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Prime congruences of additively idempotent semirings and a

Nullstellensatz for tropical polynomials

Dániel Joóa, b and Kalina Minchevac

Abstract

A new definition of prime congruences in additively idempotent semirings is given using
twisted products. This class turns out to exhibit some analogous properties to the prime ideals
of commutative rings. In order to establish a good notion of radical congruences it is shown
that the intersection of all primes of a semiring can be characterized by certain twisted power
formulas. A complete description of prime congruences is given in the polynomial and Laurent
polynomial semirings over the tropical semifield T, the semifield Zmax and the two element
semifield B. The minimal primes of these semirings correspond to monomial orderings, and
their intersection is the congruence that identifies polynomials that have the same Newton
polytope. It is then shown that the radical of every finitely generated congruence in each of
these cases is an intersection of prime congruences with quotients of Krull dimension 1. An
improvement of a result from [BE13] is proven which can be regarded as a Nullstellensatz for
tropical polynomials.
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1 Introduction

Tropical geometry, that is geometry over the tropical semiring T = Rmax = {R∪{−∞},max,+},
is an area that recently has received a lot of interest and attention and has applications not just to
algebraic geometry, but also to intersection theory, mirror symmetry and mathematical biology.

Two of the semifields that we take into account in this paper - B and Zmax - are of interest to
arithmetic geometry. They are key to the development of the semiring approach to characteristic
one geometry taken up in [Les12], [CC13] and [CC14]. The semifield Zmax is central to the theory
in [CC13] which aims at finding a correct framework for characteristic one geometry that is in
congruence with the original idea of J. Tits [Tit56].

Classically, a tropical variety (as defined in [MS] and [Mik06]) is a balanced polyhedral com-
plex. However, recently there has been a lot of work aiming at finding the appropriate definition
of a tropical scheme. The authors in [GG13] and [MR14] endow varieties defined over an idem-
potent semiring with tropical scheme structure. The set of points of this variety - called the bend
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loci - is defined by polynomial equations coming from a certain congruence relation. A different
approach was taken in [IR14], where so-called supertropical structures were studied in order to
establish the Zariski correspondence between congruences of tropical polynomials and algebraic
sets.

In the case of idempotent semirings congruences are a more natural object to consider than
ideals. Even though the fundamental objects of classical algebraic geometry are the prime ideals
of commutative rings, ideals of semirings do not fulfill the same role as they are no longer in
bijection with the congruences of the base structure.

It is a natural approach then, which was taken up in [BE13], to try to transfer the notion
of primeness to congruences in a way that the resulting structures exhibit nice properties and
analogies with classical algebraic geometry. A possibility, which was investigated in [Les12], is to
require that in the quotient by a prime congruence there are no zero divisors. The main drawback
of this approach is that the prime property of a congruence solely depends on the equivalence class
of the 0 element (i.e. the kernel of the congruence), which in general contains little information
about the congruence itself. For example, in a Laurent polynomial semiring over a semifield the
kernel of every congruence is just {0} (see Proposition 4.1). A stricter way to define primes, as
in [BE13] and [Lor12] is to require that their quotients are cancellative semirings, i.e. ab = ac
implies a = 0 or b = c. While this certainly is a narrower class, congruences with this property
fail to be intersection indecomposable in general, making it difficult to treat them analogously
to the primes of ring theory. Moreover, most structures that are of interest to us will contain
infinitely long chains of congruences with cancellative quotients (see Corollary 4.7), hence they
do not provide a good notion of Krull dimension.

In our approach, so called twisted products of pairs of elements are used to define prime
congruences. The twisted product of two ordered pairs (a, b) and (c, d) is the ordered pair
(ac+bd, ad+bc). The key heuristic is provided by the fact that in ring theory an ideal P is prime
if and only if for any elements a 6≡ b mod P and c 6≡ d mod P we have ad+ bc 6≡ ac+ bd mod P .
Following this characterization we define primes to be the congruences that do not contain twisted
product of pairs that lie outside the congruence. To relate this notion to the above mentioned
studies we show in Theorem 2.13 that congruences that are prime in our sense are precisely the
intersection indecomposables with cancellative quotients. A first natural objective in studying
prime congruences is to describe the set Rad(I), defined as the intersection of all primes that
contain the congruence I. In order to do this we introduced certain twisted power formulas called
generalized powers for ordered pairs, and showed in Theorem 3.9 that the elements of a pair are
congruent in Rad(I) precisely when some generalized power of that pair lies in I.

Our next goal was to understand the prime congruences of the polynomial and Laurent
polynomial semirings over the semifields B, Zmax and T. In all of these cases minimal primes
turn out to correspond to monomial orderings. Applying a result of Robbiano from [Rob85] that
classifies monomial orderings, it can be then shown that every prime congruence of these semirings
can be described by a certain defining matrix, whose number of rows will equal the dimension
of the quotient by that prime. As a consequence the dimension of a k-variable polynomial or
Laurent polynomial semiring is k over B and k + 1 over T or Zmax. This result meets our
intuitive expectations, since the semifield B is of dimension 0 and the semifields Zmax and T

are of dimension 1. Furthermore, using this description of prime congruences we show that
two polynomials with coefficients in B are congruent in every prime if and only if their Newton
polytopes are the same. Consequently, the quotient of the polynomial algebra over B by the
intersection of all prime congruences (i.e. the radical of the trivial congruence) can be described
as the semiring of lattice polytopes with the sum of two polytopes being the convex hull of their
union and the product the Minkowski sum. Similar descriptions can be given in all of the other
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studied cases.

We note that the points of the tropical affine space Tn can be identified with prime congru-
ences of T[xxx], whose quotient algebra is T. We call these geometric congruences and study them
in Section 5, where we aim at understanding solutions of finite sets of tropical polynomial equa-
tions. With the above identification tropical varieties can be thought of as the set of geometric
congruences containing a fixed bend congruence (in the sense of [GG13] and [MR14]).

A key component of the Nullstellensatz of classical algebraic geometry is that in a polynomial
ring over a field every radical ideal is the intersection of maximal ideals (i.e. it is a Jacobson ring).
One can not expect this to hold for congruences of polynomial semirings, since there are very
few maximal congruences. However, one obtains an analogous result if the maximal congruences
are replaced with prime congruences with 1 dimensional quotient. In Theorem 5.4 (i) it is shown
that for any finitely generated congruence E in a polynomial or Laurent polynomial semiring
over B, Zmax or T, Rad(E) is the intersection of the primes that contain E and have a quotient
with dimension at most 1.

Finally, we apply the methods developed to prove Theorem 5.4 (i) to improve a Nullstellensatz
type result from [BE13]. In their approach one thinks of the elements of the k-variable semiring
T[xxx] as functions on the set Tk, and for a congruence E denotes by V (E) the subset of Tk where
every congruent pair from E gives the same value. On the other hand for a subset H of Tk they
denote byEEE(H) the congruence that identifies polynomials that agree on every point of H. In this
terminology the aim of a ”tropical Nullstellensatz” is to describe the set EEE(V (E)) for a finitely
generated congruence E. To achieve this in [BE13] a set denoted by E+ is defined using formulas
that are similar to our generalized powers and it is shown that E ⊆ E+ ⊆ EEE(V (E)) and V (E) =
V (E+); moreover, a certain limit construction is given to describe the set EEE(V (E)) in general.
We improved this result in Theorem 5.4 (ii) by showing that in fact for any finitely generated
congruence we have E+ = EEE(V (E)) and consequently the set E+ is always a congruence. We
regard this result as our version of a Nullstellensatz for tropical polynomials.

This paper is organized as follows. In Section 2 we define the main objects that we work
with throughout the paper, including the notion of prime property for idempotent semirings.
We conclude the section by showing that a congruence is prime if and only if it is intersection
indecomposable and its quotient is cancellative. Section 3 contains our results regarding the
radical of congruences, in particular its description using generalized powers. In Section 4 we
give a full description of the primes of the polynomial and Laurent polynomial semirings over
B, Zmax and T, along with some related results such as calculating the dimension in each case.
Section 5 contains our results regarding finitely generated congruences and the improvement of
the ”tropical Nullstellensatz” from [BE13].
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2 Prime congruences of semirings

In this paper by a semiring we mean a commutative semiring with multiplicative unit, that is a
nonempty set R with two binary operations (+, ·) satisfying:

(i) (R,+) is a commutative monoid with identity element 0
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(ii) (R, ·) is a commutative monoid with identity element 1

(iii) For any a, b, c ∈ R: a(b+ c) = ab+ ac

(iv) 1 6= 0 and a · 0 = 0 for all a ∈ R

A semifield is a semiring in which all nonzero elements have multiplicative inverse. We will
denote by B the semifield with two elements {1, 0}, where 1 is the multiplicative identity, 0 is
the additive identity and 1+ 1 = 1. The tropical semifield T - sometimes also denoted by Rmax -
is defined on the set {−∞} ∪ R, by setting the + operation to be the usual maximum and the ·
operation to be the usual addition, with −∞ playing the role of the 0 element. In this paper we
will use the exponential notation tc, c ∈ R for the elements of T, allowing us to write 1 = t0 for
the multiplicative identity element and 0 for the additive identity element. The semifield Zmax

is just the subsemifield of integers in T.

A polynomial (resp. Laurent polynomial) ring with variables xxx = (x1, . . . , xk) over a semifield
F is the semiring, denoted by F [xxx] (resp. F (xxx)), whose elements are formal linear combinations
of the monomials {xn1

1 ...xnk

k | ni ∈ N} (resp. {xn1

1 ...xnk

k | ni ∈ Z}) with coefficients in F , with
addition and multiplication being defined in the usual way. For an integer vector nnn = (n1, . . . , nk)
we will use the notation xxxnnn = xn1

1 ...xnk

k .

As usual, an ideal in the semiring R is just a subsemiring that is closed under multiplication by
any element of R. Congruences of semirings are just operation preserving equivalence relations.

Definition 2.1 A congruence I of the semiring R is a subset of R×R satisfying

(C1) For a ∈ R, (a, a) ∈ I

(C2) (a, b) ∈ I if and only if (b, a) ∈ I

(C3) If (a, b) ∈ I and (b, c) ∈ I then (a, c) ∈ I

(C4) If (a, b) ∈ I and (c, d) ∈ I then (a+ c, b+ d) ∈ I

(C5) If (a, b) ∈ I and (c, d) ∈ I then (ac, bd) ∈ I

The unique smallest congruence is the diagonal of R×R which is denoted by ∆, also called the
trivial congruence. R×R itself is the improper congruence the rest of the congruences are called
proper. Quotients by congruences can be considered in the usual sense, the quotient semiring of
R by the congruence I is denoted by R/I. The kernel of a congruence is just the equivalence class
of the 0 element. Note that kernels do not determine the congruences, for instance non-trivial
congruences can have {0} as their kernel. The kernel of a congruence is always an ideal, and
when we say that the kernel of a congruence is generated by some elements, we will mean it is
generated as an ideal by those elements. We will say that the kernel of a congruence is trivial if
it equals {0}.

As usual, if ϕ : R1 → R2 is a morphism of semirings, and I is a congruence of R2, the
preimage of I is the congruence ϕ−1(I) = {(α1, α2) ∈ R1 × R1 | (ϕ(a1), ϕ(a2)) ∈ I}. By the
kernel of a morphism ϕ we mean the preimage of the trivial congruence ϕ−1(∆), it will be denoted
by Ker(ϕ). If R1 is a subsemiring of R2 then the restriction of a congruence I of R2 to R1 is
I|R1

= I ∩R1 ×R1.
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By a B-algebra we simply mean a commutative semiring with idempotent addition (that
is a + a = a,∀a). Throughout this section A denotes an arbitrary B-algebra. Note that the
idempotent addition defines an ordering via

a ≥ b ⇐⇒ a+ b = a.

Elements of A×A are called pairs. We denote pairs by Greek letters, and denote the coordinates
of the pair α by α1, α2. The twisted product of the pairs α = (α1, α2) and β = (β1, β2) is
(α1β1 + α2β2, α1β2 + α2β1). Note that the twisted product is associative and the pairs form a
monoid under this operation, with the pair (1, 0) being the identity element. For the rest of the
paper in any formula containing pairs the product is always the twisted product, so the twisted
product of α and β is simply denoted by αβ . Similarly αn denotes the twisted n-th power of the
pair α, and we use the convention α0 = (1, 0). The product of two congruences I and J is defined
as the congruence generated by the set {αβ | α ∈ I β ∈ J}. For an element a and a pair α we
define their product as a(α1, α2) = (aα1, aα2) which is the same as the twisted product (a, 0)α.

The following elementary properties of congruences play an important role,

Proposition 2.2 Let I be a congruence of A,

(i) For α ∈ I and an arbitrary pair β we have αβ ∈ I.

(ii) For any two congruences I and J we have IJ ⊆ I ∩ J .

(iii) If (a, b) ∈ I and a ≤ c ≤ b then (a, c) ∈ I and (b, c) ∈ I. In particular if (a, 0) ∈ I then for
every a ≥ c we have (c, 0) ∈ I.

Proof. (i) follows immediately from the definition of a congruence and (ii) follows from (i). For
(iii) consider that in A/I we have that

a = b ⇒ c = a+ c = b+ c = b = a.

�

One can readily show that for usual commutative rings, an ideal is prime if and only if the
corresponding congruence does not contain twisted products of pairs lying outside. This motivates
the following definition.

Definition 2.3 We call a congruence P of a B-algebra A prime if it is proper and for every
α, β ∈ A×A such that αβ ∈ P either α ∈ P or β ∈ P . We call a B-algebra a domain if its trivial
congruence is prime.

We define dimension similarly to the Krull-dimension in ring theory:

Definition 2.4 By dimension of a B-algebra A we will mean the length of the longest chain of
prime congruences in A × A (where by length we mean the number of strict inclusions). The
dimension of A will be denoted by dim(A).

For the above definition to make sense one needs to verify that every B-algebra A has at least
one prime congruence. Indeed it is a known fact that B is the only simple B-algebra (i.e. the
only proper congruence is the trivial one). Hence by the usual Zorn’s lemma argument we see
that every B-algebra has a proper congruence with quotient B, and it follows from the definition
that such a congruence is prime. For the sake of completeness we provide a short proof of the
above fact:
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Proposition 2.5 The only simple B-algebra is B.

Proof. First assume that A is a B-algebra without zero-divisors. Then the map ϕ : A → B defined
as ϕ(x) = 1 for x 6= 0 and ϕ(0) = 0 is a homomorphism of B-algebras. Hence Ker(ϕ) is a proper
congruence of A, which can only be trivial when A ≃ B.

Now assume that there are - not necessarily distinct - non-zero elements x, y ∈ A such that
xy = 0. Then it is easy to verify that

C = {(a, b) ∈ A×A | xa = xb}

is a congruence of A, which is non-trivial since (y, 0) ∈ C and proper since (1, 0) /∈ C. Hence A
is not simple. �

A congruence is called intersection indecomposable if it can not be obtained as the intersection
of two strictly larger congruences.

Proposition 2.6 If a congruence is prime then it is intersection indecomposable.

Proof. Indeed if P is the intersection of the strictly larger congruences I and J , then take α ∈ I\P
and β ∈ J \ P . Now by part (i) of Proposition 2.2 we have that αβ ∈ I ∩ J = P so P can not be
prime. �

Remark 2.7 As a consequence of Proposition 2.6 one can define the Zariski topology on the set
of prime congruences in the usual way, by setting the closed sets to be the ones that contain a
fixed congruence.

A B-algebra A is called cancellative if whenever ab = ac for some a, b, c ∈ A then either a = 0
or b = c. The annihilator of a pair α is defined as AnnA(α) = {β ∈ A×A | αβ ∈ ∆}. AnnA(α)
satisfies the axioms (C1)-(C2) and (C4)-(C5) of a congruence but in general it is not transitive,
consider the following example:

Example 2.8 Let A be the algebra B[x, y]/〈(y, y2)〉. Then it is easy to check that (y, x +
1), (y, 1) ∈ AnnA((x, x+ y)) but (1, x + 1) /∈ AnnA((x, x+ y)).

The annihilator of an element a ∈ A is defined as the annihilator of the pair (a, 0) and is also
denoted by AnnA(a). It is easy to verify the following properties:

Proposition 2.9 (i) For any a ∈ A, AnnA(a) = {β ∈ A×A | aβ1 = aβ2}, moreover AnnA(a)
is a congruence.

(ii) A is cancellative if and only if for every element a 6= 0 we have AnnA(a) = ∆, and A is a
domain if and only if for every pair α /∈ ∆ we have AnnA(α) = ∆.

(iii) For a congruence I the quotient A/I is cancellative if and only if for every element a and
pair α such that (a, 0)α ∈ I either (a, 0) ∈ I or α ∈ I.

(iv) If P is a prime congruence, then A/P is cancellative.

(v) If P is a prime congruence of A1, ϕ : A2 → A1 is a morphism of B-algebras and A3 is a
subalgebra of A1, then ϕ−1(P ) and P |A3

are prime congruences.

We will call a B-algebra totally ordered if its addition induces a total ordering. The next
proposition shows that B-algebras which are domains are always totally ordered.
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Proposition 2.10 (i) A B-algebra which is a domain is totally ordered.

(ii) If a B-algebra A is totally ordered then the trivial congruence of A is prime if and only if
A is cancellative.

Proof. For (i) let A be a domain and x, y ∈ A two arbitrary elements. We have that

(x+ y, x)(x+ y, y) = (x2 + y2 + xy, x2 + y2 + xy) ∈ ∆.

Since the trivial congruence is prime either (x + y, x) ∈ ∆ or (x + y, y) ∈ ∆, so indeed at least
one of x ≥ y or y ≥ x hold. For (ii) one direction is clear by (iv) of Proposition 2.9. For the other
direction assume that A is a totally ordered and cancellative. Let α, β be two pairs satisfying
αβ ∈ ∆. We can assume that α1 ≥ α2, β1 ≥ β2 and α1β2 ≥ α2β1. Now we have that

αβ = (α1β1 + α2β2, α1β2 + α2β1) = (α1β1, α1β2) ∈ ∆.

Then since A is cancellative either β ∈ ∆ or (α1, 0) ∈ ∆ which, by α1 ≥ α2 implies α1 = α2 = 0
so α ∈ ∆. �

A congruence I for which A/I is cancellative will be called quotient cancellative or QC for
short. The main result of this section shows that QC congruences are prime if and only if they
are intersection indecomposable.

Lemma 2.11 Let A be a cancellative B-algebra, and α ∈ A×A a pair. If for some integer n > 0
we have αn ∈ ∆ then α ∈ ∆.

Proof. First let us assume α2 ∈ ∆. It follows that α2
1 + α2

2 = α1α2, and then

α2
1α2 = α3

1 + α1α
2
2 ≥ α1α

2
2

and similarly α1α
2
2 ≥ α2

1α2 so we have that α2
1α2 = α1α

2
2. Now by cancellativity either α1 or

α2 is 0 but then since α2 ∈ ∆ both are 0, or neither is 0 and then after dividing by α1α2 we
obtain α1 = α2. Now in the general case if αn ∈ ∆ then every power of α greater than n is in
∆, in particular for some k we have α2k ∈ ∆ and we are done by applying the first half of the
argument. �

Lemma 2.12 Let A be a cancellative B-algebra, then for any pair α ∈ A × A the set AnnA(α)
is a congruence.

Proof. If α ∈ ∆ then AnnA(α) = A × A, which is a congruence. Assume now that α /∈ ∆. The
axioms (C1),(C2),(C4) and (C5) are easy to verify. For transitivity consider some pairs (x, y)
and (y, z) for which we have (x, y)α ∈ ∆ and (y, z)α ∈ ∆. Since α /∈ ∆ and A is cancellative we
can assume that none of x, y, z is 0. We will show that

β := (y + z, 0)(x, z)α = ((y + z)x, (y + z)z)α ∈ ∆

and since y + z non zero this will imply (x, z)α ∈ ∆. Expanding the above we obtain:

(β1, β2) = ((y+ z)x, (y+ z)z)(α1, α2) = (yxα1+ yzα2+ zxα1+ z2α2, yxα2+ yzα1+ zxα2+ z2α1)

By symmetry it suffices to show that β1 ≥ β2 (with respect to the ordering that comes from the
idempotent addition). We have that β1 ≥ z(yα2 + xα1) and since (x, y)α ∈ ∆ we obtain

β1 = yxα1 + yzα2 + zxα1 + z2α2 + zxα2 + zyα1

7



Now we have z(zα2 + yα1) amongst the terms, using (y, z)α ∈ ∆ we get:

β1 = yxα1 + yzα2 + zxα1 + z2α2 + zxα2 + zyα1 + z2α1 + zyα2

We obtained β1 ≥ x(yα1 + zα2), using (y, z)α ∈ ∆ again we get:

β1 = yxα1 + yzα2 + zxα1 + z2α2 + zxα2 + zyα1 + z2α1 + zyα2 + xzα1 + xyα2

and finally from β1 ≥ z(xα1 + yβ2) and (x, y)α ∈ ∆ we obtain:

β1 = yxα1 + yzα2 + zxα1 + z2α2 + zxα2 + zyα1 + z2α1 + zyα2 + xzα1 + xyα2 + zyα1 + zxα2

which is indeed bigger than β2, which is the sum of the 5th, 7th, 10th and 11th terms. Hence
AnnA(α) is a congruence. �

Theorem 2.13 Let A be a B-algebra. A congruence I is prime if and only if it is QC and
intersection indecomposable.

Proof. It follows from Proposition 2.6 and Proposition 2.9 that prime congruences are QC and
intersection indecomposable. For the other direction, taking the quotient by I, we can assume
that I = ∆ is QC and intersection indecomposable (so A itself is cancellative). Note that this can
be done because all three properties depend on the quotient of the congruence. If ∆ is not prime
there exists an element α /∈ ∆ such that AnnA(α) 6= ∆. By the previous lemma AnnA(α) is a
congruence. Let Q =

⋂
β∈AnnA(α) AnnA(β). Q is a congruence (as an intersection of congruences),

and since α ∈ Q we have ∆ ( Q. Clearly AnnA(α)Q = ∆, we claim that AnnA(α) ∩ Q = ∆.
Otherwise suppose that β ∈ (AnnA(α)∩Q) \∆, since AnnA(α)Q = ∆ we have that β2 ∈ ∆, and
then by Lemma 2.11 we have β ∈ ∆ completing the proof. �

3 Radicals of congruences

Our next objective is to establish the notion of radicals of congruences and provide a similar
algebraic description to the one in ring theory.

Definition 3.1 The radical of a congruence I is the intersection of all prime congruences con-
taining I. It is denoted by Rad(I). A congruence I is called a radical congruence if Rad(I) = I.

Let us introduce the following notation: for a pair α, let α∗ = (α1+α2, 0). It is easy to verify
the following proposition:

Proposition 3.2 Let α, β ∈ A pairs from the B-algebra A,

(i) (αβ)∗ = α∗β∗

(ii) ((αβ)∗)k = ((αβ)k)∗

(iii) If α∗ ∈ ∆ then α ∈ ∆.

Now we will define a property for pairs in A × A that is analogous to nilpotency from ring
theory. The aim of this section is to show that the pairs contained in every prime congruence are
precisely the nilpotent ones. A natural first guess would be to define the pair α to be nilpotent
if αn ∈ ∆ for some n. Indeed, in the case of commutative rings, one could characterize the
congruence with kernel the nilradical in this fashion. However as shown by the following example
these pairs do not even form a congruence in the case of B-algebras:

8



Example 3.3 In the three variable polynomial semiring B[x1, x2, x3] take the congruence I =
〈(x1, x2)

2, (x2, x3)
2〉. Since (x1, x2)

2 = (x21 + x22, x1x2) and (x2, x3)
2 = (x22 + x23, x2x3) one easily

verifies that any pair in I \∆ will need to contain a monomial divisible by x2 on both sides, hence
we have (x1, x3)

k /∈ I for any k > 0. It follows that in the quotient B[x1, x2, x3]/I the pairs α
that satisfy αk ∈ ∆ for some k do not form a congruence, since otherwise (x1, x3) would have to
be amongst them by transitivity.

To remedy this problem we will introduce some formulas, called generalized powers of pairs
that will turn out to have the desired properties.

Definition 3.4 For a pair α from the B-algebra A, the generalized powers of α are the pairs of
the form (α∗k+(c, 0))αl where k, l are non-negative integers, and c ∈ A an arbitrary element. The
set of generalized powers of α is denoted by GP (α). A pair α is called nilpotent if GP (α)∩∆ 6= ∅.

Proposition 3.5 For an arbitrary pair α the set GP (α) is closed under twisted product. More-
over, if β ∈ GP (α) then GP (β) ⊆ GP (α).

Proof. Both claims follow directly from the definition and Proposition 3.2. �

One can immediately show the following:

Proposition 3.6 The nilpotent pairs are contained in every prime congruence.

Proof. Indeed if (α∗k + (c, 0))αl ∈ ∆ then for any prime congruence P we have that (α∗k +
(c, 0))αl ∈ P , which implies that either α ∈ P or (α∗k+(c, 0)) ∈ P . Moreover, if (α∗k+(c, 0)) ∈ P
then by (ii) in Proposition 2.2 we have that α∗k ∈ P and by Proposition 3.2 α∗ = (α1+α2, 0) ∈ P ,
now applying (i) from Proposition 2.2 we get that (α1, 0) ∈ P and (α2, 0) ∈ P so α ∈ P . �

Now we prepare to show that the reverse implication holds as well. We need the following
two lemmas:

Lemma 3.7 Let x ∈ A be an arbitrary element and I = 〈(x, 0)〉. Then (y, z) ∈ I if and only if
there exist an r ∈ A such that y + rx = z + rx.

Proof. Let J be the set of pairs (y, z) such that there exist an r ∈ A such that y + rx =
z + rx. Clearly (x, 0) ∈ J and J ⊆ I, so it is enough to show that J is a congruence. C1 and
C2 hold trivially. For C3 assume that y + rx = z + rx and z + sx = v + sx, then we have
y + (r + s)x = z + (r + s)x = v + (r + s)x giving us (y, v) ∈ J . For C4 and C5 assume that
y + rx = z + rx and v + rx = w + rx then we have y + v + (r + s)x = v + w + (r + s)x and
yv + (vr + zs)x = zv + (vr + zs)x = zw + (vr + zs)x showing that both conditions hold. �

Lemma 3.8 If for some c, x ∈ A and a pair α from A we have that

(α∗ + (c, 0))α ∈ 〈(x, 0)〉 ∩Ann(x)

then there exists a b ∈ A such that (α∗3 + (b, 0))α ∈ ∆.

Proof. Since (α∗ + (c, 0))α ∈ 〈(x, 0)〉 by Lemma 3.7 we have that for some r ∈ A

α2
1 + α1α2 + cα1 + rx = α2

2 + α1α2 + cα2 + rx
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Let y = rx. By (α∗ + (c, 0))α ∈ Ann(x) we have that

y(α2
1 + α1α2 + cα1) = y(α2

2 + α1α2 + cα2).

Set b = y(α1 + α2 + c) + c(α1 + α2)
2, and β = (α∗3 + (b, 0))α. After expanding we get:

β1 =

4∑

i=1

αi
1α

(4−i)
2 + y(α2

1 + α1α2 + cα1) + c(

3∑

i=1

αi
1α

(3−i)
2 )

β2 =

4∑

i=1

αi
2α

(4−i)
1 + y(α2

2 + α1α2 + cα2) + c(

3∑

i=1

αi
2α

(3−i)
1 )

The terms appearing in β2 but not in β1 are α4
2, yα

2
2, ycα2, cα

3
2. However we have:

β1 ≥ y(α2
1 + α1α2 + cα1) = y(α2

2 + α1α2 + cα2) ≥ yα2
2 + ycα2

It follows that

β2 ≥ α2
2(α

2
1 + α1α2 + cα1 + y) = α2

2(α
2
2 + α1α2 + cα2 + y) ≥ α4

2 + cα3
2

showing us β1 ≥ β2 and by symmetry β1 = β2, so indeed β ∈ ∆. �

We are ready to prove:

Theorem 3.9 For any congruence I of a B-algebra A, we have that

Rad(I) = {α | GP (α) ∩ I 6= ∅}.

In particular the intersection of every prime congruence of A is precisely the set of nilpotent pairs.

Proof. Note that the intersection of all prime congruences is Rad(∆). We can reduce to the case
I = ∆ after considering the quotient A/I. Proposition 3.6 tells us that the nilpotent elements are
contained in Rad(∆), for the other direction we have to show that for a non-nilpotent pair α there
is a prime congruence P such that α /∈ P . We have that GP (α)∩∆ = ∅. By Zorn’s lemma there
is a congruence J that is maximal amongst the congruences that are disjoint from GP (α). If J is
prime we are done. Assume J is not prime, we first show that J is intersection indecomposable.
Assume the contrary J = K∩L for some congruences J ( K,L. Then the maximality of J implies
that there exists a β ∈ K∩GP (α) and a γ ∈ L∩GP (α), but then βγ ∈ L∩K∩GP (α) = J∩GP (α)
a contradiction. So J is not prime but intersection indecomposable, then it follows from Theorem
2.13 that J is not QC. Thus there exists a non-zero x ∈ A/J such that AnnA/J(x) ⊃ ∆A/J .
Let K be the congruence generated by (x, 0) in A/J . Again by maximality, we have that every
non-trivial congruence in A/J contains some element of GP (α), so in particular for some k, l, c
we have an element (α∗k + (c, 0))αl ∈ GP (α) ∩ AnnA/J(x) ∩ K. After multiplying with some
power of α∗ or α (depending on which of k or l is larger) we can assume that k = l. Now we
can apply Lemma 3.8 for the pair αk and the semiring A/J and obtain that for some b we have
(α∗3k + (b, 0))αk ∈ J contradicting GP (α) ∩ J = ∅. �

We conclude this section by a list of corollaries of the above theorem.

Proposition 3.10 QC congruences are radical congruences.
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Proof. By considering the appropriate quotients it is enough to prove the theorem for the case
when the congruence is the trivial congruence. We have to show that if for some pair α we have
GP (α) ∩∆ 6= ∅ then α ∈ ∆. Suppose that for some k, l we have (α∗k + (c, 0))αl ∈ ∆. Then by
cancellativity either αl ∈ ∆ and then by Lemma 2.11 α ∈ ∆, or (α∗k +(c, 0)) ∈ ∆ and then from
Proposition 2.2 it follows that α∗k ∈ ∆ which in turn by Proposition 3.2 implies that αk ∈ ∆,
and finally by Lemma 2.11 that α ∈ ∆. �

Let us denote by AnnA(α) the set {β | GP (αβ) ∩∆ 6= ∅}.

Proposition 3.11 Let A be an arbitrary B-algebra and α ∈ A×A a pair.

(i) AnnA(α) is the intersection of all prime congruences not containing α (where by empty
intersection we mean the full set A×A), in particular AnnA(α) is a congruence.

(ii) If ∆ is a radical congruence then AnnA(α) = AnnA(α), in particular AnnA(α) is a con-
gruence.

Proof. First let β ∈ AnnA(α). Then by Theorem 3.9, we have that αβ ∈ Rad(∆) =
⋂

P prime P ,
so by the prime property every prime that does not contain α needs to contain β. For the other
direction let β be an element of every prime congruence that does not contain α, then αβ is
contained in every prime and by Theorem 3.9 GP (αβ)∩∆ 6= ∅. The second half of the statement
follows from the fact that if ∆ is a radical congruence then GP (αβ) ∩∆ 6= ∅ implies αβ ∈ ∆. �

While it might appear that Proposition 3.11 provides a simpler proof for Lemma 2.12 and
Theorem 2.13, but we remind the reader that Theorem 2.13 was used in the proof of Theorem
3.9 which in turn we used to prove Proposition 3.11.

Proposition 3.12 A congruence is prime if and only if it is radical and intersection indecom-
posable.

Proof. Prime congruences are radical by definition and intersection indecomposable by Propo-
sition 2.6. For the other direction we can argue the same way as in the proof of Theorem 2.13,
except that this time β2 ∈ ∆ implies β ∈ ∆ simply by the definition of a radical congruence. �

3.1 Semialgebras satisfying the ACC

While most of the algebras in this paper do not satisfy the ascending chain condition (ACC)
for congruences, we make a few remarks about the ones that do satisfy it. Firstly, we have the
following statement from ring theory that holds in this setting. The argument for it is essentially
the same as in the classical case.

Proposition 3.13 Let A be a B-algebra with no infinite ascending chain of radical congruences.
Then over every congruence there are finitely many minimal primes.

Proof. The primes lying over a congruence I are the same as the primes lying over Rad(I),
so it is enough to prove the statement for radical congruences. Assume that there are radical
congruences of A with infinitely many minimal primes lying over them, and let J be a maximal
congruence amongst these. Since J is not prime then by Proposition 3.12 it is the intersection of
two strictly larger congruences K and L. Then every prime containing J contains at least one
of K and L so the minimal primes lying over J are amongst those that are minimal over K or L
and by the maximality of J there is only finitely many of these. �
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One can define primary congruences in the following way:

Definition 3.14 We will call a congruence I of a B-algebra A primary if {α | ∃β /∈ I : αβ ∈
I} ⊆ Rad(I).

As one would expect this class satisfies the following property:

Proposition 3.15 The radical of a primary congruence is a prime congruence.

Proof. Let Q be a primary congruence, assume that Rad(Q) is not prime. Then we have
α, β /∈ Rad(Q) such that αβ ∈ Rad(Q). Then for some k, l we have ((αβ)∗k + (c, 0))(αβ)l ∈ Q.
Now since GP (αl) ⊆ GP (α), neither αl nor βl can be in Rad(Q) so by the primary property we
have that ((αβ)∗k + (c, 0)) ∈ Q implying (αβ)∗k ∈ Q. Since (αβ)∗k = (α∗)k(β∗)k, this means
that at least one of α∗, β∗ is nilpotent in the quotient by Q, but then since GP (α∗) ⊆ GP (α) we
have that α or β is nilpotent, a contradiction. �

Unfortunately, there is no general analogue of primary decomposition from commutative
algebra. It is easy to show an example of an intersection indecomposable congruence that is not
primary in a semiring that satisfies the ACC.

Example 3.16 Consider the 4-element B-algebra A, with set of elements {1, 0, x, y} satisfying
the relations {1 + x = 1, x + y = x, x2 = x, xy = 0, y2 = 0}. It is easy to check that the 3 non-
trivial proper congruences of this algebra are I1 = {(0, y)} I2 = {(0, y), (0, x)} I3 = {(0, y), (1, x)}.
We see that I1 ⊆ I2, I3 so ∆ is intersection indecomposable. A/I2 ∼= B and A/I3 ∼= B so I2 and
I3 are prime congruences. Also we have that (1, x)(x, 0) = (x, x) ∈ ∆, so neither I1 nor the
trivial congruence are prime. It follows that Rad(∆) = I2 ∩ I3 = I1 and (1, x) /∈ Rad(∆) so ∆
is intersection indecomposable but not primary. Also note that Rad(∆) in this case is not prime
so even if one changes the notion of primary congruences, as long as we require the radical of
primaries to be primes this algebra would provide a counterexample to primary decomposition.

4 Prime congruences of polynomial and Laurent polynomial semir-

ings

4.1 The prime congruences of B(xxx) and B[xxx]

Throughout this section B(xxx) and B[xxx] denote the Laurent polynomial semiring and the polyno-
mial semiring with k variables xxx = (x1, . . . , xk). First we show that the kernel of the primes of
these semirings are easy to describe:

Proposition 4.1 (i) For any proper congruence I of B(xxx), we have that Ker(I) = {0}.

(ii) For any QC congruence Q of B[xxx] we have that Ker(Q) is the polynomial semialgebra
generated by a subset of the variables x1, . . . , xk.

Proof. In both cases by Proposition 2.2 we have that the kernel of any congruence is generated
by monomials. In the case of B(xxx) any monomial has a multiplicative inverse, so if Ker(I) 6= {0}
then we have (1, 0) ∈ Ker(I) so I has to be the improper congruence. For (ii) if Q is QC then
(fg, 0) ∈ Q implies that (f, 0) ∈ Q or (g, 0) ∈ Q, so a monomial is in Ker(Q) if and only if at
least one of the variables in that monomial is in Ker(Q). �
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So in fact prime congruences of B[xxx] with non-zero kernels will correspond to prime congru-
ences of a polynomial semirings in less variables. Next recall that quotients by primes are totally
ordered and consider the following proposition:

Proposition 4.2 (i) If Q is a congruence of B[xxx] or B(xxx) such that the quotient by Q is totally
ordered, then in each equivalence class of Q there is at least one monomial.

(ii) A congruence P of B(xxx) is prime if and only if B(xxx)/P is totally ordered.

(iii) If Q is a prime congruence of B[xxx] with Ker(Q) = {0}, then Q = P |B[xxx] = P for some
prime congruence P of B(xxx).

(iv) For a prime P of B(xxx) the multiplicative monoid of B(xxx)/P is isomorphic to a quotient of
the additive group (Zk,+). For a prime P of B[xxx] the multiplicative monoid of B[xxx]/P is
isomorphic to the restriction of a quotient of the additive group (Zk′ ,+) to (Nk′ ,+), where
k − k′ = |{x1, . . . , xk} ∩Ker(P )|.

Proof. The first statement follows from the fact that if the quotient is totally ordered, then every
polynomial is congruent to any of its monomials that is maximal with respect to the ordering
on the quotient. For (ii) consider that every monomial in B(xxx) has a multiplicative inverse, so
by (i) we see that the if the quotient by a congruence P is totally ordered then it is a semifield,
which is in particular cancellative and then by Proposition 2.10 P is prime. For (iii) first note
that congruences of B(xxx) with totally ordered quotients are determined by the equivalence class
of 1. Take a prime congruence Q of B[xxx] with Ker(Q) = {0}, and let P be the congruence of
B(xxx) with a totally ordered quotient satisfying that for any monomials m1,m2 ∈ B[xxx]:

(1,m1/m2) ∈ P ⇐⇒ (m2,m1) ∈ Q and (1,m1/m2 + 1) ∈ P ⇐⇒ (m2,m1 +m2) ∈ Q.

Note that while writing a Laurent monomial as quotient of monomials of B[xxx] is not done uniquely,
the above is still well defined because of the QC property of Q. P is prime since its quotient is
totally ordered and cancellative and it is straightforward to check that P |B[xxx] = Q. (iv) follows
from (i),(iii) and Proposition 4.1. �

A group ordering (resp. semigroup ordering) of a group (resp. semigroup) (G,+), is an
ordering ≤ on the elements of G satisfying that for any g1, g2 ∈ G with g1 ≤ g2 and an arbitrary
g3 ∈ G we have g1+ g3 ≤ g2+ g3. The previous proposition tells us that to understand the prime
quotients of B(xxx) we need to describe the group orderings on the quotients of (Zk,+). When
we think of (Zk,+) (resp. (Nk,+)) as the group (resp. semigroup) of Laurent monomials (resp.
monomials) with the usual multiplication their group orderings are called term orderings. (Note
that in the literature it is sometimes required that the generating variables are larger than the
unit under a term ordering, but we do not use this convention). Term orderings are described by
a result of Robbiano in [Rob85]:

Proposition 4.3 For every term ordering ≤ of the Laurent monomials {xxxnnn | nnn ∈ Zk} there
exist a matrix U with k columns and l ≤ k rows, such that xxxnnn1 < xxxnnn2 if and only if the first
non-zero coordinate of U(nnn2 − nnn1) is positive. Term orderings of the monomials {xxxnnn | nnn ∈ Nk}
are restrictions of the orderings on the Laurent monomials.

We will say that the i-th row of the matrix U is non-redundant if there is an integer vector
nnn ∈ Zk such that the first non-zero coordinate of Unnn is the i-th coordinate. If all of the rows of U
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are non-redundant we will call it an admissiblematrix. If U is an admissible matrix for an ordering
as in the setting of Proposition 4.3, then it will be called a defining matrix of the ordering. It
is easy to verify that the defining matrix can always be chosen to have orthonormal rows, and
that for an ordering defined by a square matrix there is a unique orthogonal defining matrix.As
explained above, term orderings define prime congruences of B(xxx) and B[xxx], which will be denoted
by P (U) and P [U ] respectively. One can also consider the B-algebra of Laurent monomials (resp.
monomials) whose addition is defined by the term ordering of U , and the surjections from B(xxx)
(resp. B[xxx]) onto these that map each polynomial to their leading monomial, then P (U) (resp.
P [U ]) are just the kernel of these maps. Note that prime congruences given by term orderings
are minimal by (i) of Proposition 4.2 since every equivalence class of them contains precisely one
monomial.

If an admissible matrix U is the defining matrix of a term ordering then the zero vector is
the only integer vector in the kernel of U , since a term ordering is a total ordering of all of
the monomials. If U has integer vectors in its kernel, it still gives us a group ordering on the
quotient Zk/(Ker(U) ∩ Zk), defined the same way as in Proposition 4.3. In this case we will
still call U the defining matrix of the ordering on that quotient and denote by P (U) or P [U ]
the corresponding prime congruences of B(xxx) and B[xxx]. Explicitly speaking, P (U) is generated
by the pairs (xxxnnn1 + xxxnnn2 ,xxxnnn2) such that either U(nnn2 −nnn1) = 000 or the first non-zero coordinate of
U(nnn1 − nnn2) is positive and P [U ] = P (U)|B[xxx]. We will soon see that every prime congruence of
these B-algebras arise this way.

Since the rows of an admissible matrix U are linearly independent its rank r(U) is equal to
the number of its rows. For i ≤ r = r(U) let us denote by U(i) the matrix that consists of the
first i rows of U . Note that if U is admissible then so are all of the U(i). Let us use the convention
that U(0) for any U is the ”empty matrix” which corresponds to the only group ordering of the
one element quotient Zk/Zk and P (U(0)) (resp. P [U(0)]) are the maximal congruences of B(xxx)
(resp. B[xxx]) that identify every non-zero element with 1. Accordingly we will write r(U(0)) = 0.
Now we describe the primes lying above a congruence P (U).

Proposition 4.4 Let U be an admissible matrix with k columns. Then every proper congruence
of B(xxx) containing P (U) is an element of the strictly increasing chain

P (U) = P (U(r(U))) ⊂ P (U(r(U)− 1)) ⊂ · · · ⊂ P ((U(0))).

In particular every proper congruence of B(xxx)/P (U) is prime and dim(B(xxx)/P (U)) = r(U).

Proof. The congruences P (U(i)) are prime since their quotients are totally ordered and can-
cellative. Furthermore, the chain in the proposition is strictly increasing since the rows of U are
non-redundant. Since the P (U(i))-s form a finite chain, it is enough to verify that every congru-
ence that is generated by a single pair is one of these, and then it will follow for an arbitrary
congruence P (U) ⊆ I that I = P (U(i)) where i is the smallest such that P (U(i)) can be gener-
ated by a pair in I. Note that in a semifield each congruence is determined by the equivalence
class of 1, since for any congruence I we have that (α1, α2) ∈ I ⇐⇒ (α1α

−1
2 , 1) ∈ I. Therefore

for any congruence P (U) ( I generated by a single pair we have that I = 〈(1,xxxnnn)〉 for some
nnn ∈ Zk satisfying nnn /∈ Ker(U). Let s be the smallest integer such that for the s-entry of Unnn we
have (Unnn)[s] 6= 0, then we have that (1,xxxnnn) ∈ P (U(s − 1)). Moreover, if (1,xxxnnn

′

) ∈ P (U(s − 1))
for some nnn′, then ∀j < s : (Unnn′)[j] = 0. Then for some k ∈ Z with large enough absolute value
we have that either 1 ≤ xxxnnn

′

≤ xxxknnn or xxxknnn ≤ xxxnnn
′

≤ 1 where ≤ is the ordering on the quotient
B(xxx)/P (U). Then by (iii) of Proposition 2.2 we have that (1,xxxnnn

′

) ∈ I, so P (U(s − 1)) ⊆ I and
then P (U(s− 1)) = I. �
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Finally, we need the following lemma to prove our main result:

Lemma 4.5 For every prime congruence Q of B(xxx) we have an admissible matrix U such that
P (U) ⊆ Q and Ker(U) ∩ Zk = {000}.

Proof. Recall that for an admissible matrix U the condition Ker(U) ∩ Zk = {000} is equivalent to
saying that U is the defining matrix of a term ordering. Intuitively speaking U can be obtained
by taking an arbitrary ordering on the subspace that Q identifies with 1. To see this, denote the
ordering induced by the addition on B(xxx)/Q by ≤Q and fix an arbitrary term ordering �0. Now
we define a new term ordering � as

m1 � m2 ⇐⇒ m1 <Q m2 or [(m1,m2) ∈ Q and m1 �0 m2].

To verify that � is indeed a term ordering consider m1,m2 such that m1 � m2 and an arbitrary
monomial s 6= 0. We have that either m1 <Q m2, but then by the cancellativity of B(xxx)/Q it
follows that sm1 <Q sm2, or (m1,m2) ∈ Q and m1 �0 m2 and then since Q is a congruence and
�0 is a term ordering we have that (sm1, sm2) ∈ Q and sm1 �0 sm2. Now from the definition of
� we see that m1 � m2 ⇒ m1 ≤Q m2, so for the defining matrix U of � we have P (U) ⊆ Q. �

A lattice polytope in Rk is just a polytope whose vertices are all in Zk. The Newton polytope
of a polynomial f =

∑
ixxx

nnni of B(xxx) or B[xxx] is the convex hull of the lattice points nnni ∈ Zk. It will
be denoted by newt(f). By convention newt(0) is the empty set. Now we proceed to describe the
prime congruences and radical of B(xxx). We remind that by convention we also write the maximal
congruence of B(xxx) as P (U) where U is a matrix with ”zero rows”.

Theorem 4.6 For the k-variable Laurent polynomial semialgebra B(xxx) we have that:

(i) The set of prime congruences of B(xxx) is {P (U) | U is an admissible matrix with k columns}.
The prime congruence P (U) is minimal if and only if Ker(U) ∩ Zk = {000}.

(ii) dim(B(xxx)) = k.

(iii) The pair (f, g) lies in the radical of the trivial congruence of B(xxx) if and only if newt(f) =
newt(g).

(iv) The B-algebra B(xxx)/Rad(∆) is isomorphic to the B-algebra with elements the lattice poly-
topes and addition being defined as the convex hull of the union, and multiplication as the
Minkowski sum.

(v) Every radical congruence is QC.

Proof. For (i) consider that by Lemma 4.5 every prime contains a prime P (U) withKer(U)∩Zk =
{000} and by Proposition 4.4 every prime lying over some P (U) is P (U(i)) for some 0 ≤ i ≤ r(U).
(ii) follows from Proposition 4.4 and the fact that there are term orderings whose defining series
is of length k (for example the usual lexicographic order). For (iii) first note that since every
prime is contained in a minimal prime the radical of the trivial congruence is the intersection
of the minimal primes. By (i) a minimal prime P (U) corresponds to a term ordering, and for a
monomial m and a polynomial f we have (f,m) ∈ P (U) if and only if m is the leading term of f
in the corresponding term ordering. Hence it is enough to show that the set of vertices of newt(f)
are precisely the exponents of the monomials of f that are leading terms with respect to some
term ordering. On one hand by Proposition 4.3 the leading term is determined by maximizing
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a set of linear functionals on newt(f), so its exponent indeed has to be one of the vertices. On
the other hand for any vertex v of newt(f) one can pick a hyperplane that separates it from the
rest of the vertices. Choosing the normal vector uuu of such a hyperplane to point towards the side
of v, for any admissible matrix U with Ker(U) ∩ Zk = {000} having uuu as a first row we have that
the leading term of f in the term ordering defined by U is the monomial with exponent v. Now
since the set of vertices determine the polytope newt(f) we have that (f, g) lies in every prime if
and only if newt(f) = newt(g). For (iv) one easily checks that newt(f + g) is the convex hull of
newt(f)∪ newt(g) and newt(fg) is the Minkowski sum of newt(f) and newt(g). For (v) assume
that for a radical congruence I, (g, 0)(f1, f2) ∈ I then (g, 0)(f1, f2) is in every prime containing
I, but since all primes have trivial kernels (f1, f2) has to be in every prime containing I and then
(f1, f2) ∈ I. �

In the one variable case there are two different term orderings, and for two or more variables
there are infinitely many, hence by Proposition 3.13 we have the following corollary:

Corollary 4.7 If k > 1 there are infinitely many minimal prime congruences in B(xxx) and if
k = 1 there are exactly two. In particular for k > 1 B(xxx) does not satisfy the ACC for radical
congruences (or equivalently for QC congruences).

Now we turn to B[xxx]. Recall from (iii) of Proposition 4.2 that the primes of B[xxx] with trivial
kernel are restrictions of the primes of B(xxx). Here we also have over any prime P [U ] the strictly
increasing chain

P [U ] = P [U(r(U))] ⊂ P [U(r(U)− 1)] ⊂ · · · ⊂ P [U(0)].

It follows that dim(P [U ]) ≥ dim(P (U)) = r(U), the next proposition shows that the dimensions
are in fact equal.

Proposition 4.8 For any admissible matrix U we have that dim(B[xxx]/P [U ]) = r(U).

Proof. We will prove by induction on r(U). The r(U) = 0 case is clear, since by our earlier
conventions for the matrix with ”zero rows” we have B[xxx]/P [U ] = B and dim(B) = 0. Let
U now be an arbitrary admissible matrix and Q a prime congruence that is minimal amongst
those that strictly contain P [U ], to complete the proof we need to show that dim(B[xxx]/Q) ≤
r(U) − 1. If Ker(Q) = {0} then by (iii) of Proposition 4.2 and Proposition 4.4 we have that
Ker(Q) = P [U(r(U)−1)] and then by the induction hypothesis we have dim(B[xxx]/Q) = r(U)−1.
If Ker(Q) 6= {0} then by Proposition 4.1, Ker(Q) is generated by a subset of the variables,
say x1, . . . , xj . Also by the minimality of Q we have that Q = 〈P (U) ∪ {(xi, 0)|1 ≤ i ≤ j}〉.
It follows that for some prime P [UQ] of B[xj+1, . . . , xk] the quotient B[xxx]/Q is isomorphic to
B[xj+1, . . . , xk]/P [UQ]. The matrix UQ can be obtained from U by removing the first j columns,
then removing any possible redundant rows. Now since (1, 0) /∈ Q by (iii) of Proposition 2.2 we
have that for any monomial m containing any of the variables x1, . . . , xj , m < 1 in the ordering
defined by U . This implies that the for some 1 ≤ i ≤ r(U) the first i rows of U have to be such
that all non-zero entries are in the first j columns, and the first non-zero entry in those columns
is negative. Consequently when the first j columns are removed from U , then the first i rows will
have all 0-s as the remaining entries, so they are removed when we obtain UQ. In particular we
have that dim(B[xxx]/Q) = r(UQ) < r(U) completing the proof. �

Now we have the following theorem about the primes and radical of B[xxx]:

Theorem 4.9 For the k-variable polynomial semiring B[xxx] we have that,
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(i) For every prime congruence P of B[xxx] there is a (possibly empty) subset H of the variables
xxx and a prime P [U ] of the polynomial semiring B[xxx′] with variables xxx′ = xxx \H, such that
P is generated by the pairs {(xi, 0)| xi ∈ H} and the image of P [U ] under the embedding
B[xxx′] →֒ B[xxx].

(ii) The minimal prime congruences of B[xxx] have {0} as their kernel and are all of the form
P [U ], where U is an admissible matrix with Ker(U) ∩ Zk = {000}.

(iii) dim(B[xxx]) = k.

(iv) The pair (f, g) lies in the radical of the trivial congruence of B[xxx] if and only if newt(f) =
newt(g).

(v) The B-algebra B[xxx]/Rad(∆) is isomorphic to the B-algebra with elements the lattice poly-
topes lying in the non negative quadrant Rk

+,0, and addition being defined as the convex hull
of the union, and multiplication as the Minkowski sum.

(vi) The congruence Rad(∆) is QC.

Proof. (i) follows from Proposition 4.1, Theorem 4.6 and (iii) of Proposition 4.2. For (ii) let Q
be a minimal prime congruence with Ker(Q) 6= 0. We can assume that Ker(Q) is generated by
the variables x1, . . . , xj for some j. By the minimality of Q, B[xxx]/Q is isomorphic to P [U ′] where
U ′ is the defining matrix of a term ordering on the variables xj+1, . . . , xk. Let U be the defining
matrix of the term ordering that first orders the variables x1, . . . , xj reverse lexicographically,
then the rest of the variables by U ′ (so the first j rows of U are negatives of the first j rows of the
identity matrix). Now for the prime congruence P [U ] we have Ker(P [U ]) = {0} and P [U ] ⊆ Q.
(iii) follows from (ii) and Proposition 4.8. (iv) and (v) follow by the same argument as in the
proof of Theorem 4.6. Finally, (vi) also follows the same way as in Theorem 4.6 after considering
that the radical is the intersection of the minimal primes and minimal primes of B[xxx] have trivial
kernels. �

4.2 The prime congruences of Zmax(xxx) and Zmax[xxx]

The description of the primes and the radical of Zmax(xxx) and Zmax[xxx] can be easily derived from
that of B(xxx) and B[xxx]. The key observation is that Zmax

∼= B(t)/〈(1 + t, t)〉 and consequently
Zmax(xxx) = B(t,xxx)/〈(1 + t, t)〉 where B(t,xxx) is just the semiring of Laurent polynomials over B

with k + 1 variables (t, x1, . . . , xk). Hence prime congruences of Zmax(xxx) can be identified with
the prime congruences of B(t,xxx) containing (t, 1 + t). By Theorem 4.6 these are of the form
P (U) where U is an admissible matrix with k + 1 columns, such that the either its first column
has all 0 entries or the first non-zero entry of the first column is positive. We will call such a
matrix z-admissible, and we will denote the congruence defined by it in Zmax(xxx) by P (U)Z and
its restriction to Zmax[xxx] by P [U ]Z.

By the Newton polytope, newt(f), of a polynomial f =
∑

i t
cixxxnnni in Zmax(xxx) or Zmax[xxx], we

mean the convex hull of the points [ci,nnn
i] ∈ Zk+1. We define the hat of newt(f) to be the set

newt(f) = {(y0, . . . , yk) ∈ newt(f) | ∀z > y0 : (z, y1, . . . , yk) /∈ newt(f)}.

We have the following theorem:

Theorem 4.10 For the k-variable polynomial semiring Zmax[xxx] and the k-variable Laurent poly-
nomial semiring Zmax(xxx) we have that:
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(i) The minimal primes of Zmax(xxx) (resp. Zmax[xxx]) are of the form P (U)Z (resp. P [U ]Z) for
a z-admissible matrix U with k + 1 columns satisfying Ker(U) ∩ Zk+1 = {000}.

(ii) dim(Zmax(xxx)) = dim(Zmax[xxx]) = k + 1

(iii) For any f, g ∈ Zmax(xxx) (resp. f, g ∈ Zmax[xxx]) the pair (f, g) lies in the radical of the trivial
congruence of Zmax(xxx) (resp. Zmax[xxx]) if and only if newt(f) = newt(g).

(iv) Every radical congruence of Zmax(xxx) is QC. Rad(∆) in Zmax[xxx] is QC.

Proof. (i) and (ii) follows from the discussion preceding the theorem. For (iii) by the same
argument as in the proof of Theorem 4.6 we need to show that the vertices of newt(f) are
precisely the exponents of the monomials of f that are maximal with respect to the ordering in
the quotient of some minimal prime. By (i) we have that in both cases minimal primes correspond
to term orderings of the variables (t,xxx) such that 1 < t and it is clear that the leading monomial
of f with respect to such a term ordering has to be one of the vertices lying on newt(f). For the
other direction for a vertex v on newt(f) let uuu be a linear combination with positive coefficients
of the outwards pointing normal vectors of the k-dimensional faces of newt(f) containing v, such
that the first coordinate of uuu is positive. Such a uuu can be chosen since the outwards pointing
normal vector of any k-dimensional face of newt(f) have positive first coordinate, so if we set the
coefficients corresponding to those faces large enough uuu will also have a positive first coordinate.
Moreover, v is the unique vertex that maximizes the scalar product taken with uuu on newt(f).
Hence we can choose a z-admissible matrix U with uuu as its first row and Ker(U) ∩ Zk+1 = {000}
and in the term ordering defined by U the leading term of f will be the monomial with exponent
v. Finally, (iv) follows the same way as in Theorems 4.6 and 4.9. �

4.3 The prime congruences of T(xxx) and T[xxx]

In this section we describe the primes and the radical of the semirings of polynomials and Laurent
polynomials with coefficients in T.

A matrix U whose first column has either all zero entries or its first non-zero entry is positive
can define a prime congruence P (U)T of T(xxx), which, as in the previous cases is generated by pairs
(tc1xxxnnn1 + tc2xxxnnn2 , tc2xxxnnn2) such that U((c2,nnn2)− (c1,nnn2)) is either the 000 vector or its first non-zero
coordinate is positive. Clearly if U is z-admissible and we consider Zmax(xxx) as a subsemiring of
T(xxx), we have P (U)T|Zmax(xxx) = P (U)Z. However P (U)T might not be the only congruence that
restricts to P (U)Z as shown by the following example:

Example 4.11 Let r ∈ R be an irrational number and let U be the matrix that consists of the
single line [1 r]. Since Ker(U) ∩ Z2 = {000}, U defines a total ordering on Z2 and hence P (U)
is a minimal prime of B(x1, x2) and P (U)Z is a minimal prime of Zmax(x1). Consequently any
subsequent rows to U would be redundant. However Ker(U)∩R⊕Z 6= {0}, so U does not define
a total ordering on the monomials of T(x1), and one can add a subsequent row to U which will
give the ordering on the elements in Ker(U)∩ (R⊕ Z). For example denoting by U+ the matrix
which is obtained from U by adding the row [0 1] and U− the matrix which is obtained by adding
the row [0 − 1], we have that P (U+)T and P (U+)T are distinct minimal primes of T(x1) both
strictly containing P (U)T, and P (U+)T|Zmax(xxx) = P (U−)T|Zmax(xxx) = P (U)T|Zmax(xxx) = P (U)Z.

Motivated by this example we define an l× (k+1) matrix U to be t-admissible if its rows are
non-redundant with respect to the ordering defined on R ⊕ Zk, i.e. for every 1 ≤ i ≤ l there is
a vvv ∈ R ⊕ Zk such that the i-th is the first non-zero entry of Uvvv; moreover, we require that in
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the first column of U either all of the entries are 0 or its first non-zero entry is positive. Clearly
z-admissible matrices are also t-admissible, but some t-admissible matrices, like U+ and U− from
the above example, might not be z-admissible. Then the prime congruence P (U)T is defined for
all t-admissible matrices U , and P (U)T|Zmax(xxx) = P (U ′)Z where U ′ is the matrix we obtain from
U after removing rows that become redundant when U defines an ordering of the monomials with
coefficients in Zmax. The restriction of P (U)T to T[xxx] will be denoted by P [U ]T. As previously,
we aim to show that all primes of T(xxx) are of the form P (U) for a t-admissible U . For this we
will need the following variation on the result from [Rob85] which we recalled in Proposition 4.3.

Lemma 4.12 For any group ordering � on the multiplicative group of the monomials of T(xxx)
satisfying that for every c1, c2 ∈ R and nnn ∈ Zk we have that tc1xnnn1 � tc2xnnn2 if and only if c1 ≤ c2
by the usual ordering on R, there exits a t-admissible matrix U such that tc1xnnn1 ≺ tc2xnnn2 if and
only if the first non-zero coordinate of U((c2,nnn2)− (c1,nnn1)) is positive.

Proof. First note that the multiplicative group of the monomials of T(xxx) is isomorphic to the
additive group (R⊕Zk,+). It follows from Lemma 1 of [Rob85] (and can also be easily checked)
that every group ordering of (R⊕Zk,+) uniquely extends to a group ordering of G = (R⊕Qk,+).
By a slight abuse of notation let us denote the ordering induced on G by � as well. Let G+ denote
the set {vvv ∈ G|vvv ≻ 000} and G− denote the set {vvv ∈ G|vvv ≺ 000}. Now following the original argument
from [Rob85] we define IG to be the set of points p ∈ Rk+1 such that each open (Euclidean)
neighbourhood of p contains elements from both G+ and G−. It is easy to verify that IG is a
linear subspace. Let V+ (resp. V−) denote the open set in Rk that consists of points with an open
neighbourhood that does not intersect G− (resp. G+). Now we have that Rk+1 \ IG = V− ∪ V+,
so the complement of IG is the union of disjoint open sets and hence disconnected, it follows
that dim(IG) ≥ k. On the other hand V+ and V− each contain at least an open quadrant, so
dim(IG) = k. Let us note that this is where the argument would fail if one wanted to extend it
to an arbitrary group ordering on R⊕ Zk, but in our case, due to the elements of R⊕ {000} being
ordered in the usual way, for the vector eee0 = (1, 0, . . . , 0) and a Z-basis eee1, . . . , eeek of Zk satisfying
eeei ≻ 000, we have that the positive R-linear combinations of eee0, . . . , eeek are indeed in V+ and the
negatives of these are in V−. Now for the normal vector uuu of IG pointing towards V+ and any
vvv1, vvv2 ∈ G we have that uuu · (vvv2 − vvv1) > 0 ⇒ vvv1 ≺ vvv2, where · denotes the usual scalar product on
Rk+1, so uuu can be chosen as the first row of U . Moreover, the subgroup G0 = {vvv ∈ G|uuu · vvv = 0}
is isomorphic to Zk when the first coordinate of uuu is non-zero, and it is isomorphic to R⊕ Zl for
some l < k if the first coordinate of uuu is zero. Hence either by Proposition 4.3 or by induction we
have that the ordering on G0 is given by a matrix with at most k rows, and by adding to that
matrix uuu as a first row we obtain the U in the lemma. �

In the following proposition we will list the analogues of Propositions 4.2/(iii), 4.1, 4.4, 4.8
and Lemma 4.5 for T(xxx) and T[xxx]. We will omit the proofs since they are essentially the same as
in the previous section. Recall that U(i) denotes the matrix that consists of the first i rows of U .

Proposition 4.13 (i) Primes of T(xxx) always have {0} as their kernel, and the kernel of a
prime in T[xxx] is generated by a subset of the variables xxx.

(ii) If Q is a prime congruence of T[xxx] with Ker(Q) = {0}, then Q = P |T[xxx] = P for some
prime congruence P of of T(xxx).

(iii) Every congruence of T(xxx) containing some P (U)T for an l× (k + 1) t-admissible matrix U
is of the form P (U(i))T) for some 0 ≤ i ≤ l.
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(iv) For an l× (k+1) t-admissible matrix U , we have dim(T(xxx)/P (U)T) = dim(T[xxx]/P [U ]T) =
r(U) = l.

(v) Every prime of T(xxx), contains a prime P (U)T for a t-admissible matrix U with Ker(U) ∩
R⊕ Zk = {000}.

Similarly to the previous cases the Newton polytope, newt(f), of a polynomial f =
∑

i t
cixxxnnni

in T(xxx) or T[xxx], we mean the convex hull of the points [ci,nnni] ∈ R⊕ Zk. The hat of the Newton
polytope is defined the same way as in the case of Zmax(xxx).

Now we are ready to describe the primes and the radicals of T[xxx] and T(xxx), which is analogous
to the previous cases studied, except that this time we need to consider t-admissible matrices for
defining prime congruences.

Theorem 4.14 For the k-variable polynomial semiring T[xxx] and the k-variable Laurent polyno-
mial semiring T(xxx) we have that:,

(i) Every prime congruence of T(xxx) is of the form P (U)T for a t-admissible matrix U . For
every prime congruence P of T[xxx] there is a (possibly empty) subset H of the variables xxx
and a prime P [U ] of the polynomial semiring T[xxx′] with variables xxx′ = xxx \ H, such that
P is generated by the pairs {(xi, 0)| xi ∈ H} and the image of P [U ] under the embedding
T[xxx′] →֒ T[xxx].

(ii) The minimal prime congruences of T[xxx] have {0} as their kernel. Every minimal prime of
T[xxx] (resp. T(xxx)) is of the form P [U ]T (resp. P (U)T), where U is a t-admissible matrix
with Ker(U) ∩ R⊕ Zk = {000}.

(iii) dim(T(xxx)) = dim(T[xxx]) = k + 1.

(iv) For any f, g ∈ T(xxx) (resp. f, g ∈ T[xxx]) the pair (f, g) lies in the radical of the trivial
congruence of T(xxx) (resp. T[xxx]) if and only if newt(f) = newt(g).

(v) Every radical congruence of T(xxx) is QC. Rad(∆) in T[xxx] is QC.

Proof. (ii) follows from Lemma 4.12, and the rest of the theorem follows from Proposition 4.13
by the same arguments as in Theorems 4.6, 4.9 and 4.10. �

5 Finitely generated congruences of polynomials and a Nullstel-

lensatz for T[xxx]

In this section we give an improvement of the result of A. Bertram and R. Easton from [BE13],
which can be regarded as an analogue of the Nullstellensatz. Following their notation, for a
congruence E, we will denote by V (E) the set of points aaa ∈ Tk for which f(aaa) = g(aaa) for
every (f, g) ∈ E. Furthermore, for a subset H ⊆ Tk we will denote by EEE(H) the congruence
{(f, g) | f(aaa) = g(aaa),∀aaa ∈ H}. The focus of [BE13] is to describe the congruence EEE(V (E)).

To put this in our context first note that if aaa = (td1 , . . . , tdk) = tddd is a point in Tk such that
all of its coordinates are non-zero and m = tcxxxnnn is a monomial in T[xxx], then m(aaa) = tc+

∑
i
(dini) =

t(c,nnn)(1,ddd). Hence EEE({aaa}) = P [U ]T for the matrix U consisting of the single row (1, d1, . . . , dk).
Similarly, when some of the coordinates of aaa are zero Ker(EEE({aaa}) will be generated by the
variables corresponding to the zeros of aaa, and EEE({aaa}) restricted to the rest of the variables will
be defined by the matrix whose single row is (1, d′1, . . . , d

′

i), where the d
′

1, . . . , d
′

i are the exponents
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of the non-zero entries of aaa. We will call the congruencesEEE({aaa}) geometric congruences. Note that
these are precisely the congruences whose quotient is T. With this terminology the congruence
EEE(V (E)) is just the intersection of all geometric congruences containing E.

Remark 5.1 As we point out in Remark 2.7 the set of primes can be endowed with the Zariski
topology in the usual way. It is not difficult to check that when this topology is restricted to the
geometric primes one obtains the usual Euclidean topology on Tk.

In [BE13] for a congruence E the set E+ was defined to consist of all pairs (f, g) for which there
exist 1 6= ǫ ∈ T, h ∈ T[xxx] and a non-negative integer i, such that:

(1, ǫ)((f, g)∗i + (h, 0))(f, g) ∈ E.

It was shown in Theorem 3 in [BE13], and the discussion preceding it that E ⊆ E+ ⊆ EEE(V (E))
and V (E) = V (E+), moreover, whenever E is finitely generated the set V (E) is empty if and
only if E+ = T[xxx] × T[xxx]. However, it was left open whether one has E+ = EEE(V (E)) for all
finitely generated E or if the set E+ is a congruence in general. The aim of this section is to show
that the answer to both these questions is positive. Furthermore, we will show that in each of
the cases we studied, radicals of finitely generated congruences are the intersection of the primes
with 1-dimensional quotients.

We will need the following proposition:

Proposition 5.2 (i) For a B-algebra A, a pair α ∈ A×A and a congruence E with GP (α) ∩
E 6= ∅, there is a non-negative integer i and an element h ∈ A such that (α∗i+(h, 0))α ∈ E.

(ii) For a congruence E of T[xxx] and any ǫ ∈ T \ {1, 0} we have that

E+ = {(f, g) ∈ T[xxx]× T[xxx]| GP ((1, ǫ)(f, g)) ∩ E 6= ∅} = {(f, g) | (f, g)(1, ǫ) ∈ Rad(E)}.

Proof. For (i), if GP (α) ∩ E 6= ∅, then by definition we have non-negative integers i, j and a
h ∈ A such that β := (α∗i + (h, 0))αj ∈ E. If j ≤ 1 we are done, let us assume j > 1. After
expanding, we obtain that in the quotient A/E we have

αi+j
1 + hαj

1 ≤ β1 = β2 ≤

s=i+j∑

s=1

αi+j−s
1 αs

2 + h

s=j∑

s=1

αj−s
1 αs

2.

Now set h′ = h(α1 + α2)
j−1 and γ := (α∗i+j−1 + (h′, 0))α. After expanding the parenthesis, we

obtain:

γ1 =

s=i+j∑

s=1

αs
1α

i+j−s
2 + h

s=j∑

s=1

αs
1α

j−s
2

γ2 =

s=i+j∑

s=1

αi+j−s
1 αs

2 + h

s=j∑

s=1

αj−s
1 αs

2

We see that the only terms appearing in γ1 but not in γ2 are α
i+j
1 and hαj

1, so comparing with the
previous inequality we obtain that in the quotient A/E we have γ2 ≥ γ1 and then by a symmetric
argument γ2 = γ1, hence γ ∈ E.

For (ii) first note that a prime congruence contains the pair (1, ǫ) for an ǫ ∈ T \ {1, 0} if and
only if its defining matrix has all zero entries in the first column. Now by Proposition 3.11 the set
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F := {(f, g) ∈ T[xxx]× T[xxx]| GP ((1, ǫ)(f, g)) ∩E 6= ∅} is the intersection of the prime congruences
containing E but not containing (1, ǫ) so by the previous comment it does not depend on the
choice of ǫ. Furthermore, we have

(1, ǫ)((f, g)∗i + (h, 0))(f, g) ∈ GP ((1, ǫ)(f, g))

hence E+ ⊆ F . For the other inclusion if (f, g) ∈ F then by (i) we have an integer i and a
h ∈ T[xxx] such that

((1, ǫ)∗i(f, g)∗i + (h, 0))(1, ǫ)(f, g) ∈ E.

Now since (1+ǫ) has a multiplicative inverse for any ǫ ∈ T, after multiplying the above expression
with 1/(1+ ǫ)i we obtain that (f, g) ∈ E+. The second equality follows from Proposition 3.11. �

We will denote the i-th row of the matrix U by U [i]. For an l×k admissible (resp. z-admissible,
t-admissible) matrix U and a vector www = (w1, . . . , wl) ∈ Rl

+, P [wwwU ] (resp. P [wwwU ]Zmax
, P [wwwU ]T)

will denote the prime defined by the matrix consisting of the single row wwwU =
∑

i wiU [i]. Note
that since the coefficients wi are positive and the rows of an admissible matrix are linearly
independent wwwU will be also admissible (resp. z-admissible, t-admissible). The following lemma
holds by identical arguments over all polynomial and Laurent polynomial semirings we have
studied so far, to simplify its formalization we will denote by P (U)∗ one of P (U), P [U ], P (U)Zmax

,
P [U ]Zmax

, P (U)T or P [U ]T depending on which semiring is being considered.

Lemma 5.3 Let P (U)∗ be a prime with trivial kernel in one of B(xxx), B[xxx], Zmax(xxx), Zmax[xxx],
T(xxx) or T[xxx]. Then for any pair (f, g) we have that (f, g) ∈ P (U)∗ if and only if there exist positive
real numbers r1, . . . , rl−1 such that for any www ∈ Rl

+ satisfying wi/wi+1 > ri (∀i : 1 ≤ i ≤ l − 1),
we have (f, g) ∈ P (wwwU)∗.

Proof. We will prove the proposition for polynomials in B(xxx) and note that it holds by identical
arguments for all of the semirings listed. Let f =

∑
i xxx

nnni a polynomial in B(xxx), and recall that
since the quotient of any prime is totally ordered f will be congruent in any prime to one or more
of its monomials. Now it is easy to verify that if we pick ri large enough then for any w satisfying
wi/wi+1 > ri for all 1 ≤ i ≤ l − 1 and any nnni,nnnj appearing as exponents in f we have that
wwwUnnni ≥ wwwUnnnj if and only if either Unnni = Unnnj or for the smallest s such that U [s]nnni 6= U [s]nnnj

we have U [s]nnni > U [s]nnnj . It follows that for large enough ri-s and a www as in the proposition, the
leading terms of both f and g in P (wwwU) are the same as in P (U), hence (f, g) ∈ P (U) if and
only if (f, g) ∈ P (wwwU). �

Theorem 5.4 (i) For a finitely generated congruence E in one of B(xxx), B[xxx], Zmax(xxx), Zmax[xxx],
T(xxx) or T[xxx], we have that Rad(E) is the intersection of the primes that contain E and
have a quotient of dimension at most 1.

(ii) In T[xxx], for any finitely generated congruence E, we have E+ = EEE(V (E)).

Proof. For (i) let E be a congruence generated by the pairs {(f1, g1), . . . , (fs, gs)}. By definition
we have that Rad(E) = ∩{P | P prime, (fi, gi) ∈ P ∀i}. If P (U)∗ is a prime with trivial kernel
and a quotient of dimension l ≥ 2, containing all of the (fi, gi) then we can choose (r1, . . . , rl−1)
that are large enough for all of the (fi, gi) in the setting of Proposition 5.3. Denoting by W the set
of vectors www ∈ Rl

+ satisfying wi/wi+1 > ri for all 1 ≤ i ≤ l − 1, it follows that (fi, gi) ∈ P (wwwU)∗
for all 1 ≤ i ≤ s and www ∈ W . Moreover, by applying the other direction of Proposition 5.3 we also
have that ∩www∈WP (wwwU)∗ ⊆ P (U)∗, hence P (U)∗ can be removed from the intersection defining
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Rad(E). We can argue the same way in the case when P (U)∗ has non-trivial kernel by considering
it in the polynomial subsemiring generated by the variables that are not in Ker(P (U)∗).

For (ii) by Proposition 5.2 and Proposition 3.11 we have that E+ is the intersection of the
primes that contain E but not contain (1, ǫ) for any ǫ ∈ T\{1}, and by the discussion at the start
of this section it follows that EEE(V (E)) is the intersection of the geometric congruences containing
E, which are exactly those primes that have quotients with dimension 1 and not contain the pair
(1, ǫ) for any ǫ ∈ T \ {1}. Note that (1, ǫ) for ǫ ∈ T \ {1} is contained in a prime precisely when
its defining matrix has all zeros in the first column, thus if (1, ǫ) /∈ P [U ]T then (1, ǫ) /∈ P [wwwU ]T
for any vector www with positive entries. Now one can argue the same way as for (i). �

We conclude this section with a statement showing that the polynomials that agree on every
point of Tk are precisely the pairs that are in Rad(∆). This is essentially the same as Theorem
1 of [BE13], but our proof is different.

Proposition 5.5 EEE(Tk) = ∆+ = Rad(∆).

Proof. The first equality follows from Theorem 5.4. For the second equality since ∆+ is the
intersection of a subset of all primes we clearly have Rad(∆) ⊆ ∆+. For the other inclusion, if
(f, g) /∈ Rad(∆) then by Theorem 4.14 we have that for one of them, say f , there is a vertex v
on newt(f) that lies outside of newt(g). Now by the same argument as in the proof of Theorem
4.10 one can pick a vector uuu with positive first entry such that v is the unique vertex that
maximizes the scalar product taken with uuu on newt(f). Now let U be a t-admissible matrix with
uuu as its first row such that P [U ]T is a minimal prime. Since in P (U)T each equivalence class
contains precisely one monomial and f is congruent to the monomial with exponent v we have
(f, g) /∈ P [U ]T. Moreover, since the first entry of uuu is nonzero (1, ǫ) /∈ P [U ]T for any ǫ ∈ T \ {1}.
Now since by Proposition 5.2 and Proposition 3.11 ∆+ is the intersection of all primes that do
not contain (1, ǫ) for ǫ ∈ T \ {1}, we have that ∆+ ⊆ P [U ]T and consequently (f, g) /∈ ∆+. �
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