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On special representations of p-adic reductive groups

ELMAR GROSSE-KLONNE

Abstract

Let F' be a non-Archimedean locally compact field, let G be a split connected reductive
group over F. For a parabolic subgroup Q C G and a ring L we consider the G-representation
on the L-module

(+) Cx(G/Q.L)) Y C=(G/Q.L).
Q2Q
Let I C G denote an Iwahori subgroup. We define a certain free finite rank L-module 9t
(depending on @Q; if @ is a Borel subgroup then (x) is the Steinberg representation and
M is of rank one) and construct an I-equivariant embedding of (%) into C'°°(I,9). This
allows the computation of the I-invariants in (x). We then prove that if L is a field with
characteristic equal to the residue characteristic of F' and if G is a classical group, then the
G-representation (x) is irreducible. This is the analog of a theorem of Casselman (which says
the same for L = C); it had been conjectured by Vignéras.

Herzig (for G = GL,(F)) and Abe (for general G) have given classification theorems for

irreducible admissible modulo p representations of G in terms of supersingular representa-

tions. Some of their arguments rely on the present work.

Introduction

Let F' be a non-Archimedean locally compact field with ring of integers O and residue field
kr. Let G be a connected split reductive group over F'. Let T be a split maximal torus, N C G
its normalizer and W = N/T, the corresponding Weyl group. Let ® C X*(T) be the set of
roots, let T C @ be the set of positive roots with respect to a Borel subgroup P containing
T and let A C ®T be the corresponding set of simple roots. For a subset J C A let W; C W
denote the subgroup generated by the simple reflections associated with the elements of J. Let
Pj denote the parabolic subgroup generated by P and by representatives (in N) of the elements
of Wj;. Any parabolic subgroup of G is conjugate to Py for some J. For a ring L (commutative,

with 1 € L) we call the G-representation

C>=(G/P;, L)

Spy(G, L) = >aeca—g C(G/Priay, L)
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the J-special representation of G with coefficients in L. For J = () this is the Steinberg rep-
resentation of G with coefficients in L. By an old theorem of Casselman, the representations
Sp (G, C) are irreducible for all J, they form the irreducible constituents, each with multiplicity
one, of C*°(G/P,C). Published proofs of this irreducibility use techniques specific for the coeffi-
cient field L = C, see [3] ch. X, Theorem 4.11 or [9] Theorem 8.1.2. For L a field of characteristic
¢ # p = char(kp) it is known that the irreducibility of say Spy(G, L) depends on £. See e.g. [17],
Chapitre I1I, Théoreme 2.8 (b).

In this paper we investigate the representation Sp;(G, L) for arbitrary coefficient rings L

(and on the way obtain results previously unknown even for L = C). We need the L-module
LW/Wy]

ZO!EA—J L[W/WJU{a}]

Let I C G be an Iwahori subgroup adapted to P, i.e. such that we have an Iwahori decompositon

G = Uypew [wP. Our first main theorem is the following (Theorem [2.4)), which even for L = C

seems to have been unknown before:

My (L) =

Theorem A: There exists an I-equivariant embedding

its formation commutes with base changes in L.

Using the decomposition G/Pj = Uyew w,[wP;/P; and its analog for the Py 4y, the proof

of Theorem 1 is reduced to the proof of exactness of a certain natural sequence

(1)
P cxUI/InwPppw ™ L)— P C I/ InwPw ' L) — C¥(I,M,(L))

acA—J cew/w,
wEW/WJU{a} w / J

(Proposition [Z3]). This exactness proof proceeds by induction along a certain filtration of ().
The key to defining this filtration is to consider certain subsets of ® which we call J-quasi-

parabolic: a subset D C & is called J-quasi-parabolic if [ ] U, is the intersection of unipotent

aeD
radicals of parabolic subgroups which are W-conjugate to P;. Here U, C G denotes the root
subgroup associated to a.. For such D we define a subset W (D) of W /W as consisting of those
classes wW for which [[,.p Ua is contained in the unipotent radical of the parabolic subgroup
opposite to wPyw™!. Fixing a size-increasing enumeration of all J-quasi-parabolic subsets D,
the corresponding W7 (D)’s give the said filtration of ({]). The exactness of (I is then reduced

to the exactness, for any D, of
@D LW D) — LW (D)] — My (L)
aceA—-J

(Proposition [L.3)), a purely combinatorial fact on finite reflection groups. We mention that

if L is a complete field extension of F', Theorem 1 holds verbatim, with the same proof, for



the corresponding representations on spaces of locally analytic (rather than locally constant)
functions.

A vigorously emerging subject in current p-adic number theory is the smooth representation
theory of p-adic reductive groups, like GG, on ?p—vector spaces. So far, the research has focused
mostly on the case G = GLg(F'), for finite extensions F' of Q,, but even for those G the
theory turns out to be fairly complicated and is far from being well understood. However, it
already becomes quite clear that a good understanding of the theory depends crucially on a good
understanding of the functor taking invariants under a (pro-p-)Iwahori-subgroup. At present
there is literally no general technique available to compute this functor. For example, although
Vignéras had proved the irreducibility of the Steinberg representation of our G’s in characteristic
p, the space of its (pro-p-)Iwahori invariants was not known (except for G = GLo(F')); this was
the motivating problem for our investigations.

As an immediate consequence of Theorem 1 we obtain that the submodule of I-invariants
Sp,(G,L)! is free of rank at most the rank of M (L), i.e. rky(Sp,;(G,L)T) < rkp(My(L)),
as was conjectured by Vignéras [I6]. The reverse inequality rky(Sp,(G, L)) > rkp (9, (L))
follows easily by summing over all J, using that > ;rkr(9%;(L)) = |W|. Thus, Sp,(G,L)! is
free of rank equal to the rank of 9 (L), for any L. (For example, we obtain that the module
of I-invariants in the Steinberg representation is free of rank one.) In particular, using Lemma
6.18 of [11]:

Corollary B: The G-representation Sp;(G, L) is admissible, for any J and any L.

(Corollary 2 also follows from Proposition 2.2.13 of [4] and the admissibility of C*°(G /Py, L).)
The reductive group underlying G' can be defined over Op; as such we denote it by G,,. Its
group G, (OF) of Op-rational points is a subgroup of G, let G = G, (kr) denote the group of
kp-rational points of G,,. Its root system is the same as that of G. We may copy the definition of
the G-representations Sp (G, L) to define G-representations Sp;(G, L), for all J C A (replace
locally constant functions on G by functions on G). Let P C G denote the Borel subgroup
obtained by reduction of I C G,,(Op). Then using Theorem 1 we find a canonical identification

(Proposition B.2l):
(2) Spy (G, L)' = Sp,(G.L)".

Our second main theorem is concerned with the case where L is a field with p = char(L) =
char(kr). We ask whether Sp,(G,L)! is irreducible as a module under the Iwahori Hecke
algebra H(G,I). We may view Sp;(G, L) = Sp,(G, L)? as a module under the Hecke al-
gebra H(G,P). In a first step we show (Proposition B.4) that each H(G, P)-submodule of
Sp,(G, L) = Sp,(G,L)F contains the class of the characteristic function 7, AP, of the sub-
set JTwaP; C G; here wa € W denotes the longest element. This follows from explicit for-
mulae for the action on Sp;(G, L)F of the Hecke operators associated to simple reflections

(these formulae boil down to the Bruhat decomposition of G and require our assumption



p = char(L) = char(kr)), together with a combinatorial lemma (Lemma[L5) on W. In a second
step we need to show that the class of 1w, p, generates Sp; (G, L)! as an H (G, I)-module. We
can prove this if ® contains no exceptional factor, i.e. if all the irreducible factors of the root
system ® belong to the infinite series A, B, C' or D. Our argument uses a combinatorial result,
Proposition [LG] on the weak (left)ordering of W (an ordering weaker than the Bruhat ordering)
which we can prove only for such root systems. Proposition may also hold true for the root
systems of type Eg or E7 (if so we would get the irreducibility result in these cases too), but
certainly fails for the root systems of the types Fg, Fy and G2. Thus, in these cases another
argument (for the generation of Sp;(G, L) by X1w,p,) would be needed. In conclusion, what
we prove is (Theorem [A.2]):

Theorem C: If L is a field with char(L) = char(kr) and if the root system ® contains no
exceptional factor then the H(G, I; L)-module Sp;(G, L) is irreducible.

Let I; C I denote the pro-p-Iwahori subgroup inside I. The G-representation Sp;(G, L)
is generated by Sp;(G, L)’ = Sp,(G,L)"* (see [16]). As any smooth representation of a pro-
p-group on a non-zero vector space in characteristic p admits a non-zero invariant vector, we
obtain, as a corollary of Theorem C, the analog of Casselman’s theorem for a field L with
p = char(L) = char(kp) if G is a classical group (of course, this analog implies and gives a new,

purely algebraic proof of Casselman’s theorem) (Corollary [4.3] Corollary [4.4]):

Theorem D: If L is a field with char(L) = char(kp) and if ® contains no exceptional factor
then the G-representation Sp;(G, L) is irreducible. The Sp;(G, L) for the various J form the

irreducible constituents, each one occuring with multiplicity one, of C*°(G/P,L).

Theorem 4 had been conjectured by Vignéras (see [16] section 5, Remarque 2) (without the
restriction on @), and, as indicated above, she had proven the irreducibility of the Steinberg
representation Spy(G, L). After we had obtained Theorem 4 it had been generalized by Florian
Herzig [5] to general (split reductive) groups G over a finite extension F' of Q,. Like ours, his
proof relies on the identification (2)) and on Proposition 3.4] below, but then it follows another
strategy; in particular, it does not reprove or generalize Theorem 3.

Assuming the results of the present paper, Florian Herzig [5] (for G = GL,,(F)) and Noriyuki
Abe [I] (who generalized Herzig’s method to general split G) classify irreducible admissible
representations of GG over L in terms of supersingular representations; here G is a split connected
reductive group G over a finite extension F' of Q, and L is an algebraically closed field L with
char(L) = char(kp) = p. More specifically, our results (e.g. Corollary 2, formula (2]), Proposition
[34)) are indispensable for proving e.g. the irreducibility of the representations considered in these
papers.

It is a great pleasure to express my deep gratitude to Marie-France Vignéras. She suggested

the problem of computing the Iwahori invariants in p-modular Steinberg representations: this



was the origin of the present work. Later she gave helpful comments on a preliminary version of
this paper. I am extremely grateful to Peter Schneider. Having explained to him an unnecessarily
complicated proof of Theorem 1, valid only in a restricted setting, he insisted on getting a better
conceptual understanding. His numerous suggestions were decisive for approaching Theorem 1
in the correct context and for discovering the proof in its full generality. He also outlined
some possible further developments. I thank Florian Herzig for his very careful reading of the
manuscript and the numerous email exchanges which we had about it. The referees wrote
detailed and helpful reports for which I am very grateful. I thank the Deutsche Forschungs
Gemeinschaft (DFG) as part of this work was done while I was supported by the DFG as a

Heisenberg fellow.
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1 Reflection groups

In this section we collect some results on finite reflection groups. Proposition [I.3] will be needed
for Theorem [24], the embedding of Sp ;(G, L) into C*°(I,9M;(L)). Lemmall.5 will be needed for
Proposition [3.4] which concerns the H(G, P; L)-module structure of Sp, (G, L)!, and Corollary
L7 will be needed for the proof of Theorem 2 on the irreducibility of Sp (G, L)! as a H(G, I; L)-
module.

Consider a reduced root system ® and let W be its corresponding Weyl group. Fix a system
A C ® of simple roots and denote by ®* C & the corresponding set of positive roots. Let
¢~ =@ — dT. For a € ¢ let s, € W denote the associated reflection. Let £(.) : W — Z>g
be the length function with respect to A. For a subset J C A let W; C W be the subgroup
generated by all s, for « € J. We denote by wa € W resp. wy € W the respective longest
elements. Let

;1) =0 — (P NW;.J)

where W;.J = {wa|w € Wy,a € J} C ® is the sub-root system generated by J. For w € W
we then define the subset
(I)J(w) = w(I)J(l)

of ®. Tt depends only on the class of w in W/W. Observe ® j:(w) C ®;(w) for J C J'. We say

that a subset D C ® is J-quasi-parabolic if it is the intersection of subsets ®j(w) for some (at



least one) w € W. Let
W' ={weWw | wlJ)c ot}
It is well known (cf. e.g. [6] Proposition 1.10 (c)) that this is a set of representatives for W/W;

and can alternatively be described as
(3) W' ={weW | l(wsy) > l(w) for all a € J}.

For a subset D C ® let
W/(D)={weW’|Dc®;w))}.
Let

VJ — WJ _ U WJU{OC}‘
aceA—-J

Then W = UV (disjoint union). We have
VIi={weWw! |wA-J)cd}.
Lemma 1.1. For J C J' and w € W' we have ® ;(w) — ® 5/(w) C .

Proor: Each element in ® j(w) — @y (w) = w(® (1) —P (1)) can be written as w(}_, —a,)
with certain oy, € J'. As w € W' the claim follows. O

For the proof of Proposition [[.3] below and then for later use it is convenient to make the

following definition:

Definition: For w € W let (w)’ denote the unique element of W+ with (w)/W,; = wW;.
Thus, (.)7 is the projection from W onto the first factor in the direct product decomposition
W = WJW;. Loosely speaking, applying (.)’ means cutting off W;-factors on the right hand

side.

Lemma 1.2. (a) For any w € W we have £(w) > £((w)”).
(b) For wi € WY and wy € W we have £(wyws) = £(w1) + £(ws).
(c) For any w € W we have f(waw) = l(wwa) = l(wa) — l(w).

(w
(w

PROOF: Any v € W is the unique element of minimal length in the set of representatives
for the coset vWy; this gives (a). For the easy statements (b) and (c¢) see [6] Theorem 1.8 and
Proposition 1.10. O

Let L be a ring. For a set S let L[S] denote the free L-module with basis S.

Definition: We define the L-module 9t;(L) and the L-linear map V by the exact sequence

of L-modules

(4) P L’V L w5 oy (L)—0
acEA—-J



where for w € W7/ we set

o(w) = Z w'.

w'ewJ
’LU/WJC’LUWJU{Q}

Proposition 1.3. (a) 9 (L) is L-free of rank |V’|, and V induces a bijection between V' and
an L-basis of My(L). We have My(L') = M (L) @ L' for any ring morphism L — L'.
(b) Let D C ® be a J-quasi-parabolic subset. We have d(®aea— LW/ (D)) ¢ LW/ (D)),
and the sequence
Ju{a} aP J vP
D L (D)) = LWw’(D)] — My (L)
acA—-J

obtained by restricting (4) is exact.

PrOOF: For w € W'Y and v’ € W/ with w/'W; C wWiugay we have @y eq)(w) =
P jufa) (W) C @y(w'). This shows

O(Daea—s LIW/HH(D))) € LW (D)),

for any subset D of ®.
First Step: Let D C @1 be a subset. Define M ; p(L) and VP by the exact sequence
@ LUl (D)] L Liw? (D)) 5 ;i p(L)—0.
acA-J
Let V/(D) = V/nW’/(D).

Claim: For all £ and all w € W7 (D) with £(w) > ¢ we have VP (w) € VP(L[V’(D)]).

We prove this by descending induction on £. Suppose we are given such a w € W7 (D) with
((w) > 0. If w € V’/ we are done. Otherwise there is some a € A — J with w € W/U{ed,
By Lemma [T we have ®;(w) — ® j,fq3(w) C @7, thus our assumption D C ®F implies even
w e WYeH(D). For all w' € WY — {w} with w'W; C wW ju1qy We have £(w’) > £(w) (because
w'Wy C wWjyiay implies w'Wyigay = wWiy(ay, but in view of @) we know that w is the
unique element of wW ¢,y of minimal length). Moreover we have w' € WY(D) (as noted at
the beginning of this proof), thus by induction hypothesis we get VP (w') € VP (L[V/(D)]) for
all such w'. Now

w = 0P (w) — Z w

w'ewJ —{w}
w/WJC'LuWJU{a}

(inside L[W*(D)]) which shows VP (w) € VP(L[V’/(D)]), as desired.
The claim is proved. In particular, setting £ = 0, we get VP (L[V/(D)]) = My p(L).
Second Step: Here we prove (a). That the image of V¥ generates the L-module 9 ;(L) follows
from the first step (with D = () there). The base change property 9 (L") = M ;(L)®y, L' follows
from the definition of 9t ;(.) and from right exactness of taking tensor products. To see that the
image of V* in 9 (L) remains linearly independent we first consider the case L = Q; then our
task is to show dimg M (Q) > [V7].



By definition, the Q-vector spaces Q[W+] and Q[W/“{*}] come with the distinguished bases
W+ and W7Y{e} hence with isomorphisms with their duals QW] = Q[W”’]* and Q[W /Y {a}] =~
Qw U{a}]*. One easily checks that under these identifications, the map

Q[W‘qi) @ Q[WJU{OC}]

aceA—-J

dual to 9 is given as follows: for w’ € W the a-component of 9*(w’) is the unique w € W7/9{e}

with w'Wiigay = wWiay- For w' € V7 put

o)=Y () (u'v)” e QW].

veEWA_g

The definition of V7 shows that for each w’ € V7 and each v € Wa_ different from the neutral
element we have £(w') > £(w'v) > £((w'v)”). Therefore the set

{o(w)|w' € V7 and ¢(w') = £}

remains linearly independent in

QW]
Q{{w" € W/ L(w') < £]]

for any ¢ € N. An induction then shows that the set {o(w') |w’ € V”/} is linearly independent in
Q[W] (under the projection QW 7] — Q[V’] it even maps bijectively onto a Q-basis of Q[V”]).
On the other hand, for any & € A —J we have Wa_j; = (Wa_7)* [[(Wa—J)%sa (we extrapolate
to Wa_ the definitions given for W, i.e. (Wa_s)® is the set of canonical representatives for
Wa—7/Wyay). Therefore the above description of 0* shows that o(w') € ker(9*) for all w’ € V7.
We obtain dimg 901;(Q) = dimgcoker(d) = dimgker(9*) > |V/|, as desired.

We have proven that the image of V7 in 9t;(Q) is a Q-basis of M ;(Q). Since the image of
V7 in M (Z) generates M ;(Z) as an abelian group, and as M, (Q) = M (Z) ® Q, it follows
that 9 ;(Z) is torsion free and that the image of V7 in 9 ;(Z) is a Z-basis. By the base change
property it follows that 9t;(Q) is L-free for any L, with the image of V' as an L-basis.

Third Step: Here we prove (b). As D is J-quasi-parabolic we find some w € W with

wD C ®*. We have a commutative diagram

Beca_y LIVIHH (D)) —2 LW (D)] —> 0y (L)

F e

Becn_ s LW wD)] =22 LW (wD)] T2 o (L)

where the second and the third (resp. the first) vertical isomorphism is induced by the bi-
jection W7/ — WY, w'  (ww')? (vesp. W/ 5 W} o/ s (ww')?{}). Therefore
we may assume from the beginning that D C ®T. It suffices to see that the natural map

My p(L) — My (L) is injective. By (a) we know that the image of V7, hence in particular the



image of V/(D) in M (L) is linearly independent. Together with the result of the first step this
shows the wanted injectivity of 9ty p(L) — M ;(L). O

Definition: We write S = {s, |« € A}. Consider the following partial ordering <; on W*.
For w,w’ € W we write w < w' if there are s, ..., s, € S such that, setting w® = (s; - - - s;w)”’

for 0 < i <, we have £(w(D) < £(w®) for all i > 1, and w™ = w'.

Lemma 1.4. Letw € W’ and s € S.
(a) If w <j (sw)’ then we have £(w) < £(sw).

(b) L(w) < L(sw) and w # (sw)’ together imply sw € W7, hence w < (sw)’ = sw. We have
)J

(sw) =w or (sw)! = sw.

(c)

(sw)” <y w & (((sw)”) < £(w) & L(sw) < L(w).

(d) Let w e W. If wywa <g uwa then u € Wy.

(e) There exists a unique mazimal element z7 € W for the ordering <;; it lies in V7. We
have z7 = wawy. For any u € W such that z? <y u and for any s € S with {(sz?) < £(z7) we
have (su) < (u).

(f) If w € V7 and £((sw)”) > (w) then (sw)’ € V7.

PrOOF: (a) We have £(w) < £((sw)’) < ¢(sw) where the first inequality follows from the
definition of <; and the second one from Lemma [[.2] (a) (applied to sw).

To prove (b) assume £(w) < £(sw) and sw ¢ W. Then we find some o € J with £(swsy) =
l(sw) — 1 = f(w). Take a reduced expression w = o7 ---0, with o; € S. By the deletion
condition for Weyl groups we get a reduced expression for sws, by deleting some factors in
the string soy ...0,84. Namely, as {(sws,) = £(w), exactly two factors must be deleted. If s
remained this would mean ¢(ws,) < £(w), contradicting w € W, If s, remained this would
mean /(sw) < ¢(w), contradicting our hypothesis. Thus sws, = w, i.e. w = (sw)”’.

(c) First assume £(sw) < £(w). Then we get £((sw)”) < £(w) from Lemma [[Z (a) (applied
to sw). As (s(sw)?)’ = w’/ = w we get (sw)’ <; w from the definition of <;. If on the other
hand we have /(sw) > ¢(w) then we cannot have (sw)’ <; w at the same time, as follows
from (b). We have shown the equivalence of the outer statements. Since by (b) we always have

J = sw they are equivalent with the middle statement.

(sw)” = w or (sw)
(d) Letting v = wwy, the statement u € W is equivalent with the statement v € Wj.

Consider the following chain of equalities
U(wa) = L(vwywa) + Lwyv™t) = L(v) + L(wywa) + L(wjv™t) = Lwjwa) + L(wy) = L(wa).

Here the second equality follows from our hypothesis wjwa <p vwa = vwjwa. The third

equality follows from the conjunction of all the other equalities (and the equality of the extreme



terms in the chain). But this third equality says £(v) +¢(wyv~!) = £(w;) which implies v € W,
because no reduced expression for w; contains an s, with a € A — J (if it did, then, by the
subword property in Coxeter groups, s, would occur in any reduced expression of w, which is
nonsense).

As a referee pointed out, statement (d) follows alternatively from well known results on the
Bruhat order, because wjwa <p uwa implies that wy is larger than « in the Bruhat order.

(e) From Lemmal[L2 (c) it follows that (wa)? = waw,;. We claim that 2/ = (wa)”’ = wawy
is maximal in W7 with respect to <7, and is uniquely determined by this property. To see this
we need to show, by (b), that for any w € W7 — {27} there is some s € S with £(sw) > £(w)
and w # (sw)?. As w # 2/ = wawy we find s € S with £(sww;) = ¢(wwy) + 1, hence

(sw) > L(swwy) —b(wy) = Lwwy) +1—Lwy) > L(w)

where we used ¢(ww;) = £(w) + £(wy) as recorded in Lemma T2 (b). If we had w = (sw)” this
would mean sw = wu for some u € Wy, hence {(swwy) = {(wuwy) < ¢(wwy) by Lemma
(b): contradiction ! The claim is proved.

For @ € A — J we have {(sqwy) > £(wy). Since wa = 27wy = (2754,)(sqwy) we thus get
0(2754) = L(wp) — (sqwy) < L(wp) — L(wy) = £(27), hence 27 € V7.

J

Finally, we have z” = waw; = wjwa for

J={B € Al|sg=wasqwa for some a € J}.

Equivalently, J = —wa(J). For u € W such that 27 = wjwa <p u = (vwa)wa we get
uwa € W using (d). The same argument which showed z/ € V7 also shows that ¢(sz7) < £(z7)
for s € S can only happen if s = s, for some a € A — J. Therefore £(suwa) > £(uwa) since
uwa € Wj. By Lemma [[2 (c) this means ¢(su) < £(u).

(f) Follows from (the proof of) (c). O

Lemma 1.5. For each w € V/ — {27} there is some w' € V7 and some s € S with w <j ',
with £((sw)?) < £(w) and with £((sw')”) > L(w').

PrOOF: Consider the set
J ={a €A | lsqw) > L(w)}.

For any given a € A we have a ¢ J' if and only if £((s,w)”) < £(w), by Lemma [T4c).

Case (i): z’w™ ¢ Wy. As z; is maximal for the ordering <; on W; (Lemma [T4{e)),
T <y ..o <y (0p-w)! = 2. Lemma [L4(Db),
applied first to w < (o1w)”’, then to (cyw)? <; (o201w)”’, then to (o201w)’ < (030201w)7

we find 01,...,0, in S with w <; (o1w)
etc. shows successively that (o - --le)‘] = oj---oqw for all j. We get o, ---oqw = 27 and
((27) = r+ £(w). Let 1 <4 < r be maximal such that o; = s,, for some a € A — J’ (such an i

exists since z/w™! ¢ Wy). By Lemma [[L4(b) we then see w' € W for w' = 741 -+ o,w. But
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then we necessarily even have w’ € V7. Indeed, otherwise we would have w' € W7“{e} for some
a € A —J, hence l(0;41 - 0pwsy) = L(w'sy) > L(w') = £(w) + r —i. On the other hand, as
w € V7’ we have £(w) > f(ws,), and together we would obtain a contradiction. Thus, this w’
together with s = s, is fine.

Case (ii): z’w™' € Wj. Note that this implies 2/ <y wypw (because of f(wypw) =
{(wy) + £(w) as follows from the definition of J’). Here we claim that w’ = 2/ satisfies the
wanted conclusion. Assume on the contrary that £(s,z?) < £(z7) for all @« € A — J’. Then
we also have {(sqwyw) < l(wpw) for all « € A — J'. This follows from Lemma [[.4|(e) since
27 <y wpw as noted above. On the other hand £(s,w yw) < £(wyw) for all a € J', too (again
because of {(wyw) = L(wy) + €(w)), hence for all « € A. This means wyw = wa. But
then w = wawj for some J C A (as in the proof of Lemma [[4(e)). In Lemma [d(e) we saw
WAWj € VI As VIV =0 for J # J this shows J = J and w = zj, contradicting our
hypothesis w # z7. d

The next result concerns the partial ordering <y of W (i.e. <;j for J = (}), called the weak
ordering of W in [2].

Assume that the underlying root-system is irreducible and consider the following subgroup
Wq of W. We write our set of simple roots as A = {aq,...,q;} and denote by ay € ® the
unique highest root. Then we define the elements €1, ...,¢ in the R-vector space dual to the
one spanned by ® by requiring (e;,a;) = ;5 for 1 < i,5 < 1. For 1 <i <[ we let waw € W
denote the longest element of the subgroup of W generated by the set {s,; | j # i}. Then

Wao — {1} = {wawwa | 1 <i <1, (e, 09) = 1}.

The conjugation action of W on {Sag, Sa;s- - - s Sa, } identifies Wq with the automorphism group

of the Dynkin diagram of the affine root system (see [7] pp. 18-20).

Proposition 1.6. Suppose that the root-system ® contains no exceptional factor, i.e. that it is a
product of root systems of type A, B, C or D. There exists a sequence wa = wg, W1,...,w, = 1

in W such that for all i > 1 we have w;—1 <py w;, or w; = uw;—1 for some u € Wq.

ProoOF: (I) We first discuss the case where ® is irreducible, hence of type A;, B;, C; or D
for some | € N. We use the respective descriptions of Wq given in [7] pp. 18-20. We write
Si = Sa;-

Case A;: Here W can be identified with the symmetric group in {1,...,1+ 1}. We write an
element w € W as the tuple [w(1l),...,w(l+1)]. As simple reflections we take the transpositions
si=1[1,...;i—1i4+1,4,i+2,...,l+1] € W fori=1,...,l. Then W consists of the elements

wamwa =i+ 1,...,0+1,1,....,1] (0<i <.

The length ¢(w) of w € W is the number of all pairs (,j) with ¢ < j and w(i) > w(j). For
1 < < let us define
ai=[+2—d,... 0 +1,1—i+1,... 1],

11



b =1[1,...,4,0+1,...,i+1].
In particular, wa = a1 and b; = 1. Therefore it is enough to show that for any 1 < ¢ <[
we can pass from a; to b; by left-multiplication with an element of Wg, and that b; <y a;4; if
1 << 1—-1. But we indeed have b; = wpuwaa;, whereas, on the other hand, b; <y a;41
follows from
air1 = (81— 51)(S1—iy1---82) -~ (S1-1 - 8:)bi,
b =1[1,...,45, 0+ 1,1,...,i+1],
(81—1"'81')171' = [1,...,i— 1,0,1+1,1— 1,...,i],
(81—2"'5i—1)(81—1"'Si)bi = [1,,Z—2,l—1,l,l+1,l—2,,2— 1]7
(31_3---si_l)(sl_gu-si_l)(sl_l---si)bi = [1,...,i—3,l -2l -1,1,1+1,1—-3,...,i— 2]

etc. from which we see that the length increases as required.

Case By: Here W can be identified with the group of signed permutations of {+1,...,+l},
ie. with all bijections w : {£1,...,£l} — {£1,...,+l} satisfying —w(a) = w(—a) for all
1 <a <. We write an element w € W as the tuple [w(1),...,w(l)]. As simple reflections we
take the elements s; = [1,...,0l—i—1,l—i+ 1,1 —d,l —i+2,...,0] for 1 <i<1l—1, together
with s; = [—1,2,...,1]. Then the length of w € W can be computed as

fw) =[{G,5): 1<i<j<l wi)>w@) - Y w()

1<5<t
w(j)<0

(for all this see [2] chapter 8.1). The group Wy consists of two elements, its non-trivial element

is
WAL WA = [1,...,[—1,—[].
For 1 <4< let
a; =[—4,...,=l,i—1,...,1],
bi=[—i,...,—(l—1),l,i—1,...,1].

We pass from wa to 1 via the sequence

wA:[—l,...,—l]:ap(i;bl <@a2>(i;b2 <@a3>(i;...

oS =1 =1

Here the relations b; <y a;4; result from the equations s;_; - - - s1b; = a;41, increasing the length
by | — i, as one easily checks. Each step of type (x) is obtained by left-multiplication with
WA WA, 1.6, WamwAG; = b;. It remains to justify the step (s«x). Observe that

wamwasy s = [1,1,...,0—1].

Moreover, for each w € W satisfying w(i) > 0 for all 1 < ¢ < [ we have w <p s1...sw.
Together it follows that, to prove that the step (%) is permissible, it suffices to show that ()
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decomposes into left-multiplications with (powers of) [[,1,...,l — 1] on the one hand, and with
length-increasing left-multiplications with elements of the set si,...,s;,_1 on the other hand.
(Notice that all these operations preserve the property w(i) > 0 for all 1 < i <[.) But this was
shown in our analysis of case A; (or rather A;_;), because the s1,...,s_1 may be viewed as
Coxeter generators of the symmetric group Aut({1,...,1}).

Case C;: Here W is the same as in case B; and we take the same simple reflections. Again

Wq consists of two elements, but this time its non-trivial element is
wapwa = [—1,...,—1].
We pass from wa to 1 via the sequence
wa =<1, =08 =1
Here (%) is obtained by left-multiplication with w,@wa. To justify the step (sx) observe that
WAWWASIWAHWAST -+ 5 = [I,1,...,1 —1].

Moreover, for each w € W satisfying w(i) > 0 for all 1 < i < [ we have w <y s1---sw (as

already noted above), and
WAWWAST =+ - S|W <p SIWAWHWAST - S|W.

Thus left-multiplication of [I,1,...,l — 1] to such w € W is a permissible operation for our
purposes. Therefore we may conclude as in the case Bj.

Case D;: Here W can be identified with the group of signed permutations of {+1,...,£l}
having an even number of negative entries, i.e. with all bijections w : {£1,...,+l} — {%1,...,£l}
satisfying —w(a) = w(—a) for all 1 < a <[, and such that the number |{i|w(i) < 0}| is even.
We write an element w € W as the tuple [w(1),...,w(l)]. As simple reflections we take the

elements s; for 1 <i <[ —1 used in cases B; and Cj, together with
s =[-2,—1,3,....1.
The length of w € W can be computed (see [2] chapter 8.2) as
tw) = [{(5,4) ; 1 <i<j <1, w() >w) }H +{67); wii) +w(j) <0}

W consists of the four elements 1,wx ) wa, wac-1nwa and wamwa. Abstractly, if [ is even then
W is isomorphic with Z/(2) xZ/(2), with relations (wx ) wa)(wamwa) = (Wamwa) (W@ wA) =
wpa-nwa; if 1 is odd then Wyq is isomorphic with Z/(4), generated by w,wwa, with relations
(wamwa)? = wamwa and (wapwa)® = wae-1nwa. (We do not need this.) We have

wamwa =[—1,2,...,1—1,—]
and, according to the parity of [,

wamwa = [—1,...,—1] (I even)
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wamwa = [, 1 —1,...,—1] (I odd)

(and waa-nwa = [[,1 —1...,=2,1] if [ is even, waa-nwa = [—1,...,—2,1] is [ is odd). We
pass from wa to 1 via the sequence

wa=[-1,.., 030 0. 0=1  (even)

wa =, -2 030 . 0=1 (1 odd).

Here (x) is obtained by left-multiplication with w,@wa. To justify the step (s*) observe that
WA WASL - S1—251 = [I,1,...,1 = 1].

For each w € W with w(i) > 0 for all 1 < i <[ — 2 we have w <g s1---s_25;w. Thus left-
multiplication of [I,1,...,l — 1] to such w € W is a permissible operation for our purposes and
we may conclude as in the case B;.

(IT) In the general case, where ® is not necessarily irreducible, ® is a product of root systems
as discussed in (I). It is easy to see that such a product decomposition comes along with a
product decomposition of W, of wa, of W and of the ordering < (the latter in the obvious
sense: <y is characterized componentwise). Therefore we may conclude by applying the result
of (I) to all the factors of ®. O

Corollary 1.7. Suppose that the root-system ® contains no exceptional factor. For eachw € W
there is a sequence wo, w1, ..., w; in W (some t > 0) with (wo)’ = 27 and (w;)” = w and such
that for all 1 < i <t we have (w;)” = (uw;_1)” for some u € Wq, or

(5) ((wisr)?) < 0((wy)?)  and  (w;)” = (sw;_1)” for some s € S.
PROOF: Observe first that for w,w’ in W and s € S with ¢(w’) < £(w) and w = sw’ we have
[E((w")) < (w)”) and  (w)” =s@w)’ = (sw')]  or  (w)! = ().

Let wa = wo, w1, ...,w, =1 be a sequence in W such that for all 1 <14 < r we have w;_; <p w;,
or w; = uw;_1 for some u € Wq (Proposition [L6). We have (wg)” = (wa)’ = 2z’ by Lemma
[L4{(e). By suitably refining the intervals from w;_; to w; whenever w;_; <p w; we may assume
that whenever w;_; <p w; then in addition w;_; = sw; for some s € S (depending on 7). Then,
by the above observation, property (Bl) holds true for all 1 < i < r with w;—1 <y w;; for the
other 1 < i < r we have (w;)” = (uw;_1)” for some u € Wg. Choose a reduced expression
W= Op, - --01 of w with g; € S, then put t = m + r and w;1, = g;--- 01 for 1 < i < m. By the

J

above observation, property (Bl) holds true for all r + 1 <1 <t. We have w = w; = (w;)” since

weWw. O

Remark: For the irreducible reduced root systems of type Eg, Fy and Gy we have W = {1}
by [7]. Therefore the statement of Proposition cannot hold true in these cases. We do not
discuss the remaining exceptional cases, because we do not know if the statement of Proposition
holds true for these root systems.
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2 Functions on the Iwahori subgroup

Let F be a non-Archimedean locally compact field, Op its ring of integers, pp € Of a fixed
prime element and kp its residue field. Let G be a split connected reductive group over F. (Here
we commit the usual abuse of notation: what we really mean is that G is the group of F-rational
points of such an algebraic F-group scheme, similarly for the subgroups considered below.) Let
T be a split maximal torus, N C G its normalizer in G and let W = N/T, the corresponding
Weyl group. For any w € W we choose a representative (with the same name) w € N. Let
P = TU be a Borel subgroup with unipotent radical U. Let ® C X*(T') = Homg, (T, Gy,) be
the set of roots, let ®T C ® be the set of P-positive roots, let = = & — dT, let A C &T be the
set of simple roots. Since T is split this root system is reduced.

For a € ® let U, C G be the associated root subgroup. Then U =[], co+ U (direct product,
for any ordering of ®T). We need the parabolic subgroups P; = PW ;P of G; each parabolic
subgroup of G containing P is of this form (for a suitable J). For w € W let Py, = wPyw™!
and let PJjw be the parabolic subgroup of G opposite to P;,,. We then find

O —05(w)={ac®|UyC Pjy}

or equivalently: Haeq,J(w) U, is the unipotent radical of P;.,- Note that Pj,, = Py, for any
w' € wWj.

We choose an Iwahori subgroup I in G compatible with P, in the sense that we have the
decomposition

G=J IwpP
weW

(disjoint union). For any subgroup H in G we write H? = H N I. We will make essential use of
the following special case of an important result in the theory of Bruhat and Tits, as recalled in
Prop. 1.2.2. of [13]:

Proposition 2.1. The product map gives a bijection

I=G"= JJ vex1°x [ vs

acdt aed—

for any fized ordering of ®+ and ®~.

Lemma 2.2. Let D C ® be a J-quasi-parabolic subset. Then [],cp UY is a subgroup of G and
is independent of the ordering of D. We denote it by UY,.

ProOF: Take any ordering of D. Then choose an ordering of ® which restricts to this
ordering on D and such that the product map

H U, — G
acd
is injective. Write D = (1,,cq ®s(w) (some © C W). Then of course

[[ve= 11 o

aeD weO aed j(w)
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(all products w.r.t. the fixed ordering of ®, and the intersection is taken inside G). For each
w € © it follows from Proposition 2.1l that [[,cq,
tent radical of P, . (Notice that Proposition [Z1] holds true for any choice of positive/negative

) UY is the intersection of I with the unipo-

system (®F,®~) in ®; here we apply it for some (&, &) for which ® ;(w) € ®*.) In particular,
II aED,(w) U? is a subgroup of G and is independent of the ordering of ®;(w). Thus, the same
statements hold true for [] ., U2 as well. O

For a topological space 7 and an L-module M let C*°(7, M) denote the L-module of locally
constant M-valued functions on 7.

Applying the functor C*°(I,.) to the exact sequence (@) we obtain an exact sequence

(6) c(I, @ LW — c>(1, LIW7]) — C>(I,9m,(L))—0.
aEA—J

Observe that we have natural embeddings, which we view as inclusions,
C™(I/ P tayur L) € C(1, L),

B Pl D L=, @ LW,

acA—J aEA—J acA—J
wEW‘]U{O‘} weWJU{a}
P c=u/py,. L) c o=, Lw’)),
weWwJ

by summing over the respective direct summands.

Proposition 2.3. The sequence

00 0 o) \v4 00
@ C (I/PL(])U{O(},UNL) — @ ¢ (I/Pgw?L) _C>C (IamJ(L))
acA—J weWwJ
wewJY{a}

obtained by restricting (0) is exact.

PROOF: Step 1. We first claim that for any two J-parabolic subsets D and D’ of ® and for
any o € A — J and w € W/UH (D) we have

(7) UD VU oy = UDPItay ) [V UD P otay )

(where AB = (AB) = {abla € A,b € B}, but not (in general) the subgroup generated by A

and B). The inclusion C is obvious. To prove the inclusion D it is enough to prove

(8) ( H UE)PSU{Q},w n Ug’ - PL(])U{oz},w‘
BeD
B¢ D!

Let us write for the moment
D' =P — ;0 (w) ={B€P; Us C Prifajw}-
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As w € W/YUeH(D) we have DN ® = (). Tt follows from Proposition Bl (applied with a
positive/negative system (®+,®~) for which ®* N & ;(w) is before ®~ N ®;(w)) that we find

subsets S; and Sy of G¥ containing the neutral element, such that

P?U{oa},w = H Ug)S,

BeED' NP’
=([T v II udsi(I] vds:
BeD BED' N’ BeD!
pgD’ B!

and such that all products are direct (unique factorization of elements). Formula (&) follows.

Step 2. Let (fuw)wews € Ker(Ve). Choose an enumeration Dy, Dy, D, ... of all J-quasi-
parabolic subsets of ® such that n < m implies |D,,| < |D,,|. By induction on m we show:
adding to f an element in the image of J¢c if necessary, we may assume fw\U% o= 0 for all
we W/, all n <m.

Assume we have fw|U,03n =0 for all w € W7, all n < m. Let us write D = D,,.

Claim: We have fw|U% =0 for allw € W/ — W7 (D).

Indeed, for such w we have |D N ®;(w)| < |D|, hence D N ®;(w) = D,, for some n < m.
Thus

foUD) = fuUD, ] U =fuUd,)=

a€D—-Dy
where in the first equation we used that we may form UI% with respect to any ordering of D,
where the second equation follows from U? C Pgw for a ¢ ®;(w) (and the invariance property
of fu), and where the last equation holds true by induction hypothesis.
The claim is proven.

Our sequence in question restricts to a sequence

O D P D B P T (D),

acA—J J
wew 101} (p) weWJ (D)

For any x € UI%, evaluating functions at x transforms (@) into a sequence isomorphic with the
one from Proposition [3 (b). Let us denote by (9); resp. by (VE), the differentials of this

sequence, which by Proposition [[3] (b) is exact. From the above claim it follows that

FP (@) = (fu(@))wew s (p) € Ker((VE)a),

hence this lies in the image of (98),. For all x € U, choose preimages of f(z) under (95),.
Since the f,, are locally constant, these preimages can be arranged to vary locally constantly
on U,%, and moreover, in view of our induction hypothesis we may assume that for all x €
U/% N Un<mU1%n these preimages are zero.

For any a € A —J and w € W/YH(D) the natural map UY — I/PY Jufa}w 18 Injective.

Thus we find an element

.gD = (ga,w)a,w € @ Cm(I/Pgu{a},w7 L)

acEA—-JT
wewJVia} (D)
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which on U,% assumes the preimages of the fP(z) just chosen, and which vanishes at all 2 €

Un<ngn with = ¢ U/% — for this last property we take advantage of (7). We obtain
fPx) = 06(9")(x) =0

for all z € UnSmUJ%n‘ for x € UI%m = U,% this follows from our definition of g |U]o3 , for z €
Un<mU?)n with « ¢ UY this follows from the vanishing of gP at such z together with the
induction hypothesis. Now set go., = 0 for all @ € A — J and w € W/Yet —w/W{el(D). By

the above claim and by what we just saw we find

((fw)w - 80((ga,w)a,w))(x) =0

for all z € U”Sngn' The induction is complete.

Step 3. We have shown that, adding to (fw)w € Ker(V¢) an element in the image of d¢
if necessary, we may assume fw’U]% = 0 for all w € W, all J-quasi-parabolic subsets D. In
particular we find f“’|UgJ(w) =0forallw e W”. But U, <(I)>J (w) is a set of representatives for I/ P}w
(again invoke Proposition [2.1]), hence f,, = 0. We are done. O

Definition: Let J be a subset of A. We define the G-representation Sp;(G, L) by the exact

sequence of G-representations

D C=(G/Pyyay, L) L5 C¥(G/Py, L) — Sp,(G, L) — 0,
aceAN—-JT

where 0 is the sum of the canonical inclusions, and the G-action is by left translation of functions

on G. We call Sp;(G, L) the J-special G-representation with coefficients in L.

Theorem 2.4. Sp;(G, L) is L-free. There exists an I-equivariant embedding
Spy (G, L) 25 ¢>(1,9m,(L)).
Its formation commutes with base changes: for a ring morphism L — L' the composite
Sp,(G, 1) &1 1 = Sp,(G, I') 5 C¥(1,90 (L)) = C(1, My (L)) @1, I
is A\, @ L.

PROOF: Recall that for w € W we defined PL(])w = I NwPyw~!. Note that Pgw and wP;y
depend only on the coset wW, not on the specific representative w € wWj;. The same is true
for the isomorphism

1/PY, = IwP;/Py,
1> w.

It follows that for any inclusion of cosets wW; C wW (s we have a commutative diagram

[/Pg,w I/PL(])U{Q},U]

lg lg

TwP;/P; — IwPj 10}/ Profa)
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where the horizontal arrows are the obvious projections and the vertical arrows are the above

isomorphisms. Now recall the decompositions

G/PJ = UweijwPJ/Pj, G/PJu{a} = UwGWJU{a}IwPJLJ{a} /PJU{a}
(disjoint unions). They give

C®(G/P;,L)= ) C*{IwP;/Py, L),
weWJ

C®(G/Pjuay. L) = P C®IwPjiiay/Profars L)
weWwJuia}

With these identifications, the above commutative diagrams (for all « € A — J) induce a

commutative diagram

@OLEA—J COO(G/PJU{Q}yL) COO(G/PJ, L) 0

|- -

P oer-s C’OO(I/P(?U{Q}M,L) —— B cws C*U/PY,,, L) —= C=(I,M; (L))

wewJU{a}

SpJ(G7 L)

where the vertical arrows are isomorphisms. The top row is exact by the definition of Sp;(G, L),
the bottom row is exact by Proposition 2.3 and clearly all arrows are I-equivariant. Hence we
get the wanted injection Az, : Sp;(G, L) — C*°(I,M;(L)). From its construction it is clear that
it commutes with base changes L — L’ as stated. We then derive the freeness of Sp;(G, L):
first for L = Z since C*°(I,M ;(Z)) is Z-free, then by base change Z — L for any L. O

The following corollary was conjectured by Vignéras [16]:

Corollary 2.5. The submodule Sp;(G, L)’ of I-invariants in Sp;(G, L) is free of rank
rkz(Sp (G, L)) = rkp (M, (L)) = [V7].

PRrROOF: By Proposition we know that 9t;(L) is free of rank |[V/|. From the definition
of M (L) it follows that the map

LW’ = @ C*(1/P),, L) — C(I,My(L))" =My (L)
wew’

is surjective. In the proof of Theorem 2.4] we saw that the induced map
Sp,(G, L) — C(1,My (L))" = M, (L)
is injective, hence bijective. O

Corollary 2.6. Let w be a smooth irreducible (hence finite dimensional) representation of I on

a C-vector space. Then m occurs in Sp;(G,C) with multiplicity at most |V 7| dime (7).
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PROOF: It holds that 7 occurs in C°°(I, M ;(C)) with multiplicity |V“|dimc(n). O

Remark: If L is a complete field extension of ' we may replace all spaces of locally constant
functions occuring here by the corresponding spaces of locally F-analytic functions. In particular
we may define locally analytic G-representations Sp%" (G, L) and C** (I, ;(L)). Then Theorem
2.4] and Corollary carry over, with the same proofs: there exists an I-equivariant embedding

Spj' (G, L) = C*(I,9m,;(L))

and we have tky, (Sp3*(G, L)!) = tky (M, (L)) = [V/].

3 Special representations of finite reductive groups

There is a unique chamber C in the standard apartment associated to 7" in the Bruhat-Tits-
building of G which is fixed by our Iwahori subgroup I. Let z( be a special vertex of (the closure
of) C and suppose that our Borel subgroup P is adapted to x( (see below for what this means).
Let G,,/OF denote the Op-group scheme with generic fibre the underlying F-group scheme G
of G = G(F) and such that for each unramified Galois extension F’ of F' with ring of integers
Op: we have

Guo(Op) ={g € G(F') | gxo =m0}

(see [14] section 3.4). This G,, is a group scheme as constructed by Chevalley ([14] statement
3.4.1). Its special fibre G;, ®0p,. kr is a split connected reductive group over kp with the same
root datum as G ([14] statement 3.8.1; compare also [§], part II, section 1.17, and for adjoint
semisimple G see [7] p.30/31 where the Bruhat decomposition of G = (G,, ®0, kr)(kr) is

discussed similarly to how we are going to use it here). Let K,, = G,,(OF) and
Upo =Ker [ Kyy — Goo(krp) .

For H any of the groups G, Py, P, T, N, U, U, let

HNK,,

H=—"—"-%
H N Uy,

Our requirement above that P be adapted to xy means that I is the preimage of P under the
homomorphism K,, — G. On groups of kp-rational points we have: P is a parabolic subgroup
in G, containing the Borel subgroup P. This P has U as its unipotent radical and contains
the maximal split torus 7, whose normalizer in G is N. The quotient N/T is canonically
identified with the Weyl group W = N/T, and similarly as before we choose for any w € W
a representative (with the same name) w € N. Let P = TU denote the Borel subgroup
opposite to P, with unipotent radical U . For w e W let U = U NwU w™'. Then



and U = {1}. By transposition of [16] par. 4.2, Prop. 4 (b) we have
(10) U"wP; = PwPy
for any w € W, and the left hand side product is direct.

Lemma 3.1. Let w e W’ and s € S.
(a) If (sw)? = w then
usU " wP; =U"wPy
for each w € U’, and these are direct products.
(b) If £((sw)”) > £(w) then
USSUUJU)FJ = UswswﬁJ
and these are direct products.
(c) If £((sw)”) < £(w), then w™t(B) € ®~, where s = sg. The product
7= [[ .

acdt—{p}

w=l(a)ed—
(any ordering of the factors) is a subgroup of U". We have

U’ sul wP; = U wP, forueU” — {1},
USU/ZU?J = USU)SU)?J for u € U’

and all these are direct products.

PROOF: We point out that in all the stated equalities the respective right hand sides are
direct products. Therefore, once the equalities are known, the products on the respective left
hand sides are seen to be direct simply by a cardinality argument since we work over a finite
field.

We use general facts on Bruhat decompositions.

(a) We have

SUU)’[UFJ = S?w?J C ﬁwﬁJ U?swﬁJ = P’UJPJ = UU)ZU?J

where at the inclusion sign we use sPw C PwP U PswP, and where in the equality following it

T = w, i.e. swWy = wW. Applying s we see that this inclusion is

we use the hypothesis (sw)
an equality. Since u € P and U wPj = PwP; we get (a).

(b) £((sw)”) > £(w) implies £(sw) > £(w) and again by general properties of Bruhat decompo-
sitions we find

U’sU"wP; =U’sPwP; = PsPwP; = | ] PsPwPvP
veWy
= |J PswPvP =PswP; =U""swP,
veW;y
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where the assumption ¢(sw) > ¢(w) implied PsPwP = PswP, and where we made repeated use
of (I0) (in the first and in the last equation with this J, and in the second equation by setting
J =0 in (I0)).
(c) £((sw)”) < £(w) implies £(sw) < £(w) by Lemmal[L4|c), hence w™*(3) € ®~. One checks that
U = sU""s, hence this is a subgroup. Moreover, sU =U"sand since U° € Pand U " swP J=
PswP the last equality follows. Finally, again by general facts on Bruhat decompositions we
have
SUw’LUFJ C waﬁj UUSU}S’LUFJ
and the union on the right hand side is disjoint (since swW; # wWjy). We just saw that
sU wP 7 =U"swP, hence S(Uw — U/)wﬁ ; C U wP,. Tt follows that
U'suUwP; C U wPy

foru e U — {1}. To see the reverse inclusion it is enough to show U wP Jg C U’ sull wP 7,
because

TT =Ty [[ Ta)= [[ Ta=0"

acdt {8} acdt
wl(a)ed— wl(a)ed—

Since U = sU""s this boils down to showing U “sw C sU susU " swPj, ie. (by (I0O))) to
U™ 'sw C sU susPswP;. A small computation in SLo(kr) shows that, because of u # 1, there

is some @ € U’ with siisus € P. This implies the wanted inclusion. O

Definition: Similarly as before, we define the J-special G-representation Sp;(G, L) with
coefficients in L by the exact sequence of G-representations
D C@/Pjiay, L) -2 C(@/Py, L) — Spy(C, L) — 0.
aceA—-J

Consider the natural map
C(G/Py,L) — C>*(G/P;, L),
flg=ky f(R)]
where we decompose a general element g € G as g = ky with k € K,, and y € P; (using the

Iwasawa decomposition G = K, Py), and where k denotes the class of k in G = K, /Uy,. We

have similar maps for the various Pj(q}, hence an embedding

For the injectivity note e.g. that both sides may be embedded into C*°(I,M;(L)): for the
right hand side we saw this in Theorem 2.4] for the left hand side this can be seen by repeating
the construction for G instead of G.

For w € W7 we write

Juw = XpwP; = XT wP;>
the characteristic function of PwP; = U wPjy on G. We also write gw for the class of g, in
Sp,(G, L).
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Proposition 3.2. (a) The embedding (11l) induces an isomorphism
Sp,(G.L)” = 5p, (G, L)',
(b) The set {gy, | w e V'Y is an L-basis of Sp;(G, L)F.

PRroOF: This follows from Corollary together with the I-equivariance of the embedding
(D). But of course, one could also directly compute Sp (G, L)? (i.e. prove (b)) proceeding as
in the proof of Corollary Let us also mention that for G = GL,(kr) (some n) a proof of
(b) is given in [12] par.6, and that tor general G that proof carries over (this is then similar to
[16] par.4). O

We define the Hecke algebra
H(G,P;L) = End;, [G/P]

For a G-representation on an L-vector space V with subspace VP of P-invariants, Frobenius
reciprocity tells us that there is an isomorphism

Hom G]( [G/P] V)= HomL[ }(L V) = v

which sends ¢ € Hom (L[G/P],V) to ¢(P) € VP. Hence VF becomes a right H(G, P; L)-
module. For g € G we define the Hecke operator T, € H(G, P; L) by setting

(T,f)(hWP)y= Y f(i'P)
WPChPgP

for f € L[G/P], where for the moment we identify L[G/P] with the L-module of functions
G/P — L. For n € N the Hecke operator T}, only depends on the class of n in W = N/T. It

acts on v € VE as

(12) T, = Z un”tw.
u€P/(PNn—1Pn)
Notice that for s € S we may identify U = P/(P N sPs). Thus formula ([I2) for the Hecke
operator Ty acting on g,, € Sp;(G, L)Y becomes

(13) guwTs = Z (the class of x,, 7,5,
uel®

in Sp;(G, L)P.

For the rest of this section we assume that L is a field with char(L) = char(kp).

Lemma 3.3. Let we WY and s € S.
(a) If (sw)’ = w then
guwTs = 0.
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(b) If £((sw)”) > £(w) then

JuTs = Gsw-
(c) If £((sw)”?) < £(w) then

ngs = —Gw-

PROOF: This follows from Lemma Bl and from [U°] = 0 in L. For example, for (c) we

compute, using the notations of Lemma B.1] (¢), in particular the direct product decomposition

v =TUT"
guTs = Z [ XusT" pr Z Z Xusu'T' UJPJ
uel’® welU® v elU’
= Z Z [Xusu’UleJ] + Z [XusU/w?J]'
welU’ wel’ —{1} uelU”’

Lemma [31] (c) together with [U°| = 0 in L shows that the second term vanishes and that the
first term is —[xz,,5,]. For statement (b) notice that by Lemmal[L.4(b) we have sw € W (and
even sw € V7 if w € V7). (Of course, Lemma [3:3] may also be deduced from general facts
on Iwahori Hecke algebras; we have included the proof in order to keep the presentation self

contained.) O

Proposition 3.4. Each non-zero H(G, P; L)-submodule E of Sp,;(G, L)F contains the element
g.s. In particular, the H(G, P; L)-module Sp;(G, L)Y is indecomposable.

PROOF: Choose an enumeration z7 = wg, wy, wa, ... of V/ such that w; <j w; implies 7 < j.

By Proposition we may write any element h of F as

with certain uniquely determined (3,,(h) € L. For ¢t > 0 define the subset
PB(t) = {heFE|Puw(h)=0foralli>t and By, (h) #0 }

of E. It is enough to show P(0) # 0. As E— {0} = U>0P(¢) it is enough to show the following:
If P(t) # 0 for some ¢t > 0, then P(¢') # O for some 0 < ¢/ < ¢.
By Lemma [[H applied to wy € V7 — {27}, we find some v’ € V7 and some s € S with

wy <gw', (((swy)?) < £(wy), (((sw)”) > £(w').

By the definition of w; <; w’ we find s1,...s, € S such that, setting wl@ = (8- slwt)‘] for
0 < g <r, we have

(w®) < £(w9H) for all 0 < g <, and w™ =

From Lemma[TZ(f) it follows that in fact w® € V' for all i. Since we have £((sw()7) > £(w(")),
a case by case inspection of Lemma B3] shows that 5, (E - Ts) = 0. We pick some h € P(¢)

and make the following
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Claim: We have hTs € B(t) and B (hTs) = 0.

By what we just said, we have 3, (hTs) = 0. Next, we have hTs € {0} U (Up<,/B(t')) as
follows from Lemma B.3], again a case by case inspection. Thus it remains to show S, (hTs) # 0.
From ¢((sw;)”) < £(w;) we deduce, again using LemmaB.3, that £, (hTs) = — By () +B(swy)7 (h)
if (swy)” € V7, but By, (hTs) = —Buw,(h) if (swy)” ¢ V7. On the other hand, if (sw;)’ € V7
then from £((sw;)”) < ¢(w;) we also deduce Bswsys (h) = 0 since h € P(¢). In either case we get
Buw, (hTs) = —Puw, (h) # 0. The claim is proven.

In view of this claim we see that there is some h € PB(t) with S, (h) = 0.

Claim: At least one of the following statements hold true: (a) B(t') # 0 for some 0 < t' < t,
or (b) for any 1 < g <r there is some h € B(t) with B, (h) = 0.

Assume that (a) is false. Then we prove (b) by descending induction on g. For g = r this was
just done. Now let 1 < g < r and let h € B(t) be such that 8,1 (h) = 0. If also S, (h) =0
then we are done for this g, thus we assume [, (h) # 0.

Since we have £(w9)) < £(w9tD), Lemma B3] shows

ﬁw(g‘f’l) (h‘TSg+1) = /Bw(g) (h‘) and /Bw(g) (h‘TSg+1) = 0

As argued similarly in the previous claim, Lemma [B.3] also shows hTs ., € {0} U (Up</B(t')).
But hT,,, # 0 since B, +1)(hTs,,,) = By (h) # 0, thus hT, ., € P(t') for some 0 < ¢’ < t.

As we assume that (a) is false this means hTs ,, € B(¢). The claim is proven.

Sg+1
Of course, the last argument applies in the same way for g = 0: but since there is no h € B(t)
with B, (h) = Bu,(h) = 0, the result is that indeed (') # 0 for some 0 < ¢ < t. We are

done. O

Corollary 3.5. The H(G, P; L)-modules Sp;(G, L)F for different J C A are pairwise non-

isomorphic.

PROOF: (That this follows from Proposition B.4] and Lemma [3.3] was pointed out to me by
Florian Herzig.) It follows from Proposition 3.4] that Sp (G, L)F contains a unique irreducible
H(G, P; L)-submodule M ;. Like any irreducible (G, P; L)-module it must be one-dimensional.
Therefore Lemma B.3] together with Proposition B.4] show that T, for s € S acts on M ; with
eigenvalues 0 or —1. More precisly, T, acts with eigenvalue 0 if (sz7)” = 2/, and with eigenvalue
—1if £((sz”)?) < £(27), and by Lemma [ no other cases occur. In fact, Lemma [[4 says
that (s27)7 = 27 is equivalent with ¢(sz”) > £(27), and €((s2”)7) < £(27) is equivalent with
{(sz”) < £(z7). Thus

{s € S|Tslm, =0} = {s € S[€(s2”) < £(z")},

but this set allows us to recover .J. Indeed, let J = —wa(J) C A, or equivalently, .J is the subset

7 = wawy), and since

of A with w; = wawjwa and wy = wawjwa. Then wa = wjz‘] (as z
Uwa) = L(wj) + £(27) we see that £(sz”) < £(z”) for s € S is equivalent with £(wjs) > £(wj),

and this is equivalent with s ¢ J. But J = —wa(J). O
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4 Irreducibility in the residual characteristic

Now assume for simplicity that G is semisimple. Following our conventions we put 70 =INT
and then let W = N /T°. This group acts on the apartment A and can be canonically identi-
fied with the semidirect product (7/7°) x W. (The embedding W — W sends an element of
W = N(T)/T to its unique representative in W = N/T° which fixes z.) It contains the affine
Weyl-group W?, the subgroup of W generated by the reflections in the walls of A. On the other
hand, let €2 be the subgroup of w stabilizing the standard chamber in A (i.e. the one fixed by
I). Then W is canonically identified with the semidirect product W* x Q. If G is of adjoint type
the canonical projection ¢ : W — Wis injective on Q and its image Wq = ¢(2) C W coincides
with the one defined in section [l

We define the Iwahori Hecke algebra

For a smooth G-representation on an L-vector space V with subspace V! of I-invariants, Frobe-

nius reciprocity tells us that there is an isomorphism
Homp¢(LIG/I],V) = Homp (L, V) = V'

which sends ¢ € Homp)(L[G/I],V) to ¥(I) € V!. Hence V! becomes a right H(G,I; L)-
module. For g € G we define the Hecke operator T, € H(G, I; L) by setting

(T, )W) = > f(H'D)
WIChIgl
for f € L[G/I], where for the moment we identify L[G/I] with the L-module of compactly
supported functions G/I — L. The Hecke operator T, for n € N depends only on the class of
n in W and the T, for n running through a system of representatives for W form an L-basis of
H(G, I; L) ([T5] section 1.3, example 1). They act on v € V! as

v, = E un" .

uel/(INn—1In)

By Proposition 3.2l we have an isomorphism
(14) Sp, (G, L)" 2 8p, (G, L)".

For w € W we had defined a Hecke operator T}, acting on the H(G, P; L)-module Sp (G, L)?.
On the other hand, if we denote again by w a representative in N of the image of w in 1%
(under the embedding W < (T/T°) x W = W), we get a Hecke operator Ty, acting on the
H(G, I; L)-module Sp,(G,L)!. (Note however that, for fixed Iwahori subgroup I, the isomor-
phism (T/T%) x W = W and hence the embedding W — W depends on the choice of the special
vertex xo in (the closure of) the chamber C fixed by I. Hence the H(G, I; L)-elements T, for
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w € W depend on this choice.) It is clear from our constructions that these actions coincide
under our isomorphism (I4). Recall that for w € W7 we wrote g, for the class in Sp,;(G, L)F
of the characteristic function of PwP; on G. Now we also write g, for its image in Sp (G, L)’
under (I4), i.e. for the class in Sp;(G, L)! of the characteristic function of ITwP; on G.

For the rest of this section we assume that L is a field with char(L) = char(kp).

Lemma 4.1. Assume that G is of adjoint type. For each uw € Wq there exists a lifting u € N
(under the canonical projections N — W — W) which normalizes I and such that for all
w € WY we have g,Ts-1 = Y(uw)? i Sp (G, L)L

PRrOOF: By [7] Proposition 2.10 we can lift u € Wq to an element w € N which normalizes
I. Therefore T;-1 acts on Sp;(G, L)’ simply through the action of 7 € N C G and for w € W/
we compute ulwP; = I[twP; = I(uw)’ Py. The Lemma follows. O

The hypothesis that G be of adjoint type should be superfluous for Lemma [Z.1] (if W, is
replaced with ¢(Q2)), but [7] assumes this. However, the proof of Theorem below forces us

to pass to the adjoint quotient of G anyway, i.e. for a more serious reason.

Theorem 4.2. If the root-system ® contains no exceptional factor then the H(G, I; L)-module
Sp, (G, L) is irreducible.

PRroOF: By Proposition B4 we know that each non-zero H (G, I; L)-submodule of Sp (G, L)!
contains the element g,s. Therefore it is enough to show that Sp,(G,L)! is generated as a
H(G, I; L)-module by the element g,..

(a) We first assume that G is of adjoint type. We claim that for each subspace E of Sp;(G, L)!
containing g,s and stable under all T,, for w € W, and stable under all T;-1 for v € N
normalizing I as in Lemma 1] we have £ = Sp;(G, L)!. Indeed, we know that Sp (G, L)! is
generated as an L-vector space by all g, for w € V7, so we need to prove g, € E for each such
w € V7. To do this we choose a sequence wq, w1, ..., w; in W with (wg)’ = 27 and (w;)? = w

and such that for all i > 1 we have (w;)” = (uw;_1)” for some u € Wg, or
((wis1)?) < l((wg)?)  and  (w;)? = (sw;_1)” for some s € S.

Such a sequence does exist as we learn from Corollary [I.7] because, since we assume that G is
of adjoint type, we may lift the elements of Wq to elements of N. Now we use Lemmata A.1]
and B3|(b) to prove by induction on i that g,,s € E for all 0 < i < ¢: for i = 0 this is the
hypothesis g,s € E, for ¢ = t this is the statement g,, € F which we needed to prove.

(b) In the general case we find a central isogeny 7 : G — G’ with G’ split, connected,
semisimple and of adjoint type, and with the same root system. We find a split maximal
torus 7" with normalizer N’, a Borel subgroup P’ and an Iwahori subgroup I’ in G’ such
that 7=3(T") = T, 7= Y(P') = P, m~1(I') = I and such that W = N’/T’ (observe that G is

semisimple, hence its finite center is contained in I). As ker(w) C T it is clear that 7 induces a
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G-equivariant isomorphism Sp;(G’, L) = Sp ;(G, L) which restricts to an isomorphism of Iwahori
invariant spaces Sp;(G’, L)' 2 Sp (G, L)! (both of dimension |V”|, by Corollary 2.5).
We identify the Bruhat-Tits buildings of G and G’; then C is fixed by I’, and P’ C G’ is

adapted to xg. Let w € N’ as in Lemma 1], in particular normalizing I’. For n’ € N’ we have
(15) Tn/Tﬁfl = Tn/afl = Tafl an'u-1 in H(G,, 1/7 L)

by general facts on H(G’,I'; L) (the ’braid relations’), or just by the definition of the Tj’s. Now
um(N)u~! = 7(N) because 7 is a central isogeny, and this is contained in N’. Since H(G, I; L)
is generated by the T,, with n € N (see, e.g. [15] section 1.3, example 1), the relations (I5)
imply

(16) H(G,I; L)Ty-1 = Ts1H(G, I; L)

inside Endy,(Sp (G, L)!)°P (here we keep the names of H(G, I; L) and T;-1 also for their images
in Endy(Sp, (G, L)1)°P). We get

(17) (9:0H(G, I L)) T C (ug,s)H(G, I; L)

inside Sp;(G, L) (recall that T;-1 acts from the right on Sp (G, L)! by left multiplication with
@). By Proposition B.4 we have g,s € (u tg,s)H(G,I;L). We apply T5-1, by equation (L6
again this gives ug,s € g,oH(G, I; L), and together with (I7]) we get

(9,7 H(G, ;L)) T3+ C  g,H(G,I;L).

By what we have seen in (a) this proves the Theorem. O

Remarks: (a) We just saw that, in case ® contains no exceptional factor (possibly also
factors Eg, E7 can be allowed, see the remark at the end of section [I]), to prove the irreducibility
of the H(G, I; L)-module Sp, (G, L)! it is enough to use the action of H(G, P; L) together with
the Hecke operators T;-1 of Lemma [4.11

(b) Corollary together with [16] Proposition 10 provides us with an isomorphism of
H(G, I; L)-modules

C>(G/Py, L)'
>aen—y C®(G/Prjpay, L)1

Corollary 4.3. If the root-system ® contains no exceptional factor then the G-representation
Sps(G, L) is irreducible.

(18) Sp, (G, L) =

PrOOF: Let I} C I denote the pro-p-Iwahori subgroup in I, where p = char(kr). Then
I is generated by I; and 7Y = T'N I. By Proposition 23] and the proof of Theorem [2.4] we
may identify Sp;(G, L) as an L[I]-module with the image of V¢ (notation of Proposition 2.3)).
As such it is contained in C°°(I/T° M ;(L)). Since we obviously have C°°(I/T° 9 (L)) =
C®(I)T°, M (L)) it follows that

SpJ(G7 L)I = SpJ(G7 L)Il :
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(This argument was suggested by Vignéras.) Replacing I by I in our definition of the Iwahori
Hecke Algebra H (G, I; L) we obtain the algebra H (G, I1; L). Similarly as before, Sp (G, L)' is
an H(G, I1; L)-module, and the irreducibility of Sp;(G, L) as an H(G, I; L)-module (Theorem
[42)) immediately implies the irreducibility of Sp;(G, L) = Sp,(G, L)! as an H(G, I;; L) mod-
ule. Now recall the well known fact that for every smooth representation of a pro-p-group —
like I; — on a non-zero L-vector space E the subspace E'' of Ij-invariants is non-zero (since
char(L) = p). Applied to a non-zero G-subrepresentation E of Sp;(G, L), the irreducibility of
Sp, (G, L)t as a H(G, I1; L) module implies £/t = Sp (G, L)*. But Sp,;(G, L) is generated as
a L|G]-module by Sp (G, L); this follows from [16], Proposition 9, where it is shown that even
the L[G]-module C*°(G/Py, L) is generated by its I;-fixed vectors. Thus F = Sp;(G, L) and

we are done. O

Remarks: (a) For any J with |[V/| = 1, like J = ), we get the irreducibility of Sp (G, L) for
any G (even if ® contains exceptional factors). The irreducibility of the Steinberg representation
Spy(G, L) had been obtained earlier by Vignéras [16]. See [5] for the irreducibility statement in
general.

(b) Vignéras [16] shows that each Sp;(G, L) admits a P-equivariant filtration, with factors
the natural P-representations C°(PwP/P,L) for w € V7. These factors are shown to be
irreducible ([I6] Proposition 1, Theorem 5).

Corollary 4.4. (a) The G-representations Sp ;(G, L) for the various subsets J C A are pairwise
non-isomorphic.

(b) Suppose that the root-system ® contains no exceptional factor. The G-representations
Sp;(G, L) with J running through all subsets J C A form the irreducible constituents of the

G-representation C*°(G/P, L), each one occuring with multiplicity one.

PROOF: Statement (a) follows from Corollary The irreducibility of the Sp ;(G, L) in (b)
is Corollary 43l Now put F_; =0 C C*(G/P, L) and

Fi= )  C™(G/P;,L)
JCA
EENES

fori > 0. Then 0= F_1 C Fy C F; C ... C Fjp| = C*(G/P, L) is an exhaustive G-equivariant
filtration. To prove the remaining statements in (b) it is enough to see that for any ¢ > 0 there

exists a G-equivariant isomorphism

(19) ~ P Sp,(G.L).

JCA
[J|=]Al—i
We do this by induction on 4. For any J C A with |J| = |A|—1i we have a natural G-equivariant
map C*(G/Py, L) — F;, inducing an embedding
F;
Yaea—y C®(G/Pyuqay, L)

ty:Spy(G,L) —
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From the induction hypothesis, from the irreducibility of the Sp; (G, L) and their being pairwise
non-isomorphic it follows that ¢y induces an embedding Sp;(G, L) — F;/F;_;. Next, from the
irreducibility of the Sp;(G, L) and their being pairwise non-isomorphic again, it follows that

these embeddings sum up to an isomorphism (1)) as desired. O

Question: Is the theory of extensions between the various G-representations Sp;(G, L) (for
L a field with char(L) = char(kp)) parallel to the theory of extensions between the various
G-representations Sp;(G,C) (as worked out in [10], [12]) ?

Corollary 4.5. Suppose that the root-system ® contains no exceptional factor. Let Ok be a
complete discrete valuation ring with fraction field K and residue field ky . Suppose char(ky) =
char(kr). Up to K*-homothety, Sp ;(G, Ok) is the unique G-stable O -lattice inside Sp ;(G, K).

PRrOOF: (I thank Marie-France Vignéras for completing my argument here.) Let S be another
G-stable Og-lattice inside Sp;(G, K). Let px € Ok be a uniformizer. Since Sp;(G, kk) is
irreducible by Corollary 3] the image of p}.SNSp ;(G, O ) in Sp (G, Ok )®o kk = Sp; (G, ki)
for n € Z must be either (a) zero, or (b) all of Sp (G, kr). Case (a) implies p; 'S € Sp, (G, Ok).
Case (b) implies

Now Sp; (G, Ok ) is finitely generated as an O [G]-module (e.g. by Ok-generators of Sp (G, Ok )?,
as was already used in the proof of Corollary [43]), therefore there exists some m >> 0 with
piSp;(G,0k) C S. This means that (20) simplifies: it becomes Sp;(G,Ok) C ptS. In view
of this dichotomy (a)/(b) for any n € Z we get piS = Sp;(G,Ok) for some n € 7Z since
N, P%S =0 and J,, pkS = Sp;(G, K). O
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