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Abstract—Non-binary low-density parity-check (LDPC) codes
have some advantages over their binary counterparts, but uior-
tunately their decoding complexity is a significant challege. The
iterative hard- and soft-reliability based majority-logi ¢ decoding
algorithms are attractive for non-binary LDPC codes, since
they involve only finite field additions and multiplications as
well as integer operations and hence have significantly lowe
complexity than other algorithms. In this paper, we proposetwo
improvements to the majority-logic decoding algorithms. hstead
of the accumulation of reliability information in the existing
majority-logic decoding algorithms, our first improvement is a
new reliability information update. The new update not only
results in better error performance and fewer iterations on
average but also further reduces computational complexity. Since
existing majority-logic decoding algorithms tend to have ahigh
error floor for codes whose parity check matrices have low
column weights, our second improvement is a re-selectioniseme,
which leads to much lower error floors, at the expense of more
finite field operations and integer operations, by identifyng
periodic points, re-selecting intermediate hard decisios, and
changing reliability information.

Index Terms—Error control codes, non-binary low-density
parity-check codes, decoding, error floor, complexity

I. INTRODUCTION

Low-density parity-check (LDPC) codes were first deve
oped by Gallager 1] in 1963. They were forgotten until the
were rediscovered in the late 1990s by MacKay and Ne
[2]. Since then, the academic and industrial communitie® ha
focused on binary LDPC codes, because long binary LD
codes can achieve performance approaching the Shannan |
(see, for example| [3]). Hence binary LDPC codes have begp
used in various applications, such as digital televisioh [4
Ethernet [[5], home networking [[6], and Wi-Hil[7]. Efficien
decoding algorithms, encoder implementations, and deco
implementations of binary LDPC codes (see, for example; [8

[15]) have received significant attentions.

In 1998, the study of Davey and MacKay [16] showe{rI

that non-binary LDPC codes over Gff((¢q > 2) perform
better than their binary counterparts for moderate codgthen

Moreover, non-binary LDPC codes also outperform bina
LDPC codes on channels with bursty errors and high-or
modulation schemes [17]. These advantages have motiv
a steady stream of work on code designs [18]-[20], decodip

algorithms[16], [1¥], [21]+[2]7], and decoder implemerdat

[16] first used belief propagation (BP) to decode non-binary
LDPC codes. By applying the fast Fourier transform (FFT) of
probabilities to the BP algorithm, they also proposed a fast
Fourier transform (FFT) basegtary sum-product algorithm
(SPA), called FFT-QSPAL[22]. The FFT-QSPA was further
improved by Barnault and Declercq [23]. Song and Cruz
proposed a logarithm domain FFT-BP algorithm|[17]. The
Min-Sum algorithm was applied to non-binary LDPC codes
by Wymeersctet al. [24]. Then Declercq and Fossoriér [25]
proposed the Extended Min-Sum (EMS) algorithm by using
only a limited number of probabilities in the messages atisp
of check nodes. Savin [26] proposed the Min-Max algorithm.
Advantages of non-binary LDPC codes come at the ex-
pense of significantly higher decoding complexity than rthei
binary counterparts. Since complexity of decoding norahjin
LDPC codes is a key challenge, the iterative hard- and soft-
reliability based majority-logic decoding, referred tol B4R B-
MLGD and ISRB-MLGIH, respectively, algorithms [27] are
particularly attractive. Based on the one-step majorityido
decoding, these majority-logic decoding algorithms repng
reliability information with finite field elements and integ,
and hence involve only finite field additions (FAs) and finite

{_ield multiplications (FMs) as well as integer additions g)A

Integer comparisons (ICs), integer multiplications (IMs)d
h eger divisions (IDs). As a result, they require much lowe
mputational complexities at the expense of moderate erro

I:pérformance degradation. For instance, while the errof per
formance of the ISRB algorithm is within 1 dB of that of
'lglu—T-QSPA [23], its complexity is only a small fraction of tha

the latter [27]. With a performance loss of 1 dB, the IHRB
algorithm has even lower complexity than the ISRB algorithm

é%?]. Based on the IHRB algorithm, Zhargal. [30] proposed

n enhanced IHRB-MLGD (EIHRB) algorithm by introducing
he soft-reliability initialization and re-computing tlestrinsic
information. The EIHRB algorithm has a similar complexity
o that of the IHRB algorithm, but its error performance
approaches that of the ISRB algorithm. The majority-logic
decoding algorithms are particularly effective for LDPGles

C%gnstructed based on finite geometries and finite fields [19],
2
ate

([)i}.
he main contributions of this paper are two improvements
Fthe majority-logic decoding algorithms.

[28]-[30] for non-binary LDPC codes. Davey and MacKay * The first improvement is a new reliability information
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ECCS-1055877.

1When there is no ambiguity, MLGD is omitted when referringriajority-
logic decoding algorithms for brevity.
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update, instead of the accumulation of reliability informéfinite field.
tion used in existing majority-logic decoding algorithms. In this paper, for the majority-logic decoding algorithms,
« Since existing majority-logic decoding algorithms tenave propose a re-selection scheme based on periodic points
to have a high error floor for codes whose parity chedk lower the error floors. The re-selection scheme is not a
matrices have small column weights, our second inpostprocessing algorithm and can be integrated into thdaeg
provement is a re-selection scheme, which lowers erriberation procedure easily. For instance, for an (837, 726)
floors at the expense of more finite field operationson-binary quasi-cyclic LDPC code over GF) constructed
and integer operations by identifying periodic pointsyith the method in[[20] with a column weight of four, the
re-selecting intermediate hard decisions, and changiB¢HRB algorithm has a BLER floor around0—3, while
reliability information. the hard-reliability based algorithm with the new reliétgil
_ R ~information update and the re-selection scheme achieves a
In the ISRB and IHRB algorithm, the reliability informationg| ER floor below 10-5. Although this re-selection scheme
includes all check-to-variable (c-to-v) messages of @esi (oquires additional computation, it is used only when @xst
iterations. The new reliability information update propdsn majority-logic decoding algorithms have a high error floor.
this paper excludes the c-to-v messages of previous besati  The rest of our paper is organized as follows. Seciion I
It not only results in better error performance afelver |qiews existing majority decoding algorithms. Sectiof |1
iterations on averagéut also greatly reduces computatlonaéroposes the two improvements. In SectlOim IV-A, the two
complexities ofall existing majority-logic decoding algo- jmprovements are applied to existing majority decoding al-
rithms. For instance, when applied to the ISRB majorityidog yorithms to illustrate their advantages in error perforoen
decoding algorithm, the new reliability information upelat 3nqaverage numbers of iteratiarBectio VB discusses the
results in &.15 dB coding gain andeduces required numberyqqyction in the computational complexities due to the two

of iterationsby 10% at 4.7 dB for 416, 16)-regular(255, 175) - jmprovements. Some conclusions are given in Seéfibn V.
cyclic LDPC code over GE{) constructed with the method

as describe in[[19, Example 4]. Also, at a block error rate
(BLER) of 10~%, the coding gain over the EIHRB algorithm
is about.07 dB. At the SNR of 4.7 dBthe average number of A regular LDPC codeC of length N over a finite field
iterations is reduced bgbout 25%. Furthermore, with the newGF(2") is the null space of ad/ x N sparse parity check
reliability information update, the improved algorithnegjuire matrix H over GFE"). H has constant column and row
significantly fewer I1As and ICs than the ISRB and EIHRBVeights ofy andp, respectively. Leho, hy,- -, hy—1 denote
algorithms. Finally, the existing majority-logic decodialgo- the rows ofH, whereh; = (h; o, hi1,- -+, hin-1) for 0 <
rithms are based on the accumulation of reliability infotiora, ¢ < M. Let(ai0, a1, - ,ai,,—1) be the binary representation
and hence the numerical range of the reliability informatioof a; € GH2"), for 0 < I < 2". Suppose a codeword
increases with iterations. In contrast, the proposedbiiitia. X = (0,21, -+ ,xy—1) IS transmitted. Sincer; € GF2")
information update results in a fixed numerical range af@n be represented by artuple (z;0, i1, , i r—1) OVer
thus simplifies hardware implementatio®@ur new reliability GF(2) for 0 <i < N, an Nr-tuple over GF¥) is transmitted
update has been presented in part[in [31]. By applying bd@ each codeword. Assume the BPSK modulation is used: “0”
the layered scheduling and our first improvement to the IHRB mapped to +1 and “1" to -1. Ley = (yo,y1, * ,yn—1)
algorithm, we proposed a layered improved IHRB decodegpresent the received word, and = (20,21, ,2n-1)
with a high throughput if[32]. Because the architecturégies anda = (qo, ¢1,- -+ ,gn-1) represent the hard decision and
of non-binary LDPC decoders is beyond the scope of thiglantization, respectively, of the received word. 1\éfi) =
paper, we will not discuss the layered improved IHRB decodéf : hi; # 0,0 < j < N} for 0 < i < M and
henceforth. M(G) ={i:hij #0,0<i< M}for0<j < N. Ipax
éepresents the maximal iteration number.

II. EXISTING MAJORITY DECODING ALGORITHMS

In the literature, to analyze the error floor of binary LDP
codes, some notions based on graphical structures have been
introduced, such as stopping sé€ts|[33], trapping [Bd] aA. ISRB algorithm
absorbing sets [35]. Unfortunately, trying to lower theoerr The |SRB algorithm [[27] is described in Al§] 1, where
floor based on graphical structures usually incurs very highig 5 parameter to improve the error performangé) is
complexity. Also, some approaches for binary LDPC codgfe syndrome vector corresponding 267, ;. a channel
cannot t_)e regdl!y adapted to nc_m—blnary_ones_. For 'nStanFQiability of the j-th received symbol being;. ¢; ; and o
a selective biasing postprocessing algorithm is propoeeddre the extrinsic weighting coefficient and the éxtrinsieléh

[35] to lower the error floors of binary LDPC codes based %%im of thek-th iteration, respectively, from check nodeo

the relaxed graphical structure of absorbing sets. However . C (k) o . N
for non-binary LDPC codes, trapping sets are difficult t\%mable nodej. Y,y is the extrinsic reliability of thej-th

identify b thev invol t onlv th h topol bPeceived symbol béingl in the k-th iteration.
dentify because they involve not only the graph topology bu - yhe |SRp algorithm, lin€21 is an accumulation operation.

also values of non-zero entries of parity-check matn@._[ﬁ% Hence, the reIiabiIit;RQ“l) is a non-decreasing function bfas
Moreover, the biasing rule between two elements for binar Js

LDPC codes cannot be applied to non-binary codes directij.i is non-negative. To perform the ISRB algorithm correctly,
because there are more than two elements in a non-binﬂ&? must be kept from numerical saturation based on two



Algorithm 1: ISRB algorithm [27] Algorithm 2: Initialization of the IHRB algorithm[[2]7]
[x —m————— Initialization-—-—————-—--- */ 1for j=0:(N—-1)do
1for j=0:(N—1)do 2 | 20 =,
©_ . 0 o
2 z;’ =z, 3 fori=0:(2"—-1) do
3 | for1=0:(2"—1) do 4 | | if (w==2)then R{) =), else R} =
: i1 = izo (1= 2a1,)q;.4; -
5 R(»O):)\w'z' 5 fori=0:(M —1) do
L it e for j € N'(i) do
6 for i=0:(M —1) do | ¢ij =1

for j € N (i) do
| iy = mingepip 53 maxs @ ;

[* —mmmmmm Iteration-——————-————- x/
9 for Kk =0: I, doO

10 S(k) —H- (z(k))T,

11 | if s®) ==0 then return z(®) else ifk == I,,ax
then return Failure else

reliability initialization and recalculating the extriesinfor-
mation. ¢; and ¢ are two parameters to improve the error
performance.

Algorithm 3: EIHRB algorithm [30]

12 for j=0:(N —1)do
13 for l=0: (2T —1) do /*x ————————= Initialization-——————-——-—- */
_ 1forj=0:(N—-1)do
14 L iy = , | Lo
15 for zeM( ) O
k . 3 Z; 5 = Zj,
0 oiy =hi; Ztemw\{f} hi” a | for 1=0: (2"~ 1) do
17 for 1=0:(2"—1)do 1 )
18 if a( ) —= q; then > @it =210 (1 = 2a14)¢5t;
l 6 RS = max(| /1] +co —maxy([/e1]), 0);
w ) — ¢(k) + (b] 7,1 s Js
Js i =
L [* —mmmmm Iteration-——————--—-——- x/
19 for j=0:(N—1)do 7 for k=0 : Ihax doO
20 for [=0:(2"—1) do 8 s) = H . (20T,
21 L R (k+1) R(k) + qul : if s!) == 0 then return z*) else ifk == Iax
(k+1) (k+1). then return Failure else
22 | % =g max R 10 for i=0:(M — 1) do
— 11 for j e N(i) d
1 o — - E B 2R
i i LteN(i)\ (5} it
methods. One is to use a very large numerical rangé%ﬁ[_j)r, 1 for 1 _(0) (27 —1) do (k) )
and the other is to carry out the following clipping operatio** if o; 7 == a then Ry =Ry +1
. R(k+1) R®).
Im- 7,1 g,
. (k) (k) 15 for = 0: —1) do
R(k) _ -n if R < RJ maz ~ 21 / (k+1)m( ) (k+1)
3,1 (k) (k) 16 R = max; R
RV =R aw + 10 otherW|se e (ke 1)m
’ (1) 7 Z; = field element ofR
Here, Rﬁm £ maxl(R( )) and n is the predefined 18 R§k+1)m2 second largest amon@ (k+1),
maximal value oij, after the clipping operation. 19 z;.(k“) field element ofRy‘““)m2
20 for i € M(j) do
B. IHRB algorithm 21 if
When the soft-reliability information of the received word (o 1(13) = J(kﬂ))&(ngH) < R(kﬂ)mz) +1
is not available to the decoder, the IHRB algoritHm![27] can then ZZ(IEH) ’.(’““) else Z““*” ZJ(-kH)
be used. The iteration procedure of the IHRB algorithm is the

same as that of the ISRB algorithm, but the IHRB algorithm

has a different initialization step, described in Alg. 2, exd
An IS a parameter to improve the error performance.

C. EIHRB algorithm

If the soft-reliability information of the received symbol
is available, the EIHRB algorithm achieves a better error
performance than the IHRB algorithm. Therefore, we focus on

The EIHRB algorithm [[30], described by Ald.] 3, wasthe EIHRB algorithm and do not consider the IHRB algorithm
devised based on the IHRB algorithm by introducing a softurther.



[1l. Two IMPROVEMENTS Algorithm 4: 1ISRB algorithm

A. New Reliability Information Update 1 /% ———————— Tnitialization-————————— */
The reliability information update of lingE 21 of Alf] 1 can2 for j=0: (N —1) do
be written as: 3 zjo) = zj,
(k+1) (k) (k) fori=0:(2"-1) do
R, =R, + 45, ( )

4
r—1
5 9‘7/‘,1 = im0 (1 = 2a14)qj,t;
2 & L y

k
NS0 L= &el
t=0 7fori=0:(M—1)do
For both the ISRB and IHRB algorithms, the reliabilitys | for j € A/(i) do
information of thek-th iteration,Rﬁ), includes all check-to- 9 | ¢ij = Eminge i iy maxg @} ;
variable (c-to-v) messages of previous iterations. Thi¥lais =

with the extrinsic information principle. In the EIHRB algo /* ~~~~~~7"77~ Iteration-———-———--—- */
rithm, linesIs to[ 2L of Alg[3 are used to recalculate tH8 for & =0: Imax do
extrinsic information. 1 sV = H - (")
We propose a new reliability information update to exclud@ | If s ==0 the.n return z(*) else if k == Inax
the c-to-v messages of previous iterations. In our newlidlia then return Failure else
ity information update, only the channel informatipn; and 13 for j=0:(N—1) do
wj(.f“l) of the current iteration are used to compute the reliabilit§ for 1 (:k)o (2" —1) do
informationRg.Tl). Our new reliability information update is'® L bie =0
' 16 for i € M(j) do
R,§-f§+” =&1pj0 + 527#55), Q) 17 af)kj) =i Yen NG} B2 ™,

where &, and & are two parameters to improve the errdf for 1286)5 (2" —1) do

performance. 19 if o7 a; then
Eg. (3) is used to replace the reliability information ugdat 1/155) = 1/1](5) + ¢
of line 21 of Alg.[, and consequently the new algorithm is

called the 1ISRB algorithm. 20 | for j=0:(N—1)do
To reduce complexity of the IISRB algorithm, we change fori=0:(2"—1) do
the initialization as follows. For the ISRB algorithm; ; and o, L R — 4 1/)(}c).
. AR ) 5,1 i, R
;. are calculated in the initialization. Hence, for the IISRB (et 1) (k1)
algorithm, we calculaté;; ; and&2¢; ; in the initialization 23 2 = arg,, max R;;"

as well. This helps to reduce the complexity of each iteratio
The IISRB algorithm is presented in Algl 4.
A new reliability information is also applied to the EIHRB

algorithm. The reliability information update in lifeJ14 off ppc code over GEf) with a column weight of six. Al

Alg. Blis replaced with three codes are constructed based on Reed—Solomen codes
(*) *) with two information symbols[[20]. The error floor of BLER
By = R;) +cs, (4)  performance becomes lower as the column weight of the parity

gheck matrix increases. Hence, the column weight of theypari
check matrix is one key factor for the error floor.

. e - W -selection scheme to add thi blem.
ized asR;; which is already scaled in lifd 6 by a parameter © Propose a re-sefection scheme 1o address this provem

c1. Furthermore, to be consistent with the [ISRB algorithm To_5|mpl|fy the_ d'SCl.JSSIO”’ here we focus on the ”SRB
(k+1) _ (k+1) gy lines[T5 td 21 of Alg3 are not digorithm. Our S|mulat|0n results show that the re-setecti
Zi.j %) y . . heme also applies to the ISRB, EIHRB and IEIHRB algo-
needed any more. The new algorithm derived from the EIHRrI hms
algorithm with the four modifications above is referred to as ) . .
the IEIHRB algorithm. _ '_I'o analyze thg error floor, the co_ncept of periodic pomts
is introduced. Given an endomorphisf: Z — Z, a point
z in Z is called aperiodic point with a period of if there
B. Re-selection Scheme exists a smallest positive integeso thatf(?) (z) = z, where
Furthermore, we observe that the error floor of the ISRB® = f(f0=1)(z)).
algorithm becomes higher, as the column weight of the parity An iteration of the IISRB algorithm can be considered a
check matrix decreases. The [ISRB algorithm suffers theesafanction f. Thek-th iteration of the ISRB algorithm ig(*) =
problem. fz*1) = f@(z(=2)) = ... = fF)(z(0) and ifs) #£ 0
In Fig. [, C1 is an (837, 726) LDPC code over @§( andz®) = z(*=9 for 0 < i < k, the decoding algorithm
with a column weight of four, C2 an (806, 680) LDPC codeesults in a periodic point with a period of Our algorithm
over GFQ®) with a column weight of five, C3 a (775, 634)focuses on only the periodic points with a period of up to

where, cs is a parameter to improve the error performanc
Meanwhile, at the beginning of each iteratidh;_kl) is initial-
(0) '
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Fig. 1. Block error rates of the soft-reliability based altfoms for different codes with different column weightseosthe AWGN channel whefi,ax = 50
and the modulation scheme is BPSK

two for two reasons. First, our simulation results show th
the BLERs are caused mainly by periodic points with perioc i
one and two. Second, to identify the existence of a perioc j
point with a period of greater than two needs more memo
to keep track of the hard decisions of the previous iteratior
If the Hamming distance between a periodic point and i
corresponding transmitted codeword is less thgahe periodic
point is called a small-distance periodic point. Otherwise
is called a large-distance periodic point. Hig. 2 compalnes t
BLERs of the IISRB algorithm with those caused by th 107
large-distance and small-distance periodic points for(837,

Block Error Rate
=
o

726) code wher® = 8. For low SNRs, the overall BLER is 10°5L| —6— Small-distance periodic points < |
dominated by those caused by large-distance periodic spoir ihgrsg‘dis‘ame periodic points

The sum of the BLERs due to the large-distance and t 10 - - - ) )
small-distance periodic points is less than the overall BLE 42 44 4.6 48 5 52

.. . . . E /N (dB)
because periodic points with a period greater than two al.. oo

cause some BLERs. For high SNRs, the BLER caused by tll—:}g 2. BLERs of the small-distance and large-distanceopéipoints for

small-distance periodic points dominates the total BLER. f\e iisrB algorithm to decode the (837, 726) code over the AWfBannel

similar trend for the ISRB algorithm was observed as welvhen the modulation scheme is BPSK

Hence, for the ISRB and IISRB algorithms, the error floor is

mainly caused by the small-distance periodic points. Ireord

to lower the error floor of ISRB algorithm, the BLER causedecision is supposed to be the best choice to be decoded.

by the small-distance periodic points should be reduced. The smaller the difference between the maximal reliability
Consider the hard decision process of I[né 22 of Alg. Information and the second maximal reliability informatjo

If the most likely decision is wrong, the second most likelyhe greater the probability that the most likely decision is



wrong. Fig. [d shows the BLERs of the RS-IISRB algorithm and
Based on this intuition, when a periodic point is detectethose caused by the low-distance and high-distance periodi
the re-selection scheme tries to help the decoder get away frpoints. Compared with the [ISRB algorithm, the BLER caused
the periodic point by using the second most likely decisioby the high-distance periodic points descend®:td 0~* from
The re-selection scheme consists of two steps. The first stepx 103, and the BLER caused by the low-distance periodic
is to identify the existence of a periodic point when theoints is reduced t@ x 10~ from 4 x 102 when SNR is 4.8
syndrome vector is a non-zero vector. The second step isdi®. Hence, the rs-selection scheme reduces the occurrences
identify positions of erroneous symbols. A set is defined wf both the low-distance and high-distance periodic pcémid
include variable nodes adjacent to unsatisfied check nodesrks better on the low-distance periodic points. Even fier t
This set contains some erroneous symbols. Then, amdrR§-1ISRB algorithm, the low-distance periodic pointsl siile
the variable nodes belonging to the set, the position oftlae primary reason for the error floor.
variable node which has the smallest difference between its
maximal reliability information and second maximal reliap
information can be identified. If there are multiple varabl
nodes having the smallest difference, the first one is sdect
Assume the index of this positionis_n. Letus_c; represent
the number of unsatisfied check nodes connected withjthe
th variable node fol0 < j < N. The most likely decision
zr(f_)n is replaced by the second most likely decisiaﬁ_)n.
Meanwhile,» &) is reduced by a preset offset and
Pron s 1S added by the same preset offset. The details

re-selection scheme is described in Aly.Here, s\*) is the
i-th value of the syndrome vectef*).

Block Error Rate

—&— Small-distance periodic points
107’k | —<— Large-distance periodic points
—8&— RS-IISRB

Algorithm 5: Re-selection scheme
1forj=0:(N—-1)do 1,5 24 26 28 5 5.2

2

3
4

o ~N o g

10

11
12

~(k k).
i z(, ) _ argaleGF(T)\{Zj_k)} InaxR;,l ;

J
if (z5~1 == z®) or (z(*=2) == z(*)) then
: (k) .
dif_R= R ;
for j=0:(N—1)do
us_c; = 0;
for i € M(j) do
| if (s{) > 0) then us_c; + +
if (us_c; > 0) and ((Rl:j(‘k) - R;f“;<k)) < dif_R)
then
dif R = (R;i)(k) - R;Z)(‘k) );
rs_n = j;

® ' =@ w —

I'S_N,Zrs n I'S_N,Zrs n

E,/N, (dB)

Fig. 3. BLERSs of the small-distance and large-distanceopéripoints for the
RS-IISRB algorithm to decode the (837, 726) code over the A\&Bannel
when the modulation scheme is BPSK

The re-selection scheme helps the decoding algorithm cor-
rect some periodic points. It is likely that the decodingoalg
rithm goes out of a periodic point temporarily, and goes back
to the same periodic point or results in another periodiofoi
Therefore, even with the re-selection scheme, the decoding
algorithm still encounters the error floor problem. Moregve
the re-selection scheme works better on the small-distance
periodic points because in general a small-distance period
point involves fewer unsatisfied check nodes than a large-
distance periodic point.

14 50 =P a0+ & IV. PERFORMANCEEVALUATION
o7t Prson s, _
15 20 =28 A. Error Performance and\verage Numbers of Iterations

for i € M(rs_n) do
| s =h; - @)

The BPSK modulation scheme, the additive white Gaussian
noise (AWGN) channel with a single-sided power spectral
density Ny, and a 6-bit uniform quantization with 64 levels
which has an interval lengtlh = 0.0625 are used in our

This scheme can be applied to any majority decodimgumerical simulations. The maximum number of iterations is
algorithms. For the ISRB algorithm, this scheme is addéd, i.e., I,,.x = 50. Our simulations focus on C1, C2, and C3,
between lineE11 ad112. Similarly, the re-selection scheane whose parity check matrices have small column weights, as
be inserted at the corresponding position of other algmsth well as a (255,175) cyclic LDPC code over GFY constructed
“RS-" is prefixed in front of the name of the algorithms towith the method as describe in[19, Example 4], because it has
show that an algorithm adopts the re-selection scheme. Folarge column weight of 16.

instance, the ISRB algorithm with the re-selection schesne i We first compare the performance of the soft-reliability
called as the RS-ISRB algorithm.

based algorithms. The ISRB, IISRB and RS-1ISRB algorithms



are used to decode the (255, 175) code. For the ISR ISRB algorithm in this case. The RS-IISRB algorithm
algorithm, different values o = 4] for [ = 1,2,---,8, also achieves a slight improvement compared to the IISRB
were tried, and\ = 16 leads to the best performance. Foalgorithm and has a performance loss of about 0.4 dB versus
the new reliability information update, different combiioas the Min-Max algorithm.

of & and & were tested. Since they are weighting factors,

we fix & = 1 and try different values fog;. As shown in 10° e
Fig.[4, for the (255, 175) codeéy( = 7, & = 1) results in 5 ”SRB’,{;L £,=7
the best error performance. The real values from6.2to 7w —p— RS-IISRB, £,=1, £ =7, (=16
a step size of 0.2 fog; and&, = 1 were tested, shown in ¢} A~ Min-Max,n_=16 ;
Fig.[5. Performance differences between different realieval
coefficients are very small. Henceforth, integer valuesiagsl o | |
for & and&; to reduce complexity. b
&
10° 810t <
7 107 E
1078
10’5 | | | | | |

36 38 4 4.2 4.4 4.6 4.8 5
E/N, (dB)

!
0

Fig. 6. Block error rates of the ISRB, IISRB and RS-IISRB aitjons for
the (255, 175) code whehnax = 50 and the modulation scheme is BPSK
over the AWGN channel

Block Error Rate
=
o

10k
If a total of T iterations is used to decodE received
words, the average number of iterations per received word is
) T/K. The average numbers of iterations per received word
10 L L L . g . .
4 41 42 2 44 45 46 for the soft-reliability algorithms are compared in Table |
E/No (4B where K is chosen such that at least 100 erroneous decoded
words are observed for each SNR. TaBle | shows that both
Fig. 4. | Thehim]{’a‘:thOf different imec?er ‘r’]a'“es fer on tzehB'-ERdolf the the RS-IISRB and IISRB algorithmsequire fewer iterations
!?hiiwae?g r,gprgKog\teftf:iv%,?e%cc%ai‘r’:’dm“ = 20 andithe modulation than the ISRB algorithm. At 4.7 dBhe average number of
iterations of the IISRB algorithm is fewer by0% than that
of the ISRB algorithmThe advantage of the IISRB and RS-
[ISRB algorithm is even more pronounced for low SNRs.

—e—£,71,§,710
—%— ISRB, A\=16

10

TABLE |
-22 AVERAGE NUMBER OF ITERATIONS OF THEMIN-MAX (n,,, = 16), ISRB,
IISRB AND RS-1ISRBALGORITHMS FOR THE(255, 175)CODE WHEN

10”4 Imax = 50 AND THE MODULATION SCHEME ISBPSKOVER THEAWGN
CHANNEL
% E,/No | Min-Max | ISRB IISRB | RS-IISRB
L% 102}k (dB) [26] [27]
X 4.0 2.35 18.76 || 11.58 11.25
2 4.1 1.91 13.25 8.17 7.85
4.2 1.60 9.10 5.78 5.71
102l 4.3 1.36 6.46 4.46 4.41
4.4 N/A 459 3.59 3.59
4.5 N/A 3.68 3.06 3.05
o &1E70 4.6 N/A 3.10 2.71 2.70
” S ‘ ‘ ‘ 47 N/A 274 ]| 2.46 2.46
w0, 4.1 42 4.4 45 46 4.8 N/A 2.50 2.27 2.28

43
E,/N, (dB)

. _ _ The ISRB, IISRB and RS-IISRB algorithms are also used
Eigorthm to detods the (255, 175) code wiisn. — 50 and the moculation (<, dec0de the (837, 726) code. The best BLER performance
scheme is BPSK over the AWGN channel of the IISRB algorithm is achieved whefi = 4 and&; = 1.

Fig.[@ compares the BLERs of the ISRB, IISRB, RS-IISRB
The BLER curves of the ISRB, IISRB, RS-IISRB andand Min-Max algorithms for this code. The IISRB algorithm
Min-Max algorithms for the (255,175) code are shown ihas a 0.2 dB coding gain versus the ISRB algorithm, but both

Fig.[8. The IISRB algorithm has a 0.15 dB coding gain verssgorithms show an error floor aroud®—3. Compared with
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performance and lowers the error floor for all three codes. In
Fig.[, for C1, the simulation result for the RS-ISRB algiomit
1 is shown as well, which does not adopt the new reliability
information update but the re-selection scheme. It appgbats
the re-selection scheme also provides some performance gai
If both improvements are applied, the RS-IISRB algorithm
achieves a greater performance gain.

Next, we compare the performances of hard-reliability
based MLGD algorithms. The EIHRB-INIT algorithni [30]
1 is a simplified version of the EIHRB algorithm without the
recalculation of the extrinsic information. The RS-IEIHRB
algorithm is developed by integrating the re-selectioresoh
describe in Sectiof III-B into the IEIHRB algorithm.

107 F

107°F

Block Error Rate
=
o
T

10°F

—<— ISRB, A\=16
—a— |ISRB, 22:1, 21:4
—p— RS-IISRB, §,=1, § =4, (=32
—A— Min-Max, n_ =32

10°F

-6
10 ; . . .
35 4 45 5 55 10

E,/N, (dB)

—+&— EIHRB-INIT)

—&— EIHRB
—A— |EIHRB

—<— RS-IEIHRB

Fig. 7. Block error rates of the ISRB, IISRB and RS-IISRB aitjons for
the (837, 726) code wheh,.x = 50 and the modulation scheme is BPSK
over the AWGN channel |

r Rate

these two algorithms, for low SNRs the RS-IISRB algorithr & 10}
shows a slight improvement, and for high SNRs the RS-1ISF3
algorithm lowers the error floor to below0—> and has a ® 10
performance loss of only 0.6 dB versus the Min-Max algoritht

at the BLER of10~3.

The average numbers of iterations for the (837,726) co 10t
with different SNRs are listed in Tadlg [The average numbers
of iterations required by the IISRB and RS-IISRB algorithm 14 s s s s s s s s s
are reduced by at least 20% when thg,. = 50. Iterations oot 4z a3 4l Eb,,ff(dB) 4o AT 48 A9 s
required by the RS-IISRB algorithm is slightly fewer thaatth
of the IISRB algorithm because of the re-selection scheme.Hig. 8. Block error rates of hard-reliability based alganiis for the (255,175)
addition, we compare the running time of different decodir\gﬁgﬁn"ére%lax = 50 and the modulation scheme is BPSK over the AWGN

algorithms (implemented in C) on a DELL Optiplex 755.

To decode 10,000 codewords of the (837,726) code over thejg [g shows the BLERS of different hard-reliability based
AWGN channel at the SNR of 5.4 dB, the ISRB, IISRB and|qorithms for the (255,175) code, and TaBlg Il lists the
respectively. In terms of the running time, RS-ISRBISRB  £|HRB-INIT and EIHRB algorithm,c; = 4 and c» = 15.

< ISRB, which is consistent with the comparison based on thg the |EIHRB and RS-IEIHRB algorithmy = 1, ¢» = 63,
average number of iterations. c3 = 12 and¢ = 16. For the (255,175) code the new reliability
information update provides about 0.05 dB performance,gain

TABLE I X .
AVERAGE NUMBER OF ITERATIONS OF THHSRB, IISRBAND RS-1ISRB ~ and the re-selection scheme provides another 0.05 dB perfor
ALGORITHMS FOR THE(837, 726)CODE WHEN I imax = 50 AND THE mance gain. Hence, compared with the EIHRB algorithm, the
MODULATION SCHEME ISBPSKOVER THE AWGN CHANNEL RS-IEIHRB algorithm has about 0.1 dB performance gain, and
E,/No (dB) | ISRB [27] || ISRB | RS-SRB the average number of iterations required by the RS-IEIHRB
. 22.18 10.58 9.97 algorithm is reduced by abogb%.
4.6 16.52 8.22 /.62 Fig. [ compares the BLERs of hard-reliability based al-
47 12.69 6.54 6.30 . . . S
I8 940 549 5733 gorithms for different non-binary LDPC codes with diffeten
2.9 744 4.79 4.64 column weights. For C1 and C2, = 10, ¢ = 63, ¢c3 = 2 and
5.0 5.99 4.20 4.12 ¢ =32.For C3,¢c; = 11, ¢co = 63, c3 = 2 and( = 32. For the
51 521 38 | 371 (837,726) code, the EIHRB algorithm also has an error floor
52 453 3.44 3.38 - :
53 2.06 315 310 of 1073, For low SNRs, the IEIHRB algorithm outperforms
5.4 3.66 2.90 2.87 the EIHRB algorithm and the RS-IEIHRB algorithm reduces

the error floor to a level ofl0=5. In the error floor region,
For C1, C2 and C3, the BLERs of the RS-IISRB algorithrthe EIHRB algorithm is better than the IEIHRB algorithm

are shown with the dashed curves in Hij. 1. For C1 and Qfecause of the use o:fi(fz) and recalculating the extrinsic

& =4,& =1, A =16, ¢ = 32. For C3,¢; = 5, & = 1, information in the latter. The two improvements in Secfidh |

A =16, ¢ = 32. The RS-1ISRB algorithm improves the BLERalsohelp to reduce the average number of iterations by about
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Fig. 9. Block error rates of hard-reliability based alganits for different non-binary LDPC codes with different aolu weights when,ax = 50 and the
modulation scheme is BPSK over the AWGN channel

TABLE Il TABLE IV
AVERAGE NUMBER OF ITERATIONS OF THE HARBRELIABILITY BASED AVERAGE NUMBER OF ITERATIONS OF THE HARBRELIABILITY BASED
ALGORITHMS FOR THE(255, 175)CODE WHEN I imax = 50 AND THE ALGORITHMS ALGORITHM FOR THE(837, 726)CODE WHEN I ipax = 50
MODULATION SCHEME ISBPSKOVER THEAWGN CHANNEL AND THE MODULATION SCHEME ISBPSKOVER THEAWGN CHANNEL
Ey/No | EIHRB-INIT | EIHRB || IEIHRB | RS-IEIHRB Ey/No | EIHRB-INIT | EIHRB || IEIHRB | RS-IEIHRB
(dB) [30] [30] (dB) (0] [30]
4.0 22.28 18.56 12.67 12.09 4.2 43.01 37.25 28.83 27.49
4.1 16.48 13.62 8.99 8.85 4.4 32.19 23.09 15.52 14.55
4.2 12.21 9.54 6.42 6.09 4.6 18.85 12.41 8.29 7.83
43 8.57 7.20 4.70 4.62 4.8 10.57 7.60 5.45 5.22
4.4 6.44 5.57 3.70 3.69 5.0 6.79 5.49 4.13 4.01
45 5.15 4.70 3.10 3.10 5.2 4.98 4.37 3.36 3.27
4.6 4.29 4.07 2.73 2.72
4.7 3.75 3.65 2.47 2.47
4.8 3.38 3.33 2.28 2.28
4.9 3.09 3.06 2.14 2.14

different MLGD algorithms for the (837,726) code over a
20% for the (837,726) code as listed in Talile] IV. For Cblock Rayleigh fading channel. In Fi§.]10, the IISRB and
and C3, the new reliability information update provides sonRS-IISRB algorithms have a gain of about 0.2 dB over the
performance gains for low SNRs, and the error floors al8RB algorithm, which is similar to that over the AWGN
lowered effectively. channel shown in Fid]7. At a SNR of 23 dB, the proposed

improvements reduce the average number of iterations by
We evaluate the proposed decoding algorithms over bloglsout5%.

fading channels, which are widely used in wireless commu-

nication systems involving slow time-frequency hopping or In a word, the two improvements introduced in Secfioh Il
multi-carrier modulation using orthogonal frequency dign apply to both the soft-reliability and hard-reliability ded
multiplexing technique. We assume that each codeword expd:-GD algorithms. While both improvements improve the
riences a block Rayleigh fading channel and that the receieror performance angkquire fewer iterations on averaghe
has perfect channel state information. Higl 10 and Eig. i&-selection scheme lowers the error floor of codes having lo
show the BLERs and the average numbers of iterations aflumn weights effectively.
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10 —r= For the IISRB algorithm, let us consider the initialization
—— IISRB step first. There ar&/2" ¢;;’s. To computep; ;'s needsVr2"
—*—RSISRBJ|  |As. Becausemax; ¢y, = ., and there areNy ¢; ;s
N~(p—2) ICs are needed to calculate ;'s. The calculations
of £&1p;,'s and&ag; ;'s needN 2™ and Nvp IMs, respectively.
Therefore, the initialization step needs-2" IAs, N2"+ N~p
IMs and N~(p — 2) ICs.

We now analyze the complexity per iteration of the ISRB

algorithm. Each iteration needdp FMs andM (p — 1) FAs

0—137
' \\ | to calculate the syndrome®). Line [I8 in Alg.[A can be
reformulated as:

4 (k) = h; 1,(k) o (k) (5)
141 ,7 Z 7

17.9 18 18.1

Block Error Rate

H
o\
b
T

10°

-3

Hence,Nv FAs andN~ FMs are needed to calculaméfj) 's.
e 0 12 1 1 SN;i*(dB) 20 22 24 26 28 Assume there aregk) (O<u(k) < «) different values among
(J)’s for eachy, then ulk) R(kf’l)’s need to be updated. To

Fig. 10. Block error rates of algorithms for the (837, 726){deowhen (k) k+1)1 (k) (k)
Imax = 50 and the modulation scheme is BPSK over the block Raylelgﬁompmew S andR S YU andu;" |IAs are needed,

fading channel respectively, for each For z(k“), R(kfklll) must be one
20 of R 1) and thoseR (1) updated in thek-th iteration. To
18] | make the hard deCISIOI‘lN'y ICs are needed at most. Hence, in
1 the worst case, each iteration of the IISRB algorithm resgiir
16} 1 1 2N~y FMs, 2Ny —M FAs, Ny 1As and N+~ ICs (Mp = N~).
2 1l os Compared with the ISRB algorithm, the 1ISRB algorithm saves
g ' N27 1As and N (27! — 2 — 4) ICs for each iteration, while
%; 12 06 1 requiring the same numbers of FAs and FMs. This saving is
B ol significant if 2" is large.
§ 04— 23 2 Let us calculate computational complexity overhead due to
¢ 8r 1 there-selection scheme~= (2, z1,--- , Zy—_1) represents the
g 6l 1 second most likely decision of the received wgrdlo acquire
Z; in the initialization stepy — 1 ICs are needed for each
o — | becauser-bit representations of; and z; differ by one bit
2H — 5 1sRB 1 and there are elements over GE() satisfying this constraint.
G RSRY 1 1 1 : Hence, the initialization step of the RS-1ISRB algorithneds

8 10 12 14 16 SN;fidB) 20 2 24 26 2 N(r—1)ICs more than that of the IISRB algorithm. For each
iteration, the second maximum amodék)’s must be one

Fig. 11. Average numbers of iterations for different algjuris for the (837, qf R R(k) and thoseR( )’S updated. It needs at most

726) code whenmax = 50 and the modulation scheme is BPSK over the 3%

block Rayleigh fading channel N(y+1) ICs per iteration. Llnd':IS of Algl]5 needsV ICs
to identify the existence of a periodic poin¥.y I1As and N~
ICs are needed to calculate_gs. The calculation ofdif_R

B. Computational Complexity Reduction needs2N ICs andN 1As. ¢ ) ande .o need two

We evaluate impacts on the complexity by the two proposgés After the re-selection scheme there afreyndromes to

improvements and focus on the soft-reliability based MLG F,i recz(ajlcullzi;ed Tsr? th]‘:ﬂ EcEIh(Sg{galr:SbReBaI?plle_dﬁ requizing
algorithms first. Assume the quantized input informatign S andy FMs. Therefore, the RS- algorithm nees

has a bit width ofo. Without the clipping operation of EQJ(1), 7AS: Y FMs, Ny 4+ N +2 1As and5N +2N ICs per iteration

. (k) more than the [ISRB algorithm.
fer the IS.RB algo.mhij»l needsy -+ [logy (A -+ Imax)r) | Complexities of the hard-reliability based algorithms can
bits and its bit width increases ds,.. grows. However, for

. k be analyzed similarly. The IEIHRB algorithm has the same
the ISRB algor|thmR§.zl) needs on(ly)u+ [log,((€1+827)7)] computational complexity per iteration as the 1ISRB altjori,

bits and ;.. has no impact o\’ bit width. With the pecause they have the same iteration procedure. For the same
clipping operauonR needs a smaller bit width in the ISRBreason, the RS-IEIHRB algorithm has the same computational
algorithm. However,NT IAs and N(2" — 1) ICs are needed complexity per iteration as the RS-1ISRB algorithm.

per iteration to carry out the clipping operation. In costra  Tables[Y and_MI compare computational complexities of
there is no accumulation operation in the IISRB and RS-lIISR&rious decoding algorithms. For the initialization stéipe
algorithms. Thus, saturation is not an issue for the IISRBumbers of IMs of the IISRB and RS-IISRB algorithms are
and RS-IISRB algorithms, and the clipping operation is nafreater than that of the ISRB algorithm because the caloulat
needed. of &»2¢;; is done in initialization to reduce computational
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TABLE V
COMPUTATIONAL COMPLEXITIES OF THE INITIALIZATION STEP FOR \ARIOUS DECODING ALGORITHM TO DECODE ANLDPC CODE OVERGF(2") WITH
AN M x N PARITY CHECK MATRIX WHOSE COLUMN AND ROW WEIGHTS AREy AND p

Algorithms 1A IM IC ID Floor
ISRB [27] Nr2" NoT MN(2" —1)(3p — 6) 0 0
NSRB NroT N2™ + Nvp N~(p —2) 0 0
RS-1ISRB Nr2"™ N2"+ Nvp | Nv(p—2)+ N(r —1) 0 0
EIHRB [30] | N2"(r +2) 0 N2" N2" N2"
IEIHRB N2"(r + 2) 0 N2" N2" N2"
RS-IEHRB | N2"(r + 2) 0 N2™ + N(r — 1) N2T | N2¥

TABLE VI
COMPUTATIONAL COMPLEXITIES PER ITERATION FOR VARIOUS DECOING ALGORITHM TO DECODE ANLDPC cODE OVERGF(2") WITHAN M X N
PARITY CHECK MATRIX WHOSE COLUMN AND ROW WEIGHTS AREY AND p

Algorithms FA FM 1A IC
ISRB [27] 2N~ — M 2N~ Ny + N27 IN2T — 2N
NISRB 2N~ — M 2N~ N~ N~
RS-ISRB | 2Ny — M +2y | 2Ny +~ | 2Ny + N +2 5N + 3N~
EIHRB [30] 3N~ — 2M 3Ny 2N~y + N2© | 2N2" — 2N + Ny
I[ETHRB 2N~ — M 2N~ N~ N~
RS-IEIHRB | 2Ny — M +2v | 2Ny +v | 2Ny + N + 2 5N + 3Nv
TABLE VI

Comp_IeXities of iterr_:ltions. This is a good trade-off for GOM  compuTATIONAL COMPLEXITIES OF THE INITIALIZATION STEP FOR
putational complexity. The number of ICs needed by the varRious DECODING ALGORITHMS TO DECODE THE255,175)CODE
initialization step of the ISRB algorithm provided in_[27,

Section 111-A] is significantly greater than those of the ath | Al9onthm A IM I¢ ID_ | Floor
. o . } ISRB [24] | 522240 | 65280 | 696417750] O 0
algorithms. This is because ih[27), ;'s are calculated for ISRB 522240 | 130560 57120 5 5
everyi andj, andmax; ¢ ;'s are re-calculated for eaah ;. RS-ISRB | 522240 | 130560 | 58905 0 0
For each iteration, the numbers of integer operations requi [ EIHRB 522750 0 65280 | 65280 | 65280
by the ISRB and EIHRB algorithms scale wi#ti, the order RgE:E'miB gggg 8 g%gg ggggg ggggg
of the finite field. With the new reliability information uptia
the numbers of integer operations are reduced greatly and ar TABLE VIl

now independent o2". The re-selection scheme iNcurs SOMEompUTATIONAL COMPLEXITIES REQUIRED PER ITERATION FOR VARDUS
additional complexity, but complexities of the RS-IISRBdan DECODING ALGORITHM TO DECODE THE(255,175)CODE
RS-IEIHRB algorithms are still lower than those of the ISRB

. . Algorithm FA FM 1A IC
and EIHRB algorlthms_, respectively. _ _ ISRE [27] | 7905 | 8160 | 69360 | 130050
Tables[ VIl and_ VIl list the numbers of various operations SRB 7905 | 8160 | 4080 | 4080
for initialization and each iteration, respectively, negdy RS-ISRB | 7937 | 8176 | 8417 | 13515
various decoding algorithms for the (255,175) code. For ini EIEE—?RIBE] 171970350 182126%0 7430‘:3%0 12(‘)‘;30
tialization, the ISRB algorithm needs significantly moresIC RSIEHRE T 7937 T 8176 8417 | 13515

than the other algorithms. When the order of the finite field

is higher, our improved algorithms reduce the numbers of IAs

anI(:jr(I)Crlns ;or 2?;12?2“2? tskzgnglc;ﬁnﬂ)t/'at'onal comolexit thnon-binary LDPC codes. The first improvement—the new reli-
Perspectiv putat plexity, gbility information update—helps the reliability-based 8D

lISRB and IEIHRB a'g.OY'th’T‘S are the _best. The_ re'selectloaﬂfgorithms achieve better BLER®quire fewer iterationsand
scheme needs more finite field operations and integer opeta-

. . : ) ave lower complexities. The second improvement—the re-
tions. All the improved algorithms are simpler than the ISR . p_ . P
and EIHRB alaorithms Selection scheme—results in a better error performaeagr

Let g'd th. head ired b titerations on averageand a lower error floor. Although the

€l uS consider the memory overnead required y..ms-selection scheme needs additional complexity, the MLGD
two improvements. Our first improvement—the new reliapilit lgorithms with the re-selection scheme still require lowe

information L_deate—does not need any extra memory uni mputational complexities than the existing MLGD algo-
The second improvement—the re-selection scheme—need§it

. ms.
storez(*—1) andz(*~2) and hence requiresVr extra memory
bits. Hence, the re-selection scheme increases the memory

requirement slightly, but it does lower the error floor. REFERENCES
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