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SINGULARITIES OF NILPOTENT ORBIT CLOSURES

ANTHONY HENDERSON

Abstract. This is an expository article on the singularities of
nilpotent orbit closures in simple Lie algebras over the complex
numbers. It is slanted towards aspects that are relevant for repre-
sentation theory, including Maffei’s theorem relating Slodowy slices
to Nakajima quiver varieties in type A. There is one new observa-
tion: the results of Juteau and Mautner, combined with Maffei’s
theorem, give a geometric proof of a result on decomposition num-
bers of Schur algebras due to Fang, Henke and Koenig.

Introduction

In September 2013, I had the privilege of giving a series of three
lectures in the Japanese–Australian Workshop on Real and Complex
Singularities (JARCS V), held at the University of Sydney. Why would
someone who calls himself a representation theorist be speaking at a
conference on singularities? One aim of the lectures was to answer
that question, by indicating the important role that the study of sin-
gular varieties has in geometric representation theory. Another aim
was simply to entertain an audience of singularity theorists with some
beautiful examples of singularities and their deformations and resolu-
tions: namely, those obtained by considering the closures of nilpotent
orbits in simple Lie algebras.
This expository article is based on the slides from those lectures.

I have added a few more details and references, while still assuming
some familiarity with complex algebraic geometry. Experts in geomet-
ric representation theory will be able to think of many more results that
ought to have been included to make a comprehensive survey. Indeed,
one could imagine a sequel to Collingwood and McGovern’s textbook
Nilpotent orbits in semisimple Lie algebras [4], entitled Singularities
of closures of nilpotent orbits in semisimple Lie algebras, which would
be at least as long as the original. Two highly relevant topics which
time and space constraints made it impossible to treat properly are the
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structure theory and classification of simple Lie algebras (for which
see [12]) and the theory of symplectic singularities (see [7, 10, 17]).
The goal that shaped my choice of topics and examples was Maffei’s

2005 theorem [25, Theorem 8] relating the resolutions of Slodowy slices
in nilpotent orbit closures of type A to Nakajima quiver varieties (stated
as Theorem 9.1 below). Although this theorem is purely geometric,
its importance really stems from its representation-theoretic context.
Part of the motivation for Nakajima in conjecturing the isomorphism
that Maffei proved was that both classes of varieties had been used
in geometric constructions of the same representations, namely finite-
dimensional representations of the Lie algebras slm. I do not tell that
story in this article. Instead, in Section 9, I explain an application
of Maffei’s theorem to modular representation theory: by results of
Juteau and Mautner (Theorem 4.4 below), the decomposition numbers
of symmetric groups and Schur algebras depend only on the singular-
ities of the corresponding Slodowy slices, and one can use this to give
a geometric proof of a result of Fang–Henke–Koenig [6, Corollary 7.1].
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1. Adjoint orbits and the adjoint quotient

Let Matn be the vector space of n × n matrices over C, and let
GLn ⊂ Matn be the group of invertible n× n matrices.
Define a Lie algebra to be a vector subspace g of Matn that is closed

under the commutator bracket [X, Y ] := XY − Y X . In other words, g
must satisfy

X, Y ∈ g =⇒ [X, Y ] ∈ g.
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To each such Lie algebra g there corresponds amatrix group G, which is
defined to be the subgroup of GLn generated by all exp(X) for X ∈ g.
Here exp denotes the matrix exponential, defined by the usual abso-
lutely convergent series

exp(X) = I +X +
1

2
X2 +

1

6
X3 + · · · ,

where I denotes the n×n identity matrix. The matrix exp(X) is always
invertible because exp(X) exp(−X) = I.
One can easily show the following identity for any X, Y ∈ Matn:

exp(X)Y exp(−X) = Y+[X, Y ]+
1

2
[X, [X, Y ]]+

1

6
[X, [X, [X, Y ]]]+· · · .

It follows that

g ∈ G, Y ∈ g =⇒ gY g−1 ∈ g.

That is, the group G acts on g by conjugation: we write g ·Y := gY g−1

for short. This is called the adjoint action of G on g, and its orbits are
the adjoint orbits.
We assume henceforth that g is a simple Lie algebra. This means

that dim g > 1 and g has no nontrivial subspace S such that

X ∈ g, Y ∈ S =⇒ [X, Y ] ∈ S.

A consequence of this assumption (via a theorem of Cartan) is that the
trace form (X, Y ) 7→ tr(XY ) is nondegenerate on g. We can use this
form to identify the space g∗ of linear functions on g with g itself, in a
G-equivariant way. The algebra C[g] of polynomial functions on g has
a unique Poisson bracket extending the commutator bracket on g; thus
g is a Poisson variety and the adjoint action preserves this structure.

Example 1.1. The primary example of a simple Lie algebra is

sln := {X ∈ Matn | tr(X) = 0}, with corresponding group

SLn := {g ∈ GLn | det(g) = 1},

where n ≥ 2. The adjoint orbits in sln are exactly the familiar similarity
classes. (Ordinarily one would define two matrices X, Y to be similar if
there is some g ∈ GLn such that Y = gXg−1. But since any g ∈ GLn

can be written as a product g′g′′ where g′ ∈ SLn and g′′ is a scalar
matrix, it comes to the same thing if one requires g ∈ SLn.)

We want to take a quotient of g by the adjoint action of G. In the
setting of algebraic geometry, this means that we need to consider the
algebra C[g]G of G-invariant polynomial functions on g. By definition,
a function on g is G-invariant if and only if it is constant on each
adjoint orbit. The classic result about these functions is:
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Theorem 1.2 (Chevalley). The algebra C[g]G is freely generated by
some homogeneous polynomials χ1(X), χ2(X), · · · , χℓ(X). So as an
algebra it is isomorphic to C[t1, t2, · · · , tℓ].

The number of generators of C[g]G, denoted ℓ, is called the rank of g.

Example 1.3. Let g = sln. Since the characteristic polynomial of a
matrix X is a similarity invariant, so is each of the coefficients of the
characteristic polynomial. For matrices in sln, one of these coefficients,
namely the trace, is zero by definition. The other n − 1 coefficients
provide SLn-invariant polynomial functions: for 1 ≤ i ≤ n− 1, we set

χi(X) := (−1)i+1 × coefficient of tn−i−1 in det(tI −X).

The sign here is chosen so that χi(X) equals the (i+ 1)th elementary
symmetric polynomial in the eigenvalues of X . Note that χi(X) is a
homogeneous polynomial function of X of degree i + 1. It turns out
that the functions χi(X) freely generate C[sln]

SLn, as per Theorem 1.2.
So sln has rank n− 1.

This is a convenient point at which to mention, for later reference,
that there is a complete classification of simple Lie algebras (see [12]
for details). The isomorphism classes are labelled by symbols of the
form Xℓ where X is one of the ‘Lie types’ in the list A,B,C,D,E,F,G
and ℓ denotes the rank, which can take the following possible values:

Aℓ: ℓ can be any positive integer. The simple Lie algebra of type
Aℓ is slℓ+1 (more correctly, slℓ+1 is a representative of the iso-
morphism class of simple Lie algebras of type Aℓ).

Bℓ: ℓ ≥ 2. The simple Lie algebra of type Bℓ is the special or-
thogonal Lie algebra so2ℓ+1, consisting of the skew-symmetric
matrices in Mat2ℓ+1.

Cℓ: ℓ ≥ 3. The simple Lie algebra of type Cℓ is the symplectic Lie
algebra sp2ℓ, whose definition we will not need.

Dℓ: ℓ ≥ 4. The simple Lie algebra of type Dℓ is so2ℓ.
Eℓ: ℓ ∈ {6, 7, 8}.
Fℓ: ℓ = 4 only.
Gℓ: ℓ = 2 only.

We will revisit this classification from a different viewpoint in Section 5.
The adjoint quotient map is the map obtained by combining all the

generating G-invariant polynomial functions on g:

χ : g → C
ℓ : X 7→ (χ1(X), · · · , χℓ(X)).

One can then consider the fibres of this map, namely the affine algebraic
varieties

χ−1(u) = {X ∈ g |χ1(X) = u1, · · · , χℓ(X) = uℓ}
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for u = (u1, · · · , uℓ) ∈ Cℓ. By definition, each such fibre is stable under
the adjoint action, and hence is a union of some adjoint orbits; possibly
more than one, because different orbits cannot necessarily be separated
using G-invariant polynomial functions.
These varieties have very good geometric properties.

Theorem 1.4 (Kostant [18]). For any u ∈ Cℓ, the fibre χ−1(u):

• consists of finitely many adjoint orbits – for generic u, only one;
• contains a unique dense orbit, and is hence irreducible;
• has codimension ℓ in g, and is hence a complete intersection;
• is nonsingular in codimension 1, and is hence normal.

Example 1.5. When g = sln, χ
−1(u) consists of matrices with a spec-

ified characteristic polynomial, or equivalently a specified multiset of
eigenvalues. The different orbits in χ−1(u) come from the different
possible sizes of Jordan blocks; the dense orbit consists of the regular
matrices with the specified characteristic polynomial, i.e. those with a
single Jordan block for each eigenvalue.

The nonsingularity in codimension 1 of Theorem 1.4 follows from the
result (obtained independently by Borel, Kirillov and Kostant, see [18,
Proposition 15]) that every adjoint orbit has even dimension. This
in turn follows from an easy calculation showing that the closure of
any adjoint orbit is a Poisson subvariety of g, and the induced skew-
symmetric form on the cotangent bundle of the orbit is nondegenerate.

2. Nilpotent orbits and their closures

We now come to the main object of study. The nilpotent cone N ⊂ g

is one of the fibres of the adjoint quotient, namely N := χ−1(0). Since
it is defined by the vanishing of some homogeneous polynomials, N
is stable under scalar multiplication (this is the sense in which it is a
cone). By Theorem 1.4, N is the union of finitely many adjoint orbits,
which are called the nilpotent orbits of g. It follows immediately from
this finiteness that each nilpotent orbit is stable under nonzero scalar
multiplication.
If O is a nilpotent orbit, then its closure O is stable under the adjoint

action and contained in N , so it is the union of O and some other
nilpotent orbits O′ which must have smaller dimension than O. This
gives rise to a partial order ≤ on the nilpotent orbits, the closure order,
where O′ ≤ O means that O′ ⊆ O. There is always a unique minimum
orbit for this partial order, namely the orbit {0} consisting solely of 0;
by Theorem 1.4, there is also always a unique maximum orbit for this
partial order, namely the regular orbit Oreg which is dense in N .
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Example 2.1. When g = sln, N consists of all n× n matrices that are
nilpotent in the sense that their characteristic polynomial is the same
as that of the zero matrix; or equivalently, that their only eigenvalue is
0; or equivalently, that some power of them equals the zero matrix. In
this case the splitting of N into nilpotent orbits is determined purely
by the different sizes of Jordan blocks a nilpotent matrix can have.
The order of the blocks being immaterial, it is conventional to list the
sizes in decreasing order. Thus the set of nilpotent orbits is in bijection
with the set of partitions of n, where a partition λ of n means a weakly
decreasing sequence (λ1, λ2, · · · ) of nonnegative integers adding up to
n. (It is notationally convenient to make the sequence infinite, with all
terms being zero after a certain point; but in writing specific partitions
we omit the zeroes.) We write Oλ for the nilpotent orbit corresponding
to the partition λ. In this notation, {0} = O(1,1,··· ,1) and Oreg = O(n).

Example 2.2. As a sub-case of the previous example, take g = sl2.
Then the nilpotent cone is a singular quadric hypersurface:

N =

{[
a b
c −a

] ∣∣∣∣ a, b, c ∈ C, a2 + bc = 0

}
.

In this case, {0} and Oreg are the only two orbits (i.e. Oreg = N \{0}).

Example 2.3. As another sub-case of Example 2.1, take g = sl3. There
are three partitions of 3: (1, 1, 1), (2, 1) and (3). Hence we have three
nilpotent orbits in sl3, and the closure order is such that

{0} < O(2,1) < Oreg.

Note that

O(2,1) = {X ∈ sl3 | rank(X) = 1}, so

O(2,1) = {X ∈ sl3 | rank(X) ≤ 1}

= {X ∈ sl3 | every 2× 2 minor of X is 0}.

Here we have used the fact that a rank-1 matrix with trace 0 is auto-
matically nilpotent. Thus the closed subvariety O(2,1) of sl3 is defined
by the vanishing of nine degree-2 polynomials, and none of these defin-
ing equations is redundant. Since the codimension of O(2,1) in sl3 is

easily seen to be 4, we conclude that O(2,1) does not share with N

the property of being a complete intersection. (In fact, O is never a
complete intersection unless O = {0} or O = Oreg; see [1, 31].)

We write O′ ≺ O to mean that O covers O′ in the closure order, in
the sense that O′ < O and there is no orbit O′′ such that O′ < O′′ < O.
In this case one says that O′ is a minimal degeneration of O.
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It is a fact that there is always a unique orbit Omin such that {0} ≺
Omin, the minimal orbit (short for ‘minimal nonzero orbit’). There
is also always a unique orbit Osubreg such that Osubreg ≺ Oreg, the
subregular orbit. See [4, Chapter 4] for the proofs.
In Example 2.1 we saw a combinatorial parametrization of the nilpo-

tent orbits for sln. We can express the closure order explicitly using
these parameters.

Theorem 2.4 (Gerstenhaber [9]). The closure order on nilpotent orbits
for sln is given by:

Oµ ≤ Oλ ⇐⇒

µ1 ≤ λ1,
µ1 + µ2 ≤ λ1 + λ2,

µ1 + µ2 + µ3 ≤ λ1 + λ2 + λ3,
...

...
...

...
...

The partial order on partitions arising in Theorem 2.4 is called the
dominance order, written µ E λ.
To describe the minimal degenerations in this case, it is helpful to

use the graphical representation of a partition λ = (λ1, λ2, · · · ) as a
left-justified diagram of boxes, with λi boxes in the ith row from the
top. A corner box of such a diagram means a box which has no box
either below or to the right of it.

Proposition 2.5 ([20, Section 1]). The minimal degenerations of nilpo-
tent orbits for sln are described as follows:

Oµ ≺ Oλ ⇐⇒
µ differs from λ by moving a corner box
either down from one row to the next,
or left from one column to the next.

When Oµ ≺ Oλ, the codimension of Oµ in Oλ is twice the difference
in row numbers of the box that is moved.

Example 2.6. Take g = sl16 and let λ = (5, 4, 4, 3). There are three cor-
ner boxes, of which two can be moved down one row or left one column;
these corner boxes are indicated in bold in the following pictures.
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So the minimal degenerations of O(5,4,4,3) are O(5,4,4,2,1) (of codimension
2) and O(4,4,4,4) (of codimension 6).

Example 2.7. When g = sln, the minimal orbit Omin is O(2,1,1,··· ,1), and
its dimension (which equals the codimension of {0} = O(1,1,··· ,1) in its
closure) equals 2(n − 1). The subregular orbit Osubreg is O(n−1,1), and

its codimension in N = O(n) is 2.

Each nilpotent orbit O is a nonsingular variety, since it is a homo-
geneous space for the group G. However, the closure O has interesting
singularities. As was observed by Namikawa, O is a holonomic Pois-
son variety in the sense of [17, Definition 1.3], and it follows as in [17,
Lemma 1.4] that the singular locus Sing(O) is the whole of O \ O.
So the irreducible components of Sing(O) are the closures O′ where
O′ ≺ O; in other words, the generic singularities of O are those at
points of the minimal degenerations O′ ≺ O.

3. Slodowy slices

In studying the singularity of O at a point X , the first step is to
discard the directions in which O is nonsingular, that is, the directions
of the orbit OX = G · X . There is a particularly nice way to do this
that relies on the following result from Lie algebra structure theory:

Theorem 3.1 (Jacobson–Morozov, see [4, Section 3.3]). Given any
X ∈ N , there is an element Y ∈ g such that

[[X, Y ], X ] = 2X, [[X, Y ], Y ] = −2Y.

Any such Y belongs to N , and in fact belongs to the G-orbit OX . More-
over, if Y, Y ′ are two such elements, then there is some g ∈ G such that
g ·X = X and g · Y = Y ′.

Example 3.2. If g = sl2 and X = [ 0 1
0 0 ], then it is easy to check that

Y = [ 0 0
1 0 ] satisfies the conditions in Theorem 3.1. In fact, this example

is the motivation for those conditions: if X, Y satisfy the conditions
of Theorem 3.1 and are nonzero, then they generate a subalgebra of g
that is isomorphic to sl2.

Given X, Y ∈ N as in Theorem 3.1, we define

SX := {Z ∈ g | [Z −X, Y ] = 0}.

Note that SX is an affine-linear subspace of g passing through X , called
the Slodowy slice at X . It would be more correct to denote it SX,Y ,
but we omit Y from the notation on the grounds that it is ‘almost’
determined by X , in the sense of the last statement of Theorem 3.1;
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if we were to change Y , then SX would only change by the action of
some g ∈ G. Nevertheless, we must bear in mind that the group that
acts naturally on SX is not the whole stabilizer GX of X , but rather
the joint stabilizer GX,Y = {g ∈ G | g ·X = X, g · Y = Y }.

Proposition 3.3 (Kostant, Slodowy [34]). If X, Y ∈ N are as in
Theorem 3.1, then SX is a transverse slice to OX at X, in the sense
that dimSX = dim g− dimOX and the morphism

G× SX → g : (g,X ′) 7→ g ·X ′

is a submersion.

This result means that for any orbit closure O containing X , the sin-
gularity of O at X is smoothly equivalent to that of SX ∩ O at X .
Henceforth we will usually consider, instead of O itself, such a subvari-
ety SX ∩O. Note that if X = 0, then necessarily Y = 0 also, so S0 = g

and S0 ∩ O = O.
The dimension of SX ∩ O equals the codimension of OX in O. It is

a fact that SX does not meet any nilpotent orbits except those whose
closure contains X , so SX ∩ O only meets orbits O′ such that OX ≤
O′ ≤ O. Moreover, SX ∩ OX = {X}. In particular, if OX ≺ O, then
SX ∩ O is singular only at X ; that is, we have an isolated singularity
in that case.

Example 3.4. Take g = sl3. A pair X, Y lying in the regular nilpotent
orbit Oreg is

X =




0 1 0
0 0 1
0 0 0



 , Y =




0 0 0
2 0 0
0 2 0



 .

In this case a simple calculation gives

SX =








0 1 0
a 0 1
b a 0





∣∣∣∣∣∣
a, b ∈ C



 .

Computing the characteristic polynomial of the given matrix in SX ,
one finds

χ1








0 1 0
a 0 1
b a 0







 = −2a, χ2








0 1 0
a 0 1
b a 0







 = b.

So SX meets each fibre of the adjoint quotient map in exactly one
point (it turns out that this holds for general g when X ∈ Oreg). In
particular, SX ∩N = {X}, in accordance with the above general rules.
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Example 3.5. Now keep g = sl3 but consider a pair in the subregular
nilpotent orbit O(2,1):

X =




0 1 0
0 0 0
0 0 0



 , Y =




0 0 0
1 0 0
0 0 0



 .

A simple calculation gives

SX =







a 1 0
b a c
d 0 −2a




∣∣∣∣∣∣
a, b, c, d ∈ C



 .

Computing the characteristic polynomial, one finds:

χ1





a 1 0
b a c
d 0 −2a




 = −3a2 − b,

χ2





a 1 0
b a c
d 0 −2a




 = 2a(b− a2) + cd.

In particular,

SX ∩ N =









a 1 0
−3a2 a c
d 0 −2a




∣∣∣∣∣∣
a, c, d ∈ C, 8a3 = cd




 ,

a singular surface with an isolated singularity at X .

4. Why do representation theorists care?

Perhaps surprisingly, the singularities of nilpotent orbit closures have
been shown to encode a lot of representation-theoretic information. In
particular, the case of sln relates to the representations of the sym-
metric group Sn. To give an example of a concrete statement along
these lines, we need to introduce some classic representation theory
constructions.
For any partition λ of n, define the polynomial

πλ(x1, · · · , xn) := ∆(x1, · · · , xλ1
)∆(xλ1+1, · · · , xλ1+λ2

) · · · , where

∆(y1, · · · , ym) :=
∏

1≤i<j≤m

yi − yj.

Define the Specht module Sλ ⊂ Z[x1, · · · , xn] by

Sλ = Z-span{πλ(xσ(1), · · · , xσ(n)) | σ ∈ Sn}.
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Experts will note that this Specht module is traditionally labelled not
by λ but by the transpose partition λt (so the conventions in some
subsequent results are tranposed from their familiar form). However
it is labelled, Sλ is clearly stable under the action of the symmetric
group Sn (acting by permuting the variables x1, · · · , xn); that is, it is a
ZSn-module. Let Bλ : Sλ ×Sλ → Z be the restriction of the Z-bilinear
form on Z[x1, · · · , xn] for which the monomials are orthonormal.

Example 4.1. Take n = 3. By convention, ∆(y1, · · · , ym) = 1 when
m < 2 (since it is then an empty product), so

π(1,1,1)(x1, x2, x3) = 1,

π(2,1)(x1, x2, x3) = x1 − x2,

π(3)(x1, x2, x3) = (x1 − x2)(x1 − x3)(x2 − x3).

Thus, S(1,1,1) is a free rank-one Z-module spanned by 1, on which S3

acts trivially, and B(1,1,1)(1, 1) = 1. By contrast,

S(2,1) = Z-span{x1 − x2, x1 − x3, x2 − x3}

is a free rank-two Z-module with basis {x1 − x2, x2 − x3}, and relative
to this basis the matrix of the form B(2,1) is [

2 −1
−1 2 ]. Finally, S(3) is a

free rank-one Z-module spanned by π := (x1 − x2)(x1 − x3)(x2 − x3),
on which S3 acts via its sign character, and B(3)(π, π) = 6.

Theorem 4.2 (James [13]). For any field F , let SF
λ = Sλ⊗Z F and let

BF
λ be the F -bilinear form on SF

λ induced by Bλ.

(1) When F has characteristic 0, a complete set of inequivalent
irreducible representations of Sn over F is given by

{SF
λ | λ is a partition of n}.

(2) When F has characteristic p, a complete set of inequivalent
irreducible representations of Sn over F is given by

{DF
µ |µ is a p-restricted partition of n},

where DF
µ = SF

µ /Rad(B
F
µ ), and µ is said to be p-restricted if

µi − µi+1 < p for all i.

Example 4.3. Continue the n = 3 example. If F has characteristic 0,
then the representations SF

(1,1,1), S
F
(2,1), S

F
(3) are all irreducible and in-

equivalent; they are referred to respectively as the trivial, reflection,
and sign representations of S3 over F . If F has characteristic p > 3,
the situation is the same: all the partitions µ of 3 are p-restricted, and
for all such µ we have DF

µ = SF
µ (that is, the form BF

µ is nondegenerate;
in other words, the determinant of the matrix of the integral form Bµ
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is not divisible by p). If F has characteristic 2, then SF
(1,1,1), S

F
(2,1), S

F
(3)

are again all irreducible, but SF
(3) is equivalent to S

F
(1,1,1) (the sign repre-

sentation is trivial since −1 = 1 in F ). This accords with Theorem 4.2,
since DF

µ = SF
µ for µ ∈ {(1, 1, 1), (2, 1)}, and the partition (3) is not

2-restricted. If F has characteristic 3, then SF
(2,1) is reducible: the one-

dimensional subspace spanned by x1 + x2 + x3 is invariant, and equals
the radical of BF

(2,1) (note that the matrix of the integral form B(2,1)

has determinant 3). So DF
(2,1) is the quotient of S

F
(2,1) by this subspace,

and is equivalent to the sign representation. Again DF
(1,1,1) = SF

(1,1,1),

and the partition (3) is not 3-restricted.

The representations SF
λ are fairly well understood, in the sense that

there are combinatorial formulas for their dimensions, explicit bases,
and many other results. The irreducible representations DF

µ , defined
when F has characteristic p and µ is p-restricted, have proved harder
to handle. A major unsolved problem in representation theory is to
compute the decomposition numbers dpλµ := [SF

λ : DF
µ ], which count the

occurrences of each irreducible DF
µ in a composition series for SF

λ . If we

knew these numbers, we would be able to translate our knowledge of SF
λ

into knowledge ofDF
µ . There is actually a more general definition of dpλµ

which makes sense when µ is not p-restricted, involving representations
of the Schur algebra rather than the symmetric group (see [26]).
One of the earliest results proved about these decomposition num-

bers was that dpλµ = 0 unless µ E λ, in the notation introduced after

Theorem 2.4; in other words, dpλµ = 0 unless Oµ ⊆ Oλ. In retrospect,
this can be seen to be a hint that there should be a connection with
the closures of nilpotent orbits for sln, and such a connection has now
been established by Juteau [15, 16] (in the cases relating to Sn) and
Mautner [27] (in the setting of the Schur algebra). Their results imply:

Theorem 4.4 (Juteau, Mautner). Let λ and µ be partitions of n with
µ E λ. The decomposition number dpλµ depends only on p and the

singularity of SX ∩ Oλ at X for X ∈ Oµ.

More precisely, what one needs to know about SX ∩ Oλ are certain
local intersection cohomology groups with coefficients in the finite field
with p elements; these are invariants of the smooth equivalence class
of the singularity at X . It may well be that calculating these local
intersection cohomology groups in full is no easier than the algebraic
problem of calculating the decomposition numbers dpλµ, but as we will
see in Section 9, the geometric approach allows enlightening proofs of
some qualitative results.
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5. Kleinian singularities

In what appears at first to be a digression from the study of nilpotent
orbits, we recall the definition of a famous class of isolated surface
singularities. Let Γ be a nontrivial finite subgroup of SL2(C). Up to
conjugacy in SL2(C), there is a quite restricted range of possibilities
for such Γ (see [28, 34] for more details):

Aℓ: cyclic of order ℓ+ 1 for ℓ ≥ 1;
Dℓ: binary dihedral of order 4(ℓ− 2) for ℓ ≥ 4;
Eℓ: binary tetrahedral (order 24), binary octahedral (order 48), bi-

nary icosahedral (order 120) for ℓ = 6, 7, 8 respectively.

The various types of groups Γ are labelled here by some of the symbols
Xℓ used in the classification of simple Lie algebras; the reason for this
will be seen shortly.
Since Γ is a subgroup of SL2(C), it comes with an action on the

vector space C2. We now want to consider the quotient C2/Γ, which
by definition is the affine variety whose algebra of functions is the
invariant ring C[C2]Γ.

Theorem 5.1 (Klein). In each case the invariant ring C[C2]Γ is gener-
ated by three homogeneous elements x, y, z satisfying a single relation,
given in the following table.

Aℓ xℓ+1 + yz = 0
Dℓ xℓ−1 + xy2 + z2 = 0
E6 x4 + y3 + z2 = 0
E7 x3y + y3 + z2 = 0
E8 x5 + y3 + z2 = 0

So C2/Γ can be identified with the hypersurface in C3 defined by the
equation given in the above table; it is a normal surface with an isolated
singularity at 0, known as a Kleinian singularity.
The semiuniversal deformation of a hypersurface P (x1, · · · , xd) = 0

in Cd with an isolated singularity at 0 is a family of hypersurfaces in
Cd, depending on a parameter u = (ui) ∈ Cℓ, defined by the equations

P (x1, · · · , xd) +
ℓ∑

i=1

uibi(x1, · · · , xd) = 0,

where {bi} is a linearly independent subset of C[x1, · · · , xd] whose span
is complementary to the ideal (P, ∂P

∂x1

, · · · , ∂P
∂xd

). So the dimension ℓ of
the parameter space equals the codimension of this ideal, which is finite
because the singularity is isolated.



14 ANTHONY HENDERSON

Example 5.2. Consider the type-Aℓ Kleinian singularity, given by the
polynomial P (x, y, z) = xℓ+1+yz. The ideal (P, ∂P

∂x
, ∂P
∂y
, ∂P
∂z
) is (xℓ, y, z),

so the two meanings of the letter ℓ are consistent, and the set {bi} can
be chosen to be {xℓ−1, · · · , x, 1}. Thus, the equation defining a general
hypersurface in the semiuniversal deformation is

xℓ+1 + u1x
ℓ−1 + · · ·uℓ−1x+ uℓ + yz = 0.

Now recall that in our simple Lie algebra g there is a unique sub-
regular nilpotent orbit Osubreg ≺ Oreg; it turns out that the codimen-
sion of Osubreg in Oreg = N is always 2 (in the case g = sln, we saw
this in Example 2.7). Let Ssubreg denote the Slodowy slice SX for some
X ∈ Osubreg. By the results of Section 3, Ssubreg∩N is a normal surface
with an isolated singularity. The explanation for the above labelling of
subgroups Γ of SL2(C) is the following remarkable connection between
the two classes of surface singularities:

Theorem 5.3 (Brieskorn, see [34]). If g is of type Aℓ, Dℓ or Eℓ and
Γ ⊂ SL2(C) is of the corresponding type, we have an isomorphism

Ssubreg ∩ N ∼= C
2/Γ.

Moreover, the family of varieties Ssubreg∩χ−1(u), where χ is the adjoint
quotient map and u runs over C

ℓ, is isomorphic to the semiuniversal
deformation of C2/Γ.

Example 5.4. Let g = sl3, which is of type A2. Then Γ is cyclic of
order 3, and the Kleinian singularity C2/Γ is given by the equation
x3 + yz = 0. The calculation we did in Example 3.5 already makes it
clear that Ssubreg ∩ N is isomorphic to C

2/Γ, and the remaining part
of Theorem 5.3 is equally easy to check.

Example 5.5. Let g = sl4, which is of type A3. Calculations similar to
those in Example 3.5 give:

Ssubreg =








a 1 0 0
b a 1 0
c b a d
e 0 0 −3a







,
χ1 = −6a2 − 2b,
χ2 = −8a3 + 4ab+ c,
χ3 = −3a4 + 6a2b− 3ac− de.

Setting χi = ui and solving for b and c, one sees that Ssubreg ∩ χ−1(u)
is isomorphic to the following hypersurface in C

3:

{(a, d, e) ∈ C
3 | 81a4 + de+ 9u1a

2 + 3u2a+ u3 = 0}.

This clearly gives a family isomorphic to the semiuniversal deformation
of the Kleinian singularity of type A3, as described in Example 5.2.
For comparison with the next example, we record that here the group
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GX,Y is isomorphic to C×, and its action on Ssubreg (which necessarily
preserves each intersection Ssubreg ∩ χ−1(u)) is the action of C× given
by fixing a, b, c and scaling d and e by inverse scalars.

The obvious question left unanswered by Theorem 5.3 is what hap-
pens for the simple Lie algebras of types other than Aℓ,Dℓ,Eℓ. Let us
consider an example.

Example 5.6. Consider the Lie algebra

g = {[aij ] ∈ Mat5 | a6−j,6−i = −aij , for all i, j}.

(Note that g consists of matrices that are ‘skew-symmetric about the
other diagonal’.) It is easy to show that g is isomorphic to so5, so it is
simple and has type B2. Choosing suitable X, Y , one finds that

Ssubreg =








a b 0 0 0
0 0 1 0 0
0 c 0 −1 0
d 0 −c 0 −b
0 −d 0 0 −a








,
χ1 = −a2 − 2c,
χ2 = 2(a2c+ bd).

So Ssubreg ∩ χ−1(u) is isomorphic to the following hypersurface in C3:

{(a, b, d) ∈ C
3 | a4 − 2bd+ u1a

2 + u2 = 0}.

This family of hypersurfaces is a deformation of the Kleinian singularity
of type A3, but compared with that of Example 5.5, it has only two
parameters, not the full three of the semiuniversal deformation: in
other words, there is no ‘a term’ in the equation. One can explain this
deficiency in terms of the symmetry group GX,Y of Ssubreg, which in
this case has two connected components. The identity component is
isomorphic to C× and acts by fixing a, c and scaling b and d by inverse
scalars, analogously to the situation of Example 5.5. But there is also
an element of the non-identity component that fixes b, c, d and sends a
to −a, precluding the possibility of an ‘a term’ in the above equation.

Motivated by such considerations of symmetry, Slodowy realized that
to extend Theorem 5.3 to the other types of simple Lie algebras, one
needs to assign to each type not a single finite subgroup of SL2(C) but
a pair of such subgroups Γ,Γ′, with Γ being a normal subgroup of Γ′.
The correct subgroups are specified in the following list:

Bℓ: Γ of type A2ℓ−1, Γ
′ of type Dℓ+2, Γ

′/Γ ∼= S2;
Cℓ: Γ of type Dℓ+1, Γ

′ of type D2ℓ, Γ
′/Γ ∼= S2;

F4: Γ of type E6, Γ
′ of type E7, Γ

′/Γ ∼= S2;
G2: Γ of type D4, Γ

′ of type E7, Γ
′/Γ ∼= S3.

It is automatic that Γ′/Γ acts on the Kleinian singularity C
2/Γ.
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Theorem 5.7 (Slodowy [34]). If g is of type Bℓ, Cℓ, F4 or G2 and
Γ,Γ′ ⊂ SL2(C) are as given above, then we have an isomorphism

Ssubreg ∩ N ∼= C
2/Γ,

under which the action of Γ′/Γ on C2/Γ corresponds to the action of
some subgroup of GX,Y on Ssubreg∩N . Moreover, the family of varieties
Ssubreg ∩ χ−1(u), u ∈ Cℓ, satisfies a suitable universal property among
(Γ′/Γ)-equivariant deformations of C2/Γ.

One consequence of Theorems 5.3 and 5.7 is that the isomorphism
class of a simple Lie algebra g can be determined purely by examining
the surface singularity Ssubreg∩N and its deformation Ssubreg ∩χ−1(u).
The universal property of the deformation SX ∩ χ−1(u) has been

generalized to non-subregular X by Lehn–Namikawa–Sorger [24].

6. Other minimal degenerations

In the previous section we considered the isolated singularity arising
from the minimal degeneration Osubreg ≺ Oreg. Further examples come
from the other minimal degenerations of nilpotent orbits. Notably, at
the other extreme of the closure order, we can consider {0} ≺ Omin.
The singularity of Omin = Omin ∪ {0} at 0 is of a standard type. Let

P(g) be the projective space whose points are the lines L through 0 in
g. Those L that lie in Omin form a closed subvariety P(Omin) of P(g).
Being a projective variety with a homogeneous G-action, P(Omin) be-
longs to the class of partial flag varieties for G. We have a tautological
line bundle Z → P(Omin), where the total space is defined by

Z := {(X,L) ∈ g× P(Omin) |X ∈ L}.

Since P(Omin) is nonsingular, so is Z. The first projection Z → Omin is
a resolution of singularities; it contracts the zero section of the line bun-
dle Z → P(Omin) to the single point 0, while mapping the complement
of this zero section isomorphically onto Omin.

Example 6.1. Take g = sln. Then Omin = {X ∈ sln | rank(X) = 1}. A
rank-1 matrix X ∈ Matn can be determined by specifying its image V1
and kernel Vn−1 (subspaces of C

n of dimensions 1 and n−1 respectively)
as well as specifying the induced linear map Cn/Vn−1 → V1. The trace
of X is zero if and only if V1 ⊆ Vn−1. Hence P(Omin) can be identified
with a variety of partial flags, where ‘partial flag’ has the traditional
sense of a chain of subspaces of Cn:

P(Omin) ∼= {0 ⊂ V1 ⊆ Vn−1 ⊂ C
n | dim Vi = i}.
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Then Z → P(Omin) is identified with the line bundle over this partial
flag variety where the fibre over V1 ⊆ Vn−1 is

{X ∈ sln |X(Cn) ⊆ V1, X(Vn−1) = 0},

and the singular variety Omin is obtained from this line bundle by
contracting the zero section to a point. Similar constructions of vector
bundles over partial flag varieties will play a large role in the next
section.

The singularities arising from minimal degenerations of nilpotent
orbits have now been completely described: in types Aℓ, Bℓ, Cℓ and
Dℓ by Kraft–Procesi [21, 22], in type G2 by Kraft [19], and in types Eℓ

and F4 by Fu–Juteau–Levy–Sommers [8].
The result for sln (i.e. type An−1) is particularly nice: in that case

the singularities we have already considered, at the two extremes of
the closure order, suffice to descibe all minimal degenerations. For the
purpose of this statement, a minimal singularity of type Am means the
singularity of Omin at 0 when g = slm+1, as discussed in Example 6.1.

Theorem 6.2 (Kraft–Procesi [21]). Suppose g = sln and Oµ ≺ Oλ.
Let Sµ denote SX for some X ∈ Oµ, so Sµ ∩ Oλ is a variety with an
isolated singularity. Recall from Proposition 2.5 that µ is obtained from
λ by moving a single corner box down and to the left.

• If the box moves one row down and m columns left, then Sµ∩Oλ

is isomorphic to a Kleinian singularity of type Am.
• If the box moves m rows down and one column left, then Sµ∩Oλ

is isomorphic to a minimal singularity of type Am.

The original statement of [21] was in terms of smooth equivalence of
singularities; the promotion of this to an isomorphism of varieties will
be explained after Corollary 9.3.

Example 6.3. The following diagram shows the closure order on nilpo-
tent orbits for sl6 (i.e. type A5), with each orbit represented by the
box-diagram of its partition. Every minimal degeneration is labelled by
the type of the resulting isolated singularity, as given by Theorem 6.2.
Following the notation of [21], Am means a Kleinian singularity of type
Am and am means a minimal singularity of type Am. (Thus, the up-
permost line is labelled A5 in accordance with Theorem 5.3, and the
lowest line is labelled a5 by definition.) Note that a1 and A1 refer to
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the same thing, the nilpotent cone of sl2 with its singularity at 0.

A5

A3

A1

rr
rr

A1

❏❏
❏❏

A2

❏❏
❏❏

❏ A2

✈✈
✈✈
✈

a2

✈✈
✈✈
✈✈ a2

❋❋
❋❋

❋❋

a1

❋❋
❋❋

❋❋ a1

③③
③③
③③

a3

a5

Example 6.4. When g is of type G2, there are five nilpotent orbits and
the closure order is a total order:

{0} ≺ Omin ≺ O ≺ Osubreg ≺ Oreg.

The minimal-degeneration singularities are described in [19]. The most
interesting is that of the middle orbit closure O at points of Omin: in [8]
this is shown to be the non-normal isolated surface singularity defined
as the image of

ψ : C
2 → C

7 : (t, u) 7→ (t2, tu, u2, t3, t2u, tu2, u3).

Note that ψ is injective, so it is the normalization map of the singularity.

7. The Springer resolution

One of the nicest features of the singular varieties O is that they
have resolutions that are vector bundles over partial flag varieties for
G; see [32] for a general construction. We have seen one example of this
already, the resolution of Omin described in Section 6. In this section
we will examine a similar resolution of Oreg = N .
A Borel subalgebra of g is a subspace b ⊂ g, closed under the commu-

tator bracket [·, ·], which is conjugate to a subspace of upper-triangular
matrices and is maximal with these properties. The Borel subalgebras
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of g are all in the same orbit for the adjoint action of G: in particular,
they all have the same dimension, which turns out to be 1

2
(dim g+ ℓ).

Moreover, the Borel subalgebras form a closed subvariety B of the
Grassmannian of all subspaces of g of this dimension. This projective
homogeneous G-variety B is called the flag variety of G (or of g). The
name is explained by the following example.

Example 7.1. When g = sln, the Borel subalgebras are exactly the
conjugates of the subalgebra of upper-triangular matrices. Since these
are the stabilizing subalgebras of ‘complete flags’ in Cn (i.e. chains of
subspaces of Cn, one of each dimension), the variety B for sln can be
identified with the variety of such flags,

F := {0 ⊂ V1 ⊂ V2 ⊂ · · · ⊂ Vn−1 ⊂ C
n | dim Vi = i}.

We will make this identification B ∼= F whenever we consider sln.

We have a tautological vector bundle g̃ → B, where the total space
is defined by

g̃ = {(X, b) ∈ g× B |X ∈ b}.

Let π : g̃ → g denote the first projection. For any X ∈ g, the fibre
π−1(X) can be identified with the variety of Borel subalgebras con-
taining X ; this variety is called the Springer fibre of X . The map π
as a whole is known as the Grothendieck–Springer simultaneous reso-
lution, because it simultaneously provides resolutions of every fibre of
the adjoint quotient map χ : g → C

ℓ.

Theorem 7.2 (Grothendieck, Springer, see [34]). For any u ∈ Cℓ,
each connected component of π−1(χ−1(u)) is a resolution of χ−1(u). In

particular, Ñ := π−1(N ) (which is connected) is a resolution of N .

Here the resolution maps are the restrictions of π to the stated domains.
The reason that Ñ is connected is that the nilpotent elements of a

Borel subalgebra b form a vector subspace nb, the nilradical of b. Thus

Ñ = {(X, b) ∈ g× B |X ∈ nb} → B

is a sub-vector bundle of the vector bundle g̃ → B. The resolution
Ñ → N is called the Springer resolution of the nilpotent cone.

Example 7.3. For g = sln, the Grothendieck–Springer simultaneous
resolution can be described thus:

g̃ ∼= {(X, (Vi)) ∈ sln × F |X(Vi) ⊆ Vi for all i}.

Notice that if X stabilizes a complete flag (Vi) in the sense of this
condition that X(Vi) ⊆ Vi for all i, then X is nilpotent if and only if
we have the stronger condition X(Vi) ⊆ Vi−1 for all i, where we set
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V0 = 0 and Vn = Cn to take care of the i = 1 and i = n cases. (In
other words, the nilradical of the Borel subalgebra of upper-triangular
matrices consists of the strictly upper-triangular matrices.) Hence

Ñ ∼= {(X, (Vi)) ∈ sln × F |X(Vi) ⊆ Vi−1 for all i},

and for X ∈ N the Springer fibre has the following description:

π−1(X) ∼= {(Vi) ∈ F |X(Vi) ⊆ Vi−1 for all i}.

Let us consider these Springer fibres over some particular nilpotent or-
bits of sln. If X = 0 we of course have π−1(0) ∼= F . At the other
extreme, if X ∈ Oreg has a single Jordan block, then there is a unique
flag (Vi) ∈ F such that X(Vi) ⊆ Vi−1 for all i, namely the one given by
Vi = ker(X i), so π−1(X) is a single point (in general, the Springer reso-

lution Ñ → N is an isomorphism over Oreg). If X ∈ Osubreg = O(n−1,1),
one can easily show that π−1(X) is the union of the following n − 1
projective lines, each of which meets the adajcent lines transversely at
a single point and does not meet any of the other lines:

{(Vi) | V2 = ker(X), V3 = ker(X2), V4 = ker(X3), · · · },

{(Vi) | V1 = im(Xn−2), V3 = ker(X2), V4 = ker(X3), · · · },

{(Vi) | V1 = im(Xn−2), V2 = im(Xn−3), V4 = ker(X3), · · · },

...

{(Vi) | V1 = im(Xn−2), V2 = im(Xn−3), · · · , Vn−2 = im(X)}.

The geometry of general Springer fibres can be very complicated.

Slodowy showed in [34] that the Grothendieck–Springer simultaneous
resolution theorem implies an analogous statement for each slice SX for
X ∈ g. In particular, the Springer resolution restricts to a resolution
π−1(SX ∩ N ) → SX ∩ N . This recovers a much-studied resolution of
the Kleinian singularities:

Theorem 7.4 (Brieskorn, Slodowy [34]). If Γ is the finite subgroup of
SL2(C) such that Ssubreg ∩N ∼= C2/Γ, then the resolution

π−1(Ssubreg ∩ N ) → Ssubreg ∩N

corresponds to the minimal resolution of C2/Γ.

Example 7.5. Take g = sl3. Recall the explicit matrix description
of an element of Ssubreg ∩ N from Example 3.5. After some simple
computations of the conditions for a flag 0 ⊂ V1 ⊂ V2 ⊂ C

3 to belong
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to the Springer fibre of that matrix, one concludes that

π−1(Ssubreg ∩ N ) ∼= {((a, c, d), [s : t], [u : v]) ∈ C
3 × P

1 × P
1 |

[
−4a2 c
d −2a

] [
s
t

]
=

[
0
0

]
,

[
u v

] [−4a2 c
d −2a

]
=

[
0 0

]
,

2asu = tv}.

Here the resolution map is the projection onto the (a, c, d) component,
which necessarily lies in the type-A2 Kleinian singularity defined by
the equation 8a3 = cd. If (a, c, d) is not the singular point (0, 0, 0),
then [s : t], [u : v] are uniquely determined by the above conditions;
if (a, c, d) = (0, 0, 0), then the final condition becomes tv = 0, so the
fibre is a union of two projective lines meeting transversely at a point
(this is a special case of the subregular Springer fibre described in
Example 7.3).

8. Normality of orbit closures for sln

In this section we will take g = sln and discuss some special prop-
erties of the orbit closures Oλ in this case, in particular the proof by
Kraft and Procesi that they are normal varieties. As seen in Exam-
ple 6.4, there do exist non-normal nilpotent orbit closures in simple Lie
algebras of other types; see [2, 19, 22, 35, 36] for results on this.
We can generalize the Springer resolution of N to construct a res-

olution of Oλ where λ is any partition of n. For this, let r1, · · · , rm
be the lengths of the columns of the box-diagram of λ, in decreasing
order (thus the number m is by definition equal to λ1). We consider
the partial flag variety

Fλ =

{
0 = U0 ⊂ U1 ⊂ · · · ⊂ Um = C

n

∣∣∣∣ dim
Ui

Ui−1
= ri

}
,

and the vector bundle over Fλ whose total space is

F̃λ = {(X, (Ui)) ∈ sln × Fλ |X(Ui) ⊆ Ui−1 for all i}.

Then it is not hard to show that the first projection maps F̃λ to Oλ,

and in fact is a resolution πλ : F̃λ → Oλ. If λ = (n), then m = n and
ri = 1 for all i, so we are dealing with complete flags and we recover
the Springer resolution.

Example 8.1. If λ = (2, 1, · · · , 1), we havem = 2, r1 = n−1 and r2 = 1,
so F(2,1,··· ,1) is the projective space of (n− 1)-dimensional subspaces of
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Cn, and F̃(2,1,··· ,1) is the rank-(n− 1) vector bundle over this projective
space where the fibre over the (n− 1)-dimensional subspace U1 is

{X ∈ sln |X(Cn) ⊆ U1, X(U1) = 0}.

The resolution π(2,1,··· ,1) : F̃(2,1,··· ,1) → O(2,1,··· ,1) contracts the zero sec-
tion of the vector bundle to the singular point 0 and maps the com-
plement isomorphically onto O(2,1,··· ,1); for X ∈ O(2,1,··· ,1), the unique
(n − 1)-dimensional subspace U1 satisfying the above conditions is
ker(X). Note that π(2,1,··· ,1) is different from the resolution of O(2,1,··· ,1)

considered in Example 6.1: it is more economical in the sense that the
fibre over 0 is a smaller-dimensional partial flag variety, but less canon-
ical in the sense that it breaks the symmetry between dimension-1 and
codimension-1 subspaces.

There is a connection between these resolutions and quiver repre-
sentations, which really just means diagrams of linear maps between

vector spaces. A pair (X, (Ui)) ∈ F̃λ can be encoded as such a diagram:

Cn

pr




V1

pr
**

X

JJ

V2
X

jj

pr
**
V3

X

jj

pr
**
· · ·

pr
,,

X

jj Vm−2

pr
,,

X

kk Vm−1

X

ll

where Vi = Cn/Ui, pr : Vi → Vi+1 is the canonical projection, and
we abuse notation by writing X for the map Vi+1 → Vi induced by
X . Note that here we have dimVi = n − r1 − · · · − ri; we denote this
quantity by vi, and let v denote the (m− 1)-tuple (v1, · · · , vm−1).
Consider the affine variety Λv,n of all diagrams of linear maps

Cn

A0




Cv1

A1
++

B0

II

Cv2

B1

kk

A2
++
Cv3

B2

kk

A3

**
· · ·

Am−3
--

B3

kk Cvm−2

Am−2

,,

Bm−3

kk Cvm−1

Bm−2

mm

satisfying the equations Ai−1Bi−1 = BiAi for 1 ≤ i ≤ m − 2 and
Am−2Bm−2 = 0. This is a closed subvariety of the affine space

Hom(Cn,Cv1)⊕Hom(Cv1 ,Cn)⊕Hom(Cv1 ,Cv2)⊕Hom(Cv2 ,Cv1)⊕· · · .

It is almost, but not exactly, correct to say that the diagram defined
by (X, (Ui)) ∈ F̃λ represents a point of Λv,n: certainly the equations
are satisfied, but one has to make some choice of identifications of the
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vector space Vi with Cvi for all i, and this results in a change-of-basis
indeterminacy. To take this into account, we need to consider the
natural action of the group Gv := GLv1 × · · · ×GLvm−1

on Λv,n. This
action is free on the open subset

Λs
v,n := {(Ai, Bi) ∈ Λv,n |Ai surjective for all i},

so there is a well-defined geometric quotient variety Λs
v,n/Gv, and the

correct statement is that we have an isomorphism

Λs
v,n/Gv

∼
→ F̃λ : (Ai, Bi) 7→ (B0A0, (ker(Ai−1 · · ·A1A0))).

Here and below, when we want to specify a map whose domain is a
quotient, we write the formula for the composition with the quotient
projection.
It is now natural to consider the quotient Λv,n/Gv, which by defi-

nition is the affine variety whose algebra of functions is the invariant
ring C[Λv,n]

Gv .

Theorem 8.2 (Kraft–Procesi [20]). We have an isomorphism

Λv,n/Gv

∼
→ Oλ : (Ai, Bi) 7→ B0A0.

Moreover, Λv,n is a normal variety and hence so is Oλ.

Kraft and Procesi could prove that Λv,n is normal by proving first that
it is a complete intersection (not true of Oλ, as we saw in Example 2.3).
It is easy to see that the property of normality is inherited by quotients
under group actions.
Note that the open embedding Λs

v,n → Λv,n induces a map on quo-
tients Λs

v,n/Gv → Λv,n/Gv that is far from injective. Indeed, under
the above isomorphisms this map Λs

v,n/Gv → Λv,n/Gv corresponds to

the resolution map F̃λ → Oλ. To understand this, one has to recall
that the points of Λv,n/Gv correspond to the closed Gv-orbits in Λv,n.
Every Gv-orbit in Λs

v,n is closed in Λs
v,n, but in general it is not closed

in Λv,n; it gets mapped to the unique closed orbit in its closure in Λv,n.
Compare the map from (Cn \ {0})/C× ∼= Pn−1 to Cn/C×; the latter is
a single point because the only closed C

×-orbit in C
n is {0}.

Example 8.3. Continue with Example 8.1. Since v1 = 1, we have

Λv,n = {(A0, B0) ∈ Hom(Cn,C1)× Hom(C1,Cn) |A0B0 = 0}

∼= {((a1, · · · , an), (b1, · · · , bn)) ∈ (Cn)2 |
n∑

i=1

aibi = 0},
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with Gv = C× scaling the vectors (a1, · · · , an) and (b1, · · · , bn) by
inverse scalars. In this example, Theorem 8.2 is easy to see: the Gv-
invariant polynomial functions on Λv,n are generated by the functions
((a1, · · · , an), (b1, · · · , bn)) 7→ ajbi as i and j vary, and these functions
form the entries of a map Λv,n → O(2,1,··· ,1), factoring through the
isomorphism of Theorem 8.2. Note that

Λs
v,n = {(A0, B0) ∈ Λv,n |A0 6= 0},

so Λs
v,n/Gv has a map to Pn−1 defined by (A0, B0) 7→ [a1 : · · · : an]; this

is a rank-(n−1) vector bundle, corresponding to the bundle F̃(2,1,··· ,1) →
F(2,1,··· ,1) seen in Example 8.1.

For the purposes of the next section it is useful to note a slight
generalization of the above results. In the definition of r1, · · · , rm (and
hence of v), we can actually take the column-lengths of λ in any order,
not necessarily in decreasing order; what is more, we can also include
some zeroes among the ri’s (meaningm could be larger than λ1). In this
more flexible setting, r1, · · · , rm are no longer uniquely determined by
λ, but we will continue to use the notations Fλ and F̃λ for the varieties

defined using the chosen r1, · · · , rm. It is still true that πλ : F̃λ → Oλ

is a resolution, and we still have the same isomorphism Λs
v,n/Gv

∼
→ F̃λ.

Theorem 8.2 requires a modification, because Λv,n may now not even
be irreducible, let alone normal; however, if we let Λ1

v,n be the closure
of Λs

v,n in Λv,n (an irreducible component of Λv,n), then we still have

an isomorphism Λ1
v,n/Gv

∼
→ Oλ. This all follows from the more general

Theorem 9.1 below; see [33] for a description of Λv,n/Gv in the present
setting.

Example 8.4. Take g = sln and λ = (2, 1, · · · , 1). Instead of the choice
used in Example 8.1 we could set r1 = 1, r2 = n− 1. Then

Λv,n = {(A0, B0) ∈ Hom(Cn,Cn−1)× Hom(Cn−1,Cn) |A0B0 = 0}

which has multiple irreducible components (for n ≥ 4). The irreducible
component Λ1

v,n is defined by the extra condition rank(B0) ≤ 1.

9. Maffei’s theorem and its consequences

Maffei’s theorem [25] is a generalization of the isomorphism state-
ments in the previous section, that applies to the varieties Sµ ∩ Oλ,
where µ E λ and Sµ means SX for some X ∈ Oµ. We will refer to the
point X as the base-point of Sµ ∩ Oλ.
As at the end of the previous section, we let r1, · · · , rm be the column-

lengths of λ in some order and possibly with some zeroes included,
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allowing us to assume m > µ1. We define the resolution πλ : F̃λ → Oλ

as before. Let wi be the multiplicity of i in µ for 1 ≤ i ≤ m − 1, and
let w = (w1, · · · , wm−1). The new definition of v = (v1, · · · , vm−1) is

vi := w1 + 2w2 + · · ·+ iwi + iwi+1 + · · ·+ iwm−1 − r1 − · · · − ri.

Because of our assumptions that µ E λ and m > µ1, the quantity
w1 + 2w2 + · · ·+ iwi + iwi+1 + · · ·+ iwm−1 appearing here is the sum
of the lengths of the i longest columns of µ, and vi ≥ 0. Note that
if µ = (1, · · · , 1), then w = (n, 0, · · · , 0) and v is the same as in the
previous section.
Now we consider the affine variety Λv,w of all diagram of linear maps

Cw1

Γ1





Cw2

Γ2





Cw3

Γ3





Cwm−2

Γm−2





Cwm−1

Γm−1




Cv1

A1

++

∆1

II

Cv2

B1

kk

A2

++

∆2

II

Cv3

B2

kk

A3

++

∆3

II

· · ·
Am−3

--

B3

kk Cvm−2

Am−2

,,

Bm−3

kk

∆m−2

II

Cvm−1

Bm−2

ll

∆m−1

II

satisfying the equations Ai−1Bi−1 + Γi∆i = BiAi for 1 ≤ i ≤ m − 1,
where we interpret A0, B0, Am−1, Bm−1 as 0. Again we have a natural
action of Gv on Λv,w. If µ = (1, · · · , 1), then we can clearly identify
Λv,w with the previous Λv,n, with Γ1 and ∆1 becoming A0 and B0

respectively.
The generalization of Λs

v,n is the open subset Λs
v,w of Λv,w defined

by the ‘stability’ condition that there is no proper subspace of
⊕

i C
vi

that contains
⊕

i im(Γi) and is stable under all the maps Ai, Bi. Let
Λ1

v,w be the closure of Λs
v,w in Λv,w. It follows from the next result that

Λs
v,w is nonempty, and it is clearly stable under simultaneous scaling

of all the maps Ai, Bi,Γi,∆i, so the point 0 ∈ Λv,w belongs to Λ1
v,w.

Theorem 9.1 (Maffei [25, Theorem 8]). With notation as above, we
have variety isomorphisms

Λs
v,w/Gv

∼= π−1
λ (Sµ ∩Oλ),

Λ1
v,w/Gv

∼= Sµ ∩Oλ,

under which the map Λs
v,w/Gv → Λ1

v,w/Gv induced by the embedding

Λs
v,w → Λ1

v,w corresponds to the restriction of πλ to π−1
λ (Sµ∩Oλ). The

Gv-orbit of 0 ∈ Λ1
v,w corresponds to the base-point of Sµ ∩Oλ.

The varieties Λs
v,w/Gv and Λ1

v,w/Gv are examples of Nakajima quiver
varieties (see [10, 29, 30]), and these isomorphisms were originally con-
jectured by Nakajima in [29]. Maffei’s definition of the isomorphisms



26 ANTHONY HENDERSON

is effectively inductive, and as a result much less explicit than in the
µ = (1, · · · , 1) case considered by Kraft and Procesi in [20].

Example 9.2. Take g = sl3, µ = (2, 1), and λ = (3). Setting r1 = r2 =
r3 = 1, we get v = w = (1, 1). Hence Λv,w consists of diagrams

C1

Γ1





C1

Γ2




C

1
A1

**

∆1

II

C
1

B1

jj

∆2

II

with Γ1∆1 = B1A1, A1B1 = −Γ2∆2. Since all the vector spaces are
1-dimensional, Γi,∆i, A1, B1 themselves constitute functions on Λv,w.
It is easy to see that the invariant ring C[Λv,w]

Gv is generated by

a = ∆1Γ1 = −∆2Γ2, b = ∆1B1Γ2, c = ∆2A1Γ1,

which satisfy the single equation a3 + bc = 0. Hence Λv,w/Gv is iso-
morphic to the type-A2 Kleinian singularity, in accordance with Theo-
rem 9.1 and Example 3.5. (In this case, Λv,w = Λ1

v,w.)

The Kleinian singularities of all types Aℓ, Dℓ and Eℓ have a uniform
construction in terms of Nakajima quiver varieties of the corresponding
type [3, 23]. Hence the subregular slice Ssubreg ∩ N in any simple Lie
algebra g is isomorphic to a certain Nakajima quiver variety. A partial
generalization of this statement to other varieties SX∩N is given in [11].
Returning to type A, Maffei’s description of the varieties Sµ ∩ Oλ

in terms of quiver varieties has some easy consequences that relate
Slodowy slices in different nilpotent cones. For convenience in stating
these consequences, we identify partitions of n with their box diagrams.

Corollary 9.3. If λ and µ have the same first row or the same first
column, then we have a base-point-preserving isomorphism Sµ ∩ Oλ

∼=
Sµ′∩Oλ′ where λ′,µ′ are obtained from λ,µ by deleting that row/column.

Proof. Suppose λ and µ have the same first row, i.e. λ1 = µ1. We
can take m = λ1 + 1, and let r1, · · · , rm−1 be the column-lengths of
λ in decreasing order, with rm = 0. Then vm−1 = 0 and wm−1 > 0
by definition. When we form the (m − 1)-tuples v′ and w′ for λ′

and µ′ in the same way, we find that v′ = v and w′ differs from w

only in that w′
m−1 = wm−1 − 1. We have an obvious Gv-equivariant

isomorphism Λv,w
∼
→ Λv,w′, because the fact that vm−1 = 0 forces the

maps Γm−1,∆m−1 to be zero whether one works with wm−1 or w′
m−1.

This induces an isomorphism Λ1
v,w/Gv

∼
→ Λ1

v,w′/Gv. So Theorem 9.1

implies the desired isomorphism Sµ ∩Oλ
∼= Sµ′ ∩Oλ′ . The proof when
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λ and µ have the same first column is similar, but with v1 = 0 rather
than vm−1 = 0. �

IfOµ ≺ Oλ is a minimal degeneration as described in Proposition 2.5,
then one can apply Corollary 9.3 repeatedly to remove all the common
rows and columns, leaving a minimal degeneration Oµ∗ ≺ Oλ∗ where
either µ∗ = (1, · · · , 1) or λ∗ has a single part. This proves Theorem 6.2.
Well before Theorem 9.1, Kraft and Procesi proved in [21] a slightly
weaker form of Corollary 9.3, with smooth equivalence instead of iso-
morphism; this is how they proved their version of Theorem 6.2.
In view of Theorem 4.4, either form of Corollary 9.3 immediately

implies the following known result in representation theory, as was
observed by Juteau [15]:

Corollary 9.4 (James [14]). Let p be a prime. If λ and µ have the
same first row or the same first column, then dpλµ = dpλ′µ′ where λ′,µ′

are obtained from λ,µ by deleting that row/column.

James’ result was generalized by Donkin [5] to the case where λ and
µ admit a ‘horizontal cut’. This more general result can be deduced
from an analogous generalization of Corollary 9.3 (the corresponding
quiver varieties have vi = 0 for some i not necessarily in {1, m− 1}).
Another consequence of Theorem 9.1 is:

Corollary 9.5. Suppose that λ and µ both have at most t nonzero
parts, each of which is at mostm. Then we have a base-point-preserving
isomorphism Sµ ∩ Oλ

∼= Sµc ∩ Oλc where λc,µc are obtained from λ,µ
respectively by taking complements in a t ×m rectangle (and rotating
through 180◦ to obtain box-diagrams of the normal orientation).

Example 9.6. If λ = (5, 4, 4, 3) and µ = (3, 3, 3, 3, 2, 2), then we can take
t = 6 and m = 5, producing λc = (5, 5, 2, 1, 1) and µc = (3, 3, 2, 2, 2, 2).
In the following picture, the boxes of λc, µc are those containing dots.
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· · · · ·
· · · · ·

 

· · · · ·
· · · · ·
· ·
·
·
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Proof. We can assume that µ 6= λ, since otherwise the claim is trivial.
After applying Corollary 9.3 as many times as necessary both to λ, µ
and to λc, µc, we can assume that λ1 = (λc)1 = m, µ1 < m, (µc)1 <
m. Set r1, · · · , rm to be the column-lengths of λ in decreasing order,
and so define v,w. If we define vc,wc similarly, then vci = vm−i and

wc
i = wm−i for all i. We thus have an isomorphism Λv,w

∼
→ Λvc,wc

that interchanges the roles of the maps Γi and Γm−i, the maps ∆i and
∆m−i, and the maps Ai and Bm−1−i for all i, and changes the sign of all
the maps Bi in order to preserve the defining equations. This induces
an isomorphism Λ1

v,w/Gv

∼
→ Λ1

vc,wc/Gvc . So Theorem 9.1 implies the

desired isomorphism Sµ ∩Oλ
∼= Sµc ∩ Oλc . �

As mentioned in the introduction, Corollary 9.5 provides (via Theo-
rem 4.4 again) a geometric proof of another known result in represen-
tation theory:

Corollary 9.7 (Fang–Henke–Koenig [6, Corollary 7.1]). Let p be a
prime. With notation as in Corollary 9.5, we have dpλµ = dpλcµc .
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representation theory, I, Sémin. Congr. 24-I, Soc. Math. France, Paris, 2012,
145–219.

[11] A. Henderson and A. Licata, Diagram automorphisms of quiver varieties, Adv.
Math. 267 (2014), 225–276.

[12] J. E. Humphreys, Introduction to Lie algebras and representation theory, Grad-
uate Texts in Math. 9, Springer-Verlag, New York, 1992.

[13] G. D. James, The irreducible representations of the symmetric groups, Bull.
London Math. Soc. 8 (1976), no. 3, 229–232.

[14] G. D. James, On the decomposition matrices of the symmetric groups, III, J.
Algebra 71 (1981), 115–122.

[15] D. Juteau, Modular Springer correspondence, decomposition matrices and basic
sets, arXiv:1410.1471.

[16] D. Juteau, C. Mautner and G. Williamson, Perverse sheaves and modular rep-
resentation theory, in Geometric methods in representation theory, II, Sémin.
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