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A Generalization of the Petrov Strong

Law of Large Numbers

Valery Korchevsky∗

Abstract

In 1969 V.V. Petrov found a new sufficient condition for the applicability of the
strong law of large numbers to sequences of independent random variables. He proved
the following theorem: let {Xn}

∞

n=1 be a sequence of independent random variables
with finite variances and let Sn =

∑
n

k=1
Xk. If V ar(Sn) = O(n2/ψ(n)) for a positive

non-decreasing function ψ(x) such that
∑

1/(nψ(n)) < ∞ (Petrov’s condition) then
the relation (Sn −ESn)/n→ 0 a.s. holds.

In 2008 V.V. Petrov showed that under some additional assumptions Petrov’s con-
dition remains sufficient for the applicability of the strong law of large numbers to
sequences of random variables without the independence condition.

In the present work, we generalize Petrov’s results (for both dependent and indepen-
dent random variables), using an arbitrary norming sequence in place of the classical
normalization.

Keywords: strong law of large numbers, sequences of independent random variables, de-
pendent random variables.

1. Introduction

Following [8], we denote by Ψc (or, respectively, Ψd) the set of functions ψ(x) such that ψ(x)
is positive and non-decreasing in the interval x > x0 for some x0 and the series

∑

1
nψ(n)

converges (respectively, diverges). The value x0 is not assumed to be the same for different
functions ψ. Examples of functions of the class Ψc are the functions xδ and (log x)1+δ for
any δ > 0. The functions log x and log log x belong to the class Ψd.

The next result is classical Kolmogorov’s theorem:

Theorem A. Let {Xn}
∞
n=1 be a sequence of independent random variables with finite vari-

ances V ar(Xn) and let Sn =
∑n

k=1Xk. If

∞
∑

n=1

V ar(Xn)

n2
<∞ (1)

then

Sn − ESn
n

→ 0 a.s. (2)
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Another sufficient condition for the applicability of the strong law of large numbers to
sequences of independent random variables was founded by Petrov [7] (see also [8]).

Theorem B (Petrov). Let {Xn}
∞
n=1 be a sequence of independent random variables with

finite variances. If

V ar(Sn) = O

(

n2

ψ(n)

)

for some function ψ ∈ Ψc, (3)

then relation (2) holds.

Relation (3) will be called Petrov’s condition. It is known [7] (see also [3]) that condi-
tion (3) in Theorem B is optimal in the following sense: it is impossible to replace condi-
tion (3) by the weaker assumption that corresponds to the replacement of ψ ∈ Ψc by some
function ψ ∈ Ψd.

If the random variables X1, X2, . . . are independent, then Petrov’s condition is equivalent
to the requirement that

n
∑

k=1

V ar(Xk) = O

(

n2

ψ(n)

)

for some function ψ ∈ Ψc. (4)

It is proved ([5, Theorem 1]) that (4) implies (1). It follows that theorem B is a con-
sequence of Kolmogorov’s theorem (Theorem A). Nevertheless, Petrov proved [9, 10] that
under some additional assumptions Petrov’s condition is sufficient for the applicability of
the strong law of large numbers to sequences of random variables without any independence
assumptions.

Theorem C (Petrov [9]). Let {Xn}
∞
n=1 be a sequence of non-negative random variables

with finite variances. Suppose that conditions (3) is satisfied and

E(Sn − Sm) 6 C(n−m) for all sufficiently large n−m, (5)

where C is a constant. Then relation (2) holds.

It is proved in [6] the next generalization of Theorem C:

Theorem D (Petrov and Korchevsky). Let {Xn}
∞
n=1 be a sequence of non-negative random

variables with finite absolute moments of some order p > 1. Suppose that condition (5) is
satisfied and

E|Sn − ESn|
p = O

(

np

ψ(n)

)

for some function ψ ∈ Ψc.

Then relation (2) holds.

(Theorem C corresponds to the case p = 2).
The aim of present work is to generalize Theorems B and D using an arbitrary norm-

ing sequence in place of the classical normalization. Also we present a generalization of
Theorem 1 in [5].

To prove the theorems of the work we use methods developed by Petrov [9, 10], Chandra
and Goswami [1], and Csörgő, Tandori, and Totik [2].
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2. Main results

Theorem 1. Let {Xn}
∞
n=1 be a sequence of non-negative random variables with finite ab-

solute moments of some order p > 1. Assume that {an}
∞
n=1 is non-decreasing unbounded

sequence of positive numbers. If

ESn = O(an) (6)

and

E|Sn − ESn|
p = O

(

apn
ψ(an)

)

for some function ψ ∈ Ψc, (7)

then
Sn − ESn

an
→ 0 a.s. (8)

Theorem 1 generalizes Theorem D, which corresponds to the case an = n for all n > 1.
Moreover, in the case an = n for all n > 1, condition (6) is less restrictive than assump-
tion (5).

Let us indicate two consequences of Theorem 1.

Theorem 2. Let {Xn}
∞
n=1 be a sequence of non-negative random variables with finite vari-

ances. Assume that {an}
∞
n=1 is non-decreasing unbounded sequence of positive numbers. If

condition (6) is satisfied and

V ar(Sn) = O

(

a2n
ψ(an)

)

for some function ψ ∈ Ψc,

then relation (8) holds.

We arrive at this proposition putting p = 2 in Theorem 1.

Theorem 3. Let {Xn}
∞
n=1 be a sequence of non-negative random variables with finite abso-

lute moments of some order p > 1. Assume that {wn}
∞
n=1 is a sequence of positive numbers,

Wn =

n
∑

k=1

wk, Tn =

n
∑

k=1

wkXk.

Suppose that Wn → ∞ (n→ ∞),

ETn = O(Wn), (9)

E|Tn − ETn|
p = O

(

W p
n

ψ(Wn)

)

for some function ψ ∈ Ψc.

Then

Tn − ETn
Wn

→ 0 a.s.
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Theorem 3 is a generalization of Theorem 1 in [6] which includes condition

n
∑

k=m

wkEXk 6 C

n
∑

k=m

wk for all sufficiently large n−m,

instead assumption (9). To prove Theorem 3 we can put an =Wn, Yn = wnXn for all n > 1
and apply Theorem 1 to the sequence of random variables {Yn}

∞
n=1.

The next theorem generalizes Theorem B, which corresponds to the case an = n for all
n > 1.

Theorem 4. Let {Xn}
∞
n=1 be a sequence of independent random variables with finite vari-

ances. Assume that {an}
∞
n=1 is non-decreasing unbounded sequence of positive numbers such

that

a2n
an

6 Q for all sufficiently large n, (10)

where Q is a constant. If

V ar(Sn) = O

(

a2n
ψ(n)

)

for some function ψ ∈ Ψc, (11)

then relation (8) holds.

Remark 1. We cannot omit condition (10) in Theorem 4 (See Example 1 below).

As mentioned above, in [5] was proved that condition (4) implies (1). The next theorem
generalizes this result.

Theorem 5. Let {bn}
∞
n=1 be a sequence of non-negative numbers. Assume that {an}

∞
n=1 is

non-decreasing unbounded sequence of positive numbers such that condition (10) is satisfied.
If

n
∑

k=1

bk = O

(

a2n
ψ(n)

)

for some function ψ ∈ Ψc, (12)

then

∞
∑

n=1

bn
a2n

<∞. (13)

Remark 2. We cannot omit condition (10) in Theorem 5.

Indeed, let b1 = b2 = 1, bn = 2n/n− 2n−1/(n− 1) for all n > 3. Then

n
∑

k=1

bk =
2n

n
for all n > 3.

Thus, the sequence {bn}
∞
n=1 satisfies condition (12) with an = 2n/2, n > 1 and function

ψ(x) = x, x > 0 (belonging to Ψc). But relation (13) does not hold since
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∞
∑

n=3

bn
a2n

=
∞
∑

n=3

2n/n− 2n−1/(n− 1)

2n
=

∞
∑

n=3

n− 2

2n(n− 1)
= ∞.

3. Proofs

To prove Theorems 1 and 4 we need the following proposition.

Lemma 1 (see [9]). If ψ(x) ∈ Ψc, then the series
∑

1/ψ(bn) converges for every b > 1.

Proof of Theorem 1. By assumption (6) there is a constant A such that inequality

ESn/an 6 A

is satisfied for each n > 1. Let α > 1, ε > 0 and L = [A/ε], the integer part of A/ε. Put

m1 = inf{m > 0 : αm 6 an < αm+1 for some n},

ml = inf{m > ml−1 : αm 6 an < αm+1 for some n} for l > 2.

We recall that an ↑ ∞, so {ml}
∞

l=1 is a subsequence of integers satisfying 0 6 m1 < m2 < . . .
and ml → ∞ (l → ∞). For each pair of integers l and s such that l > 1, s = 0, 1, . . . , L,
put

As(l) = {k : αml 6 ak < αml+1,
ESk
ak

∈ [sε, (s+ 1)ε)}.

Let k−s (l) = inf As(l), k
+
s (l) = supAs(l), if the set As(l) is not empty, and let k−s (l) =

k+s (l) = inf{k : αml 6 ak < αml+1} otherwise.
By the definition of k±s (l) for any l > 1 and s = 0, 1, . . . , L we have

ak±s (l) > αml .

Hence, using assumption (7) and Lemma 1, by Chebyshev’s inequality for any s = 0, 1, . . . , L
and λ > 0 we obtain

∞
∑

l=1

P

(∣

∣

∣

∣

∣

Sk±s (l) − ESk±s (l)

ak±s (l)

∣

∣

∣

∣

∣

> λ

)

6
1

λp

∞
∑

l=1

E|Sk±s (l) − ESk±s (l)|
p

(ak±s (l))
p

6

6 Cλ−p
1

ψ(ak±s (l))
6 Cλ−p

1

ψ(αml)
<∞.

The application of Borel–Cantelli lemma yields to

Sk±s (l) − ESk±s (l)

ak±s (l)

→ 0 a.s. (l → ∞) (14)

for any s = 0, 1, . . . , L.
Now for any natural number n there exists l = l(n) and s = s(n), limn→∞ l(n) = ∞,

0 6 s(n) 6 L such that
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αml 6 an < αml+1,
ESn
an

∈ [sε, (s+ 1)ε).

By the definition of k±s (l) we have

k−s (l) 6 n 6 k+s (l),

∣

∣

∣

∣

∣

ESk±s (l)

ak±s (l)

−
ESn
an

∣

∣

∣

∣

∣

< ε,

and so

− ε−

(

1−
1

α

)

A+
1

α

1

ak−s (l)

(Sk−s (l) − ESk−s (l)) 6

6 −ε−

(

1−
1

α

)

ESk−s (l)

ak−s (l)

+
1

α

1

ak−s (l)

(Sk−s (l) − ESk−s (l)) =

= −ε−
ESk−s (l)

ak−s (l)

+
1

α

Sk−s (l)

ak−s (l)

6 −ε−
ESk−s (l)

ak−s (l)

+
Sk−s (l)

an
6
Sk−s (l)

an
−
ESn
an

6

6
Sn − ESn

an
6
Sk+s (l)

an
−
ESn
an

6
Sk+s (l)

an
−
ESk+s (l)

ak+s (l)

+ ε 6 α
Sk+s (l)

ak+s (l)

−
ESk+s (l)

ak+s (l)

+ ε =

= α
(Sk+s (l) − ESk+s (l))

ak+s (l)

+ (α− 1)
ESk+s (l)

ak+s (l)

+ ε 6 α
(Sk+s (l) − ESk+s (l))

ak+s (l)

+ (α− 1)A+ ε.

Thus, using (14), we obtain

− ε−

(

1−
1

α

)

A 6 lim inf
n→∞

Sn − ESn
an

6 lim sup
n→∞

Sn − ESn
an

6 (α− 1)A+ ε (15)

almost surely. Since (15) is true for any α > 1 and ε > 0, we get relation (8).

Proof of Theorem 4. Without loss of generality it can be assumed that EXn = 0 for all
n > 1. By Chebyshev’s inequality, using (11) and Lemma 1, for any ε > 0, we get

∞
∑

n=1

P

(∣

∣

∣

∣

S2n

a2n

∣

∣

∣

∣

> ε

)

6
1

ε2

∞
∑

n=1

ES2
2n

a22n
6 Cε−2

∞
∑

n=1

1

ψ(2n)
<∞.

The application of Borel–Cantelli lemma yields to

S2n

a2n
→ 0 a.s.

To complete the proof it is sufficiently to show that

lim
n→∞

max
2n<k62n+1

∣

∣

∣

∣

Sk
ak

∣

∣

∣

∣

= 0 a.s.

We have
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max
2n<k62n+1

∣

∣

∣

∣

Sk
ak

∣

∣

∣

∣

= max
2n<k62n+1

∣

∣

∣

∣

Sk − S2n + S2n

ak

∣

∣

∣

∣

6

6

∣

∣

∣

∣

S2n

a2n

∣

∣

∣

∣

+ max
16k62n

∣

∣

∣

∣

∣

∑2n+k
i=2n+1Xi

a2n+1

∣

∣

∣

∣

∣

a2n+1

a2n
(16)

The first summand in the right-hand side of (16) convergences to zero almost surely. Taking
into account assumption (10), it is sufficiently to prove that

lim
n→∞

max
16k62n

∣

∣

∣

∣

∣

∑2n+k
i=2n+1Xi

a2n+1

∣

∣

∣

∣

∣

= 0 a.s. (17)

By Kolmogorov’s inequality (see [4]), for any ε > 0, we have

∞
∑

n=1

P

(

max
16k62n

∣

∣

∣

∣

∣

∑2n+k
i=2n+1Xi

a2n+1

∣

∣

∣

∣

∣

> ε

)

6
1

ε2

∞
∑

n=1

∑2n+1

i=2n+1EX
2
i

a22n+1

6 Cε−2
∞
∑

n=2

1

ψ(2n)
<∞.

Thus, (17) follows from Borel–Cantelli lemma.

Proof of Theorem 5. Suppose that conditions of Theorem 5 are satisfied for sequences
{an}

∞
n=1, {bn}

∞
n=1 of non-negative numbers, nevertheless the series

∑∞

n=1 bn/a
2
n diverges.

Then there is a sequence of independent random variables {Xn}
∞
n=1 such that EXn = 0,

V ar(Xn) = bn for all n > 1, but relation (8) does not hold (see, for example, [8]). The se-
quence {Xn}

∞
n=1 satisfies the conditions of Theorem 4, so (8) has to hold. This contradiction

concludes the proof.

The next example shows that assumption (10) in Theorem 4 cannot be dropped.

Example 1. Let an = 2n/2, n > 1. We consider the sequence of independent random
variables {Xn}

∞
n=1 such that

P (Xn = 1) = P (Xn = −1) =
1

2
for n = 1 or 2,

and

P (Xn = 2n/2) = P (Xn = −2n/2) =
n− 2

4n(n− 1)
,

P (Xn = 0) = 1−
n− 2

2n(n− 1)

for all n > 3. Then EXn = 0 for all n > 1, V ar(X1) = V ar(X2) = 1 and

V ar(Xn) =
2n

n
−

2n−1

n− 1
for all n > 3.

We have
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V ar(Sn) =
n
∑

k=1

V ar(Xk) =
2n

n
for all n > 3.

Thus, the sequence of random variables {Xn}
∞
n=1 satisfies condition (11) with an = 2n/2,

n > 1 and function ψ(x) = x, x > 0 (belonging to Ψc). Moreover

∞
∑

n=3

P (|Xn| = an) =

∞
∑

n=3

n− 2

2n(n− 1)
= ∞.

Application of Borel–Cantelli lemma yields to

P (|Xn| = an i.o.) = 1. (18)

We shall suppose that relation (8) holds. Then we have

Xn

an
=
Sn
an

−
an−1

an
·
Sn−1

an−1
→ 0 a.s.,

which contradicts (18).
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