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Abstract 

We present an interval-based approach for parameter identification in structural static problems. The 

proposed inverse formulation models uncertainties in measurement data as intervals, and exploits the 

Interval Finite Element Method (IFEM) combined with adjoint-based optimization. The inversion 

consists of a two-step algorithm: first, an estimate of the parameters is obtained by means of a 

deterministic iterative solver. Then, the algorithm switches to the interval extension of the previous 

solver, using the deterministic estimate of the parameters as an initial guess. Various numerical 

examples show that the proposed method provides guaranteed interval enclosures of the parameters, 

and it always contains Monte Carlo predictions. 

Keywords: Parameter identification, Inverse problem, Interval, Finite element method.  

1 Introduction 

Parameter identification aims at estimating modal parameters of a physical system from available 

measurements of the system response. It belongs to the class of inverse problems (e.g. Hansen, 2010; 

Ramm, 2005; Santamarina and Fratta, 2005). For example, wave tomography is used in geophysics 

for seismic waveform inversion (Fichtner, 2010); in biomedical engineering, optical tomography is 

used to detect breast cancer tissue via fluorescence (Fedele, et al. 2002; Eppstein, et al. 2003); in civil 

engineering, inversion techniques are used for structural health monitoring or damage detection in 

safety evaluation (Chang, et al. 2003; Glaser, et al. 2007). In the abovementioned problems, the 

system response is predicted based on initial guessed modal parameters, and it is then compared with 

the actual measurement data. Then, iterative corrections of the modal parameters lead to a solution, 

which minimizes the difference between the predicted system response and measurement data in a 

least-square sense. 

Inevitably, data contain errors caused by measurement devices or unfriendly environmental 

conditions during data acquisition. Such uncertainties can be modeled using probability theory (e.g. 

Akashi, et al. 1979; Stull, et al. 2011; Wang, et al. 2011). For example, Kalman filtering (see Kalman, 

1960; Brown and Hwang, 1992; Simon, 2006) provides error estimates on the modal parameters based 
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on noisy measurements of the response of a time-evolving system (e.g. Xie and Feng, 2012). Clearly, 

probability approaches have their limitations, since they require a prior assumption on the nature of 

the uncertainty, which is usually modeled as a random Gaussian variable. However, such an 

assumption is too optimistic or not realistic. In practice, there are often not enough measurements to 

reliably assess the statistical nature of the associated uncertainties. Instead, we only know bounds on 

the uncertain variable and some partial information about its probabilities. In this setting, non-

probability theories such as fuzzy sets (Haag, et al. 2010; Erdogan and Bakir, 2013), evidence theory 

(Jiang, et al. 2013) and intervals (Khodaparast, et al. 2011; Du, et al. 2014) are useful for modeling 

uncertainties.  

In this work, we exploit the Interval Finite Element Method (IFEM) (Rama Rao, et al. 2011; 

Muhanna et al. 2007) combined with adjoint-based optimization (Fedele, et al. 2002; Eppstein, et al. 

2003) to provide a new algorithm that guarantees interval enclosure of the modal parameters from 

inversion of noisy measurements modeled as intervals.  

The paper is organized as follows. First, IFEM is briefly reviewed and new decomposition 

strategies are presented to limit overestimation due to multiple occurrences of the same variable in the 

IFEM matrix equations. Then, the deterministic inverse algorithm is formulated using adjoint-based 

methods. The extension of the algorithm to intervals is then presented. Finally, several numerical 

examples are discussed to validate the performance of the proposed method. 

2 Interval Finite Element Method 

Interval Finite Element Method (IFEM) uses intervals to describe uncertain variables and follow the 

general procedure of conventional Finite Element Method (FEM). Intervals are extension of real 

numbers. Instead of representing one single point in the real axis, an interval denotes set of real 

numbers, which are most suitably described by its endpoints, 

    ,,|,  xxxxxxxx  (1.) 

where x denotes the interval, xx  and  denote its lower and upper bounds, respectively, and bold 

symbols denote interval quantities. Alternatively, an interval can be represented by its midpoint 

  2mid xxx   and radius   02rad  xxx . The width of an interval is defined as 

  radwid 2xxxx  . Intervals with non-zero midpoint values can be brought into the form of 

 xx δx  1mid , where δx has a zero midpoint. The width of δx in percentage is usually referred to as 

the uncertainty level of x. For a detailed discussion on interval arithmetic and extensions to interval 

matrices and functions, we refer to (Alefeld and Herzberger, 1983; Kulisch and Miranker, 1981; 

Moore et al. 2009). 

Overestimation due to dependency is the curse in any implementation of interval arithmetic (see 

Muhanna and Zhang, 2007; Muhanna, et al. 2007). In order to reduce it, we propose a new 

decomposition strategy for the stiffness matrix K and the nodal equivalent load f of a structural system 

governed by the equilibrium condition Ku = f. Here, K and f are decomposed as 

   ,,diag δfαK MAA T   (2.) 
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where A, Λ and M are scalar matrices; α and δ are interval vectors containing all the uncertainties in 

the system; and diag(v) maps a vector v into a diagonal matrix, whose diagonal is v. In this way, we 

separate deterministic and uncertain terms, and multiple occurrences of the same variable are avoided. 

In practice, the decomposition in Eq. (2.) is done in two steps. In the first step, the element stiffness 

matrix Ke and the element nodal equivalent load fe are decomposed into Ae, Λe, Me, αe and δe using Eq. 

(2) in the local reference system. In the second step, Ae, Λe and Me are assembled into A, Λ and M in 

the global reference system. 

In particular, for an element with uncertain material properties 

 ,  dBB ee
T
ee EK  (3.) 

where the integration domain Ω is the entire element, Be is the scalar strain-displacement matrix at 

arbitrary locations inside the element, and Ee is the interval constitutive matrix, which is function of 

material uncertainties. To reduce overestimation due to dependency, Ke is decomposed as  

   ,diag T
eeeee AA αK   (4.) 

where Ae, Λe are scalar matrices, and the interval vector αe contains all the uncertainties of the element. 

From Eq. (3), numerical integration yields 
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where m is the number of integration points used, ξi and wi are respectively the coordinates and 

weights of the integration points, and J is the determinant of the Jacobian. The scalar matrices Ae, Λe 

and the interval vector αe in Eq. (4.) are given by 
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where E(ξi) denote interval Young’s modulus at the i-th integration point. Further, Φe and φe are 

obtained from the interval constitutive matrix, which is decomposed as 

      . diag T
eieeie   EE  (7.) 

The decomposition of the element nodal equivalent load fe is done exploiting the M-δ method 

(Mullen and Muhanna, 1999). Here, fe = Meδe, or equivalently 

         .   




 dNN d
T

n

i

ici
T

e  fff  (8.) 

where n is the number of concentrated loads acting on the element, N(ξ) is the displacement 

interpolation matrix for the element, fc(ξi) are the concentrated loads under consideration, Ω is the 
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integration domain in which the distributed load fd(ξ) is non-zero. 

A further simplification can be obtained by rewriting fc(ξ) = Lc(ξ)δe and fd(ξ) = Ld(ξ)δe as 

function of the interval vector δe, where Lc(ξ) and Ld(ξ) are scalar matrices. Then from Eq. (8) 
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Here, Me is the matrix within braces, which depends on the displacement interpolation matrix N(ξ) and 

load distribution functions Lc(ξ) and Ld(ξ). 

The global K and f follow from the conventional assembly strategy (Cook, et al. 2007), i.e. 

 .,  
e

e
T
e

e
ee

T
e TTT ffKK  (10.) 

where Te is the matrix in the transformation ue = Teu between the global and local nodal displacement 

vector u and ue. Note that Ke, fe and Te are not necessarily the same for each element. By inserting 

  T
eeeee AA αK  diag  of Eq. (4.) into Eq. (10.), the decomposition rule for K follows as 
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 (11.) 

Here, the vector αe lists the uncertain interpolated Young’s modulus at the element integration points, 

and it relates to the system parameter vector α via αe = Lαα. Comparing terms in Eqs. (2.) and (11.) 

yields the assembly rules for A and Λ 
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Again, note that Ae, Λe and Lα are not necessarily the same for each element. Similarly, the 

decomposition rule for f and the assembly rule for M follow by introducing fe = Meδe into Eq. (10.) 

and setting δe = Lδδ, that is 
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The resulting stiffness matrix K in Eq. (10.) is still singular, as essential boundary conditions 

have not been applied yet. To eliminate the singularity, u must satisfy the additional constraint Cu = 0, 

with C denoting a constraint matrix (Rama Rao, et al. 2011). Each row of C states one constraint, and 

the corresponding entry is set equal to 1, leaving the rest of the row null. Then the equilibrium 

equation follows from setting to zero the first variation of the energy functional Π of the structure 

  , uλfuKuuΠ CTTT 



  (14.) 

that is  
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 (15.) 

where the Lagrangian multiplier λ enforces Cu = 0. If K is composed of degenerated intervals 

(intervals with zero width), we can establish a direct relationship between u and f by inverting the 

generalized stiffness matrix in Eq. (15.), that is 
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0
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1 1

2 21 2
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fKfGu
GG

GGK 



















 TT

C

C  (16.) 

In other words, we find the inverse of K under the constraint Cu = 0 and K
-1

 = G11. 

3 Deterministic Inverse Solver 

Given an interval load uncertainty vector δ and a measurement vector ũ, a deterministic solution of 

the modal parameters α is sought using midpoint values of δ and ũ, and all interval quantities are 

replaced with their midpoint values. Drawing from Fedele, et al. (2014), the algorithm is derived using 

adjoint based optimization and it exploits conjugate gradient type methods to find optimal estimates of 

the unknown parameters. 

Assume measurements ũ are collected at sampling points on the structure and given in terms of 

the nodal displacement vector u, viz. ũ = Hu. The proposed inverse solver aims at minimizing the 

difference between the predicted response Hu and the actual measurements vector ũ, under the 

equilibrium constraint Ku = f. To do so, define the objective functional 

         ,~~  RfKuwuHuSuHu TTT









  (17.) 

where S is a diagonal matrix defining the weight for each measurement, w is the Lagrangian multiplier 

to enforce equilibrium (Fedele, et al. 2014) and the last term provides regularization for the problem if 

necessary (e.g. Hansen, 2010). Here, γ is the regularizer weight and R is the finite-difference matrix 

associated with second-order differentiation (e.g. Hansen, 2010; Santamarina and Fratta, 2005).  

From the decomposition in Eqs. (2) and (17), the first variation of Γ 
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where a ◦ b denotes the element-by-element (Hadamard) product of two vectors a and b. To obtain Eq. 

(19) from Eq. (18), we have exploited the matrix symmetry [see Eq. (2)] 

   ,diag TT AAKK   (20.) 

and the chain of identities 

      .diag uAwAuAAwuAAw TTTTTTTT     (21.) 

The three equations in Eq. (19.) can be interpreted as: i) equilibrium condition of the original system 

with equivalent load f, ii) equilibrium condition for the adjoint system with equivalent load B
T
S(ũ – 

Bu), and iii) optimal condition that the gradient g of Γ with respect to α is zero at the solution point. 

The first two equations in Eq. (19), viz. the equilibrium conditions for the original and adjoint 

systems, can be recast in block form 
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where the decomposition f = Mδ is used. The unknown vectors u and w follow as  
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The corresponding objective functional Γ and its gradient g with respect to α , viz. third equation in Eq. 

(19), can be expressed in terms of u, w and α respectively as 
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The conjugate gradient method (Andrei, 2009; Yu, et al. 2009; Zhang and Li, 2011) is then exploited 

to iteratively solve for Eq. (19.). We start from a random initial guess α1 and a descending direction d1 

along which Γ decreases. A natural choice for d1 is the opposite gradient direction, d1 = –g1. At the i-th 

step, the modal parameter α is updated as 
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 ,1 iiii ds   (25.) 

where si is the step size. Here the inexact line search method is used to find an acceptable si along the 

descending direction di. This should be large enough to yield a significant decrease in Γ, while not too 

large to deviate too far from the optimal point. In the proposed method, we adopt the weak Wolfe 

criterion (Shi and Shen, 2004; Han, et al. 2010) 
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    ,  (26.) 

where 10  ul  . In the next iteration step, the descending direction di+1 is determined by the 

following iterative rule 

 ,11 iiii dgd    (27.) 

where the parameter θi can be chosen in various ways. Popular choices for θi include (Hestenes and 

Stiefel, 1952; Fletcher and Reeves, 1964; Polak and Ribière, 1969; Polyak, 1969) 
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  Polak-Ribière-Polyak  

(28.) 

The algorithm stops when the gradient g and the update on α are both small enough, that is 

 ,    , 111    ggiiii  (29.) 

where τ is the error tolerance. Hereafter, we will adopt the Polak-Ribière-Polyak rule.  

4 Interval Inverse Solver 

The interval algorithm consists of two steps. In the first step, deterministic solutions u0, w0 and α0 are 

obtained using the deterministic inverse solver described in the previous section. In the second step, 

these solutions are used as initial guesses for an interval-based inverse solver, generalization of the 

deterministic one to intervals. This is formulated drawing from Fedele et al. (2014). In particular, 

given an interval load uncertainty vector δ and measurements ũ, the unknown interval u, w and α 

satisfy the interval extension of Eq. (19), that is 
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where K(α) emphasizes the dependence on the unknown parameter α. In order to solve for Eq. (30.), 
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define δ0 and ũ0 as the midpoint values of δ and ũ, respectively. Then δ0, ũ0, u0, w0 and α0 satisfy the 

optimality conditions in Eq. (19.). Now, introduce the auxiliary variables 

 ααwwuuuuδδ  00000 ,,,~~~,  wuu
 

(31.) 

to represent deviations of the reference solutions from the corresponding interval vectors. Then, the 

following equalities hold 
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These together with  

     αuuαKu  TT AAAA diagdiag  (33.) 

are used repeatedly in order to rewrite Eq. (30.) in the following form 
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(34.) 

where subscripts 0 denote matrices related to u0, w0 and α0. In particular, 

     .diag    ,diag 0000
TTT

w
TTT

u AwACAuAC   (35.) 

Eq. (34) can be written in the compact form 

  , h
T
hhhhhh AAMK uΘδu   (36.) 

which emphasizes the direct relationship between uncertainties of the given data Δδ, Δũ and those of 

the unknown vectors Δu, Δw, Δα. Here, Kh, Mh, Ah are known scalar matrices, and Δuh depends upon 

the unknown interval vectors Δu, Δw and Δα. Further, Δδh depends upon the known interval vectors 

Δδ and Δũ. h
T
hA u  is composed of the secondary unknown vectors A

T
Δu, A

T
Δw and ΛΔα. The 

functional ( ) in Eq. (34) maps h
T
hA u  into the following interval vector 
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(37.) 

If the square matrix Kh is invertible, Eq. (36.) can be recast into the following fixed-point form 
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      . h
T
hhhhhhh AAKMK uΘδu    (38.) 

which is solvable by a new variant of the Neumaier and Pownuk’s (2007) method. In particular, we 

introduce auxiliary variable h
T
hh A uv   and the corresponding fixed-point equation follows from Eq. 

(38) as 

      . hhh
T
hhhh

T
hh

T
hh AKAMKAA vΘδuv

   (39.) 

From this, the following iterative scheme is proposed to find a guaranteed enclosure for vh. The 

iteration starts from the trivial initial guess   hhh
T
hh MKA δv  11

 and proceeds in accord with 

        ,     i
h

i
hhh

T
hhhh

T
h

i
h AKAMKA vvΘδv    (40.) 

where   denotes interval hull of two intervals, and superscripts of vh denote iteration steps. The 

iteration stops when there is no change in vh in two consecutive steps, and the converged result is 

denoted by 
*
hv . This is an outer solution for the exact fixed-point vh in Eq. (39.), due to the isotonic 

inclusion of interval operations (Moore, et al. 2007). An outer solution for Δuh is obtained by 

substituting h
T
hA u  in Eq. (38.) with 

*
hv . Then the final interval enclosures u, w and α are obtained 

by subtracting Δu, Δw and Δα (i.e. Δuh) from u0, w0 and α0 respectively. To further reduce 

overestimation, the scalar matrices hh MK 1
, hh AK 1

 in Eq. (38.) and hh
T
h MKA 1

, hh
T
h AKA 1

 in Eq. (39.) 

are calculated before multiplication with the interval vectors Δδh and (vh). 

5 Interval-Based Parameter Identification 

In summary, the flowchart of the proposed two-step interval-based inverse algorithm is given in 

Figure 1. Assume that a finite element model for the structure under study is given. First, we use the 

deterministic inverse solver introduced in section 3 to estimate a scalar or degenerated interval 

solution for the unknown parameters. In the second step, the deterministic estimate is used as an initial 

guess for the interval-based inverse solver defined in section 4. The numerical experiments discussed 

later on provide strong evidence that the proposed two-step algorithm gives guaranteed interval 

enclosures of the exact parameters. 

Note that the scalar matrices A, Λ and M are assembled from their element counterparts Ae, Λe 

and Me, and the constraint matrix C accounts for essential boundary conditions. The interval load 

uncertainty vector δ and the measurement vector ũ are then determined. Note that ũ guarantees to 

enclose the exact system response, and it is corrupted with random noise. In particular, to simulate 

realistic conditions, ũ is computed as follows: 

1. Use a structural FEM model (not necessarily that used in the inversion) to generate the exact 

measurement data ũexact. 

2. The interval vector ũexact is set with midpoint value ũexact and radius equal to the device 

tolerance δ. 

3. An ensemble of perturbed measurements ũi are generated by adding random noise to ũexact. 

The random noise is chosen smaller than the tolerance δ so that ũi  ũexact. 

4. Perturbed interval measurement vectors ũi are generated using ũi as midpoint and device 
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tolerance δ as radius. ũi guarantees to contain ũexact, i.e. ũexact  ũi. 

5. The measurement vector ũ is obtained as the intersection of all the ũi in the ensemble. As a 

result, ũ contains a random perturbation and it still guarantees to contain ũexact, i.e. ũexact  ũ. 

 Deterministic adjoint 

inverse solver 
Interval adjoint 

inverse solver Finite element modeling 

Yes 

Update α as 
in Eq. (25) 

No 

 

Compute K, as in Eq. (2), and 
its inverse K

-1
, as in Eq. (16) 

Compute gradient 
g, as in Eq. (24) 

Solve the original and 
adjoint systems for u 
and w, as in Eq. (23) 

Make an initial 
guess for α 

Update d, as in Eq. (27) 
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Eq. (26) satisfied? 

Eq. (29) satisfied? 
No 

 

No 

Save u, w, α as u0, w0, α0 
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i
h

i
h vv 1 ? 
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1i

hv  
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  hhh

T
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STOP 

Compute hh MK 1
, hh AK 1

 
and hh

T
h MKA 1 , hh

T
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Compute Cu0, Cw0, K0 and 
form matrices Kh, Mh, Ah, 
as in Eqs. (34) and (36) 

Read the input file 

Compute Ae, Λe, Me and 
δe for each element, as 
in Eq. (6) and Eq. (9) 

Assemble Ae, Λe and 
Me into A, Λ and M, as 
in Eq. (12) and Eq. (13) 

Determine load 
uncertainty δ and 
measurements ũ 

Form constraint 
matrix C and γ, R 
for the regularizer 

 

 

Figure 1. Flowchart for interval-based parameter identification. 

In the deterministic solver, to illustrate the robustness of the proposed algorithm, the initial guess 

is set as E = 60 GPa for a structure made of copper, and E = 160 GPa for steel for all elements. Then 

the gradient g in Eq. (24) at the current iteration is computed from the solution vectors u and w of the 

original and adjoint systems [see Eq. (23)]. Further, we use the weak Wolfe criterion for the inexact 

line search, setting τl = 1/4 and τu = 1/2 in Eq. (26.). The Polak-Ribière-Polyak rule in Eq. (28.) is used 

for the update of the descending directions. In the stopping criterion (29.), the error tolerance τ is set 

equal to 1×10
-10

 under all circumstances. 

In the interval solver, before starting the iteration, we first compute the matrices Cu0, Cw0, K0 in 

Eq. (34). Then we compute the block matrices Kh, Mh, Ah in Eq. (36), and hh MK 1
, hh AK 1

, 

hh
T
h MKA 1

, hh
T
h AKA 1

 are computed in advance to solve for hh vu  an d   in Eqs. (38) and (39), 

respectively. As Kh, Mh, Ah contain a significant number of null-entries, it is more efficient to perform 

the matrix multiplications and matrix inversions block-by-block. Then the modified version in Eq. (40) 

of the iterative enclosure method (Newmaier and Pownuk, 2007) is used to compute an enclosure of 

the unknown parameters 
*
hv  from the trivial initial guess   hhh

T
hh MKA δv  11

. 

6 Numerical Benchmark Problems 

The proposed interval inverse algorithm is coded in INTLAB (Rump, 1999), which is an interval 
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arithmetic extension package developed for the MATLAB environment. To test the performance of the 

method, we consider parameter identification of the Young’s moduli of i) a fixed-end bar, ii) a truss, iii) 

a simply supported beam, and iv) a planar frame. Our numerical results show that the proposed 

method is able to provide a guaranteed interval enclosure of the exact parameters. 

  

P 

B C 

L, A 
 

Figure 2. A fixed-end bar subject to concentrated traction at the other end. 

6.1 Fixed-end bar 

Consider a straight bar of length L = 5 m, as shown in Figure 2. The pin-roller bar is subject to 

concentrated force P = 100 kN at one end C. The cross section of the bar is uniform, with an area A = 

0.005 m
2
. Only axial deformations are allowed, and the bar is modeled by 10 equal-length planar truss 

elements with uniform material properties. For each element, 

     GPa,   cossin LxLxE   (41.) 

where x is the coordinate of element centroid, and the values of E are given up to four significant 

digits. The same 10-element model is also used to generate measurement data. Axial displacements at 

10 equally distributed nodes along the bar are collected into the exact measurement vector ũexact. The 

interval measurement vector ũ is obtained from 3 sets of perturbed measurements ũi with device 

tolerance ±2×10
-6

 m. The results are listed in Table 1.Note that ũ contains ũexact, and uncertainties in ũ 

range from 0.1% to 2%. 

Table 1. Exact and perturbed measurement data for the fixed-end bar of Figure 2. The device tolerance is the same for 

all measurements, ±2×10-6 m, and 3 sets of perturbed measurements are sampled to define the perturbed data. 

Node # 
ũexact 

(10-3 m) 

ũ (10-3 m) Difference (10-3 m) Uncertainty (%) 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

1 0.09091  0.09042  0.09226  -0.00049  0.00135  -0.534  1.482  

2 0.17281  0.17202  0.17570  -0.00079  0.00289  -0.458  1.671  

3 0.24991  0.24789  0.25020  -0.00202  0.00029  -0.809  0.118  

4 0.33208  0.33197  0.33265  -0.00011  0.00057  -0.032  0.171  

5 0.41980  0.41975  0.42022  -0.00005  0.00042  -0.012  0.102  

6 0.50713  0.50554  0.50771  -0.00159  0.00058  -0.315  0.114  

7 0.59813  0.59800  0.60031  -0.00013  0.00218  -0.021  0.365  

8 0.69694  0.69638  0.69975  -0.00056  0.00281  -0.080  0.403  

9 0.79119  0.79014  0.79157  -0.00105  0.00038  -0.133  0.048  

10 0.87466  0.87357  0.87555  -0.00109  0.00089  -0.125  0.101  

        
 



 

12 

This problem has 10 measurements and 10 unknown element Young’s moduli Ei, and it has an 

analytical solution. Since the bar is statically determined, axial forces in each element equal to the 

concentrated traction P at the free end. Then Ei depends upon the displacements ui, ui-1 of the 

neighboring nodes, viz. 
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(42.) 

where N = P = 100 kN is the axial force, A is the cross section area, Le = L/10 is the element length, 

and u0 = 0 accounts for the boundary condition at the hinged end. 

The problem is well-posed, so no regularization is required. The initial guess E = 60 GPa for all 

the elements. We needed 60 iterations to reach convergence in the deterministic stage, and 12 

iterations in the interval stage. The estimated and exact solutions are plotted in Figure 3. Here, the 

lower and upper bounds of the estimated solution are the dashed lines with triangular markers, and the 

exact solution is the solid line with rectangular markers. As one can see, the exact values of the Young 

Moduli are contained by the interval bounds. 

 

Figure 3. Interval-based identification of Young’s moduli of the fixed-end bar of Figure 2: exact values (solid lines with 

squares) and interval solution (dashed lines with triangles), which is indistinguishable from the Monte Carlo predictions 

from an ensemble of 10,000 simulations (measurement uncertainty level 0.1-2%). 

Table 2 compares the numerical solution EN from the proposed method against the analytical 

solution EA from Eq. (42.). The upper bounds of the two solutions are identical, while the lower 

bounds of EN are always smaller than the lower bounds of EA. In other words, EN guarantees to 

enclose EA. Exact Young’s moduli and relative differences (EN – EA)/EA×100% for the lower and upper 

bounds of the two interval solutions are also included in the table.  

Note that the row of hh MK 1
 corresponding to Young’s modulus Ei of the i-th element has all of 

the entries close to zero, except those at columns corresponding to the measurements ui and ui-1 at the 

neighboring nodes. In addition, the two entries have similar magnitude and opposite sign. This is in 

agreement with the analytical solution given in Eq. (42.), that is: the modulus Ei of the i-th element is 

only a function of ui and ui-1.  



 

13 

Table 2. Exact Young’s moduli and predicted values for the fixed-end bar of Figure 2. Relative differences (EN – 

EA)/EA×100% for the lower and upper bounds of the two interval solutions are also listed. 

Element # 
Exact 
(GPa) 

EN (GPa) EA (GPa) Relative Diff. (%) 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

Lower 

Bound 

Upper 

Bound 

1 110.0 108.37  110.59  108.39  110.59  -0.020  0.000 

2 122.1 117.00  125.37  117.27  125.37  -0.231  0.000 

3 129.7 127.48  138.52  127.90  138.52  -0.332  0.000 

4 121.7 117.91  122.30  117.98  122.30  -0.066  0.000 

5 114.0 113.30  114.80  113.31  114.80  -0.009  0.000 

6 114.5 113.63  117.22  113.68  117.22  -0.048  0.000 

7 109.9 105.39  110.75  105.52  110.75  -0.120  0.000 

8 101.2 98.12  104.08  98.28  104.08  -0.169  0.000 

9 106.1 104.91  110.63  105.05  110.63  -0.137  0.000 

10 119.8 116.99  121.95  117.09  121.95  -0.085  0.000 
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Figure 4. A simply-supported truss subject to concentrated loads. 

6.2 Simply-supported truss 

The second example is a simply supported truss composed of 15 bars, subject to concentrated loads, as 

shown in Figure 4. Nodes of the truss are labeled from 1 to 9, and the bars are labeled from 1 to 15. 

Horizontal load 60 kN is applied at node 2, vertical load 100 kN at node 3, horizontal load 30 kN and 

vertical load 100 kN at node 6. The bars have uniform cross sections with area A = 0.005 m
2
. Each bar 

is modeled by one planar truss element with constant material property, and the corresponding 

Young’s modulus is listed in the second column of Table 4. Here we assume that bar 3 and 13 are 

damaged, and their effective Young’s moduli are 80 GPa and 60 GPa, respectively. 

The same finite element model is used to compute the exact measurement data. To illustrate the 

performance of the current method under different forms of measurements, nodal displacements of 

bottom nodes 2 to 5, as well as strains of medium-height bars 5 to 12, are measured. The device 

tolerance is ±1×10
-5

 m for nodal displacement measurements, and ±1×10
-6

 for strain measurements. 

The measurement vector ũ is obtained from 3 sets of perturbed ũi, and the results are shown in Table 3. 
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The uncertainties in ũ range from 0.06% to 2%, approximately. 

Table 3. Exact and perturbed measurements for the simply-supported truss of Figure 4. The device tolerance is ±1×10-5 

m for nodal displacements, and ±1×10-6 for strains. 3 sets of perturbed measurements are sampled to yield the perturbed 

data. 

 
Exact 

(10-3 m) 

Perturbed data (10-3 m) 

 
Exact 
(10-4) 

Perturbed data (10-4) 

Lower 

Bound 

Uncert

ainty 

(%) 

Upper 

Bound 

Uncert

ainty 

(%) 

Lower 

Bound 

Uncerta

inty 

(%) 

Upper 

Bound 

Uncert

ainty 

(%) 

u2 0.7557 0.7532 -0.321 0.7586 0.382 ε5 -2.3246 -2.3306 -0.256 -2.3210 0.155 

v2 -5.1714 -5.1732 -0.036 -5.1591 0.238 ε6 -0.6822 -0.6827 -0.078 -0.6674 2.161 

u3 1.3922 1.3871 -0.369 1.4021 0.711 ε7 0.9664 0.9661 -0.025 0.9777 1.167 

v3 -7.6368 -7.6393 -0.032 -7.6349 0.025 ε8 1.0388 1.0309 -0.769 1.0456 0.648 

u4 2.8297 2.8141 -0.551 2.8310 0.047 ε9 1.1427 1.1387 -0.346 1.1457 0.265 

v4 -4.3003 -4.3045 -0.097 -4.2914 0.208 ε10 1.1028 1.1000 -0.253 1.1043 0.133 

u5 3.2930 3.2924 -0.019 3.3089 0.482 ε11 -1.4241 -1.4354 -0.795 -1.4213 0.199 

      ε12 -1.3736 -1.3748 -0.088 -1.3591 1.058 

            
 

This problem has 15 measurement and 15 unknowns. It is well-posed and no regularizer is 

needed. The initial guess E = 60 GPa is used. 465 iterations are run in the deterministic stage, and 12 

iterations in the interval stage. In Table 4 and Figure 5, the obtained interval solution (IS) is compared 

against the exact solution (ES) and Monte Carlo (MC) predictions based on an ensemble of 10,000 

simulations. In each simulation k, a random measurement vector ũk is chosen within the interval 

bounds of ũ, i.e. ũk  ũ. The corresponding solution αk is obtained from the deterministic inverse 

solver formulated in section 3, and the Monte Carlo solution αMC is given by the minimum and 

maximum values of all αk in the ensemble, that is αMC = [mink αk, maxk αk].  

 

Figure 5. Interval-based identification of Young’s moduli of a simply-supported truss of Figure 4: short bars with 

circular markers denote the exact values; the long bars denote interval prediction from the proposed method; median-

length bars with circles denote Monte Carlo predictions from an ensemble of 10,000 simulations. 
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Clearly, both IS and MC predictions enclose the exact values of the Young’s moduli, and IS 

contains MC. It is observed that the interval enclosures of IS are very tight for elements 5 to 12, and 

very wide for elements 13 to 15. This can be explained as follows: The structure in Figure 4 is 

statically determined, and the estimate of the Young’s modulus Ei (i = 1,…,15) is directly related to 

the element axial strain εi. In particular, for the elements 5 to 12, the axial strains εi (i = 5,…,12) are 

directly measured. Thus the corresponding uncertainty level in Young’s moduli Ei (i = 5,…,12) is 

relatively small. For elements 1 to 4, the axial strains εi (i = 1,…,4) are indirectly obtained from 

measured nodal displacements of the neighboring nodes, εi = (ui+1 – ui)/Le, where Le is the element 

length and u1 = 0 accounts for the boundary condition. Because of the interval subtraction, the 

uncertainty level in Ei (i = 1,…,4) is larger. For elements 13 to 15, the axial strains εi (i = 13, 14, 15) 

are indirectly related to multiple components of the measurement data. As an example, consider 

element 13. By checking entries of hh MK 1
 in Eq. (38), E13 is related to the nodal displacements u2, v2, 

u3, and v2, as well as the axial strains ε5, ε6, ε9, ε10. As a result, the uncertainty level in Ei (i = 13, 14, 

15) is the largest. 

Table 4. Exact and predicted Young’s modulus for the simply-supported truss of Figure 4. Relative error of the interval 

solutions from the proposed method and Monte Carlo predictions from an ensemble of 10,000 simulations. 

Element # 
Exact 
(GPa) 

Proposed method (GPa) Monte Carlo method (GPa) 

Lower 

Bound 

Uncertain

ty (%) 

Upper 

Bound 

Uncertai

nty (%) 

Lower 

Bound 

Uncertai

nty (%) 

Upper 

Bound 

Uncertai

nty (%) 

1 119.1 118.64 -0.383 119.48 0.322 118.65 -0.381 119.48 0.322 

2 113.9 111.68 -1.949 115.35 1.277 111.75 -1.884 115.33 1.257 

3 80.0 79.62 -0.474 81.44 1.804 79.66 -0.431 81.42 1.780 

4 124.1 115.92 -6.593 124.63 0.425 116.24 -6.333 124.59 0.392 

5 122.6 122.29 -0.256 122.79 0.156 122.29 -0.255 122.79 0.156 

6 124.6 124.47 -0.105 127.35 2.210 124.50 -0.077 127.35 2.208 

7 119.0 117.62 -1.163 119.03 0.027 117.63 -1.153 119.03 0.025 

8 110.7 109.97 -0.655 111.56 0.776 109.99 -0.642 111.56 0.775 

9 105.2 104.92 -0.267 105.57 0.348 104.92 -0.265 105.57 0.347 

10 109.0 108.85 -0.136 109.28 0.255 108.85 -0.133 109.28 0.253 

11 114.2 113.29 -0.796 114.43 0.202 113.30 -0.788 114.43 0.199 

12 118.4 118.29 -0.096 119.67 1.071 118.30 -0.087 119.67 1.069 

13 60.0 58.84 -1.931 62.89 4.818 59.24 -1.272 62.51 4.178 

14 113.5 106.16 -6.466 117.56 3.578 108.15 -4.710 115.57 1.823 

15 111.7 99.72 -10.726 126.23 13.011 104.88 -6.107 122.14 9.349 

          

 
q 

B C 

L, A, I 
 

Figure 6. A simply-supported beam subject to uniformly distributed vertical load. 
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6.3 Simply-supported beam 

The third example is a simply-supported beam subject to uniformly distributed vertical load q = 100 

kN/m, as shown in Figure 6. The beam has a length L = 2 m, and a 5 cm×3 cm rectangular cross 

section (cross section area A = 0.015 m
2
 and moment of inertia I = 1.125×10

-4
 m

4
). The beam is 

subject to lateral deformation, and 20 two-node Euler-Bernoulli beam elements are used in the finite 

element mesh. The stiffness matrix is computed using the three-node Gaussian quadrature rule. In 

order to generated a continuous material field, Young’s moduli at the quadrature nodes are linearly 

interpolated from those at the nodal values  

     GPa,   13cos56sin10220 LxLxE   (43.) 

where x is the nodal coordinate, and the values are given up to four significant digits. The parameter 

vector α has 21 components, one for each mesh node. 

In the first case, a finer 80-element finite element model is used to generate the measurement data. 

Young’s moduli are linearly interpolated from the abovementioned 21-node material mesh. Further, 9 

lateral deflections at equidistant points along the beam are collected as measurements. The 

measurement vector ũ, which has 9 components, is obtained from 3 sets of perturbed data ũi with 

device tolerance ±2×10
-6

 m. The resulting ũ has uncertainties ranging from 0.1% to 1%, and contains 

the exact measurement data. 

 

 

Figure 7. Interval-based identification of the Young’s moduli of the simply-supported beam of Figure 6 under uniformly 

distributed load: interval solution (IS), exact solution (ES) and Monte Carlo (MC) prediction from an ensemble of 

10,000 simulations (measurement uncertainty level 0.1-1%). 

The problem is ill-posed, since only 9 measurements are available to estimate 21 unknown 

parameters. This requires regularization. The regularizer weight γ should be chosen with caution: it 

has to be large enough to avoid useless estimate or even divergence with unbounded intervals, but not 

that large, otherwise the solution will be over-smoothen (Hansen, 2010). Here, we use a second-order 

regularization matrix R and γ = 1×10
-3

. For the proposed method, the initial guess E = 160 GPa for all 
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elements. Convergence is attained in 289 and 37 iterations in the deterministic and interval stages, 

respectively. The interval estimates are compared against the exact Young’s modulus from Eq. (43.) 

and Monte Carlo prediction from an ensemble of 10,000 simulations. Figure 7 shows the exact 

solution (ES, solid lines with rectangular markers), the interval solution (IS, dotted lines with 

triangular markers) and the Monte Carlo prediction (MC, dashed lines with diamond markers). 

Observe that IS indicates a high level of uncertainty near both ends, especially near the right end, 

which is attributed to the relatively small bending moment near the ends. In addition, both IS and MC 

guarantees to enclose ES everywhere, and IS contains MC.  

 

 

Figure 8. Interval-based identification of Young’s moduli of the simply-supported beam of Figure 6 under uniformly 

distributed load and bending moments at both ends: interval solution (IS), exact solution (ES) and Monte Carlo (MC) 

prediction from an ensemble of 10,000 simulations (measurement uncertainty level 0.1-1%). 

In the second case, two opposing bending moments M = 50 kN∙m are added to the ends B and C, 

in order to create a more uniform bending moment diagram for the beam. In addition, rotation angles 

θB and θC at both ends are measured. The device tolerance is now ±5×10
-6

 m for deflections and 

±2×10
-5

 rad for θB and θC. As a result, the level of uncertainty in ũ ranges from 0.1% to 1%, roughly 

the same as in the first case. IS and MC predictions are compared against the exact values ES in 

Figure 8. Note that the level of uncertainty at the ends is reduced significantly. This is due to the 

additional bending moments at the ends and extra measurements θB and θC. Indeed, the maximum 

level of uncertainty at the ends is approximately 13% on the left and 23% on the right. In the previous 

case of Figure 7 the uncertainty levels increase to approximately 25% on the left and 56% on the right. 

Near the mid-span, the level of uncertainty is slightly reduced from about 8% in Figure 7 to about 5% 

in Figure 8.  

Finally, we point out that interval solutions guarantee to enclose all possible predictions 

associated with different probabilistic distributions of the measurements, either symmetrical or not 

(see Figure 9).  
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Figure 9. Comparison between the interval solution and Monte Carlo prediction of the Young’s modulus E9 of the 

simply-supported beam of Figure 6 from an ensemble of 10,000 simulations: (left) observed probability density 

function (PDF) of axial displacement measurements u6 sampled from (a) uniform, (b) triangular, (c) truncated 

exponential and (d) truncated Rayleigh probability distributions (interval endpoints denoted by circular markers); (right) 

corresponding observed PDF of the Young modulus E9, interval solution (endpoints denoted by circular markers) and 

Monte Carlo predicted interval [min(E9) max(E9)] (square markers). 

6.4 Two-bay two-story frame 

The fourth example is a two-bay two-story planar frame hinged to the ground, subject to uniformly 

distributed vertical loads on each floor, as shown in Figure 9. The frame is composed of six columns 

and four beams, labeled as Cj (j = 1,…,6) and Bj (j = 1,…,4), respectively. Connecting joints and 

supports are labeled as nodes 1 to 9. Uniformly distributed vertical loads qi (i = 1,…,4) are applied on 

Bi, where q1 = q2 = 109.45 kN/m and q3 = q4 = 51.08 kN/m. 
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Figure 9. A two-bay two-story frame subject to uniformly-distributed vertical loads on each floors. 

Each member of the frame has uniform cross section and material property. The corresponding 

cross section area A, moment of inertia I and Young’s modulus E are listed in Table 5. Ten two-node 

Euler-Bernoulli beam elements are used to model the frame, one for each member. 

Measurement data used in the inverse algorithm is generated from the same 10-element finite 

element model. Only nodal displacement ui, vi and rotation angle θi at nodes 4 to 9 (i = 4,…,9) are 

included in the measurement vector ũ. ũ is obtained from 3 sets of perturbed measurements ũi, and the 

corresponding device tolerance is ±2×10
-5

 m for nodal displacements and ±2×10
-5

 rad for rotation 

angles. The level of uncertainty in ũ ranges from approximately 0.1% to 1%, with the exception of θ4 

= [–1.2442, –0.9825]×10
-4

 rad (22.2% uncertainty). 

Table 5. Geometric and material properties for the members of the two-bay two-story frame shown in Figure 10. 

 Shape A (10-4 m2) I (10-8 m4) E (GPa)  Shape A (10-4 m2) I (10-8 m4) E (GPa) 

C1 W12×19 35.940 5411.00 210 B1 W27×84 160.000 118625.96 205 

C2 W14×132 250.320 63683.41 214 B2 W36×135 256.130 324660.51 208 

C3 W14×109 206.450 51612.70 205 B3 W18×40 76.130 25473.36 215 

C4 W10×12 22.835 2239.32 201 B4 W27×94 178.710 136107.68 214 

C5 W14×109 206.450 51612.70 204      

C6 W14×109 206.450 51612.70 206      

          
 

In this benchmark case, 18 measurements (6 nodes × 3 DOF) are used to predict the Young’s 

modulus E of the 10 members. The problem is well-posed and no regularizer is required. Initial guess 

E = 160 GPa is used. The results are compared with the exact solution and the Monte Carlo solution 

with 10,000 runs in Figure 10, following the same guidelines as in Figure 5 of the simply-supported 

truss. Observe that the interval solution provides a guaranteed enclosure of both the exact and Monte 

Carlo solutions. 
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Figure 10. Interval-based identification of Young’s moduli of the two-bay two-story frame in Figure 10 subject to 

uniformly distributed loads: short bars with circular markers denote the exact values; long bars denote interval 

predictions from the proposed method; median-length bars denote the Monte Carlo predictions from an ensemble of 

10,000 simulations (measurement uncertainty level 0.1%-1%). 

In Figure 10, note that the width of the interval estimate E4 for the Young’s modulus of the left 

column C4 on the upper floor, is much wider than other estimates. By examining the entries of 

hh MK 1
 in Eq. (38.), we note that the wide enclosure is mainly caused by the lateral displacements v4 

and v7 at nodes 4 and 7. These two measurements are modeled by two intervals with about 1% 

uncertainty, i.e. v4 = [–2.3599, –2.3399]×10
-3

 m and v7 = [–3.4548, –3.4186]×10
-3

 m. In order to 

obtain a narrower interval prediction for E4, we increase the accuracy of the measurements v4 and v7, 

and reduce the level of uncertainty to about 0.2%, i.e. v4 = [–2.3515, –2.3465]×10
-3

 m and v7 = [–

3.4378, –3.4288]×10
-3

 m. The results are depicted in Error! Reference source not found., showing a 

significant increase in the accuracy of the predicted value for E4. In particular, the previous estimate in 

Figure 10 is E4 = [193.09, 207.39] GPa (7.1% uncertainty), and that in Error! Reference source not 

found. is E4 = [197.72, 203.34] GPa (2.8% uncertainty). 

 
Figure 11. Interval-based identification of the Young’s moduli of the two-bay two-story frame in Figure 10 subject to 

uniformly distributed loads using more accurate measurements in v4 and v7 (uncertainty level 0.2%) than those used to 

obtain the estimates shown in Figure 10: short bars with circular markers denote the exact values; long bars denote 

interval prediction from the proposed method; median-length bars denote the Monte Carlo prediction from an ensemble 

of 10,000 simulations.  
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7 Conclusions 

An interval-based parameter identification is proposed for structural static problems. Uncertainties in 

the system are modeled by intervals, and IFEM is exploited to handle uncertainties. The proposed 

inverse algorithm stems from an adjoint-based optimization formulation, and it provides an interval 

estimate of the unknown parameters (e.g. Young’s moduli). The associated nonlinear interval 

equations are solved by means of a new variant of the iterative enclosure method. In addition, 

overestimation is reduced by means of a new decomposition of the IFEM matrices K and f, which 

limits multiple occurrences of the same variable in the IFEM equations by separating deterministic 

and interval terms. The interval solution from the proposed solver guarantees to enclose the exact 

parameters, as confirmed by several numerical benchmark problems, and it always contains Monte 

Carlo predictions. 
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