→ (−1)j+1Resγω

(this depends on γ). We claim

ν(ω) = hij(ω) ∧ θ − hi(j+1)(ω ∧ θ)(1)

for ω ∈ C
ij(k−1)
σ . This can be verified locally, in particular we may forget about distant

components. So we may assume that there are {ti}1≤i≤l ∈ OKG
, units {ti}l+1≤i≤g ∈ O×

KG

(with G ⊂ H fixed) and an order preserving identification between R and {1, . . . , l} such

that YG,i = V(ti) for all i ∈ R = {1, . . . , l} and such that dlog(t1), . . . , dlog(tg) is an

OKG
-basis of ω̃1

KG
. We may more specifically assume (after multiplying one of t1, . . . , tl

by an appropriate unit) that

t =
∏

1≤i≤l

ti ∈ OKG
,

the image of the distinguished element t ∈ OV . We identify R = {1, . . . , l} with the set

S1 of subsets of R = {1, . . . , l} with precisely one element. Then θ =
∑

1≤i≤l dlog(ti) =∑
i∈S1

dlog(ti). For e ≤ g we denote by S̃e the set of subsets of {1, . . . , g} with precisely

e elements. We write

dlog(tν) = dlog(tνe) ∧ . . . ∧ dlog(tν1)

for ν ∈ S̃e with elements νe > . . . > ν1, and for γ ∈ ν we define pos(γ ∈ ν) ∈ N by

νpos(γ∈ν) = γ. We may assume that ω is represented by βdlog(tρ) for some β ∈ Cω0
Y k
σ
and

ρ ∈ S̃i+j+1. In case γ ∈ ρ we find hij(ω) = (−1)pos(γ∈ρ)+jβdlog(tρ−γ), hence

hij(ω) ∧ θ =
∑

α∈S1−(ρ−γ)

(−1)pos(γ∈ρ)+jβdlog(tρ−γ) ∧ dlog(tα).(i)
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On the other hand ω ∧ θ =
∑

α∈S1−ρ
βdlog(tρ) ∧ dlog(tα) and hence

hi(j+1)(ω ∧ θ) =
∑

α∈S1−ρ

(−1)pos(γ∈ρ)+jβdlog(tρ−γ) ∧ dlog(tα).(ii)

The difference (i)−(ii) is (−1)j+1βdlog(tρ) = ν(ω). In case γ /∈ ρ we see hij(ω) = 0, while

as before ω∧θ =
∑

α∈S1−ρ
βdlog(tρ)∧dlog(tν) and thus hi(j+1)(ω∧θ) = (−1)j+1βdlog(tρ) =

ν(ω), so (1) is proved. One also has

d(hij(ω))− h(i+1)j(dω) = 0(2)

where d denotes the differential C
••(k−1)
σ → C

(•+1)•(k−1)
σ . Now (1) and (2) together imply

that on the complex C
•(k−1)
σ , if d̃ denotes its differential, we have ν = d̃ ◦ h− h ◦ d̃. This

tells us that the endomorphisms ν of the graded algebra C•(k−1), which anticommutes

with d̃, induces the zero map in cohomology.

3.7 On C••• define the Čech filtration F •
CC

••• by setting F r
CC

ijk = C ijk if r < k+1, and

F r
CC

ijk = 0 if r ≥ k+1. Then 3.2 says that B• → C• is a filtered quasiisomorphism with

respect to the respective Čech filtrations. In general, for filtrations (on various complexes)

denoted P•, resp. F
•
C , we will use the notation Gr•, resp. Gr•C , for the associated graded

object.

Corollary 3.8. N(F k
CH

∗
crys(Y/T )Q) ⊂ F k+1

C H∗
crys(Y/T )Q for k ≥ 0 (sharpening 2.7).

Proof: It is enough to show that for k ≥ 0, the image of

H∗(Y, F k
CB

•)
H∗(ν)
−→ H∗(Y, F k

CB
•)

is contained in the image of the natural map H∗(Y, F k+1
C B•)

ι
→ H∗(Y, F k

CB
•). In view of

the exact sequence

H∗(Y, F k+1
C B•)

ι
−→ H∗(Y, F k

CB
•)

pr
−→ H∗(Y,GrkCB

•)

this is equivalent with showing that the image of H∗(ν) is contained in Ker(pr). This

follows from 3.6 using the canonical quasiisomorphism B•k[k] ∼= GrkCB
•.

4 Monodromy and weight filtration via the Čech com-

plex B•

4.1 The endomorphisms Φ := F on the complexes Cω•
Y i induce a Frobenius endomorphism

Φ on B•. The Frobenius endomorphism Φ on A• is defined by Φ := piF on Aij . On A•
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the weight filtration P•A
• is defined by

PkA
• =

⊕

i≥0,j≥0

PkA
ij PkA

ij =
P2j+k+1Cω̃

i+j+1
Y

PjCω̃
i+j+1
Y

.

Denote by Gr•A
• the associated graded with respect to P•A

•. We have

GrkA
• ∼=

⊕

j≥0

j≥−k

CΩ•
Y 2j+k+1 [−2j − k](−j − k)

via residue maps (see [19] 3.22). Passing to the limit n → ∞ and tensoring with Q we

get the weight spectral sequence

E−k,i+k
1 =

⊕

j≥0

j≥−k

H i−2j−k(Y,CΩ•
Y 2j+k+1)(−j − k) =⇒ H i

crys(Y/T )Q.

It gives rise to the weight filtration on H∗
crys(Y/T )Q. On the other hand, the operator

N on H∗
crys(Y/T )Q gives rise to the monodromy filtration on H∗

crys(Y/T )Q, defined in [19]

3.26. Consider the statement:

(MW) The weight spectral sequence degenerates in E2, and the weight filtration coin-

cides with the monodromy filtration on H∗
crys(Y/T )Q.

The standard conjecture ([19] 3.24, 3.27) in this context states that (MW) holds whenever

Y is the reduction of a projective semistable A-scheme as in section 7. Nakkajima [20]

proved the degeneration in E2 unconditionally.

We see that N and the weight filtration on H∗
crys(Y/T )Q can be obtained from correspond-

ing structures on A•. The following Theorems 4.2 and 4.8 tell us that we can recover N

and the weight filtration also from structures on B•.

Theorem 4.2. For i ≥ 0 the i-fold iterated monodromy operator N i on H∗
crys(Y/T )Q =

H∗(Y,Cω•
Y ) = H∗(Y,B•) is induced by a composite of complex morphisms

Cω•
Y

ρi−→ F i
CB

• ι
−→ B•,

where ρi is given by explicit residue maps and ι is the inclusion.

Proof: Consider the quasiisomorphisms

Cω•
Y

∧θ
−→ A• and A• ψ

−→ B•.

The operator N i on H∗
crys(Y/T )Q is the map in cohomology induced by the composite

ψ ◦ νi ◦ (∧θ). This is the following map of complexes ρi : Cω
•
Y → F i

CB
•: An element

η ∈ CωqY is sent to

ǫ(Resσ(η ∧ θ))σ∈Si+1
∈

⊕

σ∈Si+1

Cωq−i
Y i+1
σ

= B(q−i)i
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with the sign ǫ = α(q−i),(i+1)

∏i−1
j=0(−1)j+1 ∈ {±1} (note η ∧ θ ∈ Cω̃q+1

Y ).

4.3 On B•• define the canonical filtration by setting

P can
l Bi(k−1) =

Pl−1Cω̃
i
Y k

(Cω̃i−1
Y k ∧ θ) ∩ Pl−1Cω̃iY k

for l ≥ 0. It induces a filtration P can
• B• on B•. On A•• define the canonical filtration as

the kernel filtration for ν, i.e.

P can
l A•• = Ker(νl : A•• → A••),

or equivalently P can
l Aij = Pl−j−1A

ij for l ≥ 0. For any filtration denoted P can
• (here and

on various other complexes below) we write Grcan• for the associated graded object.

Lemma 4.4. The map ψ : A• → B• from 2.3 is a filtered quasiisomorphism with respect

to canonical filtrations.

Proof: On Cω•
Y define the canonical filtration by setting

P can
l CωiY =

Pl−1Cω̃
i
Y

(Cω̃i−1
Y ∧ θ) ∩ Pl−1Cω̃

i
Y

=
Pl−1Cω̃

i
Y

Pl−2Cω̃
i−1
Y ∧ θ

.

for l ≥ 0. The second equality in this definition can be justified by induction on l, noting

that the natural surjection

Pl−1Cω̃
i
Y

(Pl−2Cω̃
i−1
Y ∧ θ) + (Pl−2Cω̃

i
Y )

−→
Pl−1Cω̃

i
Y

((Cω̃i−1
Y ∧ θ) ∩ Pl−1Cω̃

i
Y ) + (Pl−2Cω̃

i
Y )

is also injective because its composition with the map

Pl−1Cω̃
i
Y

((Cω̃i−1
Y ∧ θ) ∩ Pl−1Cω̃

i
Y ) + (Pl−2Cω̃

i
Y )

∧θ
−→

PlCω̃
i+1
Y

Pl−1Cω̃
i+1
Y

is injective by [19] 3.15. Using the second defining expression for P can
l Cω•

Y we get from

[19] 3.15 that ∧θ : Cω•
Y → A• is a filtered resolution w.r.t. canonical filtrations. Using

the first one we get that the same for ǫ0 : Cω
•
Y → B•. The lemma follows.

For the rest of this section we assume that k is finite and Y is proper and satisfies

(MW). We fix a cohomology degree ∗ and simply write H∗ for H∗
crys(Y/T )Q.

Proposition 4.5. (Chiarellotto, [3]) (1) Let r ∈ N. The sequence

H∗(Y, P can
r A•) −→ H∗ Nr

−→ H∗ −→ H∗(Y,Coker(νr))
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is exact. In particular we have

Im(H∗(Y, νrA•) −→ H∗) = Im(H∗ Nr

−→ H∗).

(2) We have

H∗
rig(Y ) = H∗

rig(Y/K0) = H∗(Y, P can
1 A•).

4.6 Define the Čech filtration on H∗
rig(Y ) by setting

F s
CH

∗
rig(Y ) = Im(H∗(Y, P can

1 F s
CA

•) −→ H∗
rig(Y ))

for s ≥ 0, where we write F s
CA

• = νsA•. It deserves indeed its name: It is the filtration

arising from the spectral sequence

Epq
1 = Hq

rig(Y
p+1) =⇒ Hp+q

rig (Y )(C)rig

(we do not need this fact). Let H∗
rig(Y )

ι
→ H∗ be the canonical map. By Chiarellotto’s

result [3], since we assume (MW), we have Im(ι) = Ker(N).

Proposition 4.7. For all r ≥ 0 we have

ι(F r
CH

∗
rig(Y )) = Ker(N) ∩ Im(N r).

Proof: This follows formally from the fact that the filtrations F •
CH

∗
rig(Y ) on H

∗
rig(Y )

and Ker(N) ∩ Im(N•) on Im(ι) = Ker(N) are in fact weight filtrations for the Frobenius

actions, with the same strictly monoton increasing sequences of weights on the graded

pieces. Indeed, we have

P can
1 GrrCA

• ∼= Gr−rA
•r[−r] ∼= Grr+1Cω̃

•
Y [1](r + 1) ∼= CΩ•−r

Y r+1

(as in [19] 3.22(2)). Therefore H∗(Y, P can
1 GrrCA

•) is pure of weight ∗ − r in view of [4],

hence also its subquotient GrrCH
∗
rig(Y ). On the other hand, by (MW) the subquotient

(Ker(N) ∩ Im(N r))/(Ker(N) ∩ Im(N r+1)) of H∗ is pure of weight ∗ − r.

Theorem 4.8. Denote by G• the convolution of the filtrations P can
• and F •

C on B•, i.e.

the filtration defined by

Gk =
∑

i≥0

P can
i+1F

i−k
C B•.

Then G• induces the monodromy filtration on H∗
crys(Y/T )Q = H∗(Y,B•).

26



Proof: We will show that H∗(Y,Grcank GrrCB
•) is pure of weight ∗ − r + k − 1. This

then implies that the filtration induced by G• is the weight filtration for Frobenius on

H∗
crys(Y/T )Q, i.e. the uniquely determined Frobenius stable filtration whose subquotients

are pure and of mutually different weights; but this is the monodromy filtration, by (MW).

Define the double complex

B̃•• = (Cω̃q
Y i+1)q,i

with differentials analoguous to those in 2.1. Let B̃•, B̃• be the associated total complexes.

As in 2.5 define the Čech filtration F •
CB̃

• by setting F r
CB̃

i(k−1) = B̃i(k−1) if r < k, and

F r
CB̃

i(k−1) = 0 if r ≥ k. Define the canonical filtration by setting P can
l B̃i(k−1) = Pl−1Cω̃

i
Y k

for l ≥ 0.

Claim: H∗(Y,Grcank GrrCB̃
•) is pure of weight ∗ − r + k − 1, for all k ≥ 1. For all k ≥ 2

also H∗(Y,Grcank F r
CB̃

•) is pure of weight ∗ − r + k − 1.

The assertion in case k = 1 follows from the proof of 4.7, thanks to the isomorphism

ψ : P can
1 A• ∼= P can

1 B• = P can
1 B̃•. Now let k ≥ 2. We have

Grcank GrsCB̃
• = Grk−1Cω̃

•
Y s+1 [−s] ∼= CΩ•

Y s+1∩Y k−1 [−s− k + 1](−k + 1).

So H∗(Y,Grcank GrrCB̃
•) is pure of weight ∗ − s − k + 1 − 2(−k + 1) = ∗ − r + k − 1.

It follows that H∗(Y,Grcank F r
CB̃

•) is mixed with weights at most ∗ − r + k − 1, and

H∗(Y,Grcank (B̃•/F r
CB̃

•)) is mixed with weights at least ∗ − r + k. On the other hand,

Grcank B̃• is quasiisomorphic with Grk+1Cω̃
•
Y via the canonical augmentation Cω̃•

Y → B̃•0.

But Grk+1Cω̃
•
Y
∼= CΩ•

Y j [−j](−j), thus H∗(Y,Grcank Cω̃•
Y ) is pure of weight ∗+k−1. Now

the long cohomology sequence associated to

0 −→ Grcank F r
CB̃

• −→ Grcank B̃• −→ Grcank (B̃•/F r
CB̃

•) −→ 0

gives the second statement of the claim.

To prove that H∗(Y,Grcank GrrCB
•) is pure of weight ∗− r+k−1 it is now enough to show

that for all k ≥ 1 the natural map

H∗(Y,Grcank GrrCB̃
•) −→ H∗(Y,Grcank GrrCB

•)

is surjective. For this we need to show that the connecting maps in cohomology associated

with the short exact sequence

0 −→ Grcank−1GrrCB
•−1 ∧θ

−→ Grcank GrrCB̃
• −→ Grcank GrrCB

• −→ 0

are zero. This follows from 3.6, because as in [19] 3.18 one sees that these connecting

maps are induced by the endomorphism ν of GrrCC
•.
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5 Čech filtration versus Im(N•) filtration

We give a sufficient criterion for the equality Im(N r) = F r
CH

∗, but we also give an example

with Im(N r) 6= F r
CH

∗ although (MW) holds true.

Lemma 5.1. Let V be an abelian group, m,n ∈ N, n ≤ m, let (0) = Fm ⊂ . . . ⊂ F 1 ⊂

F 0 = V be a descending filtration, and let N ∈ Hom(V, V ) such that N(F i−1) ⊂ F i and

Ker(N) ∩N iV = Ker(N) ∩ F i for all i ≥ n. Then N iV = F i for all i ≥ n.

Proof: Descending induction on i: Let x ∈ F i−1. Then Nx = N iy for some y

by induction hypothesis, thus x − N i−1y ∈ Ker(N) ∩ F i−1. By assumption this means

N i−1z = x−N i−1y for some z, i.e. x = N i−1(z − y).

Proposition 5.2. Suppose k is finite, Y is proper and satisfies (MW). Suppose in addition

that the natural map ι : H∗
rig(Y ) → H∗ is strict with respect to the canonical Čech filtra-

tions, i.e. ι(F r
CH

∗
rig(Y )) = ι(H∗

rig(Y )) ∩ F
r
CH

∗ for all r. Then we have Im(N r) = F r
CH

∗

for all r ≥ 0.

Proof: By 5.1 we only need to show Ker(N) ∩ F r
CH

∗ = Ker(N) ∩ Im(N r) for all r,

but this is obviously implied by strictness of ι together with 4.7.

5.3 (1) The condition on ι in 5.2 is formulated in terms of cohomology over the log

base T (using the double complex B•). But note that, given a lift of Y to a semistable

scheme X over a finite totally ramified extension OK of W (k), the filtration F r
CH

∗ be-

comes the canonical Čech filtration on H∗
dR(XK) induced from (C)S (see section 7), and

the condition on ι becomes an entirely analytic condition not involving log structures.

(2) Assuming (MW), the condition on ι holds if convoluting the filtrations P can
• and F •

C

on B• commutes with passing to cohomology; by 4.8 this is equivalent to: the convolution

of the filtrations Ker(N•) and F •
CH

∗ on H∗ is a weight filtration on H∗.

5.4 Examples. (1) For curves we always have Im(N) = F 1
CH

1, see [5].

(2) Let Ω
(d+1)
K be Drinfel’d’s p-adic symmetric space of dimension d over a finite totally

ramified extension K of K0, let XΓ be the quotient of Ω
(d+1)
K by a cocompact discrete

torsionfree subgroup Γ < PGLd+1(K) and let Y be its strictly semistable reduction. It

has interesting cohomology only in degree ∗ = d where it satifies (MW) as was recently

proven by de Shalit [6] and (independently) by Ito [13]. By [9], if d is odd, we have

Im(N r) = F r
CH

∗ for all r. But if d is even we do not always have Im(N r) = F r
CH

∗. For

example, let d = 2. On H2
dR(XΓ) we have a covering filtration (F r

Γ)r≥0 and in [9] it is

shown that it coincides with the Čech filtration (F r
C)r≥0 on H2

dR(XΓ) (see section 7), and
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moreover that

F j
Γ =

∑

i

Ker(N i+1) ∩ Im(N i−2+2j) =
∑

i

Ker(N i+1) ∩ Im(N i−3+2j)

for the monodromy operator N on H2
dR(XΓ) induced from H2

crys(Y/T ) by means of

H2
dR(XΓ) ∼= H2

crys(Y/T )⊗W (k) K = H2 ⊗K0
K. Observing N3 = 0 we get

F 1
Γ = Ker(N) + Im(N)

F 2
Γ = Ker(N) ∩ Im(N) + Im(N2) = Im(N2).

Now assume Im(N) = F 1
CH

2 in H2 = H2
crys(Y/T )Q. Then Im(N) = F 1

Γ in H2
dR(XΓ).

Combining this with the above identities easily leads to Ker(N) = Im(N2). Therefore N

induces an isomorphism Im(N)/Im(N2) ∼= Im(N2). On the other hand, by the computa-

tions in [23] p.93 we have

dimK(Im(N2)) = dimK(F
2
Γ) = dimK(F

1
Γ/F

2
Γ)− 1 = dimK(Im(N)/Im(N2))− 1.

Together this is a contradiction, disproving our assumption.

6 N and singular cohomology

6.1 In this section, k is finite and Y is proper. For j ≥ 1, irreducible components M of

Y j and irreducible components N of Y j+1 with N ⊂ M , denote by

csM,N : Hs
crys(M)Q −→ Hs

crys(N)Q

the natural restriction maps. We say Y is of weak Lefschetz type if for every j ≥ 1, every

pair (N,M) as above, the maps csM,N are isomorphisms if s < (dimN) = d − j, and if

the map cd−jM,N is injective, with Im(cd−jM,N) = hd−jN ⊂ Hd−j
crys(N)Q independent of M . For

example, by [16], Y is of weak Lefschetz type if it is projective and all embeddings N ⊂M

as above are ample divisors on M .

Lemma 6.2. Suppose Y is of weak Lefschetz type, and that for each i ≥ 1, each component

of Y i is geometrically connected. Let s ≤ d − 1 and suppose H i(YZar,Q) = 0 for all

d− s > i > 0. Then the following sequence is exact:

Hs
crys(Y

1)Q −→ Hs
crys(Y

2)Q −→ . . . −→ Hs
crys(Y

d−s+1)Q(∗)

Proof: The geometrical connectedness of each component L of Y i for each i implies

H0
crys(L)Q = K0 for each such L. Therefore the complex (with H0

crys(Y
1)Q in degree 0)

H0
crys(Y

1)Q −→ H0
crys(Y

2)Q −→ . . . −→ H0
crys(Y

d+1)Q −→ 0(∗∗)
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computes H∗(YZar, K0) = H∗(YZar,Q)⊗K0, thus is exact by our hypothesis when trun-

cated after the degree (d− s) term. Now note that the weak Lefschetz assumption allows

us to naturally identify into one single object Hs all the following K0-vector spaces: the

cohomology groups Hs
crys(L)Q for all components L of Y j for all 1 ≤ j ≤ d − s, and

the subspaces hsL ⊂ Hs
crys(L)Q for all components L of Y d−s+1. We therefore obtain the

sequence (∗) by tensoring (∗∗) over K0 with H
s, truncating after the degree (d− s) term

and embedding the degree (d− s) term into Hs
crys(Y

d−s+1)Q.

Theorem 6.3. Suppose Y satisfies (MW), is of weak Lefschetz type, and that for each

i ≥ 1, each component of Y i is geometrically connected. Suppose H i(YZar,Q) = 0 for all

d > i > 0. Then N = 0 on Hs
crys(Y/T )Q for all s 6= d = dim(Y ).

Proof: First note that we may assume s < d since the assertion for s > d is reduced

to that for 2d − s using Poincaré-duality (which commutes with Frobenius, hence with

weight filtrations, hence — assuming (MW) — with monodromy filtrations). By 5.1 we

need to show Ker(N) ∩ Im(N) = (0) in Hs
crys(Y/T )Q. By 4.7 we can do this by proving

F 1
CH

s
rig(Y ) = 0 (since we assume (MW)). We prove F t

CH
s
rig(Y ) = 0 for t ≥ 1 by descending

induction on t. Proving F t
CH

s
rig(Y ) = 0 means proving that

λt : H
s(Y, P can

1 F t
CA

•) −→ Hs(Y, P can
1 A•) = Hs

rig(Y )

is the zero map. In view of the exact sequence

Hs(Y, P can
1 F t+1

C A•) −→ Hs(Y, P can
1 F t

CA
•)

κ
−→ Hs(Y, P can

1 GrtCA
•)

and the vanishing of λt+1 by induction hypothesis, it is enough to show that for all x ∈

Hs(Y, P can
1 F t

CA
•) there exists a x′ ∈ Hs(Y, P can

1 F t
CA

•) with κ(x) = κ(x′) and λt(x
′) = 0.

Consider the sequence

Hs−1(Y, P can
1 Grt−1

C A•)
α

−→ Hs(Y, P can
1 GrtCA

•)
β

−→ Hs+1(Y, P can
1 Grt+1

C A•)(S)

where α and β are the connecting maps in the obvious long exact cohomology sequences.

Note GrjCA
• = A•j [−j] and P can

1 A•j = Grj+1Cω̃
•
Y [j+1] ∼= CΩ•

Y j+1 , together P can
1 GrjCA

• ∼=

CΩ•
Y j+1 [−j]. Therefore (S) becomes

Hs−t
crys(Y

t)Q −→ Hs−t
crys(Y

t+1)Q −→ Hs−t
crys(Y

t+2)Q,

hence is exact by 6.2. Since κ(x) ∈ Ker(β), we therefore find y ∈ Hs−1(Y, P can
1 Grt−1

C A•)

with α(y) = κ(x). The image x′ of y under the composite

Hs−1(Y, P can
1 Grt−1

C A•) −→ Hs−1(Y, P can
1 (A•/F t

CA
•)) −→ Hs(Y, P can

1 F t
CA

•)
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has the desired properties.

6.4 Even if H i(YZar,Q) = 0 for all i > 0, or even if Y is the reduction of a semistable

scheme X over a finite totally ramified extension OK of W (k) whose generic fibre is

contractible in the sense of Berkovich spaces (this hypothesis guarantees H i(YZar,Q) = 0

for all d > i > 0 as required in 6.3), we can not expect the vanishing of N on the middle

degree cohomology Hd
crys(Y/T )Q. However, if we assume in addition that for every j ≥ 1,

every irreducible component M of Y j and every irreducible component N of Y j+1 with

N ⊂M , the restriction map

Hs
crys(M)Q −→ Hs

crys(N)Q

is an isomorphism if s = d− j, and is injective if s = d− j + 1, with image independent

on M , then we can argue as above to prove N = 0 even on Hd
crys(Y/T )Q. For example we

get N = 0 on H1
crys(Y/T )Q in case d = 1 (for this and a converse of it see also [19] 5.6).

6.5 If Y i
σ is geometrically connected for all i ≥ 1, all σ ∈ Si, then Hs(YZar, K0) =

F s
CH

s
crys(Y/T )Q. Indeed, F

s
CH

s
crys(Y/T )Q is the Es,0

∞ -term of the spectral sequence

Epq
1 = Hq(Y,B•p) =⇒ Hp+q(Y,B•) = Hp+q

crys(Y/T )Q(C)T

from 2.5. But Es,0
∞ = Es,0

2 is the s-th cohomology group of the complex

H0
conv(Y

1/T ) −→ H0
conv(Y

2/T ) −→ H0
conv(Y

3/T ) −→ . . .

(with H0
conv(Y

1/T ) in degree 0). Our assumption implies H0
conv(Y

i
σ/T ) = K0 for all i ≥ 1,

all σ ∈ Si, and therefore Es,0
∞ = Hs(YZar, K0).

Now suppose in addition Y is of weak Lefschetz type and satisfies (MW). Suppose that

we have Im(N r) = F r
CH

∗ (cf. section 5) and N r = 0 on Hr
crys(Y/T )Q for all 0 < r < d.

Then necessarily even N = 0 on Hr
crys(Y/T )Q for all 0 < r < d, as follows from 6.3.

7 Liftings to mixed characteristic

7.1 Let A be a complete discrete valuation ring which is a totally ramified finite extension

ofW (k). Let K = Quot(A) and fix a uniformizer π in A. Let X be a proper π-adic formal

Spf(A)-scheme with strictly semistable reduction, i.e. Zariski locally it admits étale maps

to SpfA < X1, . . . , Xd+1 > /(X1 . . .Xa − π) for some 1 ≤ a ≤ d + 1. It is naturally a log

smooth formal log-scheme over

S = (Spf(A), (N −→ A, 1 7→ π)).
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Taking reduction modulo π we get a semistable k-log scheme Y as in 1.1. Let XK be the

generic fibre of X as a rigid analytic space. For i ≥ 0 let ]Y i[X=
∐

r∈Si
]Y i
r [X , the direct

sum of the tubes of the Y i
r in X . The covering XK = ∪j∈S1

]Y 1
j [X is an admissible open

covering, it therefore gives rise to the Čech spectral sequence

Epq
1 = Hq

dR(]Y
p+1[X) =⇒ Hp+q

dR (XK).(C)S

On the other hand we have from 2.5 the spectral sequence

Epq
1 = Hq(Y,B•p) =⇒ Hp+q(Y,B•) = Hp+q

crys(Y/T )Q.(C)T

Proposition 7.2. Depending on the choice of π there is an isomorphism of spectral

sequences

(C)S ∼= (C)T ⊗K0
K.

Proof: Note Hq(Y,B•p) ∼= Hq
conv(Y

p+1/T ) by 1.8 and Hq
crys(Y/T )Q

∼= Hq
conv(Y/T ).

Thus we get the isomorphism from [9].

7.3 By transport of structure the monodromy operator N on H∗
crys(Y/T )Q induces

a monodromy operator N on H∗
dR(XK) which does not depend on our choice of π, see

[11] sect.5. Denote by F r
CH

∗
dR(XK) the filtration on H∗

dR(XK) induced by the spectral

sequence (C)S. Via (C)S ∼= (C)T ⊗K0
K this is the filtration obtained by scalar extension

from the filtration F •
CH

∗
crys(Y/T )Q on H∗

crys(Y/T )Q. Therefore we get from 3.6 and 3.8

the following theorem, which in particular gives an upper bound for the vanishing order

of N in terms of the rigid space XK :

Theorem 7.4. There is a natural operator N acting on (C)S inducing the monodromy

operator N on H∗
dR(XK). However, we have N = 0 on all E1-terms. In particular,

Im(N r) ⊂ N(F r−1
C H∗

dR(XK)) ⊂ F r
CH

∗
dR(XK) in H

∗
dR(XK).

7.5 We do not know if in general the residue map H∗
dR(XK)

Res
−→ F i

CH
∗
dR(XK)) can be

made explicit without involving the log basis T . However, for i = ∗ = d this map should be

the following (generalizing that of [5]): restrict a class in Hd
dR(XK) to H

d
dR(]Y

d+1[X); there

choose a representing d-form, take its residue and view it as an element in H0
dR(]Y

d+1[X).

We mention that also the tentative definition of N given in [1] for varieties XK uni-

formized by Drinfel’d’s symmetric spaces is based on residue maps, and we expect that

our description of N can be used for a comparison with the N from [1].
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[12] L. Illusie, Autour du théorème de monodromie locale, Astrisque No. 223, SMF,

Paris (1994), 9–57

[13] T. Ito, Weight-Monodromy conjecture for p-adically uniformized varieties, In-

vent. Math. 159 (2005), no. 3, 607–656.

[14] F. Kato, Log smooth Deformation Theory. Tohoku Math. J. 48 (1996), 317–

354

[15] K. Kato, Logarithmic structures of Fontaine-Illusie, Algebraic Analysis, Ge-

ometry and Number Theory, J. Hopkins Univ. Press (1989), 191–224

33



[16] N. Katz, W. Messing, Some consequences of the Riemann hypothesis for va-

rieties over finite fields, Invent. Math. 23 (1974), 73–77

[17] R. Kiehl, Theorem A und Theorem B in der nichtarchimedischen Funktionen-

theorie, Invent. Math. 2 (1967), 256–273

[18] B. Le Stum, La structure de Hyodo-Kato pour les courbes, Rend. Sem. Mat.

Univ. Padova 94 (1995), 279–301.

[19] A. Mokrane, La suite spectrale des poids en cohomologie de Hyodo-Kato, Duke

Math. J. 72 (1993), 301-337

[20] Y. Nakkajima, p-adic weight spectral sequences of log varieties, preprint

[21] A. Ogus, Logarithmic De Rham cohomology, preprint

[22] A. Ogus, F -crystals on schemes with constant log structure. Special issue in

honour of Frans Oort, Compositio Math. 97 (1995), 187–225.

[23] P. Schneider, U. Stuhler, The cohomology of p-adic symmetric spaces, Inv.

Math. 105, 47–122 (1991)

[24] A. Shiho, Crystalline fundamental groups. II. Log convergent and rigid coho-

mology, J. Math. Sci. Univ. Tokyo 9 (2002), 1–163.

34


	1 The tube cohomology of the strata of Y
	2 The Cech double complex B and the Steenbrink double complex A
	3 The Cech-Steenbrink tricomplex
	4 Monodromy and weight filtration via the Cech complex B
	5 Cech filtration versus Im(N) filtration
	6 N and singular cohomology
	7 Liftings to mixed characteristic

