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STAR-CUMULANTS OF FREE UNITARY BROWNIAN MOTION

NIZAR DEMNI, MATHIEU GUAY-PAQUET, AND ALEXANDRU NICA

Abstract. We study joint free cumulants of ut and u∗
t , where ut is a free unitary Brownian

motion at time t. We determine explicitly some special families of such cumulants. On
the other hand, for a general joint cumulant of ut and u∗

t , we “calculate the derivative”
for t → ∞, when ut approaches a Haar unitary. In connection to the latter calculation we
put into evidence an “infinitesimal determining sequence” which naturally accompanies an
arbitrary R-diagonal element in a tracial ∗-probability space.

1. Introduction

Let (ut)t≥0 be a free unitary Brownian motion in the sense of [3], [4] — that is, every ut
is a unitary element in some tracial ∗-probability space (At, ϕt), with ϕt(ut) = e−t/2, and

where the rescaled element vt := et/2ut has S-transform given by

(1.1) Svt(z) = etz, z ∈ C.

Closely related to Equation (1.1), one has a nice formula for the free cumulants of ut,
i.e. for the sequence of numbers

(
κn(ut, . . . , ut)

)∞
n=1

, where κn : An
t → C is the n-th free

cumulant functional of the space (At, ϕt). Indeed, these numbers are the coefficients of the
R-transform Rut . By using the relation between the S-transform and the compositional
inverse of the R-transform (which simply says that zS(z) = R<−1>(z)), one finds that

(1.2) Rvt(z) =
1

t
W (tz), t > 0,

where

W (y) = y − y2 +
3

2
y3 − 8

3
y4 + · · · + (−n)n−1

n!
yn + · · ·

is the Lambert series. Extracting the coefficient of zn in (1.2) gives the value of κn(vt, . . . , vt),
then rescaling back gives

(1.3) κn(ut, . . . , ut) = e−nt/2κn(vt, . . . , vt) = e−nt/2 (−n)n−1

n!
· tn−1, n ∈ N, t ≥ 0.

In this paper we study joint free cumulants of ut and u
∗
t , that is, quantities of the form

κn
(
u
ω(1)
t , . . . , u

ω(n)
t

)
, where n ∈ N and ω = (ω(1), . . . , ω(n)) ∈ {1, ∗}n.

The motivation for paying attention to these joint free cumulants comes from looking at the
limit t→ ∞, when ut approximates in distribution a Haar unitary. Recall that a unitary u
in a ∗-probability space (A, ϕ) is said to be a Haar unitary when it has the property that
ϕ(un) = 0 for every n ∈ Z \ {0}. This property trivially implies κn(u, . . . , u) = 0 for every
n ∈ N, thus the free cumulants of u alone do not look too exciting. However, things become
interesting upon considering the larger family of joint free cumulants of u and u∗. There we
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get the following non-trivial formula, first found in [10]: for ω = (ω(1), . . . , ω(n)) ∈ {1, ∗}n
one has

(1.4) κn
(
uω(1), . . . , uω(n)

)
=





(−1)k−1Ck−1, if n is even, n = 2k, and
ω = (1, ∗, 1, ∗, . . . , 1, ∗)
or ω = (∗, 1, ∗, 1, . . . , ∗, 1),

0, otherwise,

with Ck−1 = (2k − 2)!/(k − 1)!k!, the (k − 1)-th Catalan number. Formula (1.4) leads to
the combinatorial approach to R-diagonal elements — these are elements in a ∗-probability
space which display, in some sense, free independence in their polar decomposition ([8], see
also Lecture 15 of [9]; a brief review appears in Remark 2.6 below). For an R-diagonal
element a in a tracial ∗-probability space (A, ϕ), the sequence

(
κ2n(a, a

∗, . . . , a, a∗)
)∞
n=1

is
called “determining sequence of a” (and does indeed determine the joint distribution of a
and a∗); from this point of view, Equation (1.4) says that the determining sequence of a
Haar unitary consists of signed Catalan numbers.

Returning to the point of view that, for t → ∞, the free unitary Brownian motion ut is
an approximation of u, it then becomes natural to ask what can be said about the joint free
cumulants of ut and u

∗
t . The expressions for these joint cumulants are far more involved than

what is on the right-hand side of (1.4), but still turn out to have some tractable features. In
order to discuss them, it is convenient to start from the fact (easily obtained from the general
formula connecting free cumulants to moments in a noncommutative probability space) that

for every fixed ω ∈ {1, ∗}n, the cumulant κn
(
u
ω(1)
t , . . . , u

ω(n)
t

)
is a quasi-polynomial in −t/2;

more precisely, there exists a polynomial Zω ∈ Q[x, y], uniquely determined, such that

(1.5) κn
(
u
ω(1)
t , . . . , u

ω(n)
t

)
= Zω(t, e

−t/2), ∀ t ∈ [0,∞).

It is moreover easy to see that the y-degree of Zω(x, y) is at most n, and that all the powers
of y that appear in Zω have exponents of same parity as n. In other words, we can write

(1.6) Zω(x, y) = Z(n)
ω (x) · yn + Z(n−2)

ω (x) · yn−2 + · · · ,
with Z

(n)
ω , Z

(n−2)
ω , . . . in Q[x]. Note that the formula (1.3) which describes the cumulants of

ut (without u
∗
t ) fits here, and can be read as

(1.7) Z(1, 1, . . . , 1︸ ︷︷ ︸
n

)(x, y) =
(−n)n−1

n!
xn−1yn, n ∈ N.

A less obvious fact about the polynomials Zω is that the number of relevant terms (count-
ing from the top) in the expansion (1.6) is limited by how many times one switches between
the symbols ‘1’ and ‘∗’, while going around the string ω. Thus for ω = (1, 1, . . . , 1) we have

Zω(x, y) = Z
(n)
ω (x) · yn (as just seen above), then for ω of the form (1, . . . , 1, ∗, . . . , ∗) we

have Zω(x, y) = Z
(n)
ω (x) · yn + Z

(n−2)
ω (x) · yn−2, and so on. This fact is stated precisely in

Section 3 of the paper, and proved in Theorem 3.8 of that section. It is significant because

it gives information on the speed of decay of κn
(
u
ω(1)
t , . . . , u

ω(n)
t

)
when t→ ∞, in the case

(covering “most” strings ω ∈ {1, ∗}n) when the right-hand side of Equation (1.4) is equal
to 0.

Here are some more details about what we do in this paper, and about how it is organized.
Besides the present introduction, we have five sections. After a review of background and
notations in Section 2, some general basic properties of the polynomials Zω are established
in Section 3. Then Sections 4 and 5 study two special types of ω’s, as follows.

• In Section 4 we look at strings of the form ω = (1, . . . , 1, ∗, . . . , ∗), with k occurrences
of ‘1’ followed by ℓ occurrences of ‘∗’. We retrieve by direct calculation the fact mentioned
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above, that the expansion from Equation (1.6) is in this case reduced to its top two terms,

and we show moreover how the two polynomials Z
(k+ℓ)
ω (x) and Z

(k+ℓ−2)
ω (x) can be written

explicitly as Laplace transform integrals.
• In Section 5 we look at the case when ω is an alternating string of even length; in other

words, we pay attention (as suggested by formula (1.4)) to free cumulants

ξn(t) := κ2n(ut, u
∗
t , . . . , ut, u

∗
t ), n ∈ N, t ∈ [0,∞).

The main point of this section is to observe a recursive formula for d
dtξn(t), which amounts

to the fact that the generating function

H(t, z) :=
1

2
+

∞∑

n=1

ξn(t)z
n

satisfies a quasi-linear partial differential equation of Burgers type,

∂tH + 2zH ∂zH = z, with initial condition H(0, z) = 1/2.

We also show how examining the characteristic curves of the above partial differential
equation gives further information on ξn(t).

Finally, in Section 6 we look at a general string ω, and we study the behaviour of the
corresponding joint cumulant of ut and u

∗
t when t→ ∞. We look at the limit

lim
t→∞

κn
(
u
ω(1)
t , . . . , u

ω(n)
t

)
− κn

(
uω(1), . . . , uω(n)

)

e−t/2
,

where u is a Haar unitary. This limit turns out to always exist, and to have a very pleasing
form, which suggests some kind of “infinitesimal determining sequence” for a Haar unitary.
In Section 6 we also show how the idea of infinitesimal determining sequence can be extended
to the framework of a general R-diagonal distribution — this is done by considering products
utq where q = q∗ is free from {ut, u∗t }, and then by taking the same kind of “derivative at
t = ∞” as above.

2. Background and Notation

This section gives a very concise review, intended mostly for setting notations, of free
cumulants on a noncommutative probability space. We follow the terminology from [9] and,
for the various definitions and facts stated below, we give specific page references to that
monograph.

We start with the structure lying at the basis of the combinatorics of free probability, the
lattices NC(n) of non-crossing partitions. We will assume the reader to be familiar with
these objects, and we merely list below some basic notation that we will use in connection
to them.

Notation 2.1. [NC(n)-terminology.] Let n be a positive integer, and let us consider the
set NC(n) of all non-crossing partitions of {1, . . . , n}.

1o Partitions in NC(n) will be denoted by letters like π, ρ, . . .. Typical explicit notation
for a π ∈ NC(n) is π = {V1, . . . , Vk}, where V1, . . . , Vk are called the blocks of π. We
sometimes simply write V ∈ π to mean that “V is one of the blocks of π.”

2o On NC(n) we consider the partial order given by reverse refinement, where for π, ρ ∈
NC(n) we have π ≤ ρ if and only if every block of ρ is a union of blocks of π. The partially
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ordered set (NC(n),≤) turns out to be a lattice — that is, every π, ρ ∈ NC(n) have a
smallest common upper bound π ∨ ρ and a greatest common lower bound π ∧ ρ. (See [9],
pp. 144-146.)

The minimal and maximal element of (NC(n),≤) are denoted as 0n (the partition of
{1, . . . , n} into n blocks of 1 element each) and respectively as 1n (the partition of {1, . . . , n}
into one block with n elements).

3o (NC(n),≤) has a special anti-automorphism called the Kreweras complementation
map, which will be denoted as Kr : NC(n) → NC(n) (or as Krn, if we need to clarify what
n we are working with). The definition of Krn is made by using partitions of {1, . . . , 2n}; we
take a moment to review how this goes, because it illuminates a construction of the same
kind which we introduce in Section 6.

Let π and ρ be in NC(n). We will denote by π(odd) ⊔ ρ(even) the partition of {1, . . . , 2n}
which is obtained when one turns π into a partition of {1, 3, . . . , 2n − 1} and one turns ρ
into a partition of {2, 4, . . . , 2n}, in the natural way. That is, π(odd) ⊔ ρ(even) has blocks of
the form {2i − 1 | i ∈ V } where V is a block of π, and has blocks of the form {2j | j ∈W}
where W is a block of ρ. Note that π(odd) ⊔ ρ(even) may not belong to NC(2n), due to
crossings between its odd and even blocks. If we fix π ∈ NC(n), then it actually turns out

that the set {ρ ∈ NC(n) | π(odd) ⊔ ρ(even) ∈ NC(2n)} has a largest element with respect to
reverse refinement order; this largest element is, by definition, the Kreweras complement of
π. That is, Kr(π) is defined via the requirement that for ρ ∈ NC(n) we have:

π(odd) ⊔ ρ(even) ∈ NC(2n) ⇔ ρ ≤ Kr(π).

Here is a concrete example, considered for n = 5, which also illustrates a standard way of
drawing non-crossing partitions.

π =
1 2 3 4 5

⇒ π(odd) ⊔Kr(π)(even) =

1 2 3 4 5 6 7 8 9 10

⇒ Kr(π) =
1 2 3 4 5

For more details on the Kr map, see [9], pp. 147-148. A neat fact which will be used in
Section 5 below is that one has

|Krn(π) | = n+ 1− |π|, ∀π ∈ NC(n),

where |π|, |Krn(π) | denote the numbers of blocks of the partitions in question.

4o The Möbius function of NC(n) will be denoted as Moeb (or as Moebn, if we need to
clarify what n we are working with). This function is defined on {(π, ρ) | π, ρ ∈ NC(n),
π ≤ ρ}. We will actually only use two special cases of Moeb. The first case is when π = 0n;
here we simply get (see [9], pp. 162-164)

Moeb(0n, ρ) =
∏

W∈ρ

(−1)|W |−1C|W |−1,

where for k ∈ N ∪ {0} we denote

Ck :=
(2k)!

k!(k + 1)!
(the k-th Catalan number).

The second case we will encounter is the one having ρ = 1n, which reduces to the above via
the immediate observation that Moeb(π, 1n) = Moeb(0n,Kr(π)).
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Remark 2.2. In the description of Kr we used tacitly the fact that one can talk about the
lattice of non-crossing partitions NC(X) for any finite totally ordered set X (in particular
for X = {2, 4, . . . , 2n}). The lattice NC(X) can be of course canonically identified to
NC(n) for n = |X|, upon labelling the elements of X as 1, 2, . . . , n in increasing order.

Another natural convention used in Notation 2.1.3 was that if X and Y are two disjoint
finite sets, then we can put together a partition π of X with a partition ρ of Y in order
to obtain a partition denoted as “π ⊔ ρ” of X ∪ Y . If X ∪ Y (hence each of X,Y as well)
is totally ordered and if we start with π ∈ NC(X) and ρ ∈ NC(Y ), then it may or may
not be that π ⊔ ρ ∈ NC(X ∪ Y ) — the definition of the Kreweras complementation map is
actually built around this fact.

We now move to the review of free cumulants.

Notation 2.3. [Restrictions of n-tuples.]
In order to write more concisely various formulas that will appear in the paper, it is
convenient to use the following natural convention of notation. Let X be a non-empty
set, let n be a positive integer, and let (x1, . . . , xn) be an n-tuple in X n. For a subset
V = {i1, . . . , im} ⊆ {1, . . . , n}, with 1 ≤ m ≤ n and 1 ≤ i1 < · · · < im ≤ n, we denote

(x1, . . . , xn) | V := (xi1 , . . . , xim) ∈ Xm.

We will use this notation in two ways: one of them (already appearing in the next
definition) is when X is an algebra A of noncommutative random variables, and the other
is when X = {1, ∗} and we talk about the restriction ω | V ∈ {1, ∗}m of a string ω ∈ {1, ∗}n.

Definition 2.4. [Free cumulant functionals and R-transforms.]
Let (A, ϕ) be a noncommutative probability space.

1o For every n ∈ N, the n-th moment functional of (A, ϕ) is the multilinear functional
ϕn : An → C defined by ϕn(a1, . . . , an) := ϕ(a1 · · · an), a1, . . . , an ∈ A.

2o For every n ∈ N, the n-th free cumulant functional of (A, ϕ) is the multilinear func-
tional κn : An → C defined by

(2.1) κn(a1, . . . , an) =
∑

π∈NC(n)

(
Moeb(π, 1n) ·

∏

V ∈π

ϕ|V |

(
(a1, . . . , an) | V

) )
.

Equation (2.1) is referred to as the moment–cumulant formula.

3o Let a be an element of A. The formal power series Ra(z) :=
∑∞

n=1 κn(a, . . . , a) z
n is

called the R-transform of a.

Remark 2.5. Let (A, ϕ) be a noncommutative probability space, and consider its free cu-
mulant functionals κn : An → C, as above.

1o Let B, C ⊆ A be unital subalgebras which are freely independent. The fundamental
property of the κn’s is that κn(a1, . . . , an) = 0 whenever n ≥ 2, a1, . . . , an ∈ B ∪ C, and
there are elements from both B and C among a1, . . . , an. We also record here a consequence
of this fact — a formula (presented in [9] on pp. 226-227) which expresses an alternating
moment ϕ(b1c1 · · · bncn) in terms of “free cumulants of the b’s and moments of the c’s”:
(2.2)

ϕ(b1c1 · · · bncn) =
∑

π∈NC(n)

∏

V ∈π

κ|V |

(
(b1, . . . , bn) | V )

)
·

∏

W∈Kr(π)

ϕ|W |

(
(c1, . . . , cn) |W )

)
.
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2o We will make essential use of a result of Krawczyk and Speicher [7] (presented in
[9] on pp. 178-181), which gives a structured summation formula for “free cumulants with
products as entries”, as follows. Let σ = {J1, . . . , Jk} ∈ NC(n) be a partition where every
block is an interval: J1 = {1, . . . , j1}, J2 = {j1 + 1, . . . , j2}, . . . , Jk = {jk−1 + 1, . . . , jk} for
some 1 ≤ j1 < j2 < · · · < jk = n. Then for every a1, . . . , an ∈ A one has

κk
(
a1 · · · aj1 , aj1+1 · · · aj2 , . . . , ajk−1+1 · · · ajk

)

(2.3) =
∑

π∈NC(n) such

that π∨σ=1n

∏

V ∈π

κ|V |

(
(a1, . . . , an) | V

)
.

In the special case when σ = 1n, Equation (2.3) becomes a formula expressing the moment
ϕ(a1 · · · an) in terms of free cumulants; this special case turns out to be equivalent to (2.1),
and also goes (same as (2.1)) under the name of “moment–cumulant formula”.

3o We also record some useful properties of free cumulants which follow immediately from
their definition, by taking into account obvious symmetries of the lattices NC(n).

(a) Invariance under cyclic permutations of entries:

κn(a1, . . . , an) = κn(am, . . . , an, a1, . . . , am−1), ∀ 1 ≤ m ≤ n and a1, . . . , an ∈ A.

(b) Left-right symmetry: if C ⊆ A is a commutative subalgebra, then

κn(c1, c2, . . . , cn) = κn(cn, . . . , c2, c1), ∀n ≥ 1 and c1, . . . , cn ∈ C.

(c) Left-right symmetry in ∗-probability framework: suppose (A, ϕ) is a ∗-probability
space, then one has κn(a

∗
n, . . . , a

∗
2, a

∗
1) = κn(a1, a2, . . . , an), ∀n ≥ 1 and a1, . . . , an ∈ A.

4o Suppose again that (A, ϕ) is a ∗-probability space. Then by using the Cauchy-Schwarz
inequality for the functional ϕ, one immediately sees that every unitary u ∈ A has |ϕ(u)| ≤
1. As a consequence, it follows that

(2.4) κn(u1, . . . , un) ≤ 16n, ∀n ≥ 1 and u1, . . . , un ∈ A unitaries.

The constant 16 in (2.4) appears upon writing cumulants in terms of moments as in Equation
(2.1), then by using estimates on the Möbius function — see the discussion on p. 219 of [9].

From the bound (2.4) it is clear that for every unitary u ∈ A, the R-transform Ru(z)
(which was introduced in Definition 2.4.3 as a formal power series) can also be viewed as
an analytic function on the disc {z ∈ C | |z| < 1/16}.

Remark 2.6. [R-diagonal elements.]
Let (A, ϕ) be a ∗-probability space, and suppose that u, q ∈ A are such that u is Haar

unitary, q = q∗, and q is free from {u, u∗}. The element a := uq ∈ A is said to be R-diagonal.
The motivation for this name (introduced in [8]) is that there exists a sequence (αk)

∞
k=1,

called the determining sequence of a, such that for ω = (ω(1), . . . , ω(n)) ∈ {1, ∗}n one has:

(2.5) κn
(
aω(1), . . . , aω(n)

)
=





αn/2, if n even and ω = (1, ∗, 1, ∗, . . . , 1, ∗)
or ω = (∗, 1, ∗, 1, . . . , ∗, 1),

0, otherwise.
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The αk’s can be written in terms of the free cumulants of q2 via a formula which looks
similar to Equation (2.1):

(2.6) αk =
∑

π∈NC(k)

(
Moeb(π, 1k) ·

∏

V ∈π

κ|V |(q
2, . . . , q2)

)
, k ∈ N.

The derivation of these facts is presented in [9] on pp. 241-244 of Lecture 15.
Note that Equation (1.4) from the Introduction corresponds to the special case q = 1

A

of the above formulas. Indeed, in this case the sum on the right-hand side of (2.6) has
only one non-vanishing term, corresponding to π = 0k, and we get αk = Moeb(0k, 1k) =
(−1)k−1Ck−1, as stated in (1.4).

3. The polynomials Zω

Proposition and Notation 3.1. Let ω = (ω(1), . . . , ω(n)) be a string in {1, ∗}n, for some
n ≥ 1. There exists a polynomial Zω ∈ Q[x, y], uniquely determined, such that

(3.1) κn
(
u
ω(1)
t , . . . , u

ω(n)
t

)
= Zω(t, e

−t/2), ∀ t ∈ [0,∞).

Moreover, the polynomial Zω(x, y) has the form

(3.2) Zω(x, y) =
∑

0≤j≤n/2

Z(n−2j)
ω (x) · yn−2j,

where Z
(n−2j)
ω ∈ Q[x] for 0 ≤ j ≤ n/2.

Proof. We will give an explicit formula for the polynomial Zω. In order to state it, we
introduce some preliminary items of notation. We first recall that Lemma 1 on page 4 of
[4] says that the moments of ut are ϕt(u

n
t ) = Qn(t)e

−nt/2, n ≥ 1, where

Qn(t) = −
n−1∑

j=0

(−n)j−1

j!

(
n

j + 1

)
tj .

For a string ω in {1, ∗}n which has k occurrences of the symbol “1” and ℓ = n−k occurrences
of “∗”, we then introduce a polynomial Mω ∈ Q[x, y] defined by

(3.3) Mω(x, y) :=

{
Q|k−ℓ|(x) y

|k−ℓ|, if k 6= ℓ
1, if k = ℓ.

[For instance, if n = 7 and ω = (1, 1, ∗, 1, 1, ∗, 1) then Mω(x, y) = Q3(x) y
3 = (1 − 3x +

3
2x

2)y3.]
Based on (3.3), we define the Zω’s as follows: for every ω ∈ {1, ∗}n we put

(3.4) Zω :=
∑

π∈NC(n)

Moeb(π, 1n) ·
( ∏

V ∈π

Mω|V

)
,

where the notations related to NC(n) and its Möbius function are as in Section 2.
[A concrete example: if n = 3 and ω = (1, ∗, 1), then

Z(1,∗,1) :=M(1,∗,1) −M(1)M(∗,1) −M(1,1)M(∗) −M(1,∗)M(1) + 2M(1)M(∗)M(1);

this comes, upon substituting the M ’s, to Z(1,∗,1)(x, y) = (x+ 1)y3 − y.]
Fix a t ∈ [0,∞), and for every n ∈ N let ϕn : An

t → C be the n-th moment functional of
(At, ϕt). Then one has

(3.5) ϕn

(
u
ω(1)
t , . . . , u

ω(n)
t

)
=Mω(t, e

−t/2), ∀n ∈ N and ω ∈ {1, ∗}n.
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This in turn implies that, for every n ∈ N and ω ∈ {1, ∗}n:

κn
(
u
ω(1)
t , . . . , u

ω(n)
t

)
=

∑

π∈NC(n)

Moeb(π, 1n) ·
( ∏

V ∈π

ϕ|V |

(
(u

ω(1)
t , . . . , u

ω(n)
t ) | V

) )

=
∑

π∈NC(n)

Moeb(π, 1n) ·
( ∏

V ∈π

Mω|V (t, e
−t/2)

)
= Zω(t, e

−t/2)

(where we first used the moment–cumulant formula (2.1), then we invoked Equations (3.5)
and (3.4)). Thus Zω has the property stated in Equation (3.1).

The uniqueness of Zω with the property stated in Equation (3.1) follows from general
considerations (a polynomial in Q[x, y] is determined by its values on pairs (t, e−t/2), with
t ∈ [0,∞)).

Finally, let us also verify the specific form of Zω that was indicated in Equation (3.2).
It suffices to show that: for every π ∈ NC(n), the term indexed by π in the sum on the
right-hand side of (3.4) is of the form ys · T (x), where s ∈ {0, 1, . . . , n} has same parity
as n, and where T ∈ Q[x]. So fix a partition π = {V1, . . . , Vk} ∈ NC(n), and for every
1 ≤ j ≤ k denote by pj and by qj the number of occurrences of “1” and respectively “∗”
in the restricted word ω|Vj . The term indexed by π in the sum on the right-hand side of

(3.4) is Moeb(π, 1n) ·
∏k

j=1Q|pj−qj |(x)y
|pj−qj |, where we set Q0 := 1. This is indeed of the

form ys · T (x), with s := ∑k
j=1 |pj − qj|, and we are only left to check that n− s is an even

non-negative integer. But the latter fact follows from

n− s =

k∑

j=1

(pj + qj)−
k∑

j=1

|pj − qj | =
k∑

j=1

(pj + qj − |pj − qj|),

where every pj + qj − |pj − qj| is an even non-negative integer. �

Example 3.2. Here are some concrete examples of polynomials Zω:

Z(1,∗)(x, y) = −y2 + 1,
Z(1,1,∗)(x, y) = (x+ 1)y3 − y,

Z(1,1,1,∗)(x, y) = −(32x
2 + 2x+ 1)y4 + (x+ 1)y2,

Z(1,1,∗,∗)(x, y) = −(x2 + 2x+ 2)y4 + 2y2,
Z(1,∗,1,∗)(x, y) = −(2x+ 3)y4 + 4y2 − 1.

If we add to this list the formula for a polynomial Z(1,1,...,1) from Equation (1.7), and if we
take into account some obvious invariance properties of the Zω’s (as recorded in the next
remark), then these examples cover all strings ω ∈ {1, ∗}n for n ≤ 4.

Remark 3.3. The polynomials Zω have some invariance properties which follow directly
from their definition.

1o Let ω, ω′ ∈ {1, ∗}n be such that ω′ is obtained from ω via a cyclic permutation.

The invariance of free cumulants under cyclic permutations of entries gives Zω(t, e
−t/2) =

Zω′(t, e−t/2), t ∈ [0,∞), which implies that the polynomials Zω and Zω′ coincide.

2o The same conclusion as in 1o holds if we take ω′ to be obtained from ω by reversing the
order of its components, ω′ = (ω(n), . . . , ω(1)). (This time we use the invariance property
of free cumulants that was reviewed in Remark 2.5.3(b).)
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3o The moments of the free unitary Brownian motion ut are real numbers (as reviewed
at the beginning of the preceding proof). This has the consequence that u∗t can also serve
as free unitary Brownian motion at time t, which in turn implies that

κn
(
u
ω(1)
t , . . . , u

ω(n)
t

)
= κn

(
u
ω′(1)
t , . . . , u

ω′(n)
t

)
, ∀ t ∈ [0,∞),

with ω′ obtained out of ω ∈ {1, ∗}n by swapping the roles of 1 and ∗ (every ω(i) which is
a 1 is replaced by a ∗, and vice-versa). The uniqueness property of Zω thus implies that
Zω = Zω′ in this situation, too.

We next put into evidence a very useful recursion satisfied by the polynomials Zω. This
is done in Proposition 3.5; the essence of the argument is a calculation which holds for any
unitary in a ∗-probability space, and is presented in the next lemma.

Lemma 3.4. Let (A, ϕ) be a ∗-probability space, and let u ∈ A be a unitary element.
Consider a string ω = (ω(1), . . . , ω(n)) ∈ {1, ∗}n with n ≥ 3 and where ω(1) = 1, ω(n) = ∗.
Then

(3.6) κn
(
uω(1), . . . , uω(n)

)
= −

n−1∑

m=1

κm
(
uω(1), . . . , uω(m)

)
· κn−m

(
uω(m+1), . . . , uω(n)

)

(where κn, κm, κn−m denote free cumulant functionals for (A, ϕ)).
Proof. We may assume (by replacing A with the ∗-algebra generated by u) that (A, ϕ) is
tracial. In particular, we can write

κn
(
uω(1), . . . , uω(n)

)
= κn

(
uω(n), uω(1), . . . , uω(n−1)

)
= κn

(
u∗, u, uω(2), . . . , uω(n−1)

)
.

Now, we know that κn−1

(
u∗u, uω(2), . . . , uω(n−1)

)
= 0 (a free cumulant of length ≥ 2

always vanishes when one of its entries is equal to 1
A
). On the other hand, the formula

(2.3) for cumulants with products as entries gives

(3.7) κn−1

(
u∗u, uω(2), . . . , uω(n−1)

)

=
∑

π∈NC(n) such

that π∨σ=1n

∏

V ∈π

κ|V |

(
(u∗, u, uω(2), . . . , uω(n−1)) | V

)
,

where σ ∈ NC(n) is the partition consisting of the 2-element block {1, 2} and of n − 2
blocks with one element.

Let π ∈ NC(n) be such that π ∨ σ = 1n, and let V ′ and V ′′ be the blocks of π which
contain 1 and 2, respectively. We observe that V ′∪V ′′ = {1, . . . , n}; indeed, in the opposite
case we could consider the partition π̃ ∈ NC(n) which is obtained from π by joining together
the blocks V and V ′, and1 this π̃ would satisfy π, σ ≤ π̃ 6= 1n, in contradiction with the
assumption that π ∨ σ = 1n. If V ′ = V ′′ then π = 1n. If V ′ 6= V ′′ then either V ′ = {1},
V ′′ = {2, 3, . . . , n}, or V ′′ is nested inside V ′. In the latter case, denoting |V ′′| =: m, we
find that V ′′ = {2, . . . ,m+ 1} and V ′ = {1} ∪ {m+ 2, . . . , n}, where 1 ≤ m ≤ n− 2.

The conclusion of the discussion in the preceding paragraph is that the sum on the
right-hand side of (3.7) can be written explicitly as

(3.8) κn
(
u∗, u, uω(2), . . . , uω(n−1)

)
+

n∑

m=1

κπm

(
u∗, u, uω(2), . . . , uω(n−1)

)
,

1 The partition π̃ thus consists of V ′ ∪ V ′′ and of all the blocks V ∈ π such that V 6= V ′, V ′′. The detail
which prevents π̃ from having crossings is that V ′ and V ′′ contain the adjacent points 1 and 2.
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with πm = { {2, . . . ,m+1}, {1, . . . , n} \ {2, . . . ,m+1} }, 1 ≤ m ≤ n− 1. It is immediately

seen (by doing the suitable cyclic permutation of entries in κn−m

(
u∗, uω(m+1), . . . , uω(n−1)

)
)

that for every 1 ≤ m ≤ n− 1 one has

κπm

(
u∗, u, uω(2), . . . , uω(n−1)

)
= κm

(
uω(1), . . . , uω(m)

)
· κn−m

(
uω(m+1), . . . , uω(n)

)
.

But the sum in (3.8) is equal to 0 (since it started as an expansion for κn−1(u
∗u, . . .) = 0),

and the statement of the lemma follows. �

Proposition 3.5. Suppose that n ≥ 3 and that ω = (ω(1), . . . , ω(n)) ∈ {1, ∗}n has ω(1) = 1
and ω(n) = ∗. Then it follows that

(3.9) Zω = −
n−1∑

m=1

Z(ω(1),...,ω(m)) · Z(ω(m+1),...,ω(n))

(equality of polynomials in two variables).

Proof. Let Z ∈ Q[x, y] be the polynomial which appears on the right-hand side of (3.9). By

using Lemma 3.4 one immediately sees that Z(t, e−t/2) = κn
(
u
ω(1)
t , . . . , u

ω(n)
t

)
, t ∈ [0,∞),

and this implies Z = Zω. �

As an application of Proposition 3.5 we show the following: the number of relevant terms
(counting from the top) in the expansion given for Zω in Equation (3.2) is limited by how
many times we switch between the symbols ‘1’ and ‘∗’, upon going around the string ω. For

instance if ω = (1, 1, . . . , 1) then the expansion (3.2) amounts to just Zω(x, y) = Z
(n)
ω (x) ·yn,

if ω = (1, . . . , 1, ∗, . . . , ∗) then Zω(x, y) = Z
(n)
ω (x) · yn + Z

(n−2)
ω (x) · yn−2, and so on. This

fact is stated precisely in Theorem 3.8 below. In order to come to it, we first record the
(natural) definition for what is the “number of switches between 1 and ∗” in a string ω.

Definition and Remark 3.6. For every n ∈ N and ω ∈ {1, ∗}n we define the switch-number
of ω to be

(3.10) Switch(ω) := δω(n),ω(1) + δω(1),ω(2) + · · · + δω(n−1),ω(n),

where the δ’s on the right-hand side of the equation are assigned by putting

δ1,∗ = δ∗,1 = 1 and δ1,1 = δ∗,∗ = 0.

It is easily seen that Switch(ω) is an even integer such that 0 ≤ Switch(ω) ≤ n. Another
immediate observation is that Switch(ω) = Switch(ω′) whenever ω′ is obtained out of ω via
one of the transformations discussed in Remark 3.3.

Lemma 3.7. Let n ≥ 3 be an integer, and let ω = (ω(1), . . . , ω(n)) ∈ {1, ∗}n be such that
ω(1) = 1, ω(n) = ∗. Let m be a number in {1, . . . , n − 1}, and consider the strings

ω′ := (ω(1), . . . , ω(m)) ∈ {1, ∗}m, ω′′ := (ω(m+ 1), . . . , ω(n)) ∈ {1, ∗}n−m.

Then we have

(3.11) Switch(ω′) + Switch(ω′′) ≤ Switch(ω).
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Proof. We will prove the required inequality by assuming that 1 < m < n − 1 (the cases
when m = 1 or m = n− 1 are analogous, and simpler). Look at the difference

Switch(ω)−
(
Switch(ω′) + Switch(ω′′)

)
.

By cancelling common terms in the expressions which define these three switch-numbers,
we find that the above difference is equal to

(
δω(m),ω(m+1) + δω(n),ω(1)

)
−

(
δω(m),ω(1) + δω(n),ω(m+1)

)
.

Since δω(n),ω(1) = 1 (while the other δ’s appearing above are 0 or 1), we get that

Switch(ω)−
(
Switch(ω′) + Switch(ω′′)

)
≥ −1.

But switch-numbers are always even; so in the latter inequality we are actually forced to
have “≥ 0”, and (3.11) follows. �

Theorem 3.8. Let n be a positive integer, and let ω be a string in {1, ∗}n. Consider the

polynomial Zω(x, y) and its expansion as sum of terms Z
(n−2j)
ω (x) ·yn−2j, with 0 ≤ j ≤ n/2,

which was obtained in Proposition 3.1. One has

(3.12) Z(n−2j)
ω = 0 whenever 2j > Switch(ω).

Proof. We first observe that the statement of the theorem holds when ω is of the form
(1, 1, . . . , 1) or (∗, ∗, . . . , ∗). In this case we have Switch(ω) = 0; so Equation (3.12) says

that Z
(n−2j)
ω = 0 for every j 6= 0, i.e. that Zω(x, y) = Z

(n)
ω (x) · yn. This is indeed true, as

noticed in Equation (1.7) of the introduction.
We now prove by induction on n that the statement of the theorem holds for general

strings ω ∈ {1, ∗}n. The case n = 1 is included in the preceding paragraph. Let us
also verify the case n = 2. In this case, the strings (1, 1) and (∗, ∗) are covered by the
preceding paragraph, while the strings (1, ∗) and (∗, 1) have switch-number equal to 2 — so
for the latter two strings, Equation (3.12) is fulfilled vacuously (there is no j in the range
0 ≤ j ≤ n/2 such that 2j > Switch(ω)).

In the remaining part of the proof we do the induction step: we fix an integer n ≥ 3, we
assume that the statement of the theorem holds for strings of length ≤ n − 1, and we will
prove that it also holds for strings of length n.

So let us also fix an ω = (ω(1), . . . , ω(n)) in {1, ∗}n, for which we will verify that (3.12)
holds. We distinguish three cases.

Case 1. ω = (1, 1, . . . , 1) or ω = (∗, ∗, . . . , ∗).
This case was verified in the first paragraph of the proof.

Case 2. ω is such that ω(1) = 1 and ω(n) = ∗.
Consider a j ∈ N such that 0 ≤ j ≤ n/2 and such that 2j > Switch(ω). (We assume that

such j’s exist, otherwise there is nothing to prove.) We are in a situation where we can
invoke Proposition 3.5. By extracting the coefficient of yn−2j on both sides of the recursion
provided by that proposition, we find that

(3.13) Z(n−2j)
ω = −

n−1∑

m=1

∑

0≤k≤m/2, 0≤ℓ≤(n−m)/2

such that k+ℓ=j

Z
(m−2k)
(ω(1),...,ω(m)) · Z

(n−m−2ℓ)
(ω(m+1),...,ω(n))
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(equality of polynomials in Q[x]). We will show that Z
(n−2j)
ω = 0 by verifying that every

term in the double sum on the right-hand side of (3.13) is the zero polynomial. Indeed, let
us pick such a term (indexed by an m, and then by a pair (k, ℓ)), and let us denote

ω′ := (ω(1), . . . , ω(m)) ∈ {1, ∗}m, ω′′ := (ω(m+ 1), . . . , ω(n)) ∈ {1, ∗}n−m.

We have 2k + 2ℓ = 2j > Switch(ω) ≥ Switch(ω′) + Switch(ω′′) (where at the second
inequality we use Lemma 3.7). So either 2k > Switch(ω′) or 2ℓ > Switch(ω′′), and the

induction hypothesis gives us that either Z
(m−2k)
(ω(1),...,ω(m)) = 0 or Z

(n+m−2ℓ)
(ω(m+1),...,ω(n)) = 0. Either

way, the product of the latter two polynomials is 0, and this completes the verification of
Case 2.

Case 3. ω does not fall in either Case 1 or Case 2 above.
Since ω is not in Case 1, both symbols 1 and ∗ must appear among its components. It

is then easy to see that there exists a string ω′ obtained from ω via a cyclic permutation
of components, such that ω′(1) = 1 and ω′(n) = ∗. The string ω′ has Zω′ = Zω (Remark
3.3.1), and has Switch(ω′) = Switch(ω) (Remark 3.6). For any j such that 2j > Switch(ω) =

Switch(ω′) we have Z
(n−2j)
ω′ = 0, because ω′ falls in the Case 2 discussed above. It follows

that Z
(n−2j)
ω = 0 as well. This concludes the verification of the induction step, and the

proof of the theorem. �

4. A special case of Zω’s

In the present section we determine what is the polynomial Zω for a string of the form
ω = (1, . . . , 1, ∗, . . . , ∗), having k occurrences of “1” followed by ℓ occurrences of “∗”, for
some k, ℓ ≥ 1. In this case, Theorem 3.8 says that the expansion from Equation (1.6) is
reduced to its top two terms:

Zω(x, y) = Z(k+ℓ)
ω (x) yk+ℓ + Z(k+ℓ−2)

ω (x) yk+ℓ−2.

We will retrieve this fact, and we will moreover show how the polynomials Z
(k+ℓ)
ω (x),

Z
(k+ℓ−2)
ω (x) can be written explicitly as some Laplace transform integrals. We start with

a calculation (consequence of the above Lemma 3.4) which holds for any unitary in a ∗-
probability space.

Lemma 4.1. Let (A, ϕ) be a ∗-probability space and let u ∈ A be a unitary element. It
makes sense to define an analytic function Fu : {(z, w) ∈ C2 | |z|, |w| < 1/16} → C by
putting

(4.1) Fu(z, w) :=
∞∑

k,ℓ=1

κk+ℓ(u, . . . , u︸ ︷︷ ︸
k

, u∗, . . . , u∗︸ ︷︷ ︸
ℓ

) zkwℓ.

Moreover, there exists r ∈ (0, 1/16) such that for |z|, |w| < r one has

(4.2) Fu(z, w) =
zw −Ru(z)Ru∗(w)

1 +Ru(z) +Ru∗(w)
,

where Ru, Ru∗ : {z ∈ C | |z| < 1/16} → C are R-transforms (as discussed in Remark 2.5.4).
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Proof. The fact that Fu(z, w) defined in Equation (4.1) is well-defined and analytic on
{(z, w) ∈ C2 | |z|, |w| < 1/16} follows from the bound

κk+ℓ(u, . . . , u︸ ︷︷ ︸
k

, u∗, . . . , u∗︸ ︷︷ ︸
ℓ

) ≤ 16k+ℓ, k, ℓ ∈ N,

which was mentioned in Remark 2.5.4.
Let us next consider the analytic function defined on {(z, w) ∈ C2 | |z|, |w| < 1/16} by

(4.3) (z, w) 7→ Fu(z, w) (1 +Ru(z) +Ru∗(w)) +Ru(z)Ru∗(w).

We will prove that this function is just (z, w) 7→ zw; the formula claimed in the lemma for
F (z, w) will then clearly follow (with r picked e.g. such that |Ru(z)| < 1/2 for |z| < r).

It thus suffices to prove that the coefficient of zkwℓ in the analytic function from (4.3) is
equal to 1 for k = ℓ = 1, and is equal to 0 for any (k, ℓ) 6= (1, 1) in N2. In the special case
when k = ℓ = 1, the coefficient in question comes out as κ2(u, u

∗) + κ1(u)κ1(u
∗), which is

equal to ϕ(uu∗) by the moment-cumulant formula, and thus is indeed equal to 1. The cases
when (k, ℓ) 6= (1, 1) are covered by Lemma 3.4. Indeed, let us say for instance that both k
and ℓ are ≥ 2 (if k = 1 < ℓ or if ℓ = 1 < k then the argument is analogous, and shorter).
Direct inspection shows that the coefficient of zkwℓ in the function from (4.3) is equal to

κk+ℓ(u, . . . , u︸ ︷︷ ︸
k

, u∗, . . . , u∗︸ ︷︷ ︸
ℓ

) +
k−1∑

i=1

κi(u, . . . , u) · κ(k−i)+ℓ(u, . . . , u︸ ︷︷ ︸
k−i

, u∗, . . . , u∗︸ ︷︷ ︸
ℓ

)

+

ℓ−1∑

j=1

κk+(ℓ−j)(u, . . . , u︸ ︷︷ ︸
k

, u∗, . . . , u∗︸ ︷︷ ︸
ℓ−j

) · κj(u∗, . . . , u∗) + κk(u, . . . , u) · κℓ(u∗, . . . , u∗).

But Lemma 3.4 (used for the string in {1, ∗}k+ℓ which has k occurrences of 1 followed by ℓ
occurrences of ∗) says precisely that the latter sum is equal to 0. �

We now turn to the case of interest, of the free unitary Brownian motion.

Lemma 4.2. Let us fix t ∈ (0,∞). In the framework of Lemma 4.1 let us put u = ut (free
unitary Brownian motion at time t), and let us consider the analytic function Fut(z, w)
defined as in Equation (4.1). Then for |z|, |w| small enough we have that

(4.4) Fut(z, w) =
1

t
· t

2zw −W (te−t/2z)W (te−t/2w)

t+W (te−t/2z) +W (te−t/2w)
,

or equivalently that

(4.5) Fut(z, w) = tzw

∫ 1

0
e−ts e−sW (te−t/2z) e−sW (te−t/2w) ds,

with W the Lambert function (viewed here as analytic function on {z ∈ C | |z| < 1/e}).
Proof. As mentioned in the introduction, the rescaling vt = et/2ut has R-transform Rvt(z) =

t−1W (tz). But Rut(z) = Rvt(e
−t/2z), so we find the R-transform of ut to be

(4.6) Rut(z) =
1

t
W (te−t/2z).

The equality (4.6) holds when |z| is small enough so that both sides are defined (one can

e.g. use |z| < 1/16 on the left-hand side and |z| < et/2/(et) on the right-hand side). The
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adjoint u∗t has the same R-transform as ut itself. We replace all this into the result of
Lemma 4.1. Upon also requiring the condition that |z|, |w| are small enough such that

|W (te−t/2z)|, |W (te−t/2w)| < t/2

(which ensures that the denominator t +W (te−t/2z) +W (te−t/2w) does not vanish), we
arrive to the formula for Fut that was stated in Equation (4.4).

In order to go from (4.4) to (4.5), let us fix z, w ∈ C such that |z|, |w| satisfy the
restrictions mentioned above, and let us denote

W (te−t/2z) =: α, W (te−t/2w) =: β.

From the definition of the Lambert function it follows that αeα = te−t/2z, βeβ = te−t/2w,
and multiplying together the latter equations gives

(4.7) t2zw = αβet+α+β .

We write the right-hand side of (4.4) in terms of α and β (where t2zw is substituted from
Equation (4.7)), and we obtain

Fut(z, w) =
1

t
· αβe

t+α+β − αβ

t+ α+ β
=
αβ

t

∫ 1

0
ex(t+α+β) dx.

Finally, in the latter integral we make the substitution s = 1− x, which leads to

Fut(z, w) =
αβ

t
· et+α+β ·

∫ 1

0
e−s(t+α+β) ds.

The constant (αβet+α+β)/t is (by (4.7)) equal to tzw, hence reverting back from α, β to
z, w takes us precisely to the integral formula stated in Equation (4.5). �

Proposition 4.3. Let us fix t ∈ (0,∞) and let ut be as above (free unitary Brownian motion
at time t). For every k, ℓ ∈ N we have

(4.8) κk+ℓ(ut, . . . , ut︸ ︷︷ ︸
k

, u∗t , . . . , u
∗
t︸ ︷︷ ︸

ℓ

) =
(−1)k+ℓ

(k − 1)!(ℓ − 1)!
tk+ℓ−1 (e−t/2)k+ℓ−2 · Ik,ℓ(t),

where

(4.9) Ik,ℓ(t) :=

∫ 1

0
e−ts s2 (s + k − 1)k−2 (s+ ℓ− 1)ℓ−2 ds.

Proof. It is known (see e.g. [5]) that for any s ∈ [0, 1] and y ∈ C with |y| < 1/e one has the
series expansion

e−sW (y) = 1− sy +
s(s+ 2)

2!
y2 − s(s+ 3)2

3!
y3 + · · ·+ (−1)n

s(s+ n)n−1

n!
yn + · · · ,

which we will find convenient to write concisely as

(4.10) e−sW (y) =

∞∑

n=0

s(s+ n)n−1

n!
(−y)n.

Let us then pick some z, w with |z|, |w| small enough (in the sense discussed in Lemma
4.2) and such that moreover z, w are real negative numbers. By using the expansion (4.10)
in the Equation (4.5) of Lemma 4.2 we infer that

Fut(z, w) = tzw

∫ 1

0
e−ts ·

∞∑

m=0

s(s+m)m−1

m!
(−te−t/2z)m ·

∞∑

n=0

s(s+ n)n−1

n!
(−te−t/2w)n ds
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=

∫ 1

0

( ∞∑

m,n=0

tzw · e−ts · s(s+m)m−1

m!
(−te−t/2z)m · s(s+ n)n−1

n!
(−te−t/2w)n

)
ds.

The terms of the infinite double-sum are non-negative, hence the monotone convergence
theorem allows us to interchange the double-sum with the integral. When we do that, and
we move the powers of −z,−w, t, e−t/2 outside the integral, we come to the fact that (for
z, w picked as above) we have

Fut(z, w) =

∞∑

m,n=0

(−z)m+1(−w)n+1 · t
m+n+1(e−t/2)m+n

m!n!
·
( ∫ 1

0
s(s+m)m−1 s(s+n)n−1 ds

)
.

It is convenient to also make here the shift of indices m+ 1 = k, n + 1 = ℓ, and conclude
that

(4.11) Fut(z, w) =

∞∑

k,ℓ=1

(−z)k(−w)ℓ · t
k+ℓ−1(e−t/2)k+ℓ−2

(k − 1)!(ℓ− 1)!
· Ik,ℓ(t),

with Ik,ℓ(t) defined in (4.9).
Now, it is easy to see that if we put

λk,ℓ(t) :=
(−1)k+ℓ

(k − 1)!(ℓ− 1)!
tk+ℓ−1 (e−t/2)k+ℓ−2 · Ik,ℓ(t), k, ℓ ∈ N,

then the formula

Gt(z, w) :=

∞∑

k,ℓ=1

λk,ℓ(t)z
kwℓ

gives an analytic function defined for |z|, |w| small enough. Indeed, one can simply bound
the integrand in Ik,ℓ(t) by k

k−2ℓℓ−2 to conclude that

0 ≤ Ik,ℓ(t) ≤ kk−2ℓℓ−2 ≤ γ · ek(k − 1)! · eℓ(ℓ− 1)!,

where γ > 0 is an absolute constant (not depending on k, ℓ) — the second inequality
displayed above follows from Stirling’s formula. This implies in turn the bound

|λk,ℓ(t)| ≤ (γet/t) · (ete−t/2)k+ℓ, ∀ k, ℓ ∈ N,

and gives the claim about the existence of Gt(z, w).
Finally, Equation (4.11) can be read as saying that Fut(z, w) = Gt(z, w) for z, w real

negative numbers of small enough absolute value. This implies that Fut and Gt must have
the same series expansion around (0, 0), which is exactly the statement that had to be
proved. �

The formula for cumulants found in Proposition 4.3 can be re-phrased as a formula for
the corresponding polynomials Zω, as follows.

Theorem 4.4. Let k, ℓ be positive integers. There exist polynomials Uk,ℓ, Vk,ℓ ∈ Z[x],
uniquely determined, such that

(4.12)





Uk,ℓ(x) = −xk+ℓ−1
∫∞
0 e−xs

(
(s+ 1)2(s+ k)k−2(s+ ℓ)ℓ−2

)
ds,

Vk,ℓ(x) = xk+ℓ−1
∫∞
0 e−xs

(
s2(s+ k − 1)k−2(s+ ℓ− 1)ℓ−2

)
ds,

x ∈ [0,∞).
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One has

(4.13) Z(1, . . . , 1︸ ︷︷ ︸
k

∗, . . . , ∗︸ ︷︷ ︸
ℓ

)(x, y) =
(−1)k+ℓ

(k − 1)!(ℓ− 1)!

(
Uk,ℓ(x)y

k+ℓ + Vk,ℓ(x)y
k+ℓ−2

)
.

Proof. In order to verify that the function Uk,ℓ(x) defined by the first integral in (4.12) is

indeed a polynomial, we expand the product (s + 1)2(k + s)k−2(ℓ + s)ℓ−2 in powers of s,
then use the fact that

xk+ℓ−1

∫ ∞

0
e−xssmds = m!x(k+ℓ−1)−(m+1), 0 ≤ m ≤ k + ℓ− 2.

A similar calculation shows that Vk,ℓ(x) is a polynomial as well.
In order to prove that (4.13) holds, it suffices to fix a t ∈ [0,∞) and to verify the following

fact: when evaluated at (t, e−t/2), the polynomial in (x, y) from the right-hand side of (4.13)
yields the free cumulant κk+ℓ(ut, . . . , ut, u

∗
t , . . . , u

∗
t ) (with k entries of ut and ℓ entries of u

∗
t ).

By comparing this fact against the result of Proposition 4.3, and by doing some obvious
simplifications, we see that it is actually sufficient to check that

tk+ℓ−1 Ik,ℓ(t) = Uk,ℓ(t) e
−t + Vk,ℓ(t),

where Ik,ℓ(t) is the integral defined in Equation (4.9). But the latter verification is im-

mediately obtained when one writes the integral “
∫ 1
0 ” which defines Ik,ℓ(t) as a difference

“
∫∞
0 −

∫∞
1 ” (by using the same integrand). Indeed, the very definition of Vk,ℓ says that

tk+ℓ−1

∫ ∞

0
e−ts s2 (s+ k − 1)k−2 (s+ ℓ− 1)ℓ−2 ds = Vk,ℓ(t),

while on the other hand the change of variable s̃ = s− 1 gives

tk+ℓ−1

∫ ∞

1
e−ts s2 (s+ k − 1)k−2 (s+ ℓ− 1)ℓ−2 ds

= tk+ℓ−1

∫ ∞

0
e−t(s̃+1 (s̃+ 1)2 (s̃ + k)k−2 (s̃+ ℓ)ℓ−2 ds̃,

which is −e−tUk,ℓ(t). �

Remark 4.5. Let us illustrate the explicit writing of the polynomials Uk,ℓ and Vk,ℓ in the
special case ℓ = 1 (this gives, in some sense, the simplest possible example of free cumulants
of ut and u

∗
t that are truly “joint”). The formulas defining Uk,ℓ and Vk,ℓ become here

Uk,1(x) = −xk
∫ ∞

0
e−xs(s+1)(s+k)k−2ds, Vk,1(x) = xk

∫ ∞

0
e−xss(s+k−1)k−2ds, k ∈ N.

We note the special relation

Uk,1 = −1

k
Vk+1,1, ∀ k ≥ 1,

which is easily derived by writing Vk+1,1(x) = −xk
∫∞
0 (e−xs)′ · s(s + k − 1)k−2ds, and by

doing an integration by parts. We thus only need to write explicitly the Vk,1’s; this is done
in the way shown at the beginning of the preceding proof, which gives V1,1(x) = V2,1(x) = 1
and

(4.14) Vk,1(x) =

k−2∑

j=0

(
k − 2
j

)
· (k − 1− j)! · (k − 1)j tj, k ≥ 3.
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In terms of the actual ∗-cumulants of ut, the above considerations say that for every
k ∈ N we have:

κk+1(ut, . . . , ut︸ ︷︷ ︸
k

, u∗t ) = Z(1, . . . , 1︸ ︷︷ ︸
k

,∗ )(t, e
−t/2)

=
(−1)k+1

(k − 1)!

(
Uk,1(t)(e

−t/2)k+1 + Vk,1(t)(e
−t/2)k−1

)

=
(−e−t/2)k−1

(k − 1)!

(
−1

k
Vk+1,1(t)e

−t + Vk,1(t)
)
.

Thus, if we consider the sequence of polynomials

Vk := Vk,1/(k − 1)!, k ∈ N,

(with Vk,1 taken from Equation (4.14)), the conclusion is that for every k ∈ N and t ∈ [0,∞)
we have

(4.15) κk+1(ut, . . . , ut︸ ︷︷ ︸
k

, u∗t ) = (−e−t/2)k−1
(
Vk(t)− e−tVk+1(t)

)
.

So for instance for k ≤ 4 we have




κ2(ut, u
∗
t ) = (−e−t/2)0 (1− e−t),

κ3(ut, ut, u
∗
t ) = (−e−t/2)1

(
1− e−t(t+ 1)

)
,

κ4(ut, ut, ut, u
∗
t ) = (−e−t/2)2

(
(t+ 1)− e−t(32t

2 + 2t+ 1)
)
,

κ5(ut, ut, ut, ut, u
∗
t ) = (−e−t/2)3

(
(32t

2 + 2t+ 1)− e−t(83t
3 + 4t2 + 3t+ 1)

)
.

5. Another special case — alternating ω’s

The special form of free joint cumulants for a Haar unitary and its adjoint (reviewed in
Equation (1.4) of the introduction) suggests that in our discussion of the polynomials Zω

we should consider the case when ω is an alternating string of even length. The polynomial
Zω associated to the alternating string (1, ∗, . . . , 1, ∗) ∈ {1, ∗}2k is of the form

(5.1) (−1)k−1
(
Ck−1 − T

(k)
1 (x) y2 + T

(k)
2 (x) y4 − · · · + (−1)kT

(k)
k (x) y2k

)
,

where Ck−1 is the (k − 1)-th Catalan number, and every T
(k)
j (1 ≤ j ≤ k) is a polynomial

of degree j − 1 with strictly positive rational coefficients. Examples for small k:




Z(1,∗)(x, y) = 1− y2,

Z(1,∗,1,∗)(x, y) = −1 + 4y2 − (2x+ 3)y4,

Z(1,∗,1,∗,1,∗)(x, y) = 2− 15y2 + (12x+ 30)y4 − (6x2 + 18x+ 17)y6,

Z(1,∗,1,∗,1,∗,1,∗)(x, y) = −5 + 56y2 − 28(2x + 7)y4 + 8(6x2 + 26x + 33)y6

−
(
64
3 x

3 + 96x2 + 172x + 119
)
y8.

The inductive verification that the pattern (5.1) holds for general k is not hard (based on
the recursion from Proposition 3.5), and is left as exercise to the reader. In this section we
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do not focus on coefficients of Zω’s, but we find it more interesting to look at the actual
cumulants

(5.2) ξn(t) := κ2n(ut, u
∗
t , . . . , ut, u

∗
t ) = Z(1, ∗, . . . , 1, ∗︸ ︷︷ ︸

2n

)(t, e
−t/2), n ≥ 1,

where ut is the free unitary Brownian motion at time t. The notation introduced in (5.2)
emphasizes the dependence on t. This is of relevance because the main point of the section
is to put into evidence a recursion for the derivative of ξn with respect to t, as shown next.

Theorem 5.1. Let ξn(t) be as above. Then for every n ≥ 2 one has

(5.3) − 1

n

dξn
dt

(t) = ξn(t) +

n−1∑

m=1

ξm(t)ξn−m(t), t ∈ [0,∞).

Proof. For convenience of notation, throughout this proof we will fix a tracial ∗-probability
space (A, ϕ) which is large enough to contain all the unitaries ut for t ∈ [0,∞). By enlarging
(A, ϕ) a bit2 further, we will moreover assume that A contains two families of elements
{pθ | 0 < θ < 1/2} and {qθ | 0 < θ < 1/2} such that

(i) p2θ = p∗θ = pθ, q
2
θ = q∗θ = qθ and pθqθ = qθpθ = 0, ∀ θ ∈ (0, 1/2);

(ii) ϕ(pθ) = ϕ(qθ) = θ, ∀ θ ∈ (0, 1/2);
(iii) {pθ, qθ} is free from {ut, u∗t }, for all θ ∈ (0, 1/2) and t ∈ [0,∞).

We consider the rescaled elements vt = et/2ut. Following [2], for every n ∈ N we define a
function f2n : [0,∞)× (0, 1/2) → R by

(5.4) f2n(t, θ) := ϕ
(
(pθ vt qθ v

∗
t )

n
)
, ∀ t ≥ 0 and 0 < θ < 1/2.

[For instance for n = 1 we have f2(t, θ) := ϕ(pθ vt qθ v
∗
t ), and an immediate application of

formula (2.2) for alternating moments yields f2(t, θ) = θ2(et − 1).]

Claim. For every n ∈ N, the function f2n is of the form

(5.5) f2n(t, θ) =
2n∑

j=1

gn,j(t) θ
j ,

where the gn,j ’s are quasi-polynomials, and where (for j = 2n) we have

(5.6) gn,2n(t) = entξn(t).

Verification of Claim. Fix n ∈ N for which we will verify that (5.5) and (5.6) hold.
We write f2n(t, θ) as ϕ( vt qθ v

∗
t pθ · · · vt qθ v∗t pθ ), and we expand this alternating moment of

order 4n in the way indicated in Remark 2.5.1, in terms of moments of pθ, qθ and of free
cumulants of vt, v

∗
t . In this way we obtain the formula

(5.7) f2n(t, θ) =
∑

σ∈NC(2n)

gσ(t) · hσ(θ),

where for σ ∈ NC(2n) we put




gσ(t) =
∏

V ∈σ κ|V |

(
(vt, v

∗
t , . . . , vt, v

∗
t ) | V )

)
,

hσ(θ) =
∏

W∈Kr2n(σ)
ϕ|W |

(
(qθ, pθ, . . . , qθ, pθ) |W )

)
.

2 For instance we can replace (A, ϕ) by the free product (A, ϕ) ∗ (L∞[0, 1], dt), and take pθ, qθ ∈
L∞[0, 1], dt) to be the indicator functions of the intervals [0, θ] and [1− θ, 1], respectively.



STAR-CUMULANTS OF FREE UNITARY BROWNIAN MOTION 19

Note that every gσ can be written as

gσ(t) = ent ·
∏

V ∈σ

κ|V |

(
(ut, u

∗
t , . . . , ut, u

∗
t ) | V )

)
,

and is thus a quasi-polynomial by Proposition 3.1.
Let us next observe that for every non-empty set W ⊆ {1, . . . , 2n}, the moment

ϕ|W |

(
(qθ, pθ, . . . , qθ, pθ) | W )

)
is equal to either 0 or θ. Indeed, if W contains both odd

and even numbers, then the moment in discussion vanishes due to the hypothesis that

pθqθ = qθpθ = 0. In the opposite case, we are looking either at ϕ(p
|W |
θ ) or at ϕ(q

|W |
θ ), and

both these moments are equal to θ.
The observation from the preceding paragraph implies that, for every σ ∈ NC(2n), the

value of hσ(θ) is either 0 or θj(σ), with j(σ) :=| Kr2n(σ) | = (2n+1)−|σ|, where |σ| denotes
the number of blocks of σ. Moreover, the case hσ(θ) = θj(σ) occurs if and only if every block
W of Kr2n(σ) either is contained in {1, 3, . . . , 2n− 1} or is contained in {2, 4, . . . , 2n}. The
latter condition on Kr2n(σ) is easily seen to be equivalent to the fact that every block of σ
has even cardinality (cf. [9], Exercise 9.42(1) on p. 154). We thus come to the conclusion
that we can re-write Equation (5.7) in the form

f2n(t, θ) =

2n∑

j=1

gn,j(t) · θj,

where for 1 ≤ j ≤ 2n we define the quasi-polynomial gn,j to be

(5.8) gn,j :=
∑

σ∈NC(2n), |σ|=2n+1−j

and |V | even for all V ∈σ

gσ(t).

In the special case j = 2n, the only partition involved in the sum from (5.8) is σ = 12n,
which has g12n (t) = κ2n(vt, v

∗
t , . . . , vt, v

∗
t ) = ent ·κ2n(ut, u∗t , . . . , ut, u∗t ), and (5.6) also follows.

[End of Verif. of Claim]

Besides the f2, f4, . . . , f2n, . . . introduced in (5.5) we consider, also following [2], the
function f0 : [0,∞)× (0, 1/2) → R defined by

f0(t, θ) := θ, ∀ t ≥ 0 and 0 < θ < 1/2.

(Note that the definition of f0 is not obtained by extending the range of n from N to N∪{0}
in Equation (5.4)!) Theorem 3.4 in [2] gives us that for every n ≥ 1, the partial derivative
∂tf2n satisfies the following recursion:

∂tf2n(t, θ) = −
∑

1≤k<ℓ≤2n

k=ℓ mod 2

f2n−(ℓ−k)(t, θ) fℓ−k(t, θ)

(5.9) + et
∑

1≤k<ℓ≤2n

k 6=ℓ mod 2

f2n−(ℓ−k)−1(t, θ) fℓ−k−1(t, θ).

[For illustration we record that the special cases n = 1 and n = 2 of (5.9) come to ∂tf2 =
etf20 , and respectively to ∂tf4 = −2f22 + et · 4f0f2.]
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For a fixed t ∈ [0,∞), both sides of Equation (5.9) are polynomials of degree 2n in θ; so
it makes sense to extract the coefficient of θ2n in this equation. On the left-hand side, the
coefficient of θ2n is equal to the derivative of gn,2n(t), thus to

(5.10) ent ·
(
nξn(t) +

dξn
dt

(t)
)
.

On the right-hand side of (5.9) only the terms from the first of the two sums contribute to
θ2n, giving a coefficient equal to

−
∑

1≤k<ℓ≤2n

k=ℓ mod 2

(
e(n−(ℓ−k)/2)tξn−(ℓ−k)/2(t)

)
·
(
e((ℓ−k)/2)tξ(ℓ−k)/2(t)

)
= −ent·n

n−1∑

m=1

ξm(t)ξn−m(t).

When we equate the latter quantity with the one in (5.10), formula (5.3) follows. �

Corollary 5.2. Consider the function

(5.11) H(t, z) :=
1

2
+

∞∑

n=1

ξn(t)z
n

defined on {(t, z) | t ∈ [0,∞), z ∈ C, |z| < 1/162}. Then H satisfies the partial differential
equation

(5.12) ∂tH + 2z H ∂zH = z,

with initial condition H(0, z) = 1/2.

Proof. The domain of H is considered by taking into account the bounds for ξn(t)’s that
follow from Remark 2.5.4. In order to obtain (5.12), we square both sides of (5.11) and
then we take partial derivative ∂z, to find that

z · ∂zH2(t, z) = ξ1(t)z + 2
(
ξ2(t) + ξ21(t)

)
z2 + · · ·+ n

(
ξn(t) +

n−1∑

m=1

ξm(t)ξn−m(t)
)
zn + · · ·

The latter equation can be written as

z · ∂zH2(t, z) = ξ1(t)z − ξ′2(t)z
2 − · · · − ξ′n(t)z

n − · · · (by Theorem 5.1)

= (1− ξ′1(t))z − ξ′2(t)z
2 − · · · − ξ′n(t)z

n − · · · (because ξ1(t) = 1− e−t)

= z − ∂tH(t, z),

and (5.12) follows. The condition on H(0, z) is also clear, since ξn(0) = 0 for all n ∈ N. �

Remark 5.3. 1o Starting from ξ1(t) = 1− e−t and the initial condition ξn(0) = 0, ∀n ≥ 2,
one can use Theorem 5.1 to calculate all the ξn’s, getting ξ2(t) = −1 + 4e−t − (2t+ 3)e−2t,
then ξ3(t) = 2− 15e−t + 6(2t + 5)e−2t −(6t2 + 18t+ 17)e−3t, and so on.

2o It stands to reason that one should also look for a description of the functions ξn(t)
that is done by plain algebra (without resorting to the derivative d

dt), for a given value of t.
That is, we are interested in an algebraic description for the function

(5.13) Ht : {z ∈ C | |z| < 1/162} → C, Ht(z) := H(t, z) =
1

2
+

∞∑

n=1

ξn(t)z
n.
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We will achieve this by examining the characteristic curves of the p.d.e. found in Corollary
5.2.

In order to state precisely what is the algebraic description obtained for Ht, we introduce
an auxiliary complex parameter c and we consider, for every t ∈ [0,∞), the function

(5.14) χt : Ωt → C, χt(c) :=
c2(1− c2)ect

( (1 + c)− (1− c)ect )2
,

where Ωt is the open set {c ∈ C | 1 + c 6= (1 − c)ect}. One has Ωt ∋ 1, with χt(1) = 0 and
χ′
t(1) = e−t/2 6= 0. The inverse function theorem thus gives a δt > 0 such that an analytic

inverse for χt can be defined on {z ∈ C | |z| < δt}, sending 0 back to 1. We denote this
compositional inverse as

(5.15) χ
〈−1〉
t : {z ∈ C | |z| < δt} → C.

χ
〈−1〉
t is injective and its range-set Ran(χ

〈−1〉
t ) is an open subset of Ωt.

Without loss of generality, we may assume that in (5.15) we have δt < 1/162, so that
Ht(z) from Equation (5.13) is sure to be defined, too, for |z| < δt.

Theorem 5.4. Let t ∈ [0,∞) be fixed, and consider the analytic functions Ht and χ
〈−1〉
t

defined in Remark 5.3.2. Then one has

(5.16) [Ht(z) ]
2 = z +

1

4
[χ

〈−1〉
t (z) ]2, |z| < δt.

Proof. Our strategy will be to prove the following fact.

(5.17)




There exists εt > 0 such that for every c ∈ (1− εt, 1 + εt) ⊆ R one has:

→ c ∈ Ωt and |χt(c)| < 1/162 (hence Ht(χt(c) ) is defined);

→ [Ht(χt(c) )]
2 = χt(c) +

c2

4 .

This fact implies the statement of the theorem. Indeed, let us assume that (5.17) holds. Take

a strictly decreasing sequence (cn)
∞
n=1 in (1− εt, 1+ εt)∩Ran(χ

〈−1〉
t ), with limn→∞ cn = 1,

and put zn := χt(cn), n ∈ N. Then (zn)
∞
n=1 are distinct points in {z ∈ C | |z| < δt}, with

limn→∞ zn = 0, and by applying the last line of (5.17) to the cn we get

[Ht(zn)]
2 = zn +

1

4
[χ

〈−1〉
t (zn)]

2, ∀n ∈ N.

Hence the analytic functions appearing on the two sides of (5.16) coincide on a subset of
{z ∈ C | |z| < δt} which has 0 as accumulation point, and (5.16) follows.

We now start towards the proof of the fact stated in (5.17). We consider the rectangular
strip

R := [0,∞)× (−1/162,+1/162) ⊆ R2,

and we consider the restriction of H (from its domain stated in Corollary 5.2) to R. This
restriction will still be denoted as H, and 3 we put

Γ := {(s, x, u) | (s, x) ∈ R, u = H(s, x) ∈ R} (graph of restricted H).

We also consider the vector field V : R× R → R3 defined by

(5.18) V (s, x, u) := (1, 2xu, x), for (s, x) ∈ R, u ∈ R.

3 Since “t” is here a specific time that was fixed in the statement of the theorem, we will use the generic
letter “s” for the first component of a point in R.
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The partial differential equation (5.11) says that for every (s, x) ∈ R, the vector V
(
s, x,H(s, x)

)

is orthogonal to the normal direction
(
(∂tH)(s, x), (∂xH)(s, x),−1

)
to Γ at the point(

s, x,H(s, x)
)
. It follows that V

(
s, x,H(s, x)

)
gives a tangent direction to the graph Γ,

at the point
(
s, x,H(s, x)

)
.

We next pick an a ∈ (−1/162,+1/162) and we consider a path (a.k.a. characteristic
curve) La : [0, β(a)) → R3 which has

(5.19) La(0) = (0, a, 1/2) ∈ Γ

and follows the vector field V :

(5.20) L′
a(s) = V (La(s) ), ∀ s ∈ [0, β(a)).

When we write La componentwise,

La(s) = (pa(s), qa(s), ra(s)), 0 ≤ s < β(a),

the Equation (5.20) becomes a system of ordinary differential equations, for which (5.19)
gives an initial condition:

(5.21)





p′a(s) = 1, q′a(s) = 2qa(s) ra(s), r
′
a(s) = qa(s),

with pa(0) = 0, qa(0) = a, ra(0) = 1/2.

Luckily, the Cauchy problem from (5.21) can be solved explicitly. More precisely: consid-
ering the auxiliary4 constants

(5.22) c =
√
1− 4a, α =

1− c

1 + c
=

4a

(1 + c)2
,

we get

(5.23) pa(s) = s, qa(s) =
c2αecs

(1− αecs)2
, ra(s) =

c

2
· 1 + αecs

1− αecs
,

for 0 ≤ s < β(a). A significant detail which comes up while solving (5.21) (and can, of
course, be checked directly on (5.23)) is that one has

(5.24) qa(s)−
(
ra(s)

)2
= a− 1

4
, ∀ s ∈ [0, β(a)).

It is quite useful if at this point we take a moment to assess what we want to have for
“β(a)” in the discussion from the preceding paragraph. Clearly, β(a) must be in any case
picked such that

(i) 1− αecs > 0, ∀ s ∈ [0, β(a)), and (ii) c2αecs

(1−αecs)2
< 1

162
, ∀ s ∈ [0, β(a)).

The condition (i) ensures that the formulas (5.23) give indeed a well-defined path La(s) =
(pa(s), qa(s), ra(s)), 0 ≤ s < β(a); then (ii) ensures that La(s) ∈ R × R (hence that
“V (La(s))” makes sense) for every s ∈ [0, β(a)). We will moreover insist that

(iii) β(a) is a continuous function of a ∈ (−1/162,+1/162),
and

(iv) β(0) > t ( = the time fixed in the statement of the theorem).

We leave it as a routine (though tedious) exercise to the reader to check that all the
conditions (i)–(iv) are fulfilled if we go with

β(a) = min
(
t+ 1, β(i)(a), β(ii)(a)

)
for |a| < 1/162,

4 It is useful to keep in mind that c runs in a neighbourhood of 1 (it satisfies
√
63/8 < c <

√
65/8), while

α runs in a neighbourhood of 0 (has sign(α) = sign(a) and |α| < 4|a| < 1/64).
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where β(i), β(ii) : (−1/162,+1/162) → [0,∞] are continuous functions describing the natural
bounds up to which an s ∈ [0,∞) fulfills the conditions (i) and (ii), respectively. For instance
β(i)(a) comes out as

β(i)(a) =





1
c ln

1
α , if α > 0,

∞, if α ≤ 0,

with c = c(a) and α = α(a) as defined in Equations (5.22).
We now invoke a basic result from the theory of quasi-linear partial differential equations,

which states that: since it starts at a point La(0) ∈ Γ, the characteristic curve La cannot
leave the graph Γ of H. (See e.g. the theorem on page 10 of [6].) In other words, one has

(5.25) H(pa(s), qa(s)) = ra(s), ∀ a ∈ (−1/162,+1/162) and s ∈ [0, β(a)).

If we square both sides of (5.25) and take into account the formula (5.24) (also the fact that
pa(s) = s), we arrive to

(5.26) [H(s, qa(s)) ]
2 = qa(s) +

(1
4
− a

)
, ∀ a ∈ (−1/162,+1/162) and s ∈ [0, β(a)).

Finally, let us return to the time t ∈ [0,∞) that was fixed in the statement of the theorem.
Since β is continuous and has β(0) > t, we can find 0 < λt < 1/162 such that β(a) > t for
all a ∈ (−λt, λt). For |a| < λt we can thus put s = t in (5.26), to obtain that

(5.27) [H(t, qa(t)) ]
2 = qa(t) +

(1
4
− a

)
.

On the other hand, we make the following claim.

Claim. If |a| < λt, then c :=
√
1− 4a belongs to the domain Ωt of the function χt, and

one has qa(t) = χt(c).
Verification of Claim. We have t < β(a) ≤ β(i)(a), hence (from how β(i)(a) is defined) we

get 1−αect > 0, where α = (1−c)/(1+c). This implies (1+c)−(1−c)ect > 0, and it follows
that c ∈ Ωt. The equality qa(t) = χt(c) is then immediately obtained by comparing the
formulas which describe qa(t) and χt(c) (cf. Equation (5.14) and the case s = t of (5.23)).

[End of Verif. of Claim]

By using the above claim, we convert Equation (5.27) into




[Ht(χt(c)) )]
2 = χt(c) +

c2

4 , with c =
√
1− 4a,

for every a ∈ (−λt, λt).
But when a runs in (−λt, λt), the quantity c =

√
1− 4a covers (

√
1− 4λt,

√
1 + 4λt ), which

contains an open interval centered at 1. This implies the fact stated in (5.17), and concludes
the proof. �

Remark 5.5. The formula (5.16) from the preceding theorem can be used to calculate the
alternating cumulants ξn(t) without doing a derivative d

dt , but rather by starting from the
Taylor expansion around 1 of the function χt(c) defined in Remark 5.3.2:

χt(c) = (c− 1)χ′
t(1) +

(c− 1)2

2
χ′′
t (1) + · · ·

= (−1

2
et) (c − 1) +

(1
2
e2t − (

3

4
+
t

2
)et

)
(c− 1)2 + · · ·
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Indeed, considering the expansion χ
〈−1〉
t (z) = 1 + λ1z + λ2z

2 + · · · of χ
〈−1〉
t around 0, one

can then calculate recursively the λn by writing that

(5.28) z = χt

(
χ
〈−1〉
t (z)

)
= (−1

2
et)·

(
χ
〈−1〉
t (z)−1

)
+
(1
2
e2t−(

3

4
+
t

2
)et

)
·
(
χ
〈−1〉
t (z)−1

)2
+· · ·

= (−1

2
et)(λ1z + λ2z

2 + · · · ) +
(1
2
e2t − (

3

4
+
t

2
)et

)
(λ1z + λ2z

2 + · · · )2 + · · · ,
and by identifying coefficients. The λn come out as quasi-polynomials in −t (for instance,
as immediately seen from the few terms recorded in (5.28), one gets λ1 = −2e−t and
λ2 = 4e−t − (4t+ 6)e−2t).

Finally, Equation (5.16) says that

1

4
+ ξ1(t)z + (ξ2(t) + ξ21(t))z

2 + (ξ3(t) + 2ξ1(t)ξ2(t))z
3 + · · ·

= z +
1

4

(
1 + 2λ1z + (2λ2 + λ21)z

2 + (2λ3 + 2λ1λ2)z
3 + · · ·

)
,

which allows the recursive calculation of the ξn(t) (e.g. ξ1(t) = 1 + λ1
2 = 1− e−t, then

ξ2(t) =
1

4
(2λ2 + λ21)− ξ1(t)

2

= (2e−t − (2t+ 2)e−2t)− (1− e−t)2 = −1 + 4e−t − (2t+ 3)e−2t,

which agrees, of course, with the formulas stated in Remark 5.3.1).

Remark 5.6. The proof presented above for Theorem 5.4 is a standard application of the
method of characteristics, and has in its favour the fact that the relevant function χt from
Equation (5.14) is “discovered” as we move through the argument. The referee to the
paper pointed out to us how an alternative, shorter proof of the theorem can be made by
starting from the observation that, for fixed c, the function t 7→ χt(c) satisfies the differential
equation

(5.29) ∂tχt(c) = 2χt(c)
(
χt(c) +

c2

4

)1/2
.

The present remark gives a sketch of this alternative argument.
For the convenience of having all our functions defined around the origin, let us consider

the shifted sets Ω̃t := {c− 1 | c ∈ Ωt}, t ≥ 0, and let us define

(5.30) χ̃(t, z) = χ̃t(z) := χt(z + 1), t ≥ 0, z ∈ Ω̃t.

Formula (5.29) then gives a family of ordinary differential equations satisfied by the functions
t 7→ χ̃(t, z) (with the parameter z running in a neighbourhood of 0), namely

(5.31)

{
∂tχ̃(t, z) = 2χ̃(t, z)

(
χ̃(t, z) + (z+1)2

4

)1/2
,

with initial condition χ̃(0, z) = (1− (z + 1)2)/4.

Now, Theorem 5.4 can be recast as the statement that a certain function constructed out
of H is equal to χ̃. Indeed, the conclusion of the theorem can be rewritten as

(5.32)
[
4(Ht(z)

2 − z)
]1/2 − 1 = χ

〈−1〉
t (z) − 1 = χ̃

〈−1〉
t (z).

So then let us denote

(5.33) G(t, z) = Gt(z) :=
[
4(Ht(z)

2 − z)
]1/2 − 1.
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By starting from the explicit series expansion of Ht(z) in (5.13) and by following through
the algebra, one finds an explicit series expansion for Gt(z),

Gt(z) = 2(ξ1(t)− 1)z + 2(ξ2(t) + 2ξ1(t)− 1)z2 + · · ·
What interests us here is that the expansion of Gt(z) has no constant term, and has linear
term 2(ξ1(t) − 1) = 2

(
(1 − e−t) − 1

)
= −2e−t 6= 0; this implies that Gt is invertible under

composition. We can therefore define a function K(t, z) = Kt(z) via the requirement that

Kt = G
〈−1〉
t (compositional inverse), ∀ t ∈ [0,∞).

With these notations and in view of the calculation from (5.32), the statement of Theorem
5.4 amounts to checking that

(5.34) K(t, z) = χ̃(t, z)

(for enough pairs (t, z), with t ∈ [0,∞) and z running in a neighbourhood of 0).
The final step of this line of proof is to verify that the function t 7→ K(t, z) satisfies the

same differential equation as found for t 7→ χ̃(t, z) in Equation (5.31). This is obtained by
invoking the partial differential equation known for H from Corollary 5.2, which expresses
∂tH as z(1− 2H · ∂zH). Indeed, upon working out the ∂t and ∂z in the definition (5.33) of
G, one finds the said p.d.e. for H to have the nice consequence that

(5.35) ∂tG(t, z) = −2z H(t, z) ∂zG(t, z).

So then if we take ∂t in the identity G(t,K(t, z)) = z, we get

0 = ∂tG(t,K(t, z)) + ∂zG(t,K(t, z)) ∂tK(t, z)

= ∂zG(t,K(t, z))
(
−2K(t, z)H(t,K(t, z) + ∂tK(t, z)

)
,

where at the second equality sign we made use of (5.35). In the resulting product we are
sure that ∂zG(t,K(t, z)) 6= 0 (because taking ∂z in the identity G(t,K(t, z)) = z gives
∂zG(t,K(t, z)) · ∂zK(t, z) = 1); so we can divide it out, and conclude that

(5.36) ∂tK(t, z) = 2K(t, z)H(t,K(t, z)).

We are left to observe that

4
(
H(t,K(t, z))2 −K(t, z)

)
=

(
G(t,K(t, z)) + 1

)2
(by def. of G)

= (z + 1)2;

this impliesH(t,K(t, z)) =
(
K(t, z)+(z+1)2/4

)1/2
, hence (5.36) is precisely the differential

equation which had been sought for t 7→ K(t, z). The required initial condition K(0, z) =

(1− (z + 1)2)/4 is also easily verified, by writing K0 = G
〈−1〉
0 with G0(z) = (1− 4z)1/2 − 1.

6. Behaviour when t→ ∞
In this section we look at the behaviour of a joint cumulant κn(u

ω(1)
t , . . . , u

ω(n)
t

)
, for

general ω ∈ {1, ∗}n, when t → ∞. Specifically, we discuss how the limit and derivative at
∞ relate to the corresponding polynomial Zω.

When it comes to just taking a plain limit t→ ∞, things are straightforward: we have

(6.1) lim
t→∞

κn
(
u
ω(1)
t , . . . , u

ω(n)
t

)
= κn

(
uω(1), . . . , uω(n)

)
,
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where u is a Haar unitary; and the ∗-cumulants of a Haar unitary have a very nice form,
first found in [10], which puts the spotlight on alternating strings of even length. For
later perusal throughout the section, it is convenient to include the latter concept into the
following definition.

Definition 6.1. 1o Let n be an even positive integer. A string ω ∈ {1, ∗}n is said to be
alternating if it is equal either to (1, ∗, 1, ∗, . . . , 1, ∗) or to (∗, 1, ∗, 1, . . . , ∗, 1).

2o Let n be an odd positive integer. A string ω ∈ {1, ∗}n is said to be alternating
if it is obtained by a cyclic permutation of components from either (1, ∗, 1, . . . , ∗, 1) or
(∗, 1, ∗ . . . , 1, ∗).

[So note that we only have 2 alternating strings of length n when n is even, but we have 2n
alternating strings of length n when n is odd. A concrete example:

(1, 1, ∗, 1, ∗), (∗, 1, 1, ∗, 1), (1, ∗, 1, 1, ∗), (∗, 1, ∗, 1, 1), (1, ∗, 1, ∗, 1)

are 5 of the 10 alternating strings of length 5, and the remaining alternating strings of
length 5 are obtained by swapping the roles of ‘1’ and ‘∗’ in the above list.]

Proposition 6.2. Let ω = (ω(1), . . . , ω(n)) be in {1, ∗}n, for n ∈ N.

1o We have

(6.2) lim
t→∞

κn
(
u
ω(1)
t , . . . , u

ω(n)
t

)
=





(−1)k−1Ck−1, if n is even, n = 2k, and
ω is an alternating string,

0, otherwise,

with Ck−1 the (k − 1)-th Catalan number (same as in Equation (1.4) of the introduction).

2o Suppose that n is even, n = 2k. Consider the polynomial Zω and as written in
Proposition 3.1,

Zω(x, y) = Z(2k)
ω (x) y2k + Z(2k−2)

ω (x) y2k−2 + · · ·+ Z(2)
ω (x) y2 + Z(0)

ω (x).

Then Z
(0)
ω (x) is a constant polynomial, where the constant is given by the right-hand side

of Equation (6.2).

Proof. 1o This is the limit from (6.1), where we also invoke the explicit formula for the ∗-
cumulants of a Haar unitary that was found in [10]. (See Section 3.4 of [10], or Proposition
15.1 in the monograph [9].)

2o In view of how Zω is defined, from 1o it follows that limt→∞ Zω(t, e
−t/2) exists. Since

limt→∞ Z
(n−2j)
ω (t) · (e−t/2)n−2j = 0 for j < n/2, we then infer that limt→∞ Z

(0)
ω (t) exists as

well. But this can only happen if Z
(0)
ω is a constant (and the constant in question must be

the one appearing on the right-hand side of (6.2)). �

For the present paper it is important that upon looking at strings of odd length, we get
the following analogue of Proposition 6.2.2.
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Theorem 6.3. Let ω = (ω(1), . . . , ω(n)) be in {1, ∗}n. Suppose that n is odd, n = 2k − 1,
and consider the polynomial Zω, written in the form

Zω(x, y) = Z(2k−1)
ω (x) y2k−1 + Z(2k−3)

ω (x) y2k−3 + · · ·+ Z(3)
ω (x) y3 + Z(1)

ω (x) y.

Then Z
(1)
ω (x) is a constant polynomial, and more precisely:

(6.3) Z(1)
ω (x) =





(−1)k−1Ck−1, if ω is alternating,

0, otherwise.

Proof. It is easily seen that every ω ∈ {1, ∗}n has Switch(ω) ≤ n− 1, with equality holding
if and only if ω is alternating. Thus if ω is not alternating, then Theorem 3.8 can be applied

with j = (n− 1)/2, and gives that Z
(1)
ω (x) is constantly equal to 0.

We are left to prove the following:

(6.4)

{
if n = 2k − 1 and if ω ∈ {1, ∗}n is alternating,

then Z
(1)
ω (x) is constantly equal to (−1)k−1Ck−1.

We will prove this statement by induction on k. The case k = 1 is clear, since Z(1)(x, y) =

Z(∗)(x, y) = y (corresponding to the fact that ut has expectation e−t/2, ∀ t ∈ [0,∞)). The
remaining part of the proof is devoted to the induction step: we fix k ≥ 2, we assume that
(6.4) holds for alternating strings of length 1, 3, . . . , 2k − 3, and we prove that it also holds
for alternating strings of length 2k − 1.

Since any two alternating strings of length 2k − 1 can be obtained from each other by
operations which do not affect Zω’s, it will suffice to verify that, for the k that was fixed,
we have

(6.5) Z
(1)

(1, 1, ∗, . . . , 1, ∗︸ ︷︷ ︸
2k−1

)
(x) = (−1)k−1Ck−1.

In order to verify (6.5), we invoke the recursion from Proposition 3.5 (used for the string
ω = (1, 1, ∗, . . . , 1, ∗) ∈ {1, ∗}2k−1), and we extract the coefficient of y on both sides of that
recursion. On the right-hand side of the resulting equation we get a sum which (same as
in Equation (3.9) of Proposition 3.5) is indexed by m, with 1 ≤ m ≤ n − 1 = 2k − 2. By
grouping the terms of the sum according to the parity of m, we obtain that

(6.6) Z
(1)

(1, 1, ∗, . . . , 1, ∗︸ ︷︷ ︸
2k−1

)
= −

(
Σodd +Σeven

)
,

where

Σodd = Z
(1)
(1) Z

(0)

(1, ∗, . . . , 1, ∗︸ ︷︷ ︸
2k−2

)
+ Z

(1)
(1,1,∗) Z

(0)

(1, ∗, . . . , 1, ∗︸ ︷︷ ︸
2k−4

)
+ · · · + Z

(0)

(1, 1, ∗, . . . , 1, ∗︸ ︷︷ ︸
2k−3

)
Z

(0)
(1,∗)

and

Σeven = Z
(0)
(1,1) Z

(1)

(∗, 1, ∗, . . . , 1, ∗︸ ︷︷ ︸
2k−3

)
+Z

(0)
(1,1,∗,1) Z

(1)

(∗, 1, ∗, . . . , 1, ∗︸ ︷︷ ︸
2k−5

)
+· · ·+ Z

(0)

(1, 1, ∗, 1 . . . , ∗, 1︸ ︷︷ ︸
2k−2

)
Z

(1)
(∗) .

The sum Σeven is equal to 0, because of

Z
(0)
(1,1) = Z

(0)
(1,1,∗,1) = · · · = Z

(0)

(1, 1, ∗, 1 . . . , ∗, 1︸ ︷︷ ︸
2k−2

)
= 0
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(cf. Proposition 6.2.2, case of non-alternating strings). On the other hand, the induction
hypothesis and the case of alternating strings in Proposition 6.2.2 give us that

Σodd = (−1)0C0 · (−1)k−2Ck−2 + (−1)1C1 · (−1)k−3Ck−3 + · · ·+ (−1)k−2Ck−2 · (−1)0C0.

Thus Equation (6.6) comes, after all, to

Z
(1)

(1, 1, ∗, . . . , 1, ∗︸ ︷︷ ︸
2k−1

)
(x) = (−1)k−1

k−2∑

j=0

Cj · Ck−2−j.

A basic recursion for Catalan numbers says that the sum on the right-hand side of the latter
equality is just Ck−1, and the required formula (6.5) follows. �

We can now follow the same kind of connection as in Proposition 6.2 (but going in reverse)
in order to obtain the “derivative at t = ∞” for ∗-cumulants of the ut’s.

Corollary 6.4. Let n be a positive integer and let ω = (ω(1), . . . , ω(n)) be a string in
{1, ∗}n. We consider the limit

(6.7) lim
t→∞

κn
(
u
ω(1)
t , . . . , u

ω(n)
t

)
− κn

(
uω(1), . . . , uω(n)

)

e−t/2

where ut is the free unitary Brownian motion at time t, and u is a Haar unitary. This limit
exists, and is equal to

(6.8)





(−1)k−1Ck−1, if n is odd, n = 2k − 1, and
ω is an alternating string,

0, otherwise.

Proof. If n is even, n = 2k, then the difference on the numerator of the fraction in (6.7) is

Z(2k)
ω (t) · (e−t/2)2k + Z(2k−2)

ω (t) · (e−t/2)2k−2 + · · ·+ Z(2)
ω (t) · (e−t/2)2,

and when divided by e−t/2 this is sure to go to 0 as t→ ∞.
If n is odd, n = 2k − 1, then the difference on the numerator of the fraction in (6.7) is

Z(2k−1)
ω (t) · (e−t/2)2k−1 + Z(2k−3)

ω (t) · (e−t/2)2k−3 + · · ·+ Z(3)
ω (t) · (e−t/2)3 + Z(1)

ω (t) · (e−t/2).

When divided by e−t/2 this converges to the constant Z
(1)
ω (t) described in Theorem 6.3, and

the result follows. �

Remark 6.5. The limit from Corollary 6.4 points towards an “infinitesimal structure” which
accompanies the ∗-distribution of a Haar unitary, in the sense of the paper of Belinschi and
Shlyakhtenko [1]. In order to relate to the framework of [1], one has to do a change of
variable: consider the noncommutative probability spaces (Bs, ψs), defined for s ∈ [0, 1],
where for s 6= 0 we put Bs = A−2 log s, ψs = ϕ−2 log s, while for s = 0 we take (B0, ψ0) to be
the space where the Haar unitary lives. With this change of variable, the limit from (6.7)
becomes a derivative at 0, as prescribed in [1].
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Remark 6.6. As reviewed in Remark 2.6, the Haar unitary is a basic example of R-diagonal
element, with determining sequence consisting of signed Catalan numbers. For a Haar
unitary u, Corollary 6.4 brings into the picture an additional “infinitesimal determining
sequence”, which happens to also consist of signed Catalan numbers, and which determines
the derivatives at ∞ of all joint cumulants of ut and u

∗
t (with ut seen as an approximation

of u). It is natural to extend this concept of infinitesimal determining sequence to the case
of an R-diagonal element a = uq as appearing in Remark 2.6. Indeed, we can approximate
such an a with elements of the form at := utq (where q is now assumed to also be free from
{ut, u∗t }), and we can consider the same kind of limits as in Equation (6.7) of Corollary 6.4,
but now in connection to a and at. This leads to the next proposition, which provides a
nice infinitesimal analogue for the facts reviewed in Remark 2.6.

Proposition 6.7. Let a and {at | t ∈ [0,∞)} be as in the preceding remark. There exists
a sequence (βk)

∞
k=1 such that for ω = (ω(1), . . . , ω(n)) ∈ {1, ∗}n one has:

(6.9) lim
t→∞

κn
(
a
ω(1)
t , . . . , a

ω(n)
t

)
− κn

(
aω(1), . . . , aω(n)

)

e−t/2
=





β(n+1)/2, if n is odd and ω
is alternating,

0, otherwise.

The βk’s can be written in terms of the free cumulants of q and q2 via a formula similar to
Equation (2.6), as follows:

(6.10) βk =
∑

π∈NC(k)

(
Moeb(π, 1k) ·

∏

V ∈π

κ|V |

(
(q2, . . . , q2, q) | V

))
, k ∈ N.

[A concrete example: for ω = (1, ∗, 1) the above proposition says that

lim
t→∞

κ3(utq, qu
∗
t , utq)− κ3(uq, qu

∗, uq)

e−t/2
= β2, with β2 = −κ1(q2)κ1(q) + κ2(q

2, q).]

The remaining part of this section is devoted to discussing the proof of Proposition 6.7.
The arguments revolve around a certain set of non-crossing partitions NCω(2n) ⊆ NC(2n)
that is associated to an ω ∈ {1, ∗}n. The sets NCω(2n) are introduced next, and their
relevance for the limits on the left-hand side of Equation (6.9) is explained in Lemma 6.10
below. The conclusion of Proposition 6.7 will then be derived via a calculation which relies
on the structure of theseNCω(2n)’s. In order to not make the discussion excessively long, we
will merely state (in Lemmas 6.11 and 6.13) the relevant facts we need about NCω(2n), and
we will leave the proofs of these purely combinatorial facts as an exercise to the interested
reader.

Definition 6.8. Consider a string ω = (ω(1), . . . , ω(n)) ∈ {1, ∗}n.
1o We denote Uω := {2i − 1 | 1 ≤ i ≤ n, ω(i) = 1} ∪ {2i | 1 ≤ i ≤ n, ω(i) = ∗}, and

Qω := {1, 2, . . . , 2n} \ Uω = {2i | 1 ≤ i ≤ n, ω(i) = 1} ∪ {2i− 1 | 1 ≤ i ≤ n, ω(i) = ∗}.
(Thus Uω, Qω ⊆ {1, . . . , 2n}, and they have n elements each.)

2o We will use the notation NCω(2n) for the set of partitions τ ∈ NC(2n) which fulfill
all of the following conditions (i)–(v).

(i) τ ∨ {{1, 2}, {3, 4}, . . . , {2n − 1, 2n} } = 12n.

(ii) For every V ∈ τ we have that either V ⊆ Qω or V ⊆ Uω.

(iii) There exists precisely one block Vo of τ such that Vo ⊆ Uω and |Vo| is odd.
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(iv) If Vo = {i1, . . . , ip} (with i1 < · · · < ip) is as in (iii) then, modulo a cyclic permutation,
the numbers i1, . . . , ip have alternating parities.

(v) If V = {j1, . . . , jr} (with j1 < · · · < jr) is a block of τ such that V ⊆ Uω and r is even,
then j1, . . . , jr have alternating parities.

[Note: the meaning of (iv) is that if in (i1, . . . , ip) we replace every ih which is odd by a
“1” and every ih which is even by a “∗”, then we get an alternating string in {1, ∗}p, in the
sense of Definition 6.1.2. The same happens for (v), but there we don’t need to mention
the possibility of a cyclic permutation.]

Example 6.9. To illustrate the above terminology, let us pursue the case when n = 3 and
ω = (1, ∗, 1). Then Uω = {1, 4, 5} and Qω = {2, 3, 6}. Direct inspection shows that for a
partition τ ∈ NCω(6), the restriction τ | Uω has to be one of { {1, 4, 5} } or { {1}, {4, 5} }.
(If we try to make τ | Uω = { {1, 4}, {5} } then condition (i) of Definition 6.8.2 cannot
be satisfied. Likewise, trying to make τ | Uω be one of { {1, 5}, {4} } or { {1}, {4}, {5} }
violates condition (v), respectively (iii).) We find in this way that NCω(6) consists of 5
partitions, depicted as follows.

1 2 3 4 5 6

,

1 2 3 4 5 6

,

1 2 3 4 5 6

,

1 2 3 4 5 6

,

1 2 3 4 5 6

.

Lemma 6.10. Let a and {at | t ∈ [0,∞)} be as in Proposition 6.7, and let ω be a string in
{1, ∗}n. The limit considered on the left-hand side of Equation (6.9) exists, and is equal to

(6.11)
∑

τ∈NCω(2n)

term(U)
τ · term(Q)

τ ,

where for every τ ∈ NCω(2n) the numbers term
(U)
τ and term

(Q)
τ are defined as follows:

• Let Vo be the unique block of τ such that Vo ⊆ Uω and |Vo| is odd, and let V1, . . . , Vk be
the other blocks of τ which are contained in Uω. Then

(6.12) term(U)
τ = (−1)(|Vo|−1)/2C(|Vo|−1)/2 ·

k∏

i=1

(−1)(|Vi|−2)/2C(|Vi|−2)/2.

• Let W1, . . . ,Wℓ be the blocks of τ which are contained in Qω. Then

(6.13) term(Q)
τ =

ℓ∏

j=1

κ|Wj |(q, . . . , q).

In the case (which may occur) when NCω(2n) = ∅, the quantity (6.11) should be read as 0.

Proof. In the cumulant κn(a
(ω(1))
t , . . . , a

(ω(n))
t ) we replace every at by utq and every a∗t by

qu∗t , and we invoke the formula for a cumulant with products of entries which was reviewed
in Remark 2.5.2. This gives

(6.14) κn(a
(ω(1))
t , . . . , a

(ω(n))
t ) =

∑

τ∈NC(2n) with

τ∨{{1,2},{3,4},...}=12n

Termτ ,
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where every Termτ is a product of cumulants with entries from {q, ut, u∗t }. But q is free
from {ut, u∗t }; hence free cumulants which mix q with {ut, u∗t } vanish, and this implies that
on the right-hand side of (6.14) we can restrict the sum to the smaller set

Tω := {τ ∈ NC(2n) | τ fulfills conditions (i) and (ii) in Definition 6.8.2}.
For every τ ∈ Tω, the quantity Termτ appearing in (6.14) is a product where some

factors are joint cumulants of ut and u
∗
t , while some other factors are cumulants of q. The

dependence on t is coming exclusively from the factors involving ut and u
∗
t , which are quasi-

polynomials in t/2, in the way found earlier in the paper. If we are interested in the limit
on the left-hand side of Equation (6.9), then what we have to do is pick the coefficient

of e−t/2 in every Termτ . (Note that the coefficient of (e−t/2)0 in Termτ , if existing, will

be removed by the subtraction of κn(a
(ω(1)), . . . , a(ω(n))) in the numerator of (6.9).) By

invoking Proposition 6.2.2 and Theorem 6.3, one easily sees that a partition τ ∈ Tω can
include a contribution of order e−t/2 in Termτ only if τ also satisfies the conditions (iii)–
(v) listed in Definition 6.8.2, i.e. only if τ ∈ NCω(2n). (If NCω(2n) = ∅, then we see at
this point that the limit in (6.9) is equal to 0.) Finally, for every τ ∈ NCω(2n) one has

Termτ = term
(U)
τ · term(Q)

τ , with term
(U)
τ and term

(Q)
τ described as in Equations (6.12),

(6.13); this verification is immediate (with the signed Catalan numbers in (6.12) coming
from Proposition 6.2.2 and Theorem 6.3), and is left as exercise to the reader. �

Now, there are many strings ω ∈ {1, ∗}n with NCω(2n) = ∅. An obvious necessary
condition for NCω(2n) being non-empty is that |ℓ− ℓ′| = 1, where

ℓ := |{1 ≤ i ≤ n | ω(i) = 1}| and ℓ′ := |{1 ≤ i ≤ n | ω(i) = ∗}|;
indeed, if it is not true that |ℓ−ℓ′| = 1, then no partition τ ∈ NC(2n) can satisfy conditions
(iii)–(v) of Definition 6.8.2. But even when |ℓ− ℓ′| = 1, it still turns out that NCω(2n) = ∅
unless ω is alternating. This is caused by the condition (i) of Definition 6.8.2. The next
lemma records the precise statement that we will need later on; the proof of the lemma
(which goes in the same spirit as those of Propositions 11.25 or 15.1 in [9]) is left as exercise.

Lemma 6.11. Let ω = (ω(1), . . . , ω(n)) be a string in {1, ∗}n for some n ≥ 2, such
that ω(1) = ω(n) = 1. If NCω(2n) 6= ∅, then n is odd and ω is the alternating string
(1, ∗, 1, . . . , ∗, 1). �

We are thus prompted to focus on alternating strings of odd length. In order to describe
what is going on in this case, we introduce some additional bits of notation.

Remark and Notation 6.12. Let k be a positive integer, and consider the alternating string
ωk := (1, ∗, 1, . . . , ∗, 1) ∈ {1, ∗}2k−1. Note that the sets Uωk

, Qωk
⊆ {1, . . . , 4k−2} associated

to ωk in Definition 6.8.2 are

Uωk
= {1, 4, 5, 8, 9, . . . , 4k − 4, 4k − 3} and Qωk

= {2, 3, 6, 7, . . . , 4k − 6, 4k − 5, 4k − 2}.
1o For every partition π ∈ NC(k) we denote by π(u−points) the partition of Uωk

which
is defined by “converting” the points 1, 2, . . . , k into the groups of points {1}, then {4, 5},
then {8, 9}, . . . , then {4k − 4, 4k − 3} of Uωk

. That is, π(u−points) has blocks of the form

Ṽ :=
⋃

i∈V

{4i− 4, 4i − 3}, where V is a block of π such that 1 6∈ V ,
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and also has a block

Ṽo := {1} ∪
( ⋃

i∈Vo,

i 6=1

{4i− 4, 4i − 3}
)
,

where Vo is the block of π such that 1 ∈ Vo.
Likewise, for every ρ ∈ NC(k) we denote by ρ(q−points) the partition of Qωk

which is
defined by converting the points 1, 2, . . . , k into the groups of points {2, 3}, then {6, 7}, . . . ,
then {4k − 6, 4k − 5}, then {4k − 2} of Qωk

. For example, for k = 4 we have:

π =
1 2 3 4

⇒ π(u−points) =
1 4 5 8 9 12 13

and

ρ =
1 2 3 4

⇒ ρ(q−points) =
2 3 6 7 10 11 14

2o There exists an analogy between the notation for π(u−points) and ρ(q−points) that was
just introduced, and the notation for π(odd) and ρ(even) used in the description of the Krew-
eras complementation map, in Notation 2.1.3. This is due to the fact that if we think of
the sets

{1}, {2, 3}, {4, 5}, . . . , {4k − 4, 4k − 3}, {4k − 2}
as of a sequence of 2k consecutive “fat points”, then Uωk

covers the odd positions and Qωk

covers the even positions among these fat points.
As a consequence of the above, it is easily seen that if we start with a partition π ∈

NC(k) and we draw the combined pictures of π(u−points) and (Kr(π))(q−points), then we

obtain a partition in NC(4k − 2). Moreover, (Kr(π))(q−points) can be characterized as the
largest (with respected to reverse refinement order) partition σ of the set Qωk

which has

the property that π(u−points) ⊔ σ ∈ NC(4k − 2).

3o Let ρ be in NC(k), and consider the partition ρ(q−points) of Qωk
. We will need to work

with a special way of breaking the blocks of ρ(q−points) into pairs (plus a singleton), which
is described as follows. Let W = {j1, . . . , jp} be a block of ρ, where j1 < · · · < jp. We
distinguish two cases.

Case 1. jp 6= k. In this case, the block of ρ(q−points) that corresponds to W is

W̃ := {4j1 − 2, 4j1 − 1, 4j2 − 2, 4j2 − 1, . . . , 4jp − 2, 4jp − 1},
and we break it into p pairs by going cyclically as follows:

(6.15) {4j1 − 1, 4j2 − 2}, {4j2 − 1, 4j3 − 2}, . . . , {4jp−1 − 1, 4jp − 2}, {4j1 − 2, 4jp − 1}.

Case 2. jp = k. In this case, the block of ρ(q−points) that corresponds to W is

W̃ := {4j1 − 2, 4j1 − 1, 4j2 − 2, 4j2 − 1, . . . , 4jp−1 − 2, 4jp−1 − 1, 4jp − 2},
and we break it into p− 1 pairs and a singleton as follows:

(6.16) {4j1 − 2}, {4j1 − 1, 4j2 − 2}, {4j2 − 1, 4j3 − 2}, . . . , {4jp−1 − 1, 4jp − 2}.
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The partial pairing (with one singleton block) of Qωk
which results upon doing all the

breaking described in (6.15) and (6.16) will be denoted as ρ(q−pairing). In the example with
k = 4 depicted in part 1o of this notation, we get

ρ =
1 2 3 4

⇒ ρ(q−pairing) =
2 3 6 7 1011 14

Based on the notation introduced above we describe, in the next lemma, the structure
of a general partition in NCωk

(4k − 2). (The statement of the lemma also uses the lattice
structure of NC(Qωk

), and invokes the “⊔” operation — this is analogous to the note
recorded in Remark 2.2.)

Lemma 6.13. Let k be a positive integer, let ωk be the alternating string (1, ∗, 1 . . . , ∗, 1) ∈
{1, ∗}2k−1, and consider the terminology introduced by Notation 6.12 in connection to ωk.

1o Let τ be a partition in NCωk
(4k − 2). Then the restricted partition τ | Uωk

is of the

form π(u−points) for a (uniquely determined) π ∈ NC(k). The quantity term
(U)
τ appearing

in (6.12) of Lemma 6.10 is precisely equal to Moeb(0k, π) for this π ∈ NC(k).

2o Let τ be a partition in NCωk
(4k−2), let π ∈ NC(k) be such that τ | Uωk

= π(u−points),
and let us denote Kr(π) =: ρ ∈ NC(k). Then the partition σ := τ | Qωk

∈ NC(Qωk
) has

the properties that σ ≤ ρ(q−points) and σ ∨ ρ(q−pairing) = ρ(q−points).

3o Conversely: let π be in NC(k), put ρ := Kr(π), and let σ be a partition in NC(Qωk
)

with the properties that σ ≤ ρ(q−points) and σ ∨ ρ(q−pairing) = ρ(q−points). Then the partition
τ := π(u−points) ⊔ σ of {1, . . . , 4k − 2} is in NCωk

(4k − 2). �

Proof of Proposition 6.7. If n is even, then it is immediate that NCω(2n) = ∅ for
every ω ∈ {1, ∗}n (cf. discussion preceding Lemma 6.11). Thus in this case the limit on the
left-hand side of Equation (6.9) is indeed equal to 0, as required. For the rest of the proof
we will assume that n is odd.

We next note a couple of reductions that can be done on ω.
(a) Observe that if the conclusion of the proposition holds for a string ω = (ω(1), . . . , ω(n)),

then it also holds for the “adjoint” string ω∗ with entries

ω∗(i) =

{
1, if ω(n+ 1− i) = ∗
∗, if ω(n+ 1− i) = 1

}
, 1 ≤ i ≤ n.

This follows from the left-right symmetry of free cumulants that was noted in part (c) of
Remark 2.5.3, where we also take into account the fact that {u∗t | t ≥ 0} form a free unitary
Brownian motion, and that (due to the hypothesis q = q∗) all the limits postulated on the
right-hand side of Equation (6.9) are real numbers.

(b) Observe that if the conclusion of the proposition holds for a string ω, then it also
holds for an ω′ obtained by cyclically permuting the entries of ω. This is immediate from
the invariance property of free cumulants noted in part (a) of Remark 2.5.3.

As a result of the above observation (a), we see that it suffices to handle strings ω ∈ {1, ∗}n
that have |{1 ≤ i ≤ n | ω(i) = 1}| > |{1 ≤ i ≤ n | ω(i) = ∗}|. By doing a suitable cyclic
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permutation of entries for such an ω and by using observation (b), we then see that it
suffices to prove the proposition under the additional assumption that ω(1) = ω(n) = 1.

If ω(1) = ω(n) = 1 but ω is not alternating, then Lemma 6.11 says that NCω(2n) = ∅.
The limit on the left-hand side of (6.9) is therefore equal to 0, as required.

We are left to discuss the case when ω is alternating of odd length, with ω(1) = ω(n) = 1.
This is exactly the case when ω = ωk = (1, ∗, 1, . . . , ∗, 1) ∈ {1, ∗}2k−1 for some k ∈ N, as
discussed in Notation 6.12. In the remaining part of the proof we fix k, and we will prove
that for ω = ωk, the limit on the left-hand side of (6.9) is equal to the βk described in
Equation (6.10). In view of Lemma 6.10, it will suffice to verify the equality between the
summation formulas that appear in (6.11) and on the right-hand side of Equation (6.10).
The sum from (6.11) takes here the form

(6.17)
∑

τ∈NCωk
(4k−2)

term(U)
τ · term(Q)

τ .

But a partition τ ∈ NCωk
(4k − 2) is parametrized in Lemma 6.13 in terms of a pair (π, σ)

with π ∈ NC(k) and σ ∈ NC(Qωk
); recalling the specifics of how that goes (which includes

the writing of term
(U)
τ as Moeb(0k, π) and the writing of term

(Q)
τ in terms of σ), we see that

(6.17) can be rewritten in the form
∑

π∈NC(k)

with Kr(π)=:ρ

Moeb(0k, π)
( ∑

σ∈NC(Qωk
),

σ∨ρ(q−pairing)=ρ(q−points)

∏

W∈σ

κ|W |(q, q, . . . , q)
)
.

In the above expression it is convenient that in the first sum we do the change of variable
ρ = Kr(π) (where we also substitute Moeb(0k, π) as Moeb(ρ, 1k)); the quantity in (6.17)
takes then the form

(6.18)
∑

ρ∈NC(k)

Moeb(ρ, 1k)
( ∑

σ∈NC(Qωk
),

σ∨ρ(q−pairing)=ρ(q−points)

∏

W∈σ

κ|W |(q, q, . . . , q)
)
.

Now let us fix for the moment a partition ρ = {B1, . . . , Bℓ} ∈ NC(k) and, for this
particular ρ, let us examine the summation over σ which appears in (6.18). Let W1, . . . ,Wℓ

be the blocks of ρ(q−points), whereWj corresponds to Bj in the natural way (cf. discussion in
Notation 6.12.3), and where let us assume that k ∈ Bℓ, hence 4k− 2 ∈Wℓ. It is easy to see
that the summation over σ in (6.18) amounts in fact to doing ℓ independent summations,
over partitions σ1 ∈ NC(W1), . . . , σℓ ∈ NC(Wℓ). Moreover, the formula (2.3) for cumulants
with products as entries applies to each of these ℓ summations, leading to the conclusion
that the result of the j-th summation is





κ|Wj |(q
2, . . . , q2), if j < ℓ,

κ|Wj |(q, q
2, . . . , q2︸ ︷︷ ︸
|Wj |−1

) if j = ℓ.

Since |Wj| = |Bj| for every 1 ≤ j ≤ ℓ, and since κ|Bℓ|(q, q
2, . . . , q2) = κ|Bℓ|(q

2, . . . , q2, q), we
obtain that for our fixed ρ we have:

(6.19)
∑

σ∈NC(Qωk
),

σ∨ρ(q−pairing)=ρ(q−points)

∏

W∈σ

κ|W |(q, q, . . . , q) =
∏

B∈ρ

κ|B|

(
(q2, . . . , q2, q) | B

)
.
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Finally, we let ρ run in NC(k), we substitute Equation (6.19) into the second summation
from (6.18), and we arrive to the right-hand side of Equation (6.10), as we wanted. �
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