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Abstract 

In this paper we have proposed a median based estimator using known value of some population 

parameter(s) in simple random sampling. Various existing estimators are shown particular members of the 

proposed estimator. The bias and mean squared error of the proposed estimator is obtained up to the first 

order of approximation under simple random sampling without replacement. An empirical study is carried 

out to judge the superiority of proposed estimator over others. 
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1.  Introduction 

          Consider a finite population }U,...,U,U{U N21  of N distinct and identifiable units. Let Y be the 

study variable with value iY  measured on N1,2,3...,i ,Ui  . The problem is to estimate the population 

mean 



N

1i

iY
N

1
Y . The simplest estimator of a finite population mean is the sample mean obtained from 

the simple random sampling without replacement, when there is no auxiliary information available. 

Sometimes there exists an auxiliary variable X  which is positively correlated with the study variable Y. 

The information available on the auxiliary variable X may be utilized to obtain an efficient estimator of 

the population mean. The sampling theory describes a wide variety of techniques for using auxiliary 

information to obtain more efficient estimators. The ratio estimator and the regression estimator are the 

two important estimators available in the literature which are using the auxiliary information. To know 

more about the ratio and regression estimators and other related results one may refer to [1-13]. 

        When the population parameters of the auxiliary variable X such as population mean, coefficient of 

variation, kurtosis, skewness and median are known, a number of modified ratio estimators are proposed 

in the literature, by extending the usual ratio and Exponential- ratio type estimators. 



         Before discussing further about the modified ratio estimators and the proposed median based 

modified ratio estimators the notations and formulae to be used in this paper are described below: 

 

 N -  Population size 

 n    -  Sample size 

 Y   -  Study variable 

  X  -  Auxiliary variable 
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  Where  Coefficient of skewness of the auxiliary variable  

 ρ   - Correlation Co-efficient between X and Y  

 Y,X  - Population means 

 y,x  -  Sample means 

 ,M   -  Average of sample medians of Y 

 m    -  Sample median of Y 

 β    - Regression coefficient of Y on X 

 B (.) - Bias of the estimator 

 V (.) - Variance of the estimator 

 MSE (.) - Mean squared error of the estimator 

 100*
)e(MSE

)e(MSE
)p,e(PRE  - Percentage relative efficiency of the proposed estimator p with 

respect to the existing estimator e.            

       The formulae for computing various measures including the variance and the covariance of the 

SRSWOR sample mean and sample median are as follows: 
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In the case of simple random sampling without replacement (SRSWOR), the sample mean y is used to 

estimate the population mean Y . That is the estimator of yYY r   with the variance  

                                       2
yr S

n

f1
)Y(V


        (1.1) 

The classical Ratio estimator for estimating the population mean Y  of the study variable Y is defined 

as X
x

y
YR  . The bias and mean squared error of RY  are given as below: 

                                   '
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  where 
X

Y
R '     (1.3) 

 

2.  Proposed estimator 
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where iw (i=0, 1, 2) denotes the statistical constants and R denotes the set of real numbers. 
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To obtain the bias and MSE expressions of the estimator t, we write 
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Expanding the right hand side of equation(2.3) up to the first order of approximation, we get 
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From (2.4), we have 

 (2.9)                                                                                                                           )wee(YYt 10 

 

Squaring both sides of (2.9) and then taking expectations, we get the MSE of the estimator t, up to the 

first order of approximation as 
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MSE(t) will be minimum, when 
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Putting the value of w(=k) in (2.10), we get the minimum MSE of the estimator t, as 

   (2.12)                                                                                                                    1yVMSE(t) .min 2

 

The minimum MSE of the estimator t  is same as that of traditional linear regression estimator. 

From (2.5) and (2.11), we have 
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From (2.2) and (2.13), we have only two equations in three unknowns. It is not possible to find the unique 

values of wi’ s (i=0, 1, 2). In order to get unique values for wi’s, we shall impose the linear restriction 
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Equations (2.2), (2.11) and (2.14) can be written in matrix form as 
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Using (2.15) we get the unique value of wi’ s (i=0, 1, 2) as 

(2.16)                                                                 

)t(kB

)t(kB
2

k)t(B
2

1
)kg)(t(B

)t(B
2

)t(gB

      e      wher

w

w

w

12

21

120

12r

r

2
2

r

1
1

r

0
0












 


































        

 

Table 2.1: Some members of the proposed estimator 

 

w0 w1 w2 a b   g   Estimators 

1 0 0 - - - - - yq1   

0 1 0 1 0 1 1 - 
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3.   Empirical Study 

              For numerical illustration we consider:  the population 1 and 2 taken from [14] pageno.177, the 

population 3 is taken from [15]  page no.104. The parameter values and constants computed for the above 

populations are given in the Table 3.1. MSE for the proposed and existing estimators computed for the 

three populations are given in the Table 3.2 whereas the PRE for the proposed and existing estimators 

computed for the three populations are given in the Table 3.3. 

Table: 3.1 Parameter values and constants for 3 different populations 

Parameters 
For sample size n=3 For sample size n=5 

Popln-1 Popln-2 Popln-3 Popln-1 Popln-2 Popln-3 

N 34 34 20 34 34 20 

n 3 3 3 5 5 5 

n
N C  5984 5984 1140 278256 278256 15504 



 

Table: 3.2. Variance / Mean squared error of the existing and proposed estimators 

Estimators 
For sample size n=3

 
For sample size n=5

 

Population-1 Population-2 Population-3 Population-1 Population-2 Population-3 

q1 163356.41 163356.41 27.13 91690.37 91690.37 14.36 

q2 89314.58 89314.58 11.34 58908.17 58908.17 6.99 

q3 89274.35 89287.26 11.17 58876.02 58886.34 6.93 

q4 89163.43 89092.75 10.92 58787.24 58730.58 6.85 

q5 93169.40 93169.40 12.30 55561.98 55561.98 7.82 

q6 93194.86 93186.68 12.42 55573.42 55569.74 7.88 

q7 93265.64 93311.19 12.62 55605.24 55625.75 7.97 

q8 113764.16 113810.72 21.52 76860.57 76891.47 10.66 

q9 151049.79 150701.09 22.00 101236.37 101004.87 10.99 

q10 151791.97 151791.97 24.24 101728.97 101728.97 11.87 

t(opt) 82838.45 82838.45 10.05 52158.93 52158.93 6.63 

           

 

Table: 3.3. Percentage Relative Efficiency of estimators with respect to y  

Estimators 
For sample size n=3

 
For sample size n=5

 

Population-1 Population-2 Population-3 Population-1 Population-2 Population-3 

Y  856.4118 856.4118 41.5 856.4118 856.4118 41.5 

M  747.7223 747.7223 40.2351 736.9811 736.9811 40.0552 

X  208.8824 199.4412 441.95 208.8824 199.4412 441.95 

1  0.8732 1.2758 1.0694 0.8732 1.2758 1.0694 

R 1.1453 1.1453 1.0314 1.1621 1.1621 1.0361 

)y(V  163356.4086 163356.4086 27.1254 91690.3713 91690.3713 14.3605 

)x(V  6884.4455 6857.8555 2894.3089 3864.1726 3849.248 1532.2812 

)m(V  101127.6164 101127.6164 26.0605 58464.8803 58464.8803 10.6370 

)m,y(Cov  90236.2939 90236.2939 21.0918 48074.9542 48074.9542 9.0665 

)x,y(Cov  15061.4011 14905.0488 182.7425 8453.8187 8366.0597 96.7461 

  0.4491 0.4453 0.6522 0.4491 0.4453 0.6522 



q1 100 100 100 100 100 100 

q2 182.90 182.90 239.191236 155.65 155.65 205.40 

q3 182.98 182.96 242.877047 155.73 155.71 207.12 

q4 183.21 183.36 248.504702 155.97 156.12 209.64 

q5 175.33 175.33 220.500742 165.02 165.02 183.60 

q6 175.28 175.30 218.381298 164.99 165.00 182.30 

q7 175.15 175.07 214.915968 164.90 164.83 180.16 

q8 143.59 143.53 126.034732 119.29 119.25 134.70 

q9 108.15 108.40 123.254986 90.57 90.78 130.57 

q10 107.62 107.62 111.896010 90.13 90.13 120.97 

t(opt) 197.20 197.20
 

269.771157 175.79 175.79 216.51 

 

4.  Conclusion 

           From empirical study we conclude that the proposed estimator under optimum conditions perform 

better than other estimators considered in this paper. The relative efficiencies and MSE of various 

estimators are listed in Table 3.2 and 3.3. 

 

References 

1. Murthy M.N. (1967). Sampling theory and methods. Statistical Publishing Society, Calcutta, 

India.  

2. Cochran, W. G. (1977): Sampling Techniques.  Wiley Eastern Limited.  

3. Khare B.B. and Srivastava S.R. (1981): A general regression ratio estimator for the population 

mean using two auxiliary variables. Alig. J. Statist.,1: 43-51. 

4. Sisodia, B.V.S. and Dwivedi, V.K. (1981): A modified ratio estimator using co-efficient of 

variation of auxiliary variable. Journal of the Indian Society of Agricultural Statistics 33(1), 13-

18.  

5. Singh G.N. (2003): On the improvement of product method of estimation in sample surveys. 

Journal of the Indian Society of Agricultural Statistics 56 (3), 267–265. 

6. Singh H.P. and Tailor R. (2003): Use of known correlation co-efficient in estimating the finite 

population means. Statistics in Transition 6 (4), 555-560.  

7. Singh H.P., Tailor R., Tailor R. and Kakran M.S. (2004): An improved estimator of population 

mean using Power transformation. Journal of the Indian Society of Agricultural Statistics 58(2), 

223-230.  



8. Singh, H.P. and Tailor, R. (2005): Estimation of finite population mean with known co-efficient 

of variation of an auxiliary. STATISTICA, anno LXV, n.3, pp 301-313. 

9. Kadilar C. and Cingi H. (2004): Ratio estimators in simple random sampling. Applied 

Mathematics and Computation 151, 893-902.  

10. Koyuncu N. and Kadilar C. (2009): Efficient Estimators for the Population mean. Hacettepe 

Journal of Mathematics and Statistics, Volume 38(2), 217-225. 

11. Singh R., Kumar M. and Smarandache F. (2008): Almost unbiased estimator for estimating 

population mean using known value of some population parameter(s). Pak.j.stat.oper.res., Vol.IV, 

No.2,  pp 63-76. 

12. Singh, R. and Kumar, M. (2011): A note on transformations on auxiliary variable in survey 

sampling. Mod. Assis. Stat. Appl., 6:1, 17-19. doi 10.3233/MAS-2011-0154. 

13. Singh R., Malik S., Chaudhary M.K., Verma H.K., and Adewara A.A. (2012): A general family 

of ratio-type estimators in systematic sampling. Jour. Reliab. Stat. Ssci., 5(1):73-82. 

14. Singh, D. and Chaudhary, F. S. (1986): Theory and analysis of survey designs. Wiley Eastern 

Limited. 

15. Mukhopadhyay, P. (1998): Theory and methods of survey sampling. Prentice Hall.  


	OLE_LINK1
	OLE_LINK2

