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A global approach to the refinement of manifold data
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Abstract

A refinement of manifold data is a computational process, which produces a denser set of

discrete data from a given one. Such refinements are closely related to multiresolution rep-

resentations of manifold data by pyramid transforms, and approximation of manifold-valued

functions by repeated refinements schemes. Most refinement methods compute each refined el-

ement separately, independently of the computations of the other elements. Here we propose a

global method which computes all the refined elements simultaneously, using geodesic averages.

We analyse repeated refinements schemes based on this global approach, and derive conditions

guaranteeing strong convergence.
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1 Introduction

In recent years many modern sensing devices produce data on manifolds or data that is modelled as

points on a manifold. An example of such data is orientations of a rigid body as function of time,

which can be regarded as data sampled from a function mapping a real interval to the Lie group

of orthogonal matrices [29]. The classical methods for the approximation of a function from its

samples, such as polynomial or spline interpolation, are linear, and there is no guarantee that such

approximations produce always manifold values, due to the non-linearity of manifolds. Therefore,

alternative methods are required.

Contrary to the development of classical approximation methods and numerical analysis meth-

ods for real-valued functions, the development in the case of manifold-valued functions, which is

rather recent, was mainly concerned in its first stages with advanced numerical and approximation

processes. Examples of such processes are geometric integration of ODE on manifolds (see e.g. [19]),

subdivision schemes on manifolds (see e.g. [34, 37]) and wavelets-type approximation on manifolds

(see e.g. [17, 29]).
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Subdivision schemes were created originally to design geometrical models [3, 23]. Later, they

were recognized as methods for approximation [5, 11]. The important advantage of these schemes is

their simplicity and locality. They are defined by repeatedly refining sequences of points, applying in

each refinement step simple and local arithmetic averaging. This enables the extension of subdivision

schemes to more abstract settings, such as matrices [32] and sets [9].

For manifold valued data, Wallner and Dyn [36] introduced the concept of adapting linear

subdivision schemes to manifold data, and in particular for Lie group data. That paper initiated a

new path of research on subdivision schemes for manifold data, e.g., [32, 34]. Adaptation of a linear

subdivision scheme can be done in several ways, for example, by rewriting the refinement rules as

repeated binary averages, and then replacing each binary average by a geodesic average, see e.g.,

[32, 36].

Averages play a significant role in the methods for the adaptation of linear subdivision schemes

to manifold data. A natural choice of an average of two points on a geodesically complete manifold

is the midpoint of the geodesic curve between the two points. In some cases, the geodesic curve

is known explicitly, e.g., [14, 16, 18, 25], while in general it can be calculated numerically, e.g.,

[4, 15, 22, 26].

The weighted geodesic average is induced by the geodesic curve, and acts as a generalization of

the weighted arithmetic average (1 − t)a+ tb in Euclidean spaces. For a weight t ∈ [0, 1], it is the

point on the geodesic curve, connecting the two averaged points, which divides this curve segment

in the ratio t
1−t

. Furthermore, on several manifolds, the geodesic average can also be extended to

weights outside [0, 1], that is extrapolating the geodesic curve of two points beyond these points,

e.g., [20]. The geodesic average is also well-defined on more general spaces known as geodesic metric

spaces, e.g., [1]. Thus, in such spaces our adaptation method is also valid.

We present here a method for the adaptation of linear subdivision schemes to manifold data

based on the idea of replacing weighted arithmetic averages by weighted geodesic averages in a

generalized Lane-Riesenfeld algorithm [23]. The refinement step in this proposed generalization

consists of an elementary refinement of doubling the data, followed by several rounds of averaging.

In each round of averaging the data is replaced by the same weighted average of all pairs of adjacent

points in the data. Such an adaptation is discussed shortly in [8, 36]. We term such a refinement

step “global refinement”.

Many results, concerning the convergence and smoothness of adapted subdivision schemes, are

presented in the literature of the past few years, e.g., [34, 36, 37]. Most of these results are based

on proximity conditions. A proximity condition bounds the distance between the operation of an

adapted refinement step to the operation of its linear counterpart in terms of the maximal distance

between adjacent data points. Such proximity conditions hold, since a manifold is locally close to a

Euclidean space. Thus, the convergence results are often valid only for “dense enough data”, which

is, in general, a condition that is hard to quantify and depends on properties of the manifold (such

as curvature).

Recently, a progress in the convergence analysis is established in several papers which address
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the question of convergence from any initial data. Such a result is presented in [13] for adapted

subdivision schemes to data in Hadamard spaces. Results for data on the manifold of positive

definite matrices are derived in [32]. For the case of interpolatory subdivision schemes there are

also results for several different metric spaces e.g., [20, 21, 35].

Here we prove convergence from all initial data, of the above adapted generalized Lane-Riesenfeld

algorithm, when the weighted average in each round corresponds to a weight in [0, 1], and give

conditions for such convergence when some averages have weights outside [0, 1]. In addition, we

extend the above construction to a wider class of linear schemes, by introducing weighted trinary

averages based on geodesic weighted averages, and give sufficient conditions for convergence from all

initial data. In all these cases, and for manifolds with globally bounded curvature, the convergence

guarantees that the limits are C1, based on the proximity analysis in [36].

Three important observations on our adaptation method:

1. It extends the class of linear schemes for which an adapted scheme is known to be convergent

from all initial data.

2. It is well-defined and convergent from all data in a wide class of geodesic metric spaces.

3. It leads to computationally feasible subdivision schemes.

The convergence analysis introduced in this paper supplies a new tool for the analysis of linear

schemes. In particular, this analysis guarantees the convergence of any linear scheme with a symbol

which is a Hurwitz polynomial, up to multiplication by a monomial. The question whether this

method can improve our ability to determine the convergence of linear subdivision schemes is beyond

the scope of this paper and is still under investigation.

The paper is organized as follows. We start in Section 2 by providing a short survey of the

required background, including a summary on the Lane-Riesenfeld algorithm and a short review on

geodesics and manifolds. We conclude Section 2 with a short discussion on a sufficient condition

for the convergence of adapted subdivision schemes. Section 3 introduces our generalization of the

Lane-Riesenfeld algorithm. Then, we give conditions for the convergence of an adapted scheme

based on this algorithm, from any initial manifold data, where the corresponding linear scheme has

a factorizable symbol over the reals. In Section 4 we further extend the algorithm to the adaptation

of general linear schemes, and conclude the paper by the convergence analysis of these schemes.

2 Preliminaries

2.1 Subdivision schemes and the Lane-Riesenfeld algorithm

Linear, univariate subdivision schemes are defined on numbers (the functional setting) , and are

extended to vectors by operating on each component separately. In the functional setting, these

schemes are approximation operators, when the data is sampled uniformly from a continuous func-

tion f . We denote the sampled data fi = f(ih), i ∈ Z, h > 0 by f = {fi}i∈Z. Any subdivision
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scheme consists of refinement rules that map f to a new sequence S(f) associated with the values

at ih/2, i ∈ Z.

Let us denote by S a refinement rule, defined by a finitely supported mask a : Z→ R, as

S(f)j =
∑

i∈Z
aj−2ifi. (1)

A (stationary) subdivision scheme with a refinement rule S is a repeated application of (1) and is

also denoted by S.
A subdivision S is termed convergent if the sequence of piecewise linear interpolants to the data

(i2−k,Sk(f)i) converges uniformly (see e.g. [7]). By definition, the limit is a continuous function.

The Lane-Reisenfeld (L-R) algorithm is a classical algorithm, which executes the refinement

rules of a B-spline subdivision scheme [23]. This algorithm replaces each step of refinement by an

elementary refinement (doubling all the data points) followed by several stages of averaging. In

each stage of averaging, the data points are replaced by the mid-points of all pairs of consecutive

data points. As a result, the refinement is done simultaneously to all data points. We term this

refinement a global refinement, in contrary to the direct evaluation of (1), where each refined point

is calculated independently of the other refined points. The refinement step of the L-R algorithm

is presented in Algorithm 1.

Algorithm 1 The refinement step of the Lane-Reisenfeld algorithm

Require: The data to be refined f = {fi}i∈Z. The degree of the B-spline m.
Ensure: The refined data S (f).
1: q2i,0 ← pi
2: q2i+1,0 ← pi
3: for j = 1 to m do
4: for i ∈ Z do
5: qi,j ← 1

2(qi,j−1 + qi+1,j−1)
6: end for
7: end for
8: return {qi,m}i∈Z

An important tool in the analysis of convergence and smoothness of subdivision schemes is the

symbol, defined as the z-transform of the mask a, that is a(z) =
∑

i∈Z aiz
i. For example, the symbol

of the B-spline subdivision scheme of degree m is a(z) = (1 + z)m+1/2m. A necessary condition

for convergence is a(1) = 2 and a(−1) = 0 implying that the subdivision scheme is invariant to a

translation of the data [7, Proposition 2.1]. With the symbol a(z) the refinement rules (1) can be

written algebraically as ∑

j∈Z
S(f)jzj = a(z)

∑

j∈Z
fjz

2j , (2)

where the equality is in the sense of equal coefficients corresponding to the same power of z. The

L-R algorithm is an interpretation of (2) with the symbols of the B-spline subdivision schemes. For

explanation see Section 3.1 and in particular (10).
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Over the years, several generalizations of the L-R algorithm have been proposed. In [2] any step

of the subdivision consists of a refinement step of a fixed converging subdivision scheme, followed

by a fixed number of “smoothing rounds” based on another subdivision scheme (e.g., applying the

insertion rule of an interpolatory scheme to each point). In [10, 31] non-linear averages of numbers

replace the arithmetic (linear) averages. A generalization based on a geodesic average goes back

to [27, 28] where a corner cutting subdivision scheme based on geodesic averages is presented and

analysed. In [9] the L-R algorithm is adapted to compact sets based on the metric average which

is a geodesic average in the metric space of compact sets with the Hausdorff metric.

In this paper we discuss the adaptation of subdivision schemes from numbers to manifold data.

To distinguish between sequences of numbers (or vectors) to sequences on a manifold, we denote by

f = {fi}i∈Z and p = {pi}i∈Z a sequence of Euclidean data and manifold, respectively.

2.2 On manifolds and geodesics

A geodesic (or a geodesic curve) is a fundamental notion in differential geometry. This notion is an

extension of the shortest arc on a surface, joining two arbitrary points p1 and p2 on the surface. On

a plane, the geodesic is simply the line segment connecting p1 and p2, described by

(1− t)p1 + tp2, t ∈ [0, 1]. (3)

This line can be also characterized by its zero curvature and its endpoints. For a manifold, this

property is generalized by having zero geodesic curvature (or constant velocity derived from the

first fundamental form). In Riemannian manifolds, the geodesic curve is defined as the solution to

the geodesic Euler-Lagrange equations. It turns out that any shortest path between two points is a

geodesic curve.

In connected Riemannian manifolds, the Hopf-Rinow theorem guarantees that geodesic curves

connecting any two points are globally well defined and smooth, see e.g., [6]. Such manifolds are

also known as geodesically complete or simply complete Riemannian manifolds. For such manifolds,

one can derive the uniqueness of the geodesic curve connecting any two points, in case one point is

outside the cut locus of the other. Henceforth, we will use the term geodesic curve for such shortest

path curves.

The geodesic curve is of great importance in our adaptation procedures. A natural question is

its availability in different manifolds. Indeed, in many cases, the geodesic curve is known explicitly.

Here are several examples: on a sphere (e.g., [14]), on an ellipsoid (e.g., [16]), on the cone of positive

definite matrices (e.g., [18]), in the Lie group of orthogonal matrices of the same determinant (e.g.,

[33, Chapter 3]), in the Heisenberg groups (e.g., [25]). Alternatively, geodesics can be calculated

numerically. This can be done by directly solving the Euler-Lagrange equations (e.g., [15]), by

fast marching methods (e.g., [22]), by exploiting heat kernels based methods (e.g., [4]), or other

hyper-surfaces techniques (e.g., [26]), just to name a few.

An important property of the geodesic curve is the metric property. Let M be a complete
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Riemannian manifold with associated metric d. Then, for any p1, p2 ∈ M the geodesic curve

connecting p1 and p2, that is Mt(p1, p2), t ∈ [0, 1] with M0(p1, p2) = p1 and M1(p1, p2) = p2,

satisfies

d(Mt(p1, p2), p2) = (1− t)d(p1, p2), t ∈ [0, 1]. (4)

Since d is a metric, we also have the compliment formula d(p1,Mt(p1, p2)) = td(p1, p2). In this

paper, we consider data p such that the geodesic curve between any two adjacent data points in p

is well-defined, and term such data “admissible”. Then, the geodesic curve Mt is used as a weighted

t mean, that is the manifold analogue of the arithmetic mean (3). In some cases, we may need

Mt to be defined for values of t outside [0, 1], but close to it. Therefore, we must assume that the

geodesic curve is well-defined for these “extrapolation” values. In these cases the metric property

(4) is modified, replacing 1− t by |1− t|.
There are some non-linear spaces, other than Riemannian manifolds, where the geodesic curve

connecting any two points is unique. These are the geodesic metric spaces, see e.g., [1]. In such

spaces, the differential structure is missing and a geodesic curve is defined as the path satisfying

(4). Clearly, this definition agrees with the geodesic curve on Riemannian manifolds. Note that, in

general, we do not need the uniqueness of the geodesic curve, but a canonical way to choose it, see

e.g., [9].

2.3 Sufficient conditions for convergence of manifold-valued subdivision schemes

The convergence of manifold-valued subdivision schemes can be defined intrinsically. For that,

we defined for any data sequence p, a piecewise geodesic interpolant I(p), connecting any pair

of consecutive points in p by their geodesic curve. The manifold-valued subdivision scheme S̃ is

convergent, if the sequence I(S̃k(p)), k ∈ Z+ converges uniformly relative to the metric of the

manifold (see [12]).

The analysis of adapted subdivision schemes in many papers is based on the method of prox-

imity, introduced in [36]. This analysis uses conditions that indicate the proximity of the adapted

refinement rule S̃ to its corresponding linear refinement rule S. The simplest proximity condition

is

d
(
S(p), S̃(p)

)
≤ c

(
δ(p)

)2
, δ(p) = sup

i∈Z
d(pi, pi+1), c ∈ R+. (5)

In [36] it is proved that if S is a refinement rule of a convergent scheme that generates C1 limits,

then condition (5) implies (with additional mild assumptions on the refinement rule S) that for

δ(p) small enough, the adapted subdivision scheme S̃, applied to the initial data p, converges to a

C1 limit.

The weakness of the proximity method is that convergence is only guaranteed for “close enough”

data points. This requirement is typically not easy to quantify and it depends on the manifold and

its curvature.
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For a linear subdivision schemes a contractivity factor µ, namely

δ
(
S(p)

)
≤ µδ(p), µ ∈ (0, 1), (6)

implies the convergence of the scheme from any initial data, see e.g. [7].

For non-linear subdivision schemes, and in particular for schemes adapted to manifold data,

contractivity is not sufficient for convergence, and an additional condition is required, see [12].

Definition 2.1 (Displacement-safe). Let S̃ be a subdivision scheme adapted to manifold data. We

say that S̃ is “displacement-safe” if

d(S̃(p)2i, (p)i) ≤ Cδ(p), i ∈ Z. (7)

for any sequence of manifold data p, where C is a constant independent of p.

In [12], it is proved that

Theorem 2.2. Let S̃ be a displacement-safe subdivision scheme for manifold data with a contrac-

tivity factor µ < 1. Then, S̃ is convergent for any input manifold data.

Remark 2.3. Two concluding remarks:

1. Note that interpolatory schemes satisfy (7) with C = 0 by definition and thus are displacement-

safe.

2. In [36] it is proved that any adaptation of (1) based on repeated geodesic averages satisfies (5),

under mild assumptions on the manifold, such as manifolds with globally bounded curvature.

This observation implies that for p with δ(p) < 1, (7) is also satisfied. Thus, for such schemes,

it is enough to show that the scheme has a contractivity factor to obtain convergence for any

initial data and to conclude that the limit is C1.

3 Adaptation of generalized L-R algorithms

We present an adaptation method of generalized L-R algorithms, based on geodesic averages. This

method is already introduced in [8, 36]. Nevertheless, the convergence result stated there is the one

that follows from proximity conditions, which applies only for δ(p) small enough. First, we discuss

in detail our adaptation and then analyze the resulting schemes, charactering classes of schemes for

which convergence from any initial data is guaranteed.

3.1 The algorithm of global refinement

Consider a linear subdivision scheme S of the form (1), with a symbol a(z) =
∑

j∈Z ajz
j . The

factorization of the symbol plays an important role in the analysis of convergence and smoothness

of linear subdivision schemes [7], and is also significant in our adaptation.
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We start with a class of convergent linear subdivision schemes having symbols which can be

factorized into real linear factors. Recall that a necessary condition for convergence is that a(−1) = 0

and a(1) = 2 [7, Proposition 2.1]. Thus, we can write

a(z) = z−s(1 + z)
1 + α1z

1 + α1
· · · 1 + αmz

1 + αm
, (8)

where −α−1
1 , . . .−α−1

m are the nonzero roots of the symbol and s is an integer. Note that 1 cannot

be a root of a symbol since a(1) = 2. Thus, αj 6= −1. j = 1, . . . ,m and (8) is well-defined. We

further define α1 to be the minimizer of

max(
1

1 + αj

,
αj

1 + αj

), (9)

among α1, . . . , αm. The reason will become clear later.

The relation between the factorization (8) and the global refinement is based on (2). For the

symbol (8) we get from (2) that the linear scheme can be interpreted as

∑
j∈Z S(f)jzj = z−s

∏m
i=1

1+αiz
1+αi

(
(1 + z)

∑
j∈Z fjz

2j
)

= z−s
(∏m

i=2
1+αiz
1+αi

)(
1+α1z
1+α1

)∑
j∈Z
(
fjz

2j + fjz
2j+1

)

= z−s+1
∏m

i=2
1+αiz
1+αi

∑
j∈Z

(
(
fj+α1fj−1

1+α1
)z2j−1 + fjz

2j
)
.

(10)

By this interpretation, the factor 1 + z indicates an initial elementary refinement step in which the

data is duplicated. Then, each of the factors
1+αjz

1+αj
, j = 1, . . . ,m implies a step of averaging, in

which the current data is replaced by the weighted averages with weights 1
1+αj

,
αj

1+αj
on its pairs of

adjacent points. A zero root of the symbol merely changes the value of s. This value determines

the shift of indices required to be applied, at the end of each refinement step. Note that for

αi = 1, i = 1, . . . ,m, this interpretation becomes the L-R algorithm. Thus, we consider the global

refinement step corresponding to (8) a generalized L-R algorithm.

The adaptation of the global refinement, based on geodesic averages, is summarized in Algorithm

2.

Note that for data sampled from a geodesic curve, all points generated by Algorithm 2, are on

this geodesic curve.

3.2 Analysis of schemes corresponding to factorizable symbols over the reals

For our first result, we restrict the discussion to the case where the symbol (8) has a full set of real

negative roots, namely αi > 0, i = 1, . . . ,m.

Theorem 3.1. Let S be a linear subdivision scheme with the symbol (8), such that αj > 0, j =

1, . . . ,m. Then, the adapted scheme based on the global refinement step of Algorithm 2 has a

contractivity factor µ = max{ 1
1+α1

, α1

1+α1
}.
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Algorithm 2 Global refinement step

Require: The values s and α1, . . . , αm of the symbol (8).
The data to be refined by S, p = {pi}i∈Z.

Ensure: The refined data S (p).
1: q2i,0 ← pi
2: q2i+1,0 ← pi
3: for j = 1 to m do {Go over each term in the factorization of the symbol}
4: for i ∈ Z do
5: qi,j ←M αj

1+αj

(qi,j−1, qi+1,j−1)

6: end for
7: end for
8: for i ∈ Z do {A final shifting}
9: S (p)i−s+1 ← qi,m.

10: end for
11: return S (p)

Proof. Following Algorithm 2 we get that after the initial stage of Line 1 and Line 2 we have that

d(q2i,0, q2i+1,0) = 0, d(q2i−1,0, q2i,0) ≤ δ(p), i ∈ Z.

After the first iteration of the loop of Line 3 we have (see (10))

q2i,1 = q2i,0, q2i+1,1 = M α1
1+α1

(q2i+1,0, q2i+2,0), i ∈ Z.

By the metric property (4),

d(q2i,1, q2i+1,1) =
1

1 + α1
δ(p), d(q2i−1,0, q2i,0) ≤

α1

1 + α1
δ(p), i ∈ Z.

Thus, for q[1] = {qi,1}i∈Z, δ(q[1]) ≤ µδ(p) with µ = max{ 1
1+α1

, α1

1+α1
}. The next iterations, j =

2, . . . ,m, retain the maximal bound of µδ(p), since for j > 1

d(qi,j , qi+1,j) ≤ d(qi,j, qi+1,j−1) + d(qi+1,j−1.qi+1,j) ≤
αj

1 + αj
µδ(p) +

1

1 + αj
µδ(p) = µδ(p).

Note that the contractivity factor of Theorem 3.1 satisfies µ ≥ 1
2 since α1

1+α1
, 1
1+α1

∈ (0, 1) and
α1

1+α1
+ 1

1+α1
= 1, with µ = 1

2 for α1 = 1.

The L-R algorithm satisfies the conditions of Theorem 3.1. Indeed, this theorem is a general-

ization of a similar result in [9, Lemma 4.1] for the adapted L-R algorithm to compact sets.

Next, we show that the adapted subdivision schemes corresponding to symbols having a full set

of real negative roots, are displacement-safe.

Theorem 3.2. Let S be as in Theorem 3.1. Denote by S̃ the adapted scheme based on the global

9



refinement of Algorithm 2. Then, S̃ is displacement-safe.

Proof. The proof shows by induction that d(S̃(p)2i, pi) ≤ Kmδ(p), i ∈ Z. Denote by Sj the linear

subdivision scheme with a symbol obtained from the symbol of S by retaining the first j factors,

1 ≤ j ≤ m, so that the adapted scheme of Sj, S̃j, uses only j iterations of the loop of Line 3 in

Algorithm 2. Obviously S = Sm. We use induction on j. For j = 1, after the initial steps of Lines

1 and 2, Algorithm 2 inserts new points on the geodesic curves, connecting adjacent data points.

Therefore, it is clear that we have d(S̃1(p)2i,pi) ≤ δ(p), namely we get the constant K1 = 1 for the

case j = 1. The induction step assumes

d(S̃j(p)2i, pi) ≤ Kjδ(p), i ∈ Z,

for a given j, 1 ≤ j < m − 1 with a constant Kj , which depends on j and is independent of p.

Then, using the triangle inequality we get

d(S̃j+1(p)2i, pi) ≤ d(S̃j+1(p)2i, S̃j(p)2i) + d(S̃j(p)2i, pi).

While by the metric property (4) (see Line 5 in Algorithn 2)

d(S̃j+1(p)2i, S̃j(p)2i) ≤ δ(S̃j(p)). (11)

Since Theorem 3.1 implies that

δ(S̃j(p)) ≤ µδ(p), µ = max{ 1

1 + α1
,

α1

1 + α1
}, (12)

we can choose Kj+1 = µ+Kj and the proof follows. The shift, defined by s in (8) and done in Line

9 of Algorithm 2, does not affect the above bound, since s is the same for all Sj .

We conclude

Corollary 3.3. Let S be a linear subdivision scheme with the symbol (8), such that αj > 0,

j = 1, . . . ,m. Then, the adapted scheme based on the global refinement of Algorithm 2 converges

for all admissible input data on the manifold.

The second case analyzed here corresponds to symbols of the form (8) with several positive

roots. Positive roots mean negative weights in the averages, namely extrapolating averages in Line

5 of Algorithm 2.

Theorem 3.4. Let S be a linear convergent subdivision scheme with symbol a(z) of the form (8),

such that a(z) has at least one negative root in addition to the root −1. Define

µ1 = min
αi>0

i∈{1,...,m}

max{ 1

1 + αi

,
αi

1 + αi

},

10



and renumerate the factors in (8) such that µ1 is attained at α1. If

µ = µ1

m∏

i=2

ξ(αi) < 1, (13)

where

ξ(α) =





1, 0 < α,

1 + 2
∣∣∣ α
1+α

∣∣∣ , −1 < α < 0,

1 + 2
∣∣∣ 1
1+α

∣∣∣ , α < −1,

then the adapted scheme based on global refinement has a contractivity factor µ, and it converges

from any admissible initial data on the manifold.

Proof. The proof basically modifies the proofs of Theorem 3.1 and Theorem 3.2. By assumption the

set
{
αi > 0: i ∈ {1, . . . ,m}

}
is not empty, and therefore µ1 < 1. Similarly to the proof of Theorem

3.1 the application of an averaging step in Line 5 of Algorithm 2, corresponding to αi > 0, does not

expand the bound on the distances between consecutive points in the data. On the other hand, an

averaging step corresponding to αi < 0 expands the bound.

To obtain the expanding factor note that after the j-th step in Line 5 of Algorithm 2 we can

bound the distance between consecutive points by

d(qi,j , qi+1,j) ≤ d(qi,j , qi,j−1) + d(qi,j−1, qi+1,j−1) + d(qi+1,j−1, qi+1,j). (14)

Defining µj = µ1
∏j

i=2 ξ(αi), j = 2, . . . ,m, we obtain from (14)

d(qi,j, qi+1,j) ≤ ξ(αj)µj−1δ(p). (15)

This together with assumption (13) shows that µ = µm is a contractivity factor of the adapted

scheme.

To complete the convergence proof, we observe that since µ1 ≥ 1
2 , assumption (13) implies that

ξ(αi) < 2, i = 1, . . . ,m. Modifying the proof of Theorem 3.2, we get in its notation that (11) is

replaced by

d(S̃j+1(p)2i, S̃j(p)2i) ≤ 2δ(S̃j(p)).

Using the same inductive argument, and the bound (15), we get

d(S̃j+1(p)2i, pi) ≤ d(S̃j+1(p)2i, S̃j(p)2i) + d(S̃j(p)2i, pi)
≤ 2δ(S̃j(p)) +Kjδ(p) ≤ (2µj +Kj)δ(p).

Thus, in this case Kj+1 = 2µj + Kj . By (13) µj ≤ µ < 1, and since α1 > 0 implies K1 = 1, we

finally arrive at Km = 1 + 2m.

We conclude that the adapted scheme obtained from S by global refinement is displacement-safe

11



and has a contractivity factor µ given in (13). Therefore, it converges by Theorem 2.2.

Remark 3.5. Two remarks for section 3.2:

1. As is proved in Theorems 3.1 and 3.2 the adaptation of Algorithm 2 leads to converging

subdivision schemes when applied to linear subdivision schemes with positive mask coefficients,

such that their symbols have a full set of negative roots. Theorem 3.4 extends the convergence

to schemes with symbols having few positive roots in addition to at least two negative ones,

which may correspond to masks with some negative coefficients.

2. Negative coefficients necessarily appear in the masks of smooth interpolatory schemes. How-

ever, the adaptation based on global refinement is inappropriate for interpolatory subdivision

schemes, since the adapted schemes are not interpolatory any more. The commutativity of

multiplication of numbers guarantees that for numbers the local refinement and the global

refinement coincide.

In the next section we show that the global refinement can be interpreted as local refinements,

based on a “pyramid averaging”.

3.3 interpretation of the global refinement as local refinement

Most known adaptation methods of convergent linear subdivision schemes to manifold data are

based on first rewriting the average (1) in terms of repeated binary averages, and then replacing the

linear averages by some manifold averages, see e.g. [34, 36, 37]. We term the so obtained refinement

rules “local refinement”.

Next we show that global refinement can be interpreted as local refinement based on geodesic av-

erages. This observation together with 2 of Remark 2.3 leads to the conclusion that the convergence

of schemes adapted by global refinement guarantees C1 limits.

We now describe how the global refinement can be interpreted as local refinement. For i

even, S (p)i in Algorithm 2 can be calculated by a series of repeated averaging operating on

pi, pi+1, . . . , pi+⌊m
2
⌋. First we replace pℓ by M0(pℓ, pℓ+1),M α1

α1+1

(pℓ, pℓ+1), ℓ = i, . . . , i + ⌊m2 ⌋. We

take from this sequence the first m points, to form the initial level for a “pyramid averaging” of

m− 1 levels. In the j-th level of the pyramid averaging any pair of adjacent points is replaced by

its geodesic average with weight
αj+1

αj+1+1 , j = 1, . . . ,m − 1. Thus at the j-th level there are m − j

points. S (p)i is the only value obtained at level m− 1 of the pyramid averaging.

For i odd, S (p)i in Algorithm 2 can be calculated similarly, starting the same pyramid averaging

from a different sequence. This sequence is obtained from pi, pi+1, . . . , pi+⌈m
2
⌉ by first replacing pℓ

by M α1
α1+1

(pℓ, pℓ+1),M1(pℓ, pℓ+1), ℓ = i, . . . , i + ⌈m2 ⌉ − 1 and then taking the first m points. For

illustrations and explanation of the pyramid averaging notion see [30].

The global refinement calculates only once each geodesic averages of adjacent points in the data,

while the same average appears in the calculation of several points by local refinement. Thus, the

global refinement is more efficient in terms of computational operations as compared to its local

12



refinement interpretation. Note that it is possible to define a scheme adapted by local refinement

which uses the same number of geodesic averages as the global refinement [12].

4 Adaptation based on global refinement – the general case

We extend the global refinement algorithm to converging linear schemes with general symbols.

Then, instead of (8) such symbols, which are real polynomials, can be factorized into m1 real linear

factors (in addition to 1+ z) and m2 quadratic real factors, with m1+2m2 = m. Any complex root

of the symbol corresponds to a real quadratic irreducible factor over the reals of the form

1 + αz

1 + α
· 1 + αz

1 + α
=

1 + 2Re(α)z +|α|2 z2
1 + 2Re(α) +|α|2

, (16)

where α and Re(α) is the real part of α. The average associated with such a factor has, in the sense

of the global refinement algorithm, the following weights

w1 =
1

1 + 2Re(α) + |α|2 , w2 =
2Re(α)

1 + 2Re(α) +|α|2
, w3 =

|α|2

1 + 2Re(α) +|α|2
. (17)

Note that w1 + w2 +w3 = 1. Instead of (8) we have in this case the factorization

a(z) = z−s(1 + z)




m1∏

i=1

1 + αiz

1 + αi






m1+m2∏

i=m1+1

1 + 2Re(αi)z +|αi|2 z2
1 + 2Re(αi) +|αi|2


 . (18)

Lemma 4.1. For any complex α, α 6∈ R

1 + 2Re(α) +|α|2 > 0. (19)

Proof. When Re(α) ≥ 0, (19) holds clearly, while if Re(α) < 0 and α is not real, then −Re(α) < |α|,
and

1 + 2Re(α) +|α|2 > 1− 2|α|+|α|2 = (1−|α|)2 ≥ 0.

From Lemma 4.1 and (17) we conclude that w1 and w3 are always positive.

4.1 The general algorithm of global refinement

For an irreducible quadratic factor in (18) one is required to average 3 points on the manifold at

once. Motivated by the pyramid averaging of Section 3.3, we define such an average and term it a

three pyramid.
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Definition 4.2. For three points p1, p2, p3 with corresponding weights w1, w2, w3, the “three pyra-

mid” is

P
(
(p1, p2, p3), (w1, w2, w3)

)
= Mr

(
Mt2(p3, p2),Mt1(p2, p1),

)
,

where the following constraints must hold

1. t1r = w1.

2. (1− t1)r + t2(1− r) = w2.

3. (1− t2)(1− r) = w3.

Remark 4.3. Two remarks on Definition 4.2:

1. For numbers f1, f2, f3 the three pyramid coincides with w1f1 + w2f2 + w3f3.

2. The three constraints of Definition 4.2 are not independent. Since we always assume that

w1 +w2 + w3 = 1, the sum of the three constraints always holds.

The global refinement of Algorithm 2 uses uniform averaging in each level. The following lemma

shows that this is not possible for symbols with complex roots.

Lemma 4.4. There is no three pyramid of Definition 4.2 for the weights (17) with t1 = t2. However,

such a three pyramid exists with t1 > t2.

Proof. For the first claim of the lemma, we rewrite the constraints of Definition 4.2 with t = t1 = t2.

The case t = 0 is impossible since by (17) and Lemma 4.1 w1 > 0. Therefore, substitution of r = w1

t

into the third constraint yields t2 + (w3 − w1 − 1)t + w1 = 0, which has no real solution for the

weights of (17).

To prove the second claim, one can choose r = 1
1+|α| for the weights in (17). This yields a three

pyramid with

t1 =
w1

r
=

|α|+ 1

1 + 2Re(α) + |α|2 , t2 = 1− w3

1− r
=

1 + 2Re(α)−|α|
1 + 2Re(α) +|α|2

. (20)

Note that for a non-real α, |α| >
∣∣Re(α)

∣∣, and thus in view of Lemma 4.1

t1 − t2 =
2(|α| −Re(α))

1 + 2Re(α) +|α|2
> 0. (21)

The proof of Lemma 4.4 suggests a choice for the parameters of the three pyramid, for calculating

the average of 3 points at once. This choice, as is shown in Section 4.2, is designed to minimize the

bound on the distance between averages of two adjacent triplets of points, .

The adaptation of the global refinement algorithm corresponding to the symbol (18), based

on geodesic averages and three pyramid averages, is summarized in Algorithm 3, which replaces

Algorithm 2 for symbols having complex roots.

14



Algorithm 3 Global refinement step – the general case

Require: The coefficients α1, . . . , αm1+m2
of the symbol (18) and the value s.

Assume α1 is defined as in Theorem 3.4.
The data to be refined by S, p = {pi}i∈Z.

Ensure: The refined data S (p).
1: q2i,0 ← pi
2: q2i+1,0 ← pi
3: for j = 1 to m1 do {Go over each term corresponding to a real root of the symbol}
4: for i ∈ Z do
5: qi,j ←M αj

1+αj

(qi,j−1, qi+1,j−1)

6: end for
7: end for
8: for j = m1 + 1 to m1 + m2 do {Go over each term corresponding to a complex root of the

symbol}
9: for i ∈ Z do

10: w1 ← 1

1+2Re(αj )+|αj|2

11: w2 ← 2Re(αj )

1+2Re(αj )+|αj|2

12: w3 ← |αj|2
1+2Re(αj )+|αj|2

13: qi,j ← P
(
(qi,j−1, qi+1,j−1, qi+2,j−1), (w1, w2, w3)

)

14: end for
15: end for
16: for i ∈ Z do {A final shifting}
17: S (p)i−s+1 ← qi,m.
18: end for
19: return S (p)

4.2 Optimal choice of parameters in the three pyramid

To optimally bound the distance

d(P
(
(p1, p2, p3), (w1, w2, w3)

)
,P
(
(p2, p3, p4), (w1, w2, w3)

)
. (22)

we start by setting r ∈ (0, 1). The reasons for this choice are presented in details in Appendix A.1.

For the other parameters, we first prove the following Lemma.

Lemma 4.5. Consider the three pyramid of Definition 4.2 for the weights (17) with r ∈ (0, 1).

Then, t1 > t2.

Proof. By the constraints of Definition 4.2, f(r) = t1 − t2 = w1

r
+ w3

1−r
− 1. We show that

minr∈(0,1) f(r) > 0. Indeed, f ′(r) = −w1

r2
+ w3

(1−r)2
, which implies a single minimum point of f(r)

at r∗ =
√
w1√

w1+
√
w3

= 1
1+|α| . By (21) we have that f(r∗) > 0, and since r∗ is a minimum point,

f(r) ≥ f(r∗) > 0.
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Theorem 4.6. Consider the three pyramid of Definition 4.2 with the weights (17) and r ∈ (0, 1).

Then, for p1, p2, p3, p4 with δ(p) = max1≤i≤3 d(pi+1, pi),

d(P
(
(p1, p2, p3), (w1, w2, w3)

)
,P
(
(p2, p3, p4), (w1, w2, w3)

)
) ≤

(
2(t1 − t2) + 1

)
δ(p). (23)

Proof. Figure 1 accompanies the proof. ThereM1 andM2 correspond to Mt1(p2, p1) and Mt2(p3, p2)

respectively, whileM1 andM2 correspond toMt1(p3, p2) andMt2(p4, p3) respectively. P and P there

correspond to P
(
(p1, p2, p3), (w1, w2, w3)

)
and P

(
(p2, p3, p4), (w1, w2, w3)

)
respectively.

We first apply the metric property (4) and the triangle inequality to get (see the schematic

illustration in Figure 1a)

d
(
Mt2(p3, p2),Mt1(p2, p1),

)
≤ d(Mt2(p3, p2), p2) + d(p2,Mt1(p2, p1))

= (1− t2)d(p2, p3) + t1d(p1, p2).
(24)

Note that t1 =
w1

r
> 0 and that 1− t2 =

w3

1−r
> 0. Similarly we get

d(Mt1(p3, p2), p2) = (1− t1)d(p2, p3),

and since 1− t2 > 1− t1 by Lemma 4.5, we conclude that Mt1(p3, p2) is closer to p2 than Mt2(p3, p2)

(see Figure 1b). Observing that these two averages lie on the geodesic curve connecting p2 and p3,

we conclude that

d(Mt1(p3, p2),Mt2(p3, p2)) =
(
(1− t2)− (1 − t1)

)
d(p2, p3) = (t1 − t2)d(p2, p3). (25)

To prove (23) we sum the following three bounds, on the lengths of the three parts of the path

connecting P to P via M2 and M1 in Figure 1c,

d(P
(
(p1, p2, p3), (w1, w2, w3)

)
,Mt2(p3, p2)) ≤ (1− r)(t1 + (1− t2))δ(p),

d(Mt2(p3, p2),Mt1(p3, p2)) ≤ (t1 − t2)δ(p),

d(Mt1(p3, p2),P
(
(p2, p3, p4), (w1, w2, w3)

)
) ≤ r(t1 + (1 − t2))δ(p).

The first and third bounds are obtained from Definition 4.2 by (4) and (24), the second bound is

(25).

Remark 4.7. Two important conclusions, related to the parameters of the three pyramid:

1. Theorem 4.6 implies that in order to reduce the expansion factor in (23) corresponding to a

three pyramid the function f(r), from the proof of Lemma 4.5 has to be minimized. Thus,

the parameters t1 and t2 of (20) and r = 1
1+|α| are preferred.

2. For the parameters in the first part of the remark, we deduce from Lemma 4.5 that the bound

in (23) is bigger than one. This means that the bound δ(p) on the distances between adjacent
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(a) M1 = Mt1(p2, p1) and M2 = Mt2(p3, p2) (b) M1 = Mt1(p3, p2) and M2 = Mt2(p3, p2)

(c) P = P
(

(p1, p2, p3), (w1, w2, w3)
)

and P = P
(

(p2, p3, p4), (w1, w2, w3)
)

.

Figure 1: Illustration for the proof of Theorem 4.6. The curved lines (arcs) symbolically represent
geodesic curves connecting two points. The bright arrows in upper figures describe the relative
distances compared to each of the corresponding geodesics.

points is not preserved after applying the three pyramid.

Note that in the linear case, any averaging step corresponding to a complex root does not expand

the distance between consecutive points as long as the weights (17) are positive, that is the real

part of α is positive.

4.3 Analysis of convergence

First, we consider the case of symbols of the form (18) having several complex roots and then discuss

in detail the case of a single complex root.

In case of positive roots, which is analysed in Theorem 3.4, we show an initial contractivity

factor induced by α1 > 0, associated with the negative root, followed by a series of expanding

factors ξ(αi) for αi < 0, associated with the positive roots. Equipped with Theorem 4.6, the

analysis of the convergence of the schemes adapted by Algorithm 3 is essentially the same.

Corollary 4.8. Let S be a linear subdivision scheme with symbol a(z) of the form (18), with

m1,m2 ≥ 1 and max1≤i≤m1
αi > 0. Define

µ1 = min
αi>0

i∈{1,...,m1}

max{ 1

1 + αi

,
αi

1 + αi

},
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and renumerate the linear factors in (18) such that µ1 is attained at α1. If

µ = µ1

m1+m2∏

i=2

ξ(αi) < 1, (26)

where

ξ(αi) =





1, 0 < αi,

1 + 2
∣∣∣ αi

1+αi

∣∣∣ , −1 < αi < 0,

1 + 2
∣∣∣ 1
1+αi

∣∣∣ , αi < −1,

1 + 2

(
2(|αi|−Re(αi))

1+2Re(αi)+|αi|2

)
αi 6∈ R.

then the adapted scheme based on global refinement has a contractivity factor µ, and it converges

from any initial admissible data on the manifold.

The proof is in the spirit of the proof of Theorem 3.4 and is based on Theorem 4.6 and the choice

(20) of the parameters. Note that similar arguments (as mentioned in the proof of Theorem 3.4)

also confirms that the proof of Theorem 3.2 holds in the case of complex roots, with Kj+1 =
3
2 +Kj.

Thus, the full proof is omitted.

A similar sufficient condition for the convergence of the adapted scheme with refinement step as

in Algorithm 3 is

Corollary 4.9. In the notation of Corollary 4.8, if

1 + 2

(
2(|αi| − Re(αi))

1 + 2Re(αi) +|αi|2

)
<


 1

µ1

m1∏

j=2

ξ(αj)




1

m2

, i = m1 + 1,m1 + 2, . . . ,m1 +m2,

then, the adapted scheme is convergent for all admissible input data.

We provide an additional perspective to the above analysis by assuming only one irreducible

quadratic factor with all real linear factors corresponding to negative roots. In such a scenario, we

can describe exactly the domain in the complex plane from which a single complex α leads to a

convergent adapted scheme. This can be extended to several complex roots using the same approach

as in Corollary 4.9.

Theorem 4.10. Let S be a linear subdivision scheme, with a symbol of the form (18), adapted

by Algorithm 3 such that m1 ≥ 1, m2 = 1 and αi > 0, 1 ≤ i ≤ m1. Then, the adapted scheme

converges from all admissible input data, whenever αm1+1 is outside the domain Ω given by

Ω =
{
reiφ | ρ1(φ) ≤ r ≤ ρ2(φ), υ < φ < 2π − υ

}
∪
{
eiυ, e−iυ

}
.
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Here 0 < υ = arccos(3µ1−1
1+µ1

) < arccos(13 ), and the curves ρ1 and ρ2 are

ρ1,2(φ) =
−(1 + µ1)

1− µ1
cos(φ) +

2µ1

1− µ1
∓

√(−(1 + µ1)

1− µ1
cos(φ) +

2µ1

1− µ1

)2

− 1,

where µ1 is the initial contractivity factor µ1 = max1≤i≤m1
{ 1
1+αi

, αi

1+αi
}.

The proof is given in Appendix A.2.

First, note that Ω is symmetric relative to the real axis. To further illustrate Ω and the comple-

mented domain of convergence C\Ω we refer the reader to Figure 2, where the domain of convergence

for a single irreducible factor and an initial contractivity factor µ = 1
2 is presented. This value of

µ implies that −1 has multiplicity as a root of the symbol, which is typical to C1 schemes. The

convergence domain includes all the complex plane but Ω, and one can clearly notice the domain∣∣arg(α)
∣∣ < υ around the positive real axis (between the dashed lines), where there is no restriction

on the modulus of the complex αm1+1.

−10 −5 0 5 10

−10

−5

0

5

10

Ω

Figure 2: The domain of convergence C\Ω for the case of a single irreducible real quadratic factor
and an initial contractivity factor µ = 1

2 . The dashed lines are arg(α) = ±υ.

Remark 4.11. An interesting class of manifolds is the Hadamard manifolds which are globally

non-positively curved metric spaces, see e.g., [1]. On a Hadamard manifold, any two points p1 and

p2, and their connecting geodesic Mt(p1, p2), t ∈ [0, 1] satisfy for any point q on the manifold

d2(q,Mt(p1, p2)) ≤ (1− t)d2(q, p1) + td2(q, p2)− t(1− t)d2(p1, p2).

Such manifolds are also called (global) CAT(0)-spaces and NPC spaces. Contrary to general man-

ifolds, where geodesics are merely locally the shortest path, in Hadamard manifolds the geodesics

are unique and global.
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In Hadamard manifolds, one can establish superior bounds on distances as (22), between averages

of more than two points. For example, in [24], a class of “weak contractivity” averages is introduced.

Distances of the form (22), based on such averages, are bounded by δ(p). Thus, in Hadamard

manifolds, irreducible quadratic factors, can be replaced by weak contractivity averages in the

global refinement algorithm. With this modification, the contractivity factor is independent of the

number of such factors and the convergence of schemes based on the global refinement is guaranteed

for any symbol with all roots having negative real parts and at least one negative root in addition

to −1. Note that all such symbols have positive coefficients.
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A Supplements for Section 4

A.1 Why to choose 0 < r < 1 in a three pyramid?

The main argument for choosing 0 < r < 1 in a three pyramid is to avoid the use of high extrapola-

tion values in the averages of the three pyramid. Namely, we wish to minimize the use of averaging

parameters that are much bigger than one or much smaller than zero.

To simplify the discussion, we focus on the left part of the complex domain, namely consider

complex roots with negative real parts, that is αj such that Re(αj) > 0, j = m1 +1, ...,m1 +m2 in

(18).
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Proposition A.1. Consider a three pyramid, corresponding to a complex αj with Re(αj) > 0, with

the parameters t1, t2 given by (20) for r = 1
1+|αj | ∈ (0, 1). Then,

1. t1 > 0 and t2 < 1. Moreover, at least one of t1, t2 is in (0, 1).

2. In case t1 6∈ (0, 1), then 0 < t1 ≤ 1+
√
2

2 ≈ 1.207.

3. In case t2 6∈ (0, 1), then −0.207 ≈ 1−
√
2

2 ≤ t2 < 1.

Proof. For the first claim, we note that by (20) t1 > 0 (since r > 0 and w1 > 0), and t2 < 1. For

the rest of the first claim, we consider two cases. When
∣∣αj

∣∣ ≥ 1

1 + 2Re(αj) +
∣∣αj

∣∣2 > 1 +
∣∣αj

∣∣2 ≥ 1 +
∣∣αj

∣∣ ,

and t1 < 1 by (20). On the other hand, when
∣∣αj

∣∣ < 1, we have that

1 + 2Re(αj)−
∣∣αj

∣∣ > 1 + 2Re(αj)− 1 > 0,

and it follows from (20) that t2 > 0.

For the second claim, denote αj = ρeiθ, which leads to t1 = g(ρ, θ) = 1+ρ
1+2ρ cos(θ)+ρ2

. Then, a

standard analysis using differentiation shows no extreme points for g inside the domain Re(αj) > 0.

On the boundary of this half plane, that is θ = ±π
2 , there are two maximum points at ρ =

√
2− 1,

yielding the bound on t1. The third claim is proved similarly. One finds that 1 − t2 has the same

maximal values as t1.

Proposition A.1 shows that choosing the parameters (20) with r = 1
1+|αj | ∈ (0, 1) guarantees at

most one extrapolating average, with a weight just slightly outside (0, 1), namely in (−0.207, 1.207).
For r 6∈ (0, 1) this is not the case.

Recall the general expressions of the parameters t1 = w1

r
and 1 − t2 = w3

1−r
. These expressions

reveal that if r 6∈ (0, 1) both t1 and t2 cannot be in (0, 1). To get t1 ∈ (0, 1) and t2 bigger than 1

but close to it, r has to be sufficiently large, while to get t2 ∈ (0, 1) and t1 < 0 but close to 0, r

must be negative with |r| sufficiently large. Moreover, if r 6∈ (0, 1) but close to (0, 1) either t1 or t2

become unbounded. To further demonstrate this, we present a simple example.

Example A.2. We illustrate the extreme extrapolation values required for the case of r 6∈ (0, 1)

by calculating the parameters of the three pyramid for the special case αj = 1 + 1
2 i ∈ C. Note

that for this root, when using r = 1
1+|αj | = 0.4721, the corresponding parameters are t1 ≈ 0.4984,

t2 ≈ 0.4428. Furthermore, for the case of a single quadratic factor, as done in Theorem 4.10, the

scheme has a contractivity factor for any µ1 < 0.9.

On the other hand, allowing small r values of extrapolation results in high, undesired extrapo-

lation values of t2 (when r > 1) or of t1 (when r < 0). This is demonstrate in Tables 1a and 1b,

where as r gets closer to (0, 1), either t1 or t2 get further away from (0, 1).
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r t1 t2

1.5 0.1569 1.5882

1.4 0.1681 1.7353

1.3 0.1810 1.9804

1.2 0.1961 2.4706

1.1 0.2139 3.9412

(a) Case of r > 1

r t1 t2

-0.5 -0.4706 0.8039

-0.4 -0.5882 0.7899

-0.3 -0.7843 0.7738

-0.2 -1.1765 0.7549

-0.1 -2.3529 0.7326

(b) Case of r < 0

Table 1: The parameters of the three pyramid for αj = 1 + 1
2 i

Note that another outcome of high extrapolation values of r is that the convergence domain,

C\Ω of Theorem 4.10, becomes more restrictive than the one obtained for r ∈ (0, 1). The proof for

this claim can be easily understood but involves many technical details and thus is omitted.

A.2 Proof of Theorem 4.10

As in Corollary 4.8, it is sufficient to ensure a contractivity factor. Recall that αi > 0, i = 1, . . . ,m1.

Accordingly, we have that by reaching Line 9 of Algorithm 3 we retain the bound µ1δ(p) on the

distance between adjacent points. Using Theorem 4.6 we get that a sufficient condition for having

a contractivity factor is

2(t1 − t2) + 1 <
1

µ1
.

Substituting (21) and αm1+1 = ρeiθ we get the sufficient condition for contractivity

ρ2 − 2(γ(1 − cos(θ))− cos(θ))ρ+ 1 > 0, (27)

with γ = 2µ1

1−µ1
.

For a fixed θ, consider the left-hand side of (27) as a parabola in ρ and denote it by h(ρ). Then,

h′(ρ) = 2ρ − 2(γ(1 − cos(θ)) − cos(θ)). The derivative implies that the minimum, as a function of

ρ, is obtained at

ρ∗ = γ(1− cos(θ))− cos(θ),

for a fixed θ.

We divide the analysis into two different cases and start with the case that (27) holds for any

ρ > 0. Since the parabola h(ρ) has a minimum and satisfies h(0) = 1, there are two scenarios: the

first is ρ∗ < 0 and the second is ρ∗ ≥ 0 and h(ρ∗) = 1− (ρ∗)2 > 0, namely 0 ≤ ρ∗ < 1. Therefore, a

combined condition for the two scenarios is simply ρ∗ < 1, or cos(θ) > 3µ1−1
1+µ1

. Thus, the argument

of the cosine must satisfies θ ∈ (−υ, υ), where υ = arccos(3µ1−1
1+µ1

), with 1
3 ≤ |

3µ1−1
1+µ1

| < 1, since
1
2 ≤ µ1 < 1. This is the domain where we have a contractivity factor for all ρ.

The second case is when the parabola h(ρ) has two positive roots. In this case we have a non-

negative discriminant, that is (γ(1−cos(θ))−cos(θ))2−1 ≥ 0, or equivalently γ(1−cos(θ))−cos(θ) ≥
1 (the case γ(1 − cos(θ)) − cos(θ) ≤ −1 was already treated above, since in this case ρ∗ < 0).
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The equality corresponds to the case θ = ±υ namely to a vanishing discriminant. In this case

h(ρ) = (ρ − 1)2 and (27) holds for ρ 6= 1. Otherwise, we have contractivity when ρ is bigger

than the large root or smaller than the small root of h(ρ). The roots are curves, parameterized by

φ ∈ (υ, 2π − υ), as appears in the statement of the theorem.
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