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On special representations of p-adic reductive groups

Elmar Grosse-Klönne

Abstract

Let F be a non-Archimedean locally compact field, let G be a split connected reductive

group over F . For a parabolic subgroup Q ⊂ G and a ring L we consider the G-representation

on the L-module

(∗) C∞(G/Q,L)/
∑

Q′)Q

C∞(G/Q′, L).

Let I ⊂ G denote an Iwahori subgroup. We define a certain free finite rank L-module M

(depending on Q; if Q is a Borel subgroup then (∗) is the Steinberg representation and

M is of rank one) and construct an I-equivariant embedding of (∗) into C∞(I,M). This

allows the computation of the I-invariants in (∗). We then prove that if L is a field with

characteristic equal to the residue characteristic of F and if G is a classical group, then the

G-representation (∗) is irreducible. This is the analog of a theorem of Casselman (which says

the same for L = C); it had been conjectured by Vignéras.

Herzig (for G = GLn(F )) and Abe (for general G) have given classification theorems for

irreducible admissible modulo p representations of G in terms of supersingular representa-

tions. Some of their arguments rely on the present work.

Introduction

Let F be a non-Archimedean locally compact field with ring of integers OF and residue field

kF . Let G be a connected split reductive group over F . Let T be a split maximal torus, N ⊂ G

its normalizer and W = N/T , the corresponding Weyl group. Let Φ ⊂ X∗(T ) be the set of

roots, let Φ+ ⊂ Φ be the set of positive roots with respect to a Borel subgroup P containing

T and let ∆ ⊂ Φ+ be the corresponding set of simple roots. For a subset J ⊂ ∆ let WJ ⊂ W

denote the subgroup generated by the simple reflections associated with the elements of J . Let

PJ denote the parabolic subgroup generated by P and by representatives (in N) of the elements

of WJ . Any parabolic subgroup of G is conjugate to PJ for some J . For a ring L (commutative,

with 1 ∈ L) we call the G-representation

SpJ(G,L) =
C∞(G/PJ , L)∑

α∈∆−J C
∞(G/PJ∪{α}, L)
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the J-special representation of G with coefficients in L. For J = ∅ this is the Steinberg rep-

resentation of G with coefficients in L. By an old theorem of Casselman, the representations

SpJ(G,C) are irreducible for all J , they form the irreducible constituents, each with multiplicity

one, of C∞(G/P,C). Published proofs of this irreducibility use techniques specific for the coeffi-

cient field L = C, see [3] ch. X, Theorem 4.11 or [9] Theorem 8.1.2. For L a field of characteristic

ℓ 6= p = char(kF ) it is known that the irreducibility of say Sp∅(G,L) depends on ℓ. See e.g. [17],

Chapitre III, Théorème 2.8 (b).

In this paper we investigate the representation SpJ(G,L) for arbitrary coefficient rings L

(and on the way obtain results previously unknown even for L = C). We need the L-module

MJ(L) =
L[W/WJ ]∑

α∈∆−J L[W/WJ∪{α}]
.

Let I ⊂ G be an Iwahori subgroup adapted to P , i.e. such that we have an Iwahori decompositon

G =
⋃

w∈W IwP . Our first main theorem is the following (Theorem 2.4), which even for L = C

seems to have been unknown before:

Theorem A: There exists an I-equivariant embedding

SpJ(G,L) →֒ C∞(I,MJ (L));

its formation commutes with base changes in L.

Using the decomposition G/PJ = ∪w∈W/WJ
IwPJ/PJ and its analog for the PJ∪{α}, the proof

of Theorem 1 is reduced to the proof of exactness of a certain natural sequence

⊕

α∈∆−J
w∈W/WJ∪{α}

C∞(I/I ∩ wPJ∪{α}w
−1, L) −→

⊕

w∈W/WJ

C∞(I/I ∩ wPJw
−1, L) −→ C∞(I,MJ (L))

(1)

(Proposition 2.3). This exactness proof proceeds by induction along a certain filtration of (1).

The key to defining this filtration is to consider certain subsets of Φ which we call J-quasi-

parabolic: a subset D ⊂ Φ is called J-quasi-parabolic if
∏

α∈D Uα is the intersection of unipotent

radicals of parabolic subgroups which are W -conjugate to PJ . Here Uα ⊂ G denotes the root

subgroup associated to α. For such D we define a subsetW J(D) of W/WJ as consisting of those

classes wWJ for which
∏

α∈D Uα is contained in the unipotent radical of the parabolic subgroup

opposite to wPJw
−1. Fixing a size-increasing enumeration of all J-quasi-parabolic subsets D,

the corresponding W J(D)’s give the said filtration of (1). The exactness of (1) is then reduced

to the exactness, for any D, of

⊕

α∈∆−J

L[W J∪{α}(D)] −→ L[W J(D)] −→ MJ(L)

(Proposition 1.3), a purely combinatorial fact on finite reflection groups. We mention that

if L is a complete field extension of F , Theorem 1 holds verbatim, with the same proof, for
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the corresponding representations on spaces of locally analytic (rather than locally constant)

functions.

A vigorously emerging subject in current p-adic number theory is the smooth representation

theory of p-adic reductive groups, like G, on Fp-vector spaces. So far, the research has focused

mostly on the case G = GL2(F ), for finite extensions F of Qp, but even for those G the

theory turns out to be fairly complicated and is far from being well understood. However, it

already becomes quite clear that a good understanding of the theory depends crucially on a good

understanding of the functor taking invariants under a (pro-p-)Iwahori-subgroup. At present

there is literally no general technique available to compute this functor. For example, although

Vignéras had proved the irreducibility of the Steinberg representation of our G’s in characteristic

p, the space of its (pro-p-)Iwahori invariants was not known (except for G = GL2(F )); this was

the motivating problem for our investigations.

As an immediate consequence of Theorem 1 we obtain that the submodule of I-invariants

SpJ(G,L)
I is free of rank at most the rank of MJ(L), i.e. rkL(SpJ(G,L)

I ) ≤ rkL(MJ(L)),

as was conjectured by Vignéras [16]. The reverse inequality rkL(SpJ(G,L)
I ) ≥ rkL(MJ (L))

follows easily by summing over all J , using that
∑

J rkL(MJ (L)) = |W |. Thus, SpJ(G,L)
I is

free of rank equal to the rank of MJ(L), for any L. (For example, we obtain that the module

of I-invariants in the Steinberg representation is free of rank one.) In particular, using Lemma

6.18 of [11]:

Corollary B: The G-representation SpJ(G,L) is admissible, for any J and any L.

(Corollary 2 also follows from Proposition 2.2.13 of [4] and the admissibility of C∞(G/PJ , L).)

The reductive group underlying G can be defined over OF ; as such we denote it by Gx0 . Its

group Gx0(OF ) of OF -rational points is a subgroup of G, let G = Gx0(kF ) denote the group of

kF -rational points of Gx0 . Its root system is the same as that of G. We may copy the definition of

the G-representations SpJ(G,L) to define G-representations SpJ(G,L), for all J ⊂ ∆ (replace

locally constant functions on G by functions on G). Let P ⊂ G denote the Borel subgroup

obtained by reduction of I ⊂ Gx0(OF ). Then using Theorem 1 we find a canonical identification

(Proposition 3.2):

SpJ(G,L)
I = SpJ(G,L)

P .(2)

Our second main theorem is concerned with the case where L is a field with p = char(L) =

char(kF ). We ask whether SpJ(G,L)
I is irreducible as a module under the Iwahori Hecke

algebra H(G, I). We may view SpJ(G,L)
I = SpJ(G,L)

P as a module under the Hecke al-

gebra H(G,P ). In a first step we show (Proposition 3.4) that each H(G,P )-submodule of

SpJ(G,L)
I = SpJ(G,L)

P contains the class of the characteristic function χIw∆PJ
of the sub-

set Iw∆PJ ⊂ G; here w∆ ∈ W denotes the longest element. This follows from explicit for-

mulae for the action on SpJ(G,L)
P of the Hecke operators associated to simple reflections

(these formulae boil down to the Bruhat decomposition of G and require our assumption
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p = char(L) = char(kF )), together with a combinatorial lemma (Lemma 1.5) on W . In a second

step we need to show that the class of χIw∆PJ
generates SpJ(G,L)

I as an H(G, I)-module. We

can prove this if Φ contains no exceptional factor, i.e. if all the irreducible factors of the root

system Φ belong to the infinite series A, B, C or D. Our argument uses a combinatorial result,

Proposition 1.6, on the weak (left)ordering of W (an ordering weaker than the Bruhat ordering)

which we can prove only for such root systems. Proposition 1.6 may also hold true for the root

systems of type E6 or E7 (if so we would get the irreducibility result in these cases too), but

certainly fails for the root systems of the types E8, F4 and G2. Thus, in these cases another

argument (for the generation of SpJ(G,L)
I by χIw∆PJ

) would be needed. In conclusion, what

we prove is (Theorem 4.2):

Theorem C: If L is a field with char(L) = char(kF ) and if the root system Φ contains no

exceptional factor then the H(G, I;L)-module SpJ(G,L)
I is irreducible.

Let I1 ⊂ I denote the pro-p-Iwahori subgroup inside I. The G-representation SpJ(G,L)

is generated by SpJ(G,L)
I = SpJ(G,L)

I1 (see [16]). As any smooth representation of a pro-

p-group on a non-zero vector space in characteristic p admits a non-zero invariant vector, we

obtain, as a corollary of Theorem C, the analog of Casselman’s theorem for a field L with

p = char(L) = char(kF ) if G is a classical group (of course, this analog implies and gives a new,

purely algebraic proof of Casselman’s theorem) (Corollary 4.3, Corollary 4.4):

Theorem D: If L is a field with char(L) = char(kF ) and if Φ contains no exceptional factor

then the G-representation SpJ(G,L) is irreducible. The SpJ(G,L) for the various J form the

irreducible constituents, each one occuring with multiplicity one, of C∞(G/P,L).

Theorem 4 had been conjectured by Vignéras (see [16] section 5, Remarque 2) (without the

restriction on Φ), and, as indicated above, she had proven the irreducibility of the Steinberg

representation Sp∅(G,L). After we had obtained Theorem 4 it had been generalized by Florian

Herzig [5] to general (split reductive) groups G over a finite extension F of Qp. Like ours, his

proof relies on the identification (2) and on Proposition 3.4 below, but then it follows another

strategy; in particular, it does not reprove or generalize Theorem 3.

Assuming the results of the present paper, Florian Herzig [5] (for G = GLn(F )) and Noriyuki

Abe [1] (who generalized Herzig’s method to general split G) classify irreducible admissible

representations of G over L in terms of supersingular representations; here G is a split connected

reductive group G over a finite extension F of Qp and L is an algebraically closed field L with

char(L) = char(kF ) = p. More specifically, our results (e.g. Corollary 2, formula (2), Proposition

3.4) are indispensable for proving e.g. the irreducibility of the representations considered in these

papers.

It is a great pleasure to express my deep gratitude to Marie-France Vignéras. She suggested

the problem of computing the Iwahori invariants in p-modular Steinberg representations: this
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some possible further developments. I thank Florian Herzig for his very careful reading of the
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1 Reflection groups

In this section we collect some results on finite reflection groups. Proposition 1.3 will be needed

for Theorem 2.4, the embedding of SpJ(G,L) into C
∞(I,MJ (L)). Lemma 1.5 will be needed for

Proposition 3.4 which concerns the H(G,P ;L)-module structure of SpJ(G,L)
I , and Corollary

1.7 will be needed for the proof of Theorem 4.2 on the irreducibility of SpJ(G,L)
I as aH(G, I;L)-

module.

Consider a reduced root system Φ and let W be its corresponding Weyl group. Fix a system

∆ ⊂ Φ of simple roots and denote by Φ+ ⊂ Φ the corresponding set of positive roots. Let

Φ− = Φ − Φ+. For α ∈ Φ let sα ∈ W denote the associated reflection. Let ℓ(.) : W → Z≥0

be the length function with respect to ∆. For a subset J ⊂ ∆ let WJ ⊂ W be the subgroup

generated by all sα for α ∈ J . We denote by w∆ ∈ W resp. wJ ∈ WJ the respective longest

elements. Let

ΦJ(1) = Φ− − (Φ− ∩WJ .J)

where WJ .J = {wα |w ∈ WJ , α ∈ J} ⊂ Φ is the sub-root system generated by J . For w ∈ W

we then define the subset

ΦJ(w) = wΦJ(1)

of Φ. It depends only on the class of w in W/WJ . Observe ΦJ ′(w) ⊂ ΦJ(w) for J ⊂ J ′. We say

that a subset D ⊂ Φ is J-quasi-parabolic if it is the intersection of subsets ΦJ(w) for some (at
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least one) w ∈W . Let

W J = {w ∈W | w(J) ⊂ Φ+}.

It is well known (cf. e.g. [6] Proposition 1.10 (c)) that this is a set of representatives for W/WJ

and can alternatively be described as

W J = {w ∈W | ℓ(wsα) > ℓ(w) for all α ∈ J}.(3)

For a subset D ⊂ Φ let

W J(D) = {w ∈W J | D ⊂ ΦJ(w)}.

Let

V J =W J −
⋃

α∈∆−J

W J∪{α}.

Then W = ∪J⊂ΦV
J (disjoint union). We have

V J = {w ∈W J | w(∆ − J) ⊂ Φ−}.

Lemma 1.1. For J ⊂ J ′ and w ∈W J ′
we have ΦJ(w)− ΦJ ′(w) ⊂ Φ−.

Proof: Each element in ΦJ(w)−ΦJ ′(w) = w(ΦJ (1)−ΦJ ′(1)) can be written as w(
∑

ν −αν)

with certain αν ∈ J ′. As w ∈W J ′
the claim follows. �

For the proof of Proposition 1.3 below and then for later use it is convenient to make the

following definition:

Definition: For w ∈ W let (w)J denote the unique element of W J with (w)JWJ = wWJ .

Thus, (.)J is the projection from W onto the first factor in the direct product decomposition

W = W JWJ . Loosely speaking, applying (.)J means cutting off WJ -factors on the right hand

side.

Lemma 1.2. (a) For any w ∈W we have ℓ(w) ≥ ℓ((w)J ).

(b) For w1 ∈W J and w2 ∈WJ we have ℓ(w1w2) = ℓ(w1) + ℓ(w2).

(c) For any w ∈W we have ℓ(w∆w) = ℓ(ww∆) = ℓ(w∆)− l(w).

Proof: Any v ∈ W J is the unique element of minimal length in the set of representatives

for the coset vWJ ; this gives (a). For the easy statements (b) and (c) see [6] Theorem 1.8 and

Proposition 1.10. �

Let L be a ring. For a set S let L[S] denote the free L-module with basis S.

Definition: We define the L-module MJ(L) and the L-linear map ∇ by the exact sequence

of L-modules

⊕

α∈∆−J

L[W J∪{α}]
∂

−→ L[W J ]
∇
−→ MJ(L)−→0(4)
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where for w ∈W J∪{α} we set

∂(w) =
∑

w′∈WJ

w′WJ⊂wWJ∪{α}

w′.

Proposition 1.3. (a) MJ(L) is L-free of rank |V J |, and ∇ induces a bijection between V J and

an L-basis of MJ(L). We have MJ(L
′) = MJ(L)⊗L L

′ for any ring morphism L→ L′.

(b) Let D ⊂ Φ be a J-quasi-parabolic subset. We have ∂(⊕α∈∆−JL[W
J∪{α}(D)]) ⊂ L[W J(D)],

and the sequence ⊕

α∈∆−J

L[W J∪{α}(D)]
∂D

−→ L[W J(D)]
∇D

−→ MJ(L)

obtained by restricting (4) is exact.

Proof: For w ∈ W J∪{α} and w′ ∈ W J with w′WJ ⊂ wWJ∪{α} we have ΦJ∪{α}(w) =

ΦJ∪{α}(w
′) ⊂ ΦJ(w

′). This shows

∂(⊕α∈∆−JL[W
J∪{α}(D)]) ⊂ L[W J(D)],

for any subset D of Φ.

First Step: Let D ⊂ Φ+ be a subset. Define MJ,D(L) and ∇̃D by the exact sequence

⊕

α∈∆−J

L[W J∪{α}(D)]
∂D

−→ L[W J(D)]
∇̃D

−→ MJ,D(L)−→0.

Let V J(D) = V J ∩W J(D).

Claim: For all ℓ and all w ∈W J(D) with ℓ(w) ≥ ℓ we have ∇̃D(w) ∈ ∇̃D(L[V J(D)]).

We prove this by descending induction on ℓ. Suppose we are given such a w ∈W J(D) with

ℓ(w) ≥ ℓ. If w ∈ V J we are done. Otherwise there is some α ∈ ∆ − J with w ∈ W J∪{α}.

By Lemma 1.1 we have ΦJ(w) − ΦJ∪{α}(w) ⊂ Φ−, thus our assumption D ⊂ Φ+ implies even

w ∈W J∪{α}(D). For all w′ ∈W J −{w} with w′WJ ⊂ wWJ∪{α} we have ℓ(w′) > ℓ(w) (because

w′WJ ⊂ wWJ∪{α} implies w′WJ∪{α} = wWJ∪{α}, but in view of (3) we know that w is the

unique element of wWJ∪{α} of minimal length). Moreover we have w′ ∈ W J(D) (as noted at

the beginning of this proof), thus by induction hypothesis we get ∇̃D(w′) ∈ ∇̃D(L[V J(D)]) for

all such w′. Now

w = ∂D(w) −
∑

w′∈WJ−{w}

w′WJ⊂wWJ∪{α}

w′

(inside L[W J(D)]) which shows ∇̃D(w) ∈ ∇̃D(L[V J(D)]), as desired.

The claim is proved. In particular, setting ℓ = 0, we get ∇̃D(L[V J(D)]) = MJ,D(L).

Second Step: Here we prove (a). That the image of V J generates the L-moduleMJ (L) follows

from the first step (with D = ∅ there). The base change property MJ(L
′) = MJ(L)⊗LL

′ follows

from the definition of MJ(.) and from right exactness of taking tensor products. To see that the

image of V J in MJ (L) remains linearly independent we first consider the case L = Q; then our

task is to show dimQMJ (Q) ≥ |V J |.

7



By definition, the Q-vector spaces Q[W J ] and Q[W J∪{α}] come with the distinguished bases

W J andW J∪{α}, hence with isomorphisms with their duals Q[W J ] ∼= Q[W J ]∗ and Q[W J∪{α}] ∼=

Q[W J∪{α}]∗. One easily checks that under these identifications, the map

Q[W J ]
∂∗

−→
⊕

α∈∆−J

Q[W J∪{α}]

dual to ∂ is given as follows: for w′ ∈W J the α-component of ∂∗(w′) is the unique w ∈W J∪{α}

with w′WJ∪{α} = wWJ∪{α}. For w
′ ∈ V J put

σ(w′) =
∑

v∈W∆−J

(−1)ℓ(v)(w′v)J ∈ Q[W J ].

The definition of V J shows that for each w′ ∈ V J and each v ∈W∆−J different from the neutral

element we have ℓ(w′) > ℓ(w′v) ≥ ℓ((w′v)J ). Therefore the set

{σ(w′) |w′ ∈ V J and ℓ(w′) = ℓ}

remains linearly independent in

Q[W J ]

Q[{w′ ∈W J | ℓ(w′) < ℓ}]

for any ℓ ∈ N. An induction then shows that the set {σ(w′) |w′ ∈ V J} is linearly independent in

Q[W J ] (under the projection Q[W J ] → Q[V J ] it even maps bijectively onto a Q-basis of Q[V J ]).

On the other hand, for any α ∈ ∆−J we have W∆−J = (W∆−J)
α
∐
(W∆−J)

αsα (we extrapolate

to W∆−J the definitions given for W , i.e. (W∆−J)
α is the set of canonical representatives for

W∆−J/W{α}). Therefore the above description of ∂∗ shows that σ(w′) ∈ ker(∂∗) for all w′ ∈ V J .

We obtain dimQMJ(Q) = dimQcoker(∂) = dimQker(∂
∗) ≥ |V J |, as desired.

We have proven that the image of V J in MJ(Q) is a Q-basis of MJ (Q). Since the image of

V J in MJ(Z) generates MJ (Z) as an abelian group, and as MJ (Q) = MJ(Z) ⊗ Q, it follows

that MJ(Z) is torsion free and that the image of V J in MJ(Z) is a Z-basis. By the base change

property it follows that MJ(Q) is L-free for any L, with the image of V J as an L-basis.

Third Step: Here we prove (b). As D is J-quasi-parabolic we find some w ∈ W with

wD ⊂ Φ+. We have a commutative diagram

⊕
α∈∆−J L[W

J∪{α}(D)]

∼=
��

∂D
// L[W J(D)]

∼=
��

∇D
// MJ(L)

∼=

��⊕
α∈∆−JL[W

J∪{α}(wD)]
∂wD

// L[W J(wD)]
∇wD

// MJ(L)

where the second and the third (resp. the first) vertical isomorphism is induced by the bi-

jection W J → W J , w′ 7→ (ww′)J (resp. W J∪{α} → W J∪{α}, w′ 7→ (ww′)J∪{α}). Therefore

we may assume from the beginning that D ⊂ Φ+. It suffices to see that the natural map

MJ,D(L) → MJ (L) is injective. By (a) we know that the image of V J , hence in particular the
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image of V J(D) in MJ(L) is linearly independent. Together with the result of the first step this

shows the wanted injectivity of MJ,D(L) → MJ(L). �

Definition: We write S = {sα |α ∈ ∆}. Consider the following partial ordering <J on W J .

For w,w′ ∈W J we write w <J w
′ if there are s1, . . . , sr ∈ S such that, setting w(i) = (si · · · s1w)

J

for 0 ≤ i ≤ r, we have ℓ(w(i−1)) < ℓ(w(i)) for all i ≥ 1, and w(r) = w′.

Lemma 1.4. Let w ∈W J and s ∈ S.

(a) If w <J (sw)J then we have ℓ(w) < ℓ(sw).

(b) ℓ(w) < ℓ(sw) and w 6= (sw)J together imply sw ∈W J , hence w <J (sw)J = sw. We have

(sw)J = w or (sw)J = sw.

(c)

(sw)J <J w ⇔ ℓ((sw)J ) < ℓ(w) ⇔ ℓ(sw) < ℓ(w).

(d) Let u ∈W . If wJw∆ <∅ uw∆ then u ∈WJ .

(e) There exists a unique maximal element zJ ∈ W J for the ordering <J ; it lies in V J . We

have zJ = w∆wJ . For any u ∈ W such that zJ ≤∅ u and for any s ∈ S with ℓ(szJ) < ℓ(zJ ) we

have ℓ(su) < ℓ(u).

(f) If w ∈ V J and ℓ((sw)J ) > ℓ(w) then (sw)J ∈ V J .

Proof: (a) We have ℓ(w) < ℓ((sw)J ) ≤ ℓ(sw) where the first inequality follows from the

definition of <J and the second one from Lemma 1.2 (a) (applied to sw).

To prove (b) assume ℓ(w) < ℓ(sw) and sw /∈W J . Then we find some α ∈ J with ℓ(swsα) =

ℓ(sw) − 1 = ℓ(w). Take a reduced expression w = σ1 · · · σr with σi ∈ S. By the deletion

condition for Weyl groups we get a reduced expression for swsα by deleting some factors in

the string sσ1 . . . σrsα. Namely, as ℓ(swsα) = ℓ(w), exactly two factors must be deleted. If s

remained this would mean ℓ(wsα) < ℓ(w), contradicting w ∈ W J . If sα remained this would

mean ℓ(sw) < ℓ(w), contradicting our hypothesis. Thus swsα = w, i.e. w = (sw)J .

(c) First assume ℓ(sw) < ℓ(w). Then we get ℓ((sw)J ) < ℓ(w) from Lemma 1.2 (a) (applied

to sw). As (s(sw)J )J = wJ = w we get (sw)J <J w from the definition of <J . If on the other

hand we have ℓ(sw) > ℓ(w) then we cannot have (sw)J <J w at the same time, as follows

from (b). We have shown the equivalence of the outer statements. Since by (b) we always have

(sw)J = w or (sw)J = sw they are equivalent with the middle statement.

(d) Letting v = uwJ , the statement u ∈ WJ is equivalent with the statement v ∈ WJ .

Consider the following chain of equalities

ℓ(w∆) = ℓ(vwJw∆) + ℓ(wJv
−1) = ℓ(v) + ℓ(wJw∆) + ℓ(wJv

−1) = ℓ(wJw∆) + ℓ(wJ) = ℓ(w∆).

Here the second equality follows from our hypothesis wJw∆ <∅ uw∆ = vwJw∆. The third

equality follows from the conjunction of all the other equalities (and the equality of the extreme

9



terms in the chain). But this third equality says ℓ(v)+ ℓ(wJv
−1) = ℓ(wJ) which implies v ∈WJ ,

because no reduced expression for wJ contains an sα with α ∈ ∆ − J (if it did, then, by the

subword property in Coxeter groups, sα would occur in any reduced expression of wJ , which is

nonsense).

As a referee pointed out, statement (d) follows alternatively from well known results on the

Bruhat order, because wJw∆ <∅ uw∆ implies that wJ is larger than u in the Bruhat order.

(e) From Lemma 1.2 (c) it follows that (w∆)
J = w∆wJ . We claim that zJ = (w∆)

J = w∆wJ

is maximal in W J with respect to <J , and is uniquely determined by this property. To see this

we need to show, by (b), that for any w ∈ W J − {zJ} there is some s ∈ S with ℓ(sw) > ℓ(w)

and w 6= (sw)J . As w 6= zJ = w∆wJ we find s ∈ S with ℓ(swwJ) = ℓ(wwJ) + 1, hence

ℓ(sw) ≥ ℓ(swwJ)− ℓ(wJ) = ℓ(wwJ) + 1− ℓ(wJ) > ℓ(w)

where we used ℓ(wwJ ) = ℓ(w) + ℓ(wJ ) as recorded in Lemma 1.2 (b). If we had w = (sw)J this

would mean sw = wu for some u ∈ WJ , hence ℓ(swwJ ) = ℓ(wuwJ ) ≤ ℓ(wwJ ) by Lemma 1.2

(b): contradiction ! The claim is proved.

For α ∈ ∆ − J we have ℓ(sαwJ) > ℓ(wJ). Since w∆ = zJwJ = (zJsα)(sαwJ) we thus get

ℓ(zJsα) = ℓ(w∆)− ℓ(sαwJ) < ℓ(w∆)− ℓ(wJ ) = ℓ(zJ ), hence zJ ∈ V J .

Finally, we have zJ = w∆wJ = wJ̌w∆ for

J̌ = {β ∈ ∆ | sβ = w∆sαw∆ for some α ∈ J}.

Equivalently, J̌ = −w∆(J). For u ∈ W such that zJ = wJ̌w∆ <∅ u = (uw∆)w∆ we get

uw∆ ∈WJ̌ using (d). The same argument which showed zJ ∈ V J also shows that ℓ(szJ) < ℓ(zJ)

for s ∈ S can only happen if s = sα for some α ∈ ∆ − J̌ . Therefore ℓ(suw∆) > ℓ(uw∆) since

uw∆ ∈WJ̌ . By Lemma 1.2 (c) this means ℓ(su) < ℓ(u).

(f) Follows from (the proof of) (c). �

Lemma 1.5. For each w ∈ V J − {zJ} there is some w′ ∈ V J and some s ∈ S with w <J w
′,

with ℓ((sw)J ) < ℓ(w) and with ℓ((sw′)J) ≥ ℓ(w′).

Proof: Consider the set

J ′ = {α ∈ ∆ | ℓ(sαw) > ℓ(w)}.

For any given α ∈ ∆ we have α /∈ J ′ if and only if ℓ((sαw)
J ) < ℓ(w), by Lemma 1.4(c).

Case (i): zJw−1 /∈ WJ ′. As zJ is maximal for the ordering <J on WJ (Lemma 1.4(e)),

we find σ1, . . . , σr in S with w <J (σ1w)
J <J . . . <J (σr · · · σ1w)

J = zJ . Lemma 1.4(b),

applied first to w <J (σ1w)
J , then to (σ1w)

J <J (σ2σ1w)
J , then to (σ2σ1w)

J <J (σ3σ2σ1w)
J

etc. shows successively that (σj · · · σ1w)
J = σj · · · σ1w for all j. We get σr · · · σ1w = zJ and

ℓ(zJ) = r + ℓ(w). Let 1 ≤ i ≤ r be maximal such that σi = sα for some α ∈ ∆ − J ′ (such an i

exists since zJw−1 /∈ WJ ′). By Lemma 1.4(b) we then see w′ ∈ W J for w′ = σi+1 · · · σrw. But
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then we necessarily even have w′ ∈ V J . Indeed, otherwise we would have w′ ∈W J∪{α} for some

α ∈ ∆ − J , hence ℓ(σi+1 · · · σrwsα) = ℓ(w′sα) > ℓ(w′) = ℓ(w) + r − i. On the other hand, as

w ∈ V J we have ℓ(w) > ℓ(wsα), and together we would obtain a contradiction. Thus, this w′

together with s = sα is fine.

Case (ii): zJw−1 ∈ WJ ′. Note that this implies zJ ≤∅ wJ ′w (because of ℓ(wJ ′w) =

ℓ(wJ ′) + ℓ(w) as follows from the definition of J ′). Here we claim that w′ = zJ satisfies the

wanted conclusion. Assume on the contrary that ℓ(sαz
J) < ℓ(zJ) for all α ∈ ∆ − J ′. Then

we also have ℓ(sαwJ ′w) < ℓ(wJ ′w) for all α ∈ ∆ − J ′. This follows from Lemma 1.4(e) since

zJ ≤∅ wJ ′w as noted above. On the other hand ℓ(sαwJ ′w) < ℓ(wJ ′w) for all α ∈ J ′, too (again

because of ℓ(wJ ′w) = ℓ(wJ ′) + ℓ(w)), hence for all α ∈ ∆. This means wJ ′w = w∆. But

then w = w∆wJ̌ for some J̌ ⊂ ∆ (as in the proof of Lemma 1.4(e)). In Lemma 1.4(e) we saw

w∆wJ̌ ∈ V J̌ . As V J ∩ V J̌ = ∅ for J 6= J̌ this shows J = J̌ and w = zJ̌ , contradicting our

hypothesis w 6= zJ . �

The next result concerns the partial ordering <∅ of W (i.e. <J for J = ∅), called the weak

ordering of W in [2].

Assume that the underlying root-system is irreducible and consider the following subgroup

WΩ of W . We write our set of simple roots as ∆ = {α1, . . . , αl} and denote by α0 ∈ Φ the

unique highest root. Then we define the elements ǫ1, . . . , ǫl in the R-vector space dual to the

one spanned by Φ by requiring (ǫi, αj) = δij for 1 ≤ i, j ≤ l. For 1 ≤ i ≤ l we let w∆(i) ∈ W

denote the longest element of the subgroup of W generated by the set {sαj | j 6= i}. Then

WΩ − {1} = {w∆(i)w∆ | 1 ≤ i ≤ l, (ǫi, α0) = 1}.

The conjugation action of WΩ on {sα0 , sα1 , . . . , sαl
} identifies WΩ with the automorphism group

of the Dynkin diagram of the affine root system (see [7] pp. 18-20).

Proposition 1.6. Suppose that the root-system Φ contains no exceptional factor, i.e. that it is a

product of root systems of type A, B, C or D. There exists a sequence w∆ = w0, w1, . . . , wr = 1

in W such that for all i ≥ 1 we have wi−1 <∅ wi, or wi = uwi−1 for some u ∈WΩ.

Proof: (I) We first discuss the case where Φ is irreducible, hence of type Al, Bl, Cl or Dl

for some l ∈ N. We use the respective descriptions of WΩ given in [7] pp. 18-20. We write

si = sαi .

Case Al: Here W can be identified with the symmetric group in {1, . . . , l+ 1}. We write an

element w ∈W as the tuple [w(1), . . . , w(l+1)]. As simple reflections we take the transpositions

si = [1, . . . , i− 1, i+1, i, i+2, . . . , l+1] ∈W for i = 1, . . . , l. Then WΩ consists of the elements

w∆(i)w∆ = [i+ 1, . . . , l + 1, 1, . . . , i] (0 ≤ i ≤ l).

The length ℓ(w) of w ∈ W is the number of all pairs (i, j) with i < j and w(i) > w(j). For

1 ≤ i ≤ l let us define

ai = [l + 2− i, . . . , l + 1, l − i+ 1, . . . , 1],
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bi = [1, . . . , i, l + 1, . . . , i+ 1].

In particular, w∆ = a1 and bl = 1. Therefore it is enough to show that for any 1 ≤ i ≤ l

we can pass from ai to bi by left-multiplication with an element of WΩ, and that bi <∅ ai+1 if

1 ≤ i ≤ l − 1. But we indeed have bi = w∆(i)w∆ai, whereas, on the other hand, bi <∅ ai+1

follows from

ai+1 = (sl−i · · · s1)(sl−i+1 · · · s2) · · · (sl−1 · · · si)bi,

bi = [1, . . . , i, l + 1, l, . . . , i+ 1],

(sl−1 · · · si)bi = [1, . . . , i− 1, l, l + 1, l − 1, . . . , i],

(sl−2 · · · si−1)(sl−1 · · · si)bi = [1, . . . , i− 2, l − 1, l, l + 1, l − 2, . . . , i− 1],

(sl−3 · · · si−1)(sl−2 · · · si−1)(sl−1 · · · si)bi = [1, . . . , i− 3, l − 2, l − 1, l, l + 1, l − 3, . . . , i− 2]

etc. from which we see that the length increases as required.

Case Bl: Here W can be identified with the group of signed permutations of {±1, . . . ,±l},

i.e. with all bijections w : {±1, . . . ,±l} → {±1, . . . ,±l} satisfying −w(a) = w(−a) for all

1 ≤ a ≤ l. We write an element w ∈ W as the tuple [w(1), . . . , w(l)]. As simple reflections we

take the elements si = [1, . . . , l − i− 1, l − i+ 1, l − i, l − i+ 2, . . . , l] for 1 ≤ i ≤ l − 1, together

with sl = [−1, 2, . . . , l]. Then the length of w ∈W can be computed as

ℓ(w) = |{ (i, j) ; 1 ≤ i < j ≤ l, w(i) > w(j) }| −
∑

1≤j≤l
w(j)<0

w(j)

(for all this see [2] chapter 8.1). The group WΩ consists of two elements, its non-trivial element

is

w∆(1)w∆ = [1, . . . , l − 1,−l].

For 1 ≤ i ≤ l let

ai = [−i, . . . ,−l, i− 1, . . . , 1],

bi = [−i, . . . ,−(l − 1), l, i − 1, . . . , 1].

We pass from w∆ to 1 via the sequence

w∆ = [−1, . . . ,−l] = a1
(∗)
7→ b1 <∅ a2

(∗)
7→ b2 <∅ a3

(∗)
7→ . . .

. . . <∅ al
(∗)
7→ bl = [l, . . . , 1]

(∗∗)
7→ [1, . . . , l] = 1.

Here the relations bi <∅ ai+1 result from the equations sl−i · · · s1bi = ai+1, increasing the length

by l − i, as one easily checks. Each step of type (∗) is obtained by left-multiplication with

w∆(1)w∆, i.e. w∆(1)w∆ai = bi. It remains to justify the step (∗∗). Observe that

w∆(1)w∆s1 · · · sl = [l, 1, . . . , l − 1].

Moreover, for each w ∈ W satisfying w(i) > 0 for all 1 ≤ i ≤ l we have w <∅ s1 . . . slw.

Together it follows that, to prove that the step (∗∗) is permissible, it suffices to show that (∗∗)
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decomposes into left-multiplications with (powers of) [l, 1, . . . , l− 1] on the one hand, and with

length-increasing left-multiplications with elements of the set s1, . . . , sl−1 on the other hand.

(Notice that all these operations preserve the property w(i) > 0 for all 1 ≤ i ≤ l.) But this was

shown in our analysis of case Al (or rather Al−1), because the s1, . . . , sl−1 may be viewed as

Coxeter generators of the symmetric group Aut({1, . . . , l}).

Case Cl: Here W is the same as in case Bl and we take the same simple reflections. Again

WΩ consists of two elements, but this time its non-trivial element is

w∆(l)w∆ = [−l, . . . ,−1].

We pass from w∆ to 1 via the sequence

w∆ = [−1, . . . ,−l]
(∗)
7→ [l, . . . , 1]

(∗∗)
7→ [1, . . . , l] = 1.

Here (∗) is obtained by left-multiplication with w∆(l)w∆. To justify the step (∗∗) observe that

w∆(l)w∆slw∆(l)w∆s1 · · · sl = [l, 1, . . . , l − 1].

Moreover, for each w ∈ W satisfying w(i) > 0 for all 1 ≤ i ≤ l we have w <∅ s1 · · · slw (as

already noted above), and

w∆(l)w∆s1 · · · slw <∅ slw∆(l)w∆s1 · · · slw.

Thus left-multiplication of [l, 1, . . . , l − 1] to such w ∈ W is a permissible operation for our

purposes. Therefore we may conclude as in the case Bl.

Case Dl: Here W can be identified with the group of signed permutations of {±1, . . . ,±l}

having an even number of negative entries, i.e. with all bijections w : {±1, . . . ,±l} → {±1, . . . ,±l}

satisfying −w(a) = w(−a) for all 1 ≤ a ≤ l, and such that the number |{i |w(i) < 0}| is even.

We write an element w ∈ W as the tuple [w(1), . . . , w(l)]. As simple reflections we take the

elements si for 1 ≤ i ≤ l − 1 used in cases Bl and Cl, together with

sl = [−2,−1, 3, . . . , l].

The length of w ∈W can be computed (see [2] chapter 8.2) as

ℓ(w) = |{ (i, j) ; 1 ≤ i < j ≤ l, w(i) > w(j) }| + |{ (i, j) ; w(i) + w(j) < 0 }|.

WΩ consists of the four elements 1, w∆(1)w∆, w∆(l−1)w∆ and w∆(l)w∆. Abstractly, if l is even then

WΩ is isomorphic with Z/(2)×Z/(2), with relations (w∆(1)w∆)(w∆(l)w∆) = (w∆(l)w∆)(w∆(1)w∆) =

w∆(l−1)w∆; if l is odd then WΩ is isomorphic with Z/(4), generated by w∆(l)w∆, with relations

(w∆(l)w∆)
2 = w∆(1)w∆ and (w∆(l)w∆)

3 = w∆(l−1)w∆. (We do not need this.) We have

w∆(1)w∆ = [−1, 2, . . . , l − 1,−l]

and, according to the parity of l,

w∆(l)w∆ = [−l, . . . ,−1] (l even)
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w∆(l)w∆ = [l, 1 − l, . . . ,−1] (l odd)

(and w∆(l−1)w∆ = [l, 1 − l . . . ,−2, 1] if l is even, w∆(l−1)w∆ = [−l, . . . ,−2, 1] is l is odd). We

pass from w∆ to 1 via the sequence

w∆ = [−1, . . . ,−l]
(∗)
7→ [l, . . . , 1]

(∗∗)
7→ [1, . . . , l] = 1 (l even)

w∆ = [1,−2, . . . ,−l]
(∗)
7→ [l, . . . , 1]

(∗∗)
7→ [1, . . . , l] = 1 (l odd).

Here (∗) is obtained by left-multiplication with w∆(l)w∆. To justify the step (∗∗) observe that

w∆(1)w∆s1 · · · sl−2sl = [l, 1, . . . , l − 1].

For each w ∈ W with w(i) > 0 for all 1 ≤ i ≤ l − 2 we have w <∅ s1 · · · sl−2slw. Thus left-

multiplication of [l, 1, . . . , l − 1] to such w ∈ W is a permissible operation for our purposes and

we may conclude as in the case Bl.

(II) In the general case, where Φ is not necessarily irreducible, Φ is a product of root systems

as discussed in (I). It is easy to see that such a product decomposition comes along with a

product decomposition of W , of w∆, of WΩ and of the ordering <∅ (the latter in the obvious

sense: <∅ is characterized componentwise). Therefore we may conclude by applying the result

of (I) to all the factors of Φ. �

Corollary 1.7. Suppose that the root-system Φ contains no exceptional factor. For each w ∈W J

there is a sequence w0, w1, . . . , wt in W (some t ≥ 0) with (w0)
J = zJ and (wt)

J = w and such

that for all 1 ≤ i ≤ t we have (wi)
J = (uwi−1)

J for some u ∈WΩ, or

ℓ((wi−1)
J) < ℓ((wi)

J ) and (wi)
J = (swi−1)

J for some s ∈ S.(5)

Proof: Observe first that for w,w′ in W and s ∈ S with ℓ(w′) < ℓ(w) and w = sw′ we have

[ℓ((w′)J ) < ℓ((w)J ) and (w)J = s(w′)J = (sw′)J ] or (w)J = (w′)J .

Let w∆ = w0, w1, . . . , wr = 1 be a sequence inW such that for all 1 ≤ i ≤ r we have wi−1 <∅ wi,

or wi = uwi−1 for some u ∈ WΩ (Proposition 1.6). We have (w0)
J = (w∆)

J = zJ by Lemma

1.4(e). By suitably refining the intervals from wi−1 to wi whenever wi−1 <∅ wi we may assume

that whenever wi−1 <∅ wi then in addition wi−1 = swi for some s ∈ S (depending on i). Then,

by the above observation, property (5) holds true for all 1 ≤ i ≤ r with wi−1 <∅ wi; for the

other 1 ≤ i ≤ r we have (wi)
J = (uwi−1)

J for some u ∈ WΩ. Choose a reduced expression

w = σm · · · σ1 of w with σi ∈ S, then put t = m+ r and wi+r = σi · · · σ1 for 1 ≤ i ≤ m. By the

above observation, property (5) holds true for all r + 1 ≤ i ≤ t. We have w = wt = (wt)
J since

w ∈W J . �

Remark: For the irreducible reduced root systems of type E8, F4 and G2 we haveWΩ = {1}

by [7]. Therefore the statement of Proposition 1.6 cannot hold true in these cases. We do not

discuss the remaining exceptional cases, because we do not know if the statement of Proposition

1.6 holds true for these root systems.
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2 Functions on the Iwahori subgroup

Let F be a non-Archimedean locally compact field, OF its ring of integers, pF ∈ OF a fixed

prime element and kF its residue field. Let G be a split connected reductive group over F . (Here

we commit the usual abuse of notation: what we really mean is that G is the group of F -rational

points of such an algebraic F -group scheme, similarly for the subgroups considered below.) Let

T be a split maximal torus, N ⊂ G its normalizer in G and let W = N/T , the corresponding

Weyl group. For any w ∈ W we choose a representative (with the same name) w ∈ N . Let

P = TU be a Borel subgroup with unipotent radical U . Let Φ ⊂ X∗(T ) = Homalg(T,Gm) be

the set of roots, let Φ+ ⊂ Φ be the set of P -positive roots, let Φ− = Φ−Φ+, let ∆ ⊂ Φ+ be the

set of simple roots. Since T is split this root system is reduced.

For α ∈ Φ let Uα ⊂ G be the associated root subgroup. Then U =
∏

α∈Φ+ Uα (direct product,

for any ordering of Φ+). We need the parabolic subgroups PJ = PWJP of G; each parabolic

subgroup of G containing P is of this form (for a suitable J). For w ∈ W let PJ,w = wPJw
−1

and let P−
J,w be the parabolic subgroup of G opposite to PJ,w. We then find

Φ− ΦJ(w) = {α ∈ Φ | Uα ⊂ PJ,w}

or equivalently:
∏

α∈ΦJ (w) Uα is the unipotent radical of P−
J,w. Note that PJ,w = PJ,w′ for any

w′ ∈ wWJ .

We choose an Iwahori subgroup I in G compatible with P , in the sense that we have the

decomposition

G =
⋃

w∈W

IwP

(disjoint union). For any subgroup H in G we write H0 = H ∩ I. We will make essential use of

the following special case of an important result in the theory of Bruhat and Tits, as recalled in

Prop. I.2.2. of [13]:

Proposition 2.1. The product map gives a bijection

I = G0 =
∏

α∈Φ+

U0
α × T 0 ×

∏

α∈Φ−

U0
α

for any fixed ordering of Φ+ and Φ−.

Lemma 2.2. Let D ⊂ Φ be a J-quasi-parabolic subset. Then
∏

α∈D U
0
α is a subgroup of G and

is independent of the ordering of D. We denote it by U0
D.

Proof: Take any ordering of D. Then choose an ordering of Φ which restricts to this

ordering on D and such that the product map
∏

α∈Φ

Uα −→ G

is injective. Write D =
⋂

w∈ΘΦJ(w) (some Θ ⊂W ). Then of course
∏

α∈D

U0
α =

⋂

w∈Θ

∏

α∈ΦJ (w)

U0
α
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(all products w.r.t. the fixed ordering of Φ, and the intersection is taken inside G). For each

w ∈ Θ it follows from Proposition 2.1 that
∏

α∈ΦJ (w)U
0
α is the intersection of I with the unipo-

tent radical of P−
J,w. (Notice that Proposition 2.1 holds true for any choice of positive/negative

system (Φ̃+, Φ̃−) in Φ; here we apply it for some (Φ̃+, Φ̃−) for which ΦJ(w) ⊂ Φ̃+.) In particular,∏
α∈ΦJ (w) U

0
α is a subgroup of G and is independent of the ordering of ΦJ(w). Thus, the same

statements hold true for
∏

α∈D U
0
α as well. �

For a topological space T and an L-moduleM let C∞(T ,M) denote the L-module of locally

constant M -valued functions on T .

Applying the functor C∞(I, .) to the exact sequence (4) we obtain an exact sequence

C∞(I,
⊕

α∈∆−J

L[W J∪{α}]) −→ C∞(I, L[W J ]) −→ C∞(I,MJ (L))−→0.(6)

Observe that we have natural embeddings, which we view as inclusions,

C∞(I/P 0
J∪{α},w, L) ⊂ C∞(I, L),

⊕

α∈∆−J

w∈WJ∪{α}

C∞(I/P 0
J∪{α},w , L) ⊂

⊕

α∈∆−J

w∈WJ∪{α}

C∞(I, L) ∼= C∞(I,
⊕

α∈∆−J

L[W J∪{α}]),

⊕

w∈W J

C∞(I/P 0
J,w, L) ⊂ C∞(I, L[W J ]),

by summing over the respective direct summands.

Proposition 2.3. The sequence

⊕

α∈∆−J

w∈WJ∪{α}

C∞(I/P 0
J∪{α},w, L)

∂C−→
⊕

w∈W J

C∞(I/P 0
J,w, L)

∇C−→ C∞(I,MJ (L))

obtained by restricting (6) is exact.

Proof: Step 1. We first claim that for any two J-parabolic subsets D and D′ of Φ and for

any α ∈ ∆− J and w ∈W J∪{α}(D) we have

(U0
D ∩ U0

D′)P 0
J∪{α},w = (U0

DP
0
J∪{α},w)

⋂
(U0

D′P 0
J∪{α},w)(7)

(where AB = (AB) = {ab | a ∈ A, b ∈ B}, but not (in general) the subgroup generated by A

and B). The inclusion ⊂ is obvious. To prove the inclusion ⊃ it is enough to prove

(
∏

β∈D
β/∈D′

U0
β)P

0
J∪{α},w ∩ U0

D′ ⊂ P 0
J∪{α},w.(8)

Let us write for the moment

Φ′ = Φ−ΦJ∪{α}(w) = {β ∈ Φ ; Uβ ⊂ PJ∪{α},w}.
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As w ∈ W J∪{α}(D) we have D ∩ Φ′ = ∅. It follows from Proposition 2.1 (applied with a

positive/negative system (Φ̃+, Φ̃−) for which Φ̃+ ∩ ΦJ(w) is before Φ̃− ∩ ΦJ(w)) that we find

subsets S1 and S2 of G0 containing the neutral element, such that

P 0
J∪{α},w = (

∏

β∈D′∩Φ′

U0
β)S1,

G0 = (
∏

β∈D
β/∈D′

U0
β)(

∏

β∈D′∩Φ′

U0
β)S1(

∏

β∈D′

β/∈Φ′

U0
β)S2

and such that all products are direct (unique factorization of elements). Formula (8) follows.

Step 2. Let (fw)w∈W J ∈ Ker(∇C). Choose an enumeration D0, D1, D2, . . . of all J-quasi-

parabolic subsets of Φ such that n < m implies |Dn| ≤ |Dm|. By induction on m we show:

adding to f an element in the image of ∂C if necessary, we may assume fw|U0
Dn

= 0 for all

w ∈W J , all n ≤ m.

Assume we have fw|U0
Dn

= 0 for all w ∈W J , all n < m. Let us write D = Dm.

Claim: We have fw|U0
D
= 0 for all w ∈W J −W J(D).

Indeed, for such w we have |D ∩ ΦJ(w)| < |D|, hence D ∩ ΦJ(w) = Dn for some n < m.

Thus

fw(U
0
D) = fw(U

0
Dn

∏

α∈D−Dn

U0
α) = fw(U

0
Dn

) = 0

where in the first equation we used that we may form U0
D with respect to any ordering of D,

where the second equation follows from U0
α ⊂ P 0

J,w for α /∈ ΦJ(w) (and the invariance property

of fw), and where the last equation holds true by induction hypothesis.

The claim is proven.

Our sequence in question restricts to a sequence

⊕

α∈∆−J

w∈WJ∪{α}(D)

C∞(I/P 0
J∪{α},w , L)

∂D
C−→

⊕

w∈W J(D)

C∞(I/P 0
J,w, L)

∇D
C−→ C∞(I,MJ (L)).(9)

For any x ∈ U0
D, evaluating functions at x transforms (9) into a sequence isomorphic with the

one from Proposition 1.3 (b). Let us denote by (∂DC )x resp. by (∇D
C )x the differentials of this

sequence, which by Proposition 1.3 (b) is exact. From the above claim it follows that

fD(x) = (fw(x))w∈W J (D) ∈ Ker((∇D
C )x),

hence this lies in the image of (∂DC )x. For all x ∈ U0
D choose preimages of fD(x) under (∂DC )x.

Since the fw are locally constant, these preimages can be arranged to vary locally constantly

on U0
D, and moreover, in view of our induction hypothesis we may assume that for all x ∈

U0
D ∩ ∪n<mU

0
Dn

these preimages are zero.

For any α ∈ ∆ − J and w ∈ W J∪{α}(D) the natural map U0
D → I/P 0

J∪{α},w is injective.

Thus we find an element

gD = (gα,w)α,w ∈
⊕

α∈∆−J

w∈WJ∪{α}(D)

C∞(I/P 0
J∪{α},w, L)
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which on U0
D assumes the preimages of the fD(x) just chosen, and which vanishes at all x ∈

∪n<mU
0
Dn

with x /∈ U0
D — for this last property we take advantage of (7). We obtain

fD(x)− ∂DC (gD)(x) = 0

for all x ∈ ∪n≤mU
0
Dn

: for x ∈ U0
Dm

= U0
D this follows from our definition of gD|U0

D
, for x ∈

∪n<mU
0
Dn

with x /∈ U0
D this follows from the vanishing of gD at such x together with the

induction hypothesis. Now set gα,w = 0 for all α ∈ ∆ − J and w ∈ W J∪{α} −W J∪{α}(D). By

the above claim and by what we just saw we find

((fw)w − ∂C((gα,w)α,w))(x) = 0

for all x ∈ ∪n≤mU
0
Dn

. The induction is complete.

Step 3. We have shown that, adding to (fw)w ∈ Ker(∇C) an element in the image of ∂C

if necessary, we may assume fw|U0
D

= 0 for all w ∈ W J , all J-quasi-parabolic subsets D. In

particular we find fw|U0
ΦJ (w)

= 0 for all w ∈W J . But U0
ΦJ (w) is a set of representatives for I/P 0

J,w

(again invoke Proposition 2.1), hence fw = 0. We are done. �

Definition: Let J be a subset of ∆. We define the G-representation SpJ(G,L) by the exact

sequence of G-representations
⊕

α∈∆−J

C∞(G/PJ∪{α}, L)
∂

−→ C∞(G/PJ , L) −→ SpJ(G,L) −→ 0,

where ∂ is the sum of the canonical inclusions, and the G-action is by left translation of functions

on G. We call SpJ(G,L) the J-special G-representation with coefficients in L.

Theorem 2.4. SpJ(G,L) is L-free. There exists an I-equivariant embedding

SpJ(G,L)
λL
→֒ C∞(I,MJ (L)).

Its formation commutes with base changes: for a ring morphism L→ L′ the composite

SpJ(G,L) ⊗L L
′ ∼= SpJ(G,L

′)
λL′

→֒ C∞(I,MJ (L
′)) ∼= C∞(I,MJ (L))⊗L L

′

is λL ⊗L L
′.

Proof: Recall that for w ∈ W we defined P 0
J,w = I ∩ wPJw

−1. Note that P 0
J,w and wPJ

depend only on the coset wWJ , not on the specific representative w ∈ wWJ . The same is true

for the isomorphism

I/P 0
J,w

∼= IwPJ/PJ ,

i 7→ iw.

It follows that for any inclusion of cosets wWJ ⊂ wWJ∪{α} we have a commutative diagram

I/P 0
J,w

∼=

��

// I/P 0
J∪{α},w

∼=

��

IwPJ/PJ
// IwPJ∪{α}/PJ∪{α}

18



where the horizontal arrows are the obvious projections and the vertical arrows are the above

isomorphisms. Now recall the decompositions

G/PJ = ∪w∈W JIwPJ/PJ , G/PJ∪{α} = ∪w∈W J∪{α}IwPJ∪{α}/PJ∪{α}

(disjoint unions). They give

C∞(G/PJ , L) =
⊕

w∈W J

C∞(IwPJ/PJ , L),

C∞(G/PJ∪{α}, L) =
⊕

w∈W J∪{α}

C∞(IwPJ∪{α}/PJ∪{α}, L).

With these identifications, the above commutative diagrams (for all α ∈ ∆ − J) induce a

commutative diagram

⊕
α∈∆−J C

∞(G/PJ∪{α}, L)

∼=

��

// C∞(G/PJ , L)

∼=

��

// SpJ(G,L) // 0

⊕
α∈∆−J

w∈WJ∪{α}
C∞(I/P 0

J∪{α},w, L)
//
⊕

w∈W J C∞(I/P 0
J,w, L)

// C∞(I,MJ (L))

where the vertical arrows are isomorphisms. The top row is exact by the definition of SpJ(G,L),

the bottom row is exact by Proposition 2.3, and clearly all arrows are I-equivariant. Hence we

get the wanted injection λL : SpJ(G,L) →֒ C∞(I,MJ (L)). From its construction it is clear that

it commutes with base changes L → L′ as stated. We then derive the freeness of SpJ(G,L):

first for L = Z since C∞(I,MJ (Z)) is Z-free, then by base change Z → L for any L. �

The following corollary was conjectured by Vignéras [16]:

Corollary 2.5. The submodule SpJ(G,L)
I of I-invariants in SpJ(G,L) is free of rank

rkL(SpJ(G,L)
I) = rkL(MJ (L)) = |V J |.

Proof: By Proposition 1.3 we know that MJ (L) is free of rank |V J |. From the definition

of MJ(L) it follows that the map

L[W J ] ∼=
⊕

w∈W J

C∞(I/P 0
J,w, L)

I −→ C∞(I,MJ (L))
I ∼= MJ(L)

is surjective. In the proof of Theorem 2.4 we saw that the induced map

SpJ(G,L)
I −→ C∞(I,MJ (L))

I ∼= MJ (L)

is injective, hence bijective. �

Corollary 2.6. Let π be a smooth irreducible (hence finite dimensional) representation of I on

a C-vector space. Then π occurs in SpJ(G,C) with multiplicity at most |V J |dimC(π).
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Proof: It holds that π occurs in C∞(I,MJ (C)) with multiplicity |V J |dimC(π). �

Remark: If L is a complete field extension of F we may replace all spaces of locally constant

functions occuring here by the corresponding spaces of locally F -analytic functions. In particular

we may define locally analytic G-representations SpanJ (G,L) and Can(I,MJ (L)). Then Theorem

2.4 and Corollary 2.5 carry over, with the same proofs: there exists an I-equivariant embedding

SpanJ (G,L) →֒ Can(I,MJ (L))

and we have rkL(Sp
an
J (G,L)I) = rkL(MJ(L)) = |V J |.

3 Special representations of finite reductive groups

There is a unique chamber C in the standard apartment associated to T in the Bruhat-Tits-

building of G which is fixed by our Iwahori subgroup I. Let x0 be a special vertex of (the closure

of) C and suppose that our Borel subgroup P is adapted to x0 (see below for what this means).

Let Gx0/OF denote the OF -group scheme with generic fibre the underlying F -group scheme G

of G = G(F ) and such that for each unramified Galois extension F ′ of F with ring of integers

OF ′ we have

Gx0(OF ′) = {g ∈ G(F ′) | gx0 = x0}

(see [14] section 3.4). This Gx0 is a group scheme as constructed by Chevalley ([14] statement

3.4.1). Its special fibre Gx0 ⊗OF
kF is a split connected reductive group over kF with the same

root datum as G ([14] statement 3.8.1; compare also [8], part II, section 1.17, and for adjoint

semisimple G see [7] p.30/31 where the Bruhat decomposition of G = (Gx0 ⊗OF
kF )(kF ) is

discussed similarly to how we are going to use it here). Let Kx0 = Gx0(OF ) and

Ux0 = Ker [ Kx0 −→ Gx0(kF ) ].

For H any of the groups G, PJ , P , T , N , U , Uα let

H =
H ∩Kx0

H ∩ Ux0

.

Our requirement above that P be adapted to x0 means that I is the preimage of P under the

homomorphism Kx0 → G. On groups of kF -rational points we have: P J is a parabolic subgroup

in G, containing the Borel subgroup P . This P has U as its unipotent radical and contains

the maximal split torus T , whose normalizer in G is N . The quotient N/T is canonically

identified with the Weyl group W = N/T , and similarly as before we choose for any w ∈ W

a representative (with the same name) w ∈ N . Let P
−

= TU
−

denote the Borel subgroup

opposite to P , with unipotent radical U
−
. For w ∈W let U

w
= U ∩ wU

−
w−1. Then

U
w
=

∏

α∈Φ+

w−1(α)∈Φ−

Uα
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and U
1
= {1}. By transposition of [16] par. 4.2, Prop. 4 (b) we have

U
w
wP J = PwP J(10)

for any w ∈W J , and the left hand side product is direct.

Lemma 3.1. Let w ∈W J and s ∈ S.

(a) If (sw)J = w then

usU
w
wP J = U

w
wP J

for each u ∈ U
s
, and these are direct products.

(b) If ℓ((sw)J ) > ℓ(w) then

U
s
sU

w
wP J = U

sw
swP J

and these are direct products.

(c) If ℓ((sw)J ) < ℓ(w), then w−1(β) ∈ Φ−, where s = sβ. The product

U
′
=

∏

α∈Φ+−{β}

w−1(α)∈Φ−

Uα

(any ordering of the factors) is a subgroup of U
w
. We have

U
s
suU

′
wP J = U

w
wP J for u ∈ U

s
− {1},

usU
′
wP J = U

sw
swP J for u ∈ U

s

and all these are direct products.

Proof: We point out that in all the stated equalities the respective right hand sides are

direct products. Therefore, once the equalities are known, the products on the respective left

hand sides are seen to be direct simply by a cardinality argument since we work over a finite

field.

We use general facts on Bruhat decompositions.

(a) We have

sU
w
wP J = sPwP J ⊂ PwP J ∪ PswP J = PwP J = U

w
wP J

where at the inclusion sign we use sPw ⊂ PwP ∪ PswP , and where in the equality following it

we use the hypothesis (sw)J = w, i.e. swWJ = wWJ . Applying s we see that this inclusion is

an equality. Since u ∈ P and U
w
wP J = PwP J we get (a).

(b) ℓ((sw)J ) > ℓ(w) implies ℓ(sw) > ℓ(w) and again by general properties of Bruhat decompo-

sitions we find

U
s
sU

w
wP J = U

s
sPwP J = PsPwP J =

⋃

v∈WJ

PsPwPvP

=
⋃

v∈WJ

PswPvP = PswP J = U
sw
swP J
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where the assumption ℓ(sw) > ℓ(w) implied PsPwP = PswP , and where we made repeated use

of (10) (in the first and in the last equation with this J , and in the second equation by setting

J = ∅ in (10)).

(c) ℓ((sw)J ) < ℓ(w) implies ℓ(sw) < ℓ(w) by Lemma 1.4(c), hence w−1(β) ∈ Φ−. One checks that

U
′
= sU

sw
s, hence this is a subgroup. Moreover, sU

′
= U

sw
s and since U

s
⊂ P and U

sw
swP J =

PswP J the last equality follows. Finally, again by general facts on Bruhat decompositions we

have

sU
w
wP J ⊂ U

w
wP J ∪ U

sw
swP J

and the union on the right hand side is disjoint (since swWJ 6= wWJ ). We just saw that

sU
′
wP J = U

sw
swP J , hence s(U

w
− U

′
)wP J ⊂ U

w
wP J . It follows that

U
s
suU

′
wP J ⊂ U

w
wP J

for u ∈ U
s
− {1}. To see the reverse inclusion it is enough to show U

′
wP J ⊂ U

s
suU

′
wP J ,

because

U
s
U

′
= Uβ(

∏

α∈Φ+−{β}

w−1(α)∈Φ−

Uα) =
∏

α∈Φ+

w−1(α)∈Φ−

Uα = U
w
.

Since U
′
= sU

sw
s this boils down to showing U

sw
sw ⊂ sU

s
susU

sw
swP J , i.e. (by (10)) to

U
sw
sw ⊂ sU

s
susPswP J . A small computation in SL2(kF ) shows that, because of u 6= 1, there

is some ũ ∈ U
s
with sũsus ∈ P . This implies the wanted inclusion. �

Definition: Similarly as before, we define the J-special G-representation SpJ(G,L) with

coefficients in L by the exact sequence of G-representations
⊕

α∈∆−J

C(G/P J∪{α}, L)
∂

−→ C(G/P J , L) −→ SpJ(G,L) −→ 0.

Consider the natural map

C(G/P J , L) −→ C∞(G/PJ , L),

f 7→ [g = ky 7→ f(k)]

where we decompose a general element g ∈ G as g = ky with k ∈ Kx0 and y ∈ PJ (using the

Iwasawa decomposition G = Kx0PJ), and where k denotes the class of k in G = Kx0/Ux0 . We

have similar maps for the various PJ∪{α}, hence an embedding

SpJ(G,L) →֒ SpJ(G,L).(11)

For the injectivity note e.g. that both sides may be embedded into C∞(I,MJ (L)): for the

right hand side we saw this in Theorem 2.4, for the left hand side this can be seen by repeating

the construction for G instead of G.

For w ∈W J we write

gw = χPwPJ
= χU

w
wPJ

,

the characteristic function of PwP J = U
w
wP J on G. We also write gw for the class of gw in

SpJ(G,L).
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Proposition 3.2. (a) The embedding (11) induces an isomorphism

SpJ(G,L)
P ∼= SpJ(G,L)

I .

(b) The set {gw | w ∈ V J} is an L-basis of SpJ(G,L)
P .

Proof: This follows from Corollary 2.5 together with the I-equivariance of the embedding

(11). But of course, one could also directly compute SpJ(G,L)
P (i.e. prove (b)) proceeding as

in the proof of Corollary 2.5. Let us also mention that for G = GLn(kF ) (some n) a proof of

(b) is given in [12] par.6, and that tor general G that proof carries over (this is then similar to

[16] par.4). �

We define the Hecke algebra

H(G,P ;L) = EndL[G]L[G/P ].

For a G-representation on an L-vector space V with subspace V P of P -invariants, Frobenius

reciprocity tells us that there is an isomorphism

HomL[G](L[G/P ], V ) ∼= HomL[P ](L, V ) ∼= V P

which sends ψ ∈ HomL[G](L[G/P ], V ) to ψ(P ) ∈ V P . Hence V P becomes a right H(G,P ;L)-

module. For g ∈ G we define the Hecke operator Tg ∈ H(G,P ;L) by setting

(Tgf)(hP ) =
∑

h′P⊂hPgP

f(h′P )

for f ∈ L[G/P ], where for the moment we identify L[G/P ] with the L-module of functions

G/P → L. For n ∈ N the Hecke operator Tn only depends on the class of n in W = N/T . It

acts on v ∈ V P as

vTn =
∑

u∈P/(P∩n−1Pn)

un−1v.(12)

Notice that for s ∈ S we may identify U
s ∼= P/(P ∩ sPs). Thus formula (12) for the Hecke

operator Ts acting on gw ∈ SpJ(G,L)
P becomes

gwTs =
∑

u∈U
s

(the class of χusU
w
wPJ

)(13)

in SpJ(G,L)
P .

For the rest of this section we assume that L is a field with char(L) = char(kF ).

Lemma 3.3. Let w ∈W J and s ∈ S.

(a) If (sw)J = w then

gwTs = 0.
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(b) If ℓ((sw)J ) > ℓ(w) then

gwTs = gsw.

(c) If ℓ((sw)J ) < ℓ(w) then

gwTs = −gw.

Proof: This follows from Lemma 3.1 and from |U
s
| = 0 in L. For example, for (c) we

compute, using the notations of Lemma 3.1 (c), in particular the direct product decomposition

U
w
= U

s
U

′
:

gwTs =
∑

u∈U
s

[χusU
w
wPJ

] =
∑

u∈U
s

∑

u′∈U
s

[χ
usu′U

′
wPJ

]

=
∑

u∈U
s

∑

u′∈U
s
−{1}

[χ
usu′U

′
wPJ

] +
∑

u∈U
s

[χ
usU

′
wPJ

].

Lemma 3.1 (c) together with |U
s
| = 0 in L shows that the second term vanishes and that the

first term is −[χUwPJ
]. For statement (b) notice that by Lemma 1.4(b) we have sw ∈W J (and

even sw ∈ V J if w ∈ V J). (Of course, Lemma 3.3 may also be deduced from general facts

on Iwahori Hecke algebras; we have included the proof in order to keep the presentation self

contained.) �

Proposition 3.4. Each non-zero H(G,P ;L)-submodule E of SpJ(G,L)
P contains the element

gzJ . In particular, the H(G,P ;L)-module SpJ(G,L)
P is indecomposable.

Proof: Choose an enumeration zJ = w0, w1, w2, . . . of V
J such that wj <J wi implies i < j.

By Proposition 3.2 we may write any element h of E as

h =
∑

w∈V J

βw(h)gw

with certain uniquely determined βw(h) ∈ L. For t ≥ 0 define the subset

P(t) = { h ∈ E | βwi(h) = 0 for all i > t and βwt(h) 6= 0 }

of E. It is enough to show P(0) 6= ∅. As E−{0} = ∪t≥0P(t) it is enough to show the following:

If P(t) 6= ∅ for some t > 0, then P(t′) 6= ∅ for some 0 ≤ t′ < t.

By Lemma 1.5, applied to wt ∈ V J − {zJ}, we find some w′ ∈ V J and some s ∈ S with

wt <J w
′, ℓ((swt)

J) < ℓ(wt), ℓ((sw′)J) ≥ ℓ(w′).

By the definition of wt <J w
′ we find s1, . . . sr ∈ S such that, setting w(g) = (sg · · · s1wt)

J for

0 ≤ g ≤ r, we have

ℓ(w(g)) < ℓ(w(g+1)) for all 0 ≤ g ≤ r, and w(r) = w′.

From Lemma 1.4(f) it follows that in fact w(i) ∈ V J for all i. Since we have ℓ((sw(r))J ) ≥ ℓ(w(r)),

a case by case inspection of Lemma 3.3 shows that βw(r)(E · Ts) = 0. We pick some h ∈ P(t)

and make the following
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Claim: We have hTs ∈ P(t) and βw(r)(hTs) = 0.

By what we just said, we have βw(r)(hTs) = 0. Next, we have hTs ∈ {0} ∪ (∪t′≤tP(t′)) as

follows from Lemma 3.3, again a case by case inspection. Thus it remains to show βwt(hTs) 6= 0.

From ℓ((swt)
J) < ℓ(wt) we deduce, again using Lemma 3.3, that βwt(hTs) = −βwt(h)+β(swt)J (h)

if (swt)
J ∈ V J , but βwt(hTs) = −βwt(h) if (swt)

J /∈ V J . On the other hand, if (swt)
J ∈ V J

then from ℓ((swt)
J ) < ℓ(wt) we also deduce β(swt)J (h) = 0 since h ∈ P(t). In either case we get

βwt(hTs) = −βwt(h) 6= 0. The claim is proven.

In view of this claim we see that there is some h ∈ P(t) with βw(r)(h) = 0.

Claim: At least one of the following statements hold true: (a) P(t′) 6= ∅ for some 0 ≤ t′ < t,

or (b) for any 1 ≤ g ≤ r there is some h ∈ P(t) with βw(g)(h) = 0.

Assume that (a) is false. Then we prove (b) by descending induction on g. For g = r this was

just done. Now let 1 ≤ g < r and let h ∈ P(t) be such that βw(g+1)(h) = 0. If also βw(g)(h) = 0

then we are done for this g, thus we assume βw(g)(h) 6= 0.

Since we have ℓ(w(g)) < ℓ(w(g+1)), Lemma 3.3 shows

βw(g+1)(hTsg+1) = βw(g)(h) and βw(g)(hTsg+1) = 0.

As argued similarly in the previous claim, Lemma 3.3 also shows hTsg+1 ∈ {0} ∪ (∪t′≤tP(t′)).

But hTsg+1 6= 0 since βw(g+1)(hTsg+1) = βw(g)(h) 6= 0, thus hTsg+1 ∈ P(t′) for some 0 ≤ t′ ≤ t.

As we assume that (a) is false this means hTsg+1 ∈ P(t). The claim is proven.

Of course, the last argument applies in the same way for g = 0: but since there is no h ∈ P(t)

with βw(0)(h) = βwt(h) = 0, the result is that indeed P(t′) 6= ∅ for some 0 ≤ t′ < t. We are

done. �

Corollary 3.5. The H(G,P ;L)-modules SpJ(G,L)
P for different J ⊂ ∆ are pairwise non-

isomorphic.

Proof: (That this follows from Proposition 3.4 and Lemma 3.3 was pointed out to me by

Florian Herzig.) It follows from Proposition 3.4 that SpJ(G,L)
P contains a unique irreducible

H(G,P ;L)-submoduleMJ . Like any irreducibleH(G,P ;L)-module it must be one-dimensional.

Therefore Lemma 3.3 together with Proposition 3.4 show that Ts for s ∈ S acts on MJ with

eigenvalues 0 or −1. More precisly, Ts acts with eigenvalue 0 if (szJ)J = zJ , and with eigenvalue

−1 if ℓ((szJ )J) < ℓ(zJ ), and by Lemma 1.4 no other cases occur. In fact, Lemma 1.4 says

that (szJ)J = zJ is equivalent with ℓ(szJ) > ℓ(zJ), and ℓ((szJ)J) < ℓ(zJ ) is equivalent with

ℓ(szJ) < ℓ(zJ). Thus

{s ∈ S |Ts|MJ
= 0} = {s ∈ S | ℓ(szJ) < ℓ(zJ)},

but this set allows us to recover J . Indeed, let J̌ = −w∆(J) ⊂ ∆, or equivalently, J̌ is the subset

of ∆ with wJ̌ = w∆wJw∆ and wJ = w∆wJ̌w∆. Then w∆ = wJ̌z
J (as zJ = w∆wJ), and since

ℓ(w∆) = ℓ(wJ̌ ) + ℓ(zJ ) we see that ℓ(szJ) < ℓ(zJ) for s ∈ S is equivalent with ℓ(wJ̌s) > ℓ(wJ̌),

and this is equivalent with s /∈ J̌ . But J = −w∆(J̌). �
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4 Irreducibility in the residual characteristic

Now assume for simplicity that G is semisimple. Following our conventions we put T 0 = I ∩ T

and then let W̃ = N/T 0. This group acts on the apartment A and can be canonically identi-

fied with the semidirect product (T/T 0) ⋊W . (The embedding W → W̃ sends an element of

W = N(T )/T to its unique representative in W̃ = N/T 0 which fixes x0.) It contains the affine

Weyl-group W a, the subgroup of W̃ generated by the reflections in the walls of A. On the other

hand, let Ω be the subgroup of W̃ stabilizing the standard chamber in A (i.e. the one fixed by

I). Then W̃ is canonically identified with the semidirect productW a⋊Ω. If G is of adjoint type

the canonical projection ϕ : W̃ →W is injective on Ω and its image WΩ = ϕ(Ω) ⊂W coincides

with the one defined in section 1.

We define the Iwahori Hecke algebra

H(G, I;L) = EndL[G]L[G/I].

For a smooth G-representation on an L-vector space V with subspace V I of I-invariants, Frobe-

nius reciprocity tells us that there is an isomorphism

HomL[G](L[G/I], V ) ∼= HomL[I](L, V ) ∼= V I

which sends ψ ∈ HomL[G](L[G/I], V ) to ψ(I) ∈ V I . Hence V I becomes a right H(G, I;L)-

module. For g ∈ G we define the Hecke operator Tg ∈ H(G, I;L) by setting

(Tgf)(hI) =
∑

h′I⊂hIgI

f(h′I)

for f ∈ L[G/I], where for the moment we identify L[G/I] with the L-module of compactly

supported functions G/I → L. The Hecke operator Tn for n ∈ N depends only on the class of

n in W̃ , and the Tn for n running through a system of representatives for W̃ form an L-basis of

H(G, I;L) ([15] section 1.3, example 1). They act on v ∈ V I as

vTn =
∑

u∈I/(I∩n−1In)

un−1v.

By Proposition 3.2 we have an isomorphism

SpJ(G,L)
P ∼= SpJ(G,L)

I .(14)

For w ∈ W we had defined a Hecke operator Tw acting on the H(G,P ;L)-module SpJ(G,L)
P .

On the other hand, if we denote again by w a representative in N of the image of w in W̃

(under the embedding W →֒ (T/T 0) ⋊ W ∼= W̃ ), we get a Hecke operator Tw acting on the

H(G, I;L)-module SpJ(G,L)
I . (Note however that, for fixed Iwahori subgroup I, the isomor-

phism (T/T 0)⋊W ∼= W̃ and hence the embeddingW → W̃ depends on the choice of the special

vertex x0 in (the closure of) the chamber C fixed by I. Hence the H(G, I;L)-elements Tw for
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w ∈ W depend on this choice.) It is clear from our constructions that these actions coincide

under our isomorphism (14). Recall that for w ∈ W J we wrote gw for the class in SpJ(G,L)
P

of the characteristic function of PwP J on G. Now we also write gw for its image in SpJ(G,L)
I

under (14), i.e. for the class in SpJ(G,L)
I of the characteristic function of IwPJ on G.

For the rest of this section we assume that L is a field with char(L) = char(kF ).

Lemma 4.1. Assume that G is of adjoint type. For each u ∈ WΩ there exists a lifting ũ ∈ N

(under the canonical projections N → W̃ → W ) which normalizes I and such that for all

w ∈W J we have gwTũ−1 = g(uw)J in SpJ(G,L)
I .

Proof: By [7] Proposition 2.10 we can lift u ∈ WΩ to an element ũ ∈ N which normalizes

I. Therefore Tũ−1 acts on SpJ(G,L)
I simply through the action of ũ ∈ N ⊂ G and for w ∈W J

we compute ũIwPJ = IũwPJ = I(uw)JPJ . The Lemma follows. �

The hypothesis that G be of adjoint type should be superfluous for Lemma 4.1 (if WΩ is

replaced with ϕ(Ω)), but [7] assumes this. However, the proof of Theorem 4.2 below forces us

to pass to the adjoint quotient of G anyway, i.e. for a more serious reason.

Theorem 4.2. If the root-system Φ contains no exceptional factor then the H(G, I;L)-module

SpJ(G,L)
I is irreducible.

Proof: By Proposition 3.4 we know that each non-zero H(G, I;L)-submodule of SpJ(G,L)
I

contains the element gzJ . Therefore it is enough to show that SpJ(G,L)
I is generated as a

H(G, I;L)-module by the element gzJ .

(a) We first assume that G is of adjoint type. We claim that for each subspace E of SpJ(G,L)
I

containing gzJ and stable under all Tw for w ∈ W , and stable under all Tũ−1 for ũ ∈ N

normalizing I as in Lemma 4.1, we have E = SpJ(G,L)
I . Indeed, we know that SpJ(G,L)

I is

generated as an L-vector space by all gw for w ∈ V J , so we need to prove gw ∈ E for each such

w ∈ V J . To do this we choose a sequence w0, w1, . . . , wt in W with (w0)
J = zJ and (wt)

J = w

and such that for all i ≥ 1 we have (wi)
J = (uwi−1)

J for some u ∈WΩ, or

ℓ((wi−1)
J) < ℓ((wi)

J) and (wi)
J = (swi−1)

J for some s ∈ S.

Such a sequence does exist as we learn from Corollary 1.7 because, since we assume that G is

of adjoint type, we may lift the elements of WΩ to elements of N . Now we use Lemmata 4.1

and 3.3(b) to prove by induction on i that g(wi)J ∈ E for all 0 ≤ i ≤ t: for i = 0 this is the

hypothesis gzJ ∈ E, for i = t this is the statement gw ∈ E which we needed to prove.

(b) In the general case we find a central isogeny π : G → G′ with G′ split, connected,

semisimple and of adjoint type, and with the same root system. We find a split maximal

torus T ′ with normalizer N ′, a Borel subgroup P ′ and an Iwahori subgroup I ′ in G′ such

that π−1(T ′) = T , π−1(P ′) = P , π−1(I ′) = I and such that W ∼= N ′/T ′ (observe that G is

semisimple, hence its finite center is contained in I). As ker(π) ⊂ T it is clear that π induces a
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G-equivariant isomorphism SpJ(G
′, L) ∼= SpJ(G,L) which restricts to an isomorphism of Iwahori

invariant spaces SpJ(G
′, L)I

′ ∼= SpJ(G,L)
I (both of dimension |V J |, by Corollary 2.5).

We identify the Bruhat-Tits buildings of G and G′; then C is fixed by I ′, and P ′ ⊂ G′ is

adapted to x0. Let ũ ∈ N ′ as in Lemma 4.1, in particular normalizing I ′. For n′ ∈ N ′ we have

Tn′Tũ−1 = Tn′ũ−1 = Tũ−1Tũn′ũ−1 in H(G′, I ′;L)(15)

by general facts on H(G′, I ′;L) (the ’braid relations’), or just by the definition of the Tg’s. Now

ũπ(N)ũ−1 = π(N) because π is a central isogeny, and this is contained in N ′. Since H(G, I;L)

is generated by the Tn with n ∈ N (see, e.g. [15] section 1.3, example 1), the relations (15)

imply

H(G, I;L)Tũ−1 = Tũ−1H(G, I;L)(16)

inside EndL(SpJ(G,L)
I)op (here we keep the names of H(G, I;L) and Tũ−1 also for their images

in EndL(SpJ(G,L)
I )op). We get

(gzJH(G, I;L))Tũ−1 ⊂ (ũgzJ )H(G, I;L)(17)

inside SpJ(G,L)
I (recall that Tũ−1 acts from the right on SpJ(G,L)

I by left multiplication with

ũ). By Proposition 3.4 we have gzJ ∈ (ũ−1gzJ )H(G, I;L). We apply Tũ−1 , by equation (16)

again this gives ũgzJ ∈ gzJH(G, I;L), and together with (17) we get

(gzJH(G, I;L))Tũ−1 ⊂ gzJH(G, I;L).

By what we have seen in (a) this proves the Theorem. �

Remarks: (a) We just saw that, in case Φ contains no exceptional factor (possibly also

factors E6, E7 can be allowed, see the remark at the end of section 1), to prove the irreducibility

of the H(G, I;L)-module SpJ(G,L)
I it is enough to use the action of H(G,P ;L) together with

the Hecke operators Tũ−1 of Lemma 4.1.

(b) Corollary 2.5 together with [16] Proposition 10 provides us with an isomorphism of

H(G, I;L)-modules

SpJ(G,L)
I ∼=

C∞(G/PJ , L)
I

∑
α∈∆−J C

∞(G/PJ∪{α}, L)I
.(18)

Corollary 4.3. If the root-system Φ contains no exceptional factor then the G-representation

SpJ(G,L) is irreducible.

Proof: Let I1 ⊂ I denote the pro-p-Iwahori subgroup in I, where p = char(kF ). Then

I is generated by I1 and T 0 = T ∩ I. By Proposition 2.3 and the proof of Theorem 2.4 we

may identify SpJ(G,L) as an L[I]-module with the image of ∇C (notation of Proposition 2.3).

As such it is contained in C∞(I/T 0,MJ (L)). Since we obviously have C∞(I/T 0,MJ (L))
I1 =

C∞(I/T 0,MJ (L))
I it follows that

SpJ(G,L)
I = SpJ(G,L)

I1 .
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(This argument was suggested by Vignéras.) Replacing I by I1 in our definition of the Iwahori

Hecke Algebra H(G, I;L) we obtain the algebra H(G, I1;L). Similarly as before, SpJ(G,L)
I1 is

an H(G, I1;L)-module, and the irreducibility of SpJ(G,L)
I as an H(G, I;L)-module (Theorem

4.2) immediately implies the irreducibility of SpJ(G,L)
I1 = SpJ(G,L)

I as an H(G, I1;L) mod-

ule. Now recall the well known fact that for every smooth representation of a pro-p-group —

like I1 — on a non-zero L-vector space E the subspace EI1 of I1-invariants is non-zero (since

char(L) = p). Applied to a non-zero G-subrepresentation E of SpJ(G,L), the irreducibility of

SpJ(G,L)
I1 as a H(G, I1;L) module implies EI1 = SpJ(G,L)

I1 . But SpJ(G,L) is generated as

a L[G]-module by SpJ(G,L)
I1 ; this follows from [16], Proposition 9, where it is shown that even

the L[G]-module C∞(G/PJ , L) is generated by its I1-fixed vectors. Thus E = SpJ(G,L) and

we are done. �

Remarks: (a) For any J with |V J | = 1, like J = ∅, we get the irreducibility of SpJ(G,L) for

any G (even if Φ contains exceptional factors). The irreducibility of the Steinberg representation

Sp∅(G,L) had been obtained earlier by Vignéras [16]. See [5] for the irreducibility statement in

general.

(b) Vignéras [16] shows that each SpJ(G,L) admits a P -equivariant filtration, with factors

the natural P -representations C∞
c (PwP/P,L) for w ∈ V J . These factors are shown to be

irreducible ([16] Proposition 1, Theorem 5).

Corollary 4.4. (a) The G-representations SpJ(G,L) for the various subsets J ⊂ ∆ are pairwise

non-isomorphic.

(b) Suppose that the root-system Φ contains no exceptional factor. The G-representations

SpJ(G,L) with J running through all subsets J ⊂ ∆ form the irreducible constituents of the

G-representation C∞(G/P,L), each one occuring with multiplicity one.

Proof: Statement (a) follows from Corollary 3.5. The irreducibility of the SpJ(G,L) in (b)

is Corollary 4.3. Now put F−1 = 0 ⊂ C∞(G/P,L) and

Fi =
∑

J⊂∆
|J|=|∆|−i

C∞(G/PJ , L)

for i ≥ 0. Then 0 = F−1 ⊂ F0 ⊂ F1 ⊂ . . . ⊂ F|∆| = C∞(G/P,L) is an exhaustive G-equivariant

filtration. To prove the remaining statements in (b) it is enough to see that for any i ≥ 0 there

exists a G-equivariant isomorphism

Fi

Fi−1

∼=
⊕

J⊂∆
|J|=|∆|−i

SpJ(G,L).(19)

We do this by induction on i. For any J ⊂ ∆ with |J | = |∆|− i we have a natural G-equivariant

map C∞(G/PJ , L) → Fi, inducing an embedding

ιJ : SpJ(G,L) →֒
Fi∑

α∈∆−J C
∞(G/PJ∪{α}, L)

.
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From the induction hypothesis, from the irreducibility of the SpJ ′(G,L) and their being pairwise

non-isomorphic it follows that ιJ induces an embedding SpJ(G,L) →֒ Fi/Fi−1. Next, from the

irreducibility of the SpJ(G,L) and their being pairwise non-isomorphic again, it follows that

these embeddings sum up to an isomorphism (19) as desired. �

Question: Is the theory of extensions between the various G-representations SpJ(G,L) (for

L a field with char(L) = char(kF )) parallel to the theory of extensions between the various

G-representations SpJ(G,C) (as worked out in [10], [12]) ?

Corollary 4.5. Suppose that the root-system Φ contains no exceptional factor. Let OK be a

complete discrete valuation ring with fraction field K and residue field kK . Suppose char(kK) =

char(kF ). Up to K×-homothety, SpJ(G,OK) is the unique G-stable OK-lattice inside SpJ(G,K).

Proof: (I thank Marie-France Vignéras for completing my argument here.) Let S be another

G-stable OK -lattice inside SpJ(G,K). Let pK ∈ OK be a uniformizer. Since SpJ(G, kK) is

irreducible by Corollary 4.3, the image of pnKS∩SpJ(G,OK) in SpJ(G,OK)⊗OK
kK = SpJ(G, kK)

for n ∈ Zmust be either (a) zero, or (b) all of SpJ(G, kK). Case (a) implies pn−1
K S ⊂ SpJ(G,OK).

Case (b) implies

SpJ(G,OK) ⊂ pKSpJ(G,OK) + pnKS.(20)

Now SpJ(G,OK) is finitely generated as anOK [G]-module (e.g. byOK-generators of SpJ(G,OK)I ,

as was already used in the proof of Corollary 4.3), therefore there exists some m >> 0 with

pmKSpJ(G,OK) ⊂ S. This means that (20) simplifies: it becomes SpJ(G,OK) ⊂ pnKS. In view

of this dichotomy (a)/(b) for any n ∈ Z we get pnKS = SpJ(G,OK) for some n ∈ Z since⋂
n p

n
KS = 0 and

⋃
n p

n
KS = SpJ(G,K). �
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