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Abstract

Let M be a simple holomorphically symplectic manifold,
that is, a simply connected compact holomorphically sym-
plectic manifold of Kähler type with h

2,0 = 1. Assuming
b2(M) 6= 5, we prove that the group of holomorphic automor-
phisms of M acts on the set of faces of its Kähler cone with
finitely many orbits. This statement is known as Morrison-
Kawamata cone conjecture for hyperkähler manifolds. As
an implication, we show that any hyperkähler manifold has
only finitely many non-equivalent birational models. The
proof is based on the following observation, proven with er-
godic theory. Let M be a complete Riemannian orbifold of
dimension at least three, constant negative curvature and
finite volume, and {Si} an infinite set of complete, locally
geodesic hypersurfaces. Then the union of Si is dense in M .
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1 Introduction

1.1 Kähler cone and MBM classes

Let M be a hyperkähler manifold, that is, a compact, holomorphically sym-
plectic Kähler manifold. We assume that π1(M) = 0 and H2,0(M) = C: the
general case reduces to this by Bogomolov decomposition (Theorem 2.3). Such
hyperkähler manifolds are known as simple hyperkähler manifolds, or IHS (irre-
ducible holomorphic symplectic) manifolds. The known examples of such mani-
folds are deformations of punctual Hilbert scheme of K3 surfaces, deformations
of generalized Kummer varieties and two sporadic ones discovered by O’Grady.
In [AV] we gave a description of the Kähler cone of M in terms of a set of coho-
mology classes S ⊂ H2(M,Z) called MBM classes (Definition 2.14). This set
is of topological nature, that is, it depends only on the deformation type of M .

Recall that on the second cohomology of a hyperkähler manifold, there is
an integral quadratic form q, called the Beauville-Bogomolov-Fujiki form (see
section 2 for details). This form is of signature (+,−, . . . ,−) on H1,1(M). Let
Pos ⊂ H1,1(M) be the positive cone, and S(I) the set of all MBM classes which
are of type (1,1) on M with its given complex structure I. Then the Kähler
cone is a connected component of Pos\S(I)⊥, where S(I)⊥ is the union of the
orthogonal complements to all z ∈ S(I).

1.2 Morrison-Kawamata cone conjecture for hyperkähler

manifolds

The Morrison-Kawamata cone conjecture for Calabi-Yau manifolds was stated
in [Mo]. For K3 surfaces it was already known since mid-eighties by the work of
Sterk [St]. Kawamata in [Ka] proved the conjecture for Calabi-Yau threefolds
admitting a holomorphic fibration over a positive-dimensional base.

In this paper, we concentrate on the following version of the cone conjecture
(see Subsection 5.2 for its relation to the classical one, formulated for the ample
cone of a projective variety).

Definition 1.1: Let M be a compact, Kähler manifold, Kah ⊂ H1,1(M,R) the
Kähler cone, and Kah its closure in H1,1(M,R), called the nef cone. A face
of the Kähler cone is the intersection of the boundary of Kah and a hyperplane
V ⊂ H1,1(M,R) which has non-empty interior.

Conjecture 1.2: (Morrison-Kawamata cone conjecture)
Let M be a Calabi-Yau manifold. Then the group Aut(M) of biholomorphic
automorphisms of M acts on the set of faces of Kah with finite number of orbits.

– 2 – version 2.1, Oct 26, 2014



E. Amerik, M. Verbitsky Morrison-Kawamata cone conjecture for hyperkähler manifolds

We shall be interested in the case when the manifoldM is simple hyperkähler
(that is, IHS). In [AV], we have shown that Morrison-Kawamata cone conjecture
holds whenever the Beauville-Bogomolov square of primitive MBM classes is
bounded. This is known to be the case for deformations of punctual Hilbert
schemes of K3 surfaces and for deformations of generalized Kummer varieties.
A different proof in the similar spirit for these types of hyperkähler manifolds
has been given by Markman and Yoshioka in [MY], under an extra assumption
that the manifolds in question are projective.

Let us also briefly mention that this conjecture has a birational version,
proved for projective hyperkähler manifolds by E. Markman in [M3] and gen-
eralized in [AV] to the non-projective case. In this birational version, the nef
cone is replaced by the birational nef cone (that is, the closure of the union of
pullbacks of Kähler cones on birational models of M) and the group Aut(M) is
replaced by the group of birational automorphisms Bir(M).

The key point of the proof of [AV] is the observation that the orthogo-
nal group O(H1,1

Z (M), q) of the lattice H1,1
Z (M) = H1,1(M) ∩ H2(M,Z), and

therefore the Hodge monodromy group ΓHdg (see Definition 2.12) which is

a subgroup of finite index in O(H1,1
Z (M), q) , acts with finitely many orbits on

the set of classes of fixed square r 6= 0. When the primitive MBM classes have
bounded square, we conclude that the monodromy acts with finitely many orbits
on the set of MBM classes. As those are precisely the classes whose orthogonal
hyperplanes support the faces of the Kähler cone, it is not difficult to deduce
that there are only finitely many, up to the action of the monodromy group,
faces of the Kähler cone, and also finitely many oriented faces of the Kähler
cone (an oriented face is a face together with the choice of normal direction).
An element of the monodromy which sends a face F to a face F ′, with both
orientations pointing towards the interior of the Kähler cone, must preserve the
Kähler cone. On the other hand, Markman proved ([M3], Theorem 1.3) that
an element of the Hodge monodromy which preserves the Kähler cone must be
induced by an automorphism, so that the cone conjecture follows.

1.3 Main results

The main point of the present paper is that the finiteness of the set of primitive
MBM classes of type (1, 1), up to the monodromy action, can be obtained
without the boundedness assumption on their Beauville-Bogomolov square.

Our main technical result is the following

Theorem 1.3: Let L be a lattice of signature (1, n) where n > 3, V = L⊗ R.
Let Γ be an arithmetic subgroup in SO(1, n). Let Y :=

⋃
Si be a Γ-invariant

union of rational hyperplanes Si orthogonal to negative vectors zi ∈ L in V .
Then either Γ acts on {Si} with finitely many orbits, or Y is dense in the positive
cone in V .
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Proof: See Theorem 4.11.

Remark 1.4: The assumption n > 3 is important for our argument which is
based on Ratner theory. We shall see that Ratner theory applies to our problem
as soon as the connected component of the unity of SO(1, n − 1) is generated
by unipotents, that is, for n > 3.

Taking H1,1
Z (M) = H1,1(M) ∩ H2(M,Z) for L and the Hodge monodromy

group for Γ, we easily deduce:

Theorem 1.5: Assume that M is projective, of Picard rank at least 4. The
monodromy group acts with finitely many orbits on the set of MBM classes
which are of type (1, 1).

Proof: See Theorem 5.1.

Note that, by a result of Huybrechts, the projectivity assumption for M is
equivalent to the signature (1, n) assumption for its Picard lattice L.

The boundedness results as an obvious corollary.

Corollary 1.6: On a projective M with Picard number at least 4, primitive
MBM classes of type (1, 1) have bounded Beauville-Bogomolov square.

Proof: Indeed, the monodromy acts by isometries.

Using the deformation invariance of MBM property, we can actually drop
the assumption that M is projective and has Picard rank at least four. Indeed,
if M is a simple hyperkähler manifold with b2(M) > 6, we can always deform it
to a projective manifold M ′ on which all classes from H1,1

Z (M) stay of type (1, 1)
(see Proposition 2.30). Since the square of a primitive MBM class is bounded
on M ′, the same is true for M .

The Morrison-Kawamata cone conjecture is then deduced as we have sketched
it above, exactly in the same way as in [AV].

Theorem 1.7: Let M be a simple hyperkähler manifold with b2(M) > 6. The
group of automorphisms Aut(M) acts with finitely many orbits on the set of
faces of the Kähler cone Kah(M).

Proof: See Theorem 5.4.

Remark 1.8: The theorem holds trivially for M with b2(M) < 5, so that our
result is valid as soon as b2(M) 6= 5. This remaining case can probably be
handled using methods of hyperbolic geometry. The general belief is, though,
that simple hyperkähler manifolds with b2 = 5 do not exist.

– 4 – version 2.1, Oct 26, 2014



E. Amerik, M. Verbitsky Morrison-Kawamata cone conjecture for hyperkähler manifolds

Finally, as observed by Markman and Yoshioka, the boundedness of squares
of primitive MBM classes implies the following theorem (we thank Y. Kawamata
for indicating us the statement).

Theorem 1.9: Let M be a simple hyperkähler manifold with b2(M) > 6. Then
there are only finitely many simple hyperkähler manifolds birational to M .

Proof: This is just [MY], Corollary 1.5. Indeed, the classes e menitioned
in Conjecture 1.1 from [MY] (that is, the classes generating the extremal rays
of the Mori cone on the simple hyperkähler birational models of M) are MBM
classes in the sense of our Definition 2.14.

The crucial tool for the proof of Theorem 1.3 is Ratner theory. We recall
this and some other relevant information from ergodic theory in section 3, after
some preliminaries on hyperkähler manifolds in section 2. In section 4 we deduce
Theorem 1.3 from Mozes-Shah and Dani-Margulis theorems. Finally, in the last
section we apply this to hyperkähler manifolds and prove Theorem 1.7.

2 Preliminaries

2.1 Hyperkähler manifolds, monodromy and MBM classes

Definition 2.1: A hyperkähler manifold is a compact, Kähler, holomorphi-
cally symplectic manifold.

Definition 2.2: A hyperkähler manifoldM is called simple, or IHS, if π1(M) =
0, H2,0(M) = C.

This definition is motivated by Bogomolov’s decomposition theorem:

Theorem 2.3: ([Bo1]) Any hyperkähler manifold admits a finite covering which
is a product of a torus and several simple hyperkähler manifolds.

Remark 2.4: The Bogomolov decomposition theorem can be obtained by ap-
plying the de Rham holonomy decomposition theorem and Berger’s classifica-
tion of manifolds with special holonomy to the Ricci-flat hyperkähler metric on
a compact holomorphically symplectic Kähler manifold. Then, a hyperkähler
manifold is simple if and only if its hyperkähler metric has maximal holonomy
group Hol(M) allowed by the hyperkähler structure, that is Hol(M) = Sp(n),
where n = 1

2
dimC M .

Remark 2.5: Further on, we shall assume that all hyperkähler manifolds we
consider are simple.

– 5 – version 2.1, Oct 26, 2014



E. Amerik, M. Verbitsky Morrison-Kawamata cone conjecture for hyperkähler manifolds

The Bogomolov-Beauville-Fujiki form was defined in [Bo2] and [Bea], but it
is easiest to describe it using the Fujiki theorem, proved in [F1].

Theorem 2.6: (Fujiki) Let M be a simple hyperkähler manifold, η ∈ H2(M),
and n = 1

2
dimM . Then

∫
M

η2n = cq(η, η)n, where q is a primitive integral
quadratic form on H2(M,Z), and c > 0 a constant (depending on M).

Remark 2.7: Fujiki formula (Theorem 2.6) determines the form q uniquely up
to a sign. For odd n, the sign is unambiguously determined as well. For even
n, one needs the following explicit formula, which is due to Bogomolov and
Beauville.

λq(η, η) =

∫

X

η ∧ η ∧Ωn−1 ∧ Ω
n−1

−

−
n− 1

n

(∫

X

η ∧Ωn−1 ∧ Ω
n
)(∫

X

η ∧ Ωn ∧ Ω
n−1

) (2.1)

where Ω is the holomorphic symplectic form, and λ > 0.

Definition 2.8: A cohomology class η ∈ H1,1
R (M) is called negative if q(η, η) <

0, and positive if q(η, η) > 0. Since the signature of q on H1,1(M) is (1, b2−3),
the set of positive vectors is disconnected. The positive cone Pos(M) is the
connected component of the set {η ∈ H1,1

R (M) | q(η, η) > 0} which contains
the classes of the Kähler forms. Using the Cauchy-Schwarz inequality, it is easy
to check that the positive cone is convex.

Definition 2.9: Let M be a hyperkähler manifold. The monodromy group
of M is a subgroup of GL(H2(M,Z)) generated by the monodromy transforms
for all Gauss-Manin local systems.

It is often enlightening to consider this group in terms of the mapping class
group action. In the following paragraphs, we recall this description.

Definition 2.10: Let M be a compact complex manifold, and Diff0(M) a con-
nected component of its diffeomorphism group (the group of isotopies). De-
note by Comp the space of complex structures of Kähler type on M , equipped
with its structure of a Fréchet manifold (remark here that the set of complex
structures of Kähler type is open in the space of all complex structures by
Kodaira-Spencer stability theorem), and let Teich := Comp /Diff0(M). We call
it the Teichmüller space.

For hyperkähler manifolds, this is a finite-dimensional complex non-Hausdorff
manifold ([Cat], [V2]).

Definition 2.11: The mapping class group is Diff(M)/Diff0(M). It natu-
rally acts on Teich. The quotient of Teich by this action may be viewed as the
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“moduli space” for M . However, this space is too non-Hausdorff to be useful:
any two open subsets of Teich /Diff intersect ([V3], [V4]).

By a result of Huybrechts (see [H3]), in the hyperkähler case Teich has only
finitely many connected components. Therefore, the subgroup of the mapping
class group which fixes the connected component of our chosen complex struc-
ture is of finite index in the mapping class group.

Definition 2.12: The monodromy group Γ is the image of this subgroup
in AutH2(M,Z). The Hodge monodromy group is the subgroup ΓHdg ⊂ Γ
preserving the Hodge decomposition.

The following theorem is crucial for the Morrison-Kawamata cone conjecture.

Theorem 2.13: ([V2], Theorem 3.5) The monodromy group is a finite index
subgroup in O(H2(M,Z), q) (and the Hodge monodromy is therefore an arith-
metic subgroup of the orthogonal group of the Picard lattice).

Next, we recall from [AV] the definition of MBM classes. Remark that any
birational map between hyperkähler manifolds ϕ : M 99K M ′ is an isomorphism
in codimension one (in general this easily follows from the nefness of the canon-
ical class) and therefore induces an isomorphism on the second cohomology. We
say that M and M ′ are birational models of each other.

Definition 2.14: A non-zero negative rational homology class z ∈ H1,1(M) is
called monodromy birationally minimal (MBM) if for some isometry γ ∈
O(H2(M,Z)) belonging to the monodromy group, γ(z)⊥ ⊂ H1,1(M) contains a
face of the pull-back of the Kähler cone of one of birational models M ′ of M .

Remark 2.15: Here the orthogonal is taken with respect to the Beauville-
Bogomolov form. A face of Kah(M) is, by definition, of maximal dimension
h1,1(M)− 1. So the definition of z being MBM means that γ(z)⊥ ∩ ∂Kah(M ′)
contains an open subset of γ(z)⊥. The MBM classes, or more precisely the
rays they generate, are natural analogues of “extremal rays” from projective
geometry, up to monodromy and birational equivalence; hence the name.

The following theorem has been proved in [AV].

Theorem 2.16: Let M be a hyperkähler manifold, z ∈ H1,1(M) an integral
cohomology class, q(z, z) < 0, and M ′ a deformation of M such that z remains
of type (1,1) on M ′. Assume that z is monodromy birationally minimal on M .
Then z is monodromy birationally minimal on M ′.

The MBM classes can be used to determine the Kähler cone of M explicitly.

Theorem 2.17: ([AV]) Let M be a hyperkähler manifold, and S ⊂ H1,1(M)
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the set of all MBM classes of type (1, 1). Consider the corresponding set of
hyperplanes S⊥ := {W = z⊥ | z ∈ S} in H1,1(M). Then the Kähler cone of
M is a connected component of Pos(M)\ ∪ S⊥, where Pos(M) is the positive
cone of M . Moreover, for any connected component K of Pos(M)\ ∪ S⊥, there
exists γ ∈ O(H2(M,Z)) in the monodromy group of M and a birational model
M ′ such that γ(K) is the Kähler cone of M ′.

Remark 2.18: The main point of this theorem is that for a negative integral
class z ∈ H1,1(M), the orthogonal hyperplane either passes through the inte-
riour of some Kähler-Weyl chamber and then it contains no face of a Kähler-Weyl
chamber (that is, z is not MBM), or its intersection with the positive cone is
a union of faces of such chambers (when z is MBM). This is illustrated by a
picture taken from [AV]:

Allowed partition Prohibited partition

2.2 Global Torelli theorem and deformations

In this subsection, we recall a number of results about deformations of hy-
perkähler manifolds used further on in this paper. For more details and refer-
ences, see [V2].

Let M be a hyperkähler manifold (as usual, we assume M to be simple).
Any deformation M ′ of M is also a simple hyperkähler manifold, because the
Hodge numbers are constant in families and thus H2,0(M ′) is one-dimensional.
Let us view M ′ as a couple (M,J), where J is a new complex structure on M ,
that is, a point of the Teichmüller space Teich.

Definition 2.19: Let

Per : Teich −→ PH2(M,C)

map J to the line H2,0(M,J) ∈ PH2(M,C). The map Per is called the period
map.

Remark 2.20: The period map Permaps Teich into an open subset of a quadric,
defined by

Per := {l ∈ PH2(M,C) | q(l, l) = 0, q(l, l) > 0}.
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It is called the period domain of M . Indeed, any holomorphic symplectic
form l satisfies the relations q(l, l) = 0, q(l, l) > 0, as follows from (2.1).

Definition 2.21: Let M be a topological space. We say that x, y ∈ M are non-
separable (denoted by x ∼ y) if for any open sets V ∋ x, U ∋ y, U ∩ V 6= ∅.

By a result of Huybrechts [H1], non-separable points of Teich correspond to
birational hyperkähler manifolds.

Definition 2.22: The space Teichb := Teich/∼ is called the birational Te-
ichmüller space of M .

Remark 2.23: This terminology is slightly misleading since there are non-
separable points of the Teichmüller space which correspond to biregular, not
just birational, complex structures. Even for K3 surfaces, the Teichmüller space
is non-Hausdorff.

Theorem 2.24: (Global Torelli theorem; [V2]) The period map Teichb
Per
−→ Per

is an isomorphism on each connected component of Teichb.

By a result of Huybrechts ([H3]), Teich has only finitely many connected
components. We shall fix the component Teich0 containing the parameter point
for our initial complex structure, and denote by Γ̃ the subgroup of finite index
in the mapping class group fixing this component.

It is natural to view the quotient of Teich by the mapping class group as a
moduli space for M and the quotient of Teichb by the mapping class group as
a “birational moduli space”: indeed its points are in bijective correspondence
with the complex structures of hyperkähler type on M up to a bimeromorphic
equivalence.

Remark 2.25: The word “space” in this context is misleading. In fact, the
quotient topology on Teich0b /Γ̃ is extremely non-Hausdorff, e.g. every two open
sets would intersect ([V3]).

The Global Torelli theorem can be stated as a result about the birational
moduli space.

Theorem 2.26: ([V2, Theorem 7.2, Remark 7.4, Theorem 3.5]) Let (M, I) be
a hyperkähler manifold, and W a connected component of its birational moduli
space. Then W is isomorphic to Per/Γ, where Γ is an arithmetic subgroup in
O(H2(M,R), q), called the monodromy group of (M, I). In fact Γ is the

image of Γ̃ in O(H2(M,R), q).

Remark 2.27: As we have already mentioned, the monodromy group of (M, I)

– 9 – version 2.1, Oct 26, 2014



E. Amerik, M. Verbitsky Morrison-Kawamata cone conjecture for hyperkähler manifolds

can be also described as a subgroup of the group O(H2(M,Z), q) generated by
monodromy transform maps for Gauss-Manin local systems obtained from all
deformations of (M, I) over a complex base ([V2, Definition 7.1]). This is how
this group was originally defined by Markman ([M2], [M3]).

Definition 2.28: Let z ∈ H2(M,Z) be an integral cohomology class. The space
Teichz is the part of Teich where the class z is of type (1, 1).

The following proposition is well-known.

Proposition 2.29: Teichz is the inverse image under the period map of the
subset Perz ⊂ Per which consists of l with q(l, z) = 0.

Proof: This is clear since H1,1(M) is the orthogonal, under q, to H2,0(M)⊕
H0,2(M).

By a theorem of Huybrechts, a holomorphic symplectic manifoldM is projec-
tive if and only if it has an integral (1, 1)-class with strictly positive Beauville-
Bogomolov square. In this case, the Picard lattice H1,1

Z (M) = H2(M,Z) ∩
H1,1(M), equipped with the Beauville-Bogomolov form q, is a lattice of signa-
ture (+,−,−, . . . ,−). If M is not projective, the Picard lattice can be either
negative definite, or degenerate negative semidefinite with one-dimensional ker-
nel. In both cases, its rank cannot be maximal (i.e. equal to the dimension of
H1,1(M)), since the signature of q on H1,1(M) is (+,−,−, . . . ,−). Together
with this observation, Proposition 2.29 easily implies the following

Proposition 2.30: Let M be an irreducible holomorphic symplectic manifold.
There exists a deformationM ′ ofM which is projective and such that all integral
(1, 1)-classes on M remain of type (1, 1) on M ′. Moreover one can take M ′ of
maximal Picard rank h1,1(M).

Proof: By Proposition 2.29, the locus C where all integral (1, 1)-classes
on M remain of type (1, 1) is the preimage of the intersection of N complex
hyperplanes and Per, where N is strictly less than the (complex) dimension of
Per. It is therefore strictly positive-dimensional. For M ′ representing a general
point of this locus, the Picard lattice is the same as that of M , but at a special
point the Picard number jumps. Namely it jumps along the intersection with
each hyperplane of the form z⊥, where z is an integral (1, 1)-class. In particular,
there are isolated points inside C where the Picard rank is maximal. By the
observations above, the corresponding variety M ′ must be projective.

This proposition shall be useful in reducing the cone conjecture to the pro-
jective case with high Picard number (see Theorem 5.3).
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3 Ergodic theory and its applications

3.1 Ergodic theory: basic definitions and facts

Definition 3.1: Let (M,µ) be a space with a measure, and G a group acting
on M preserving µ. This action is ergodic if all G-invariant measurable subsets
M ′ ⊂ M satisfy µ(M ′) = 0 or µ(M\M ′) = 0.

Claim 3.2: Let M be a manifold, µ the Lebesgue measure, and G a group
acting on (M,µ) ergodically. Then the set of points with non-dense orbits has
measure 0.

Proof: Consider a non-empty open subset U ⊂ M . Then µ(U) > 0, hence
M ′ := G · U satisfies µ(M\M ′) = 0. For any orbit G · x not intersecting U ,
x ∈ M\M ′. Therefore the set of such points has measure 0.

Definition 3.3: Let G be a Lie group, and Γ ⊂ G a discrete subgroup. Consider
the pushforward of the Haar measure to G/Γ. Here, by abuse of terminology,
“taking the pushforward” of a measure means measuring the intersection of
the inverse image with a fixed fundamental domain. We say that Γ has finite
covolume if the Haar measure of G/Γ is finite. In this case Γ is called a lattice
subgroup.

Remark 3.4: Borel and Harish-Chandra proved that an arithmetic subgroup
of a reductive group G is a lattice whenever G has no non-trivial characters
over Q (see [BHCh], Theorem 7.8 for semisimple case and Theorem 9.4 for the
general case). In particular, all arithmetic subgroups of a semi-simple group are
lattices. Therefore the monodromy and the Hodge monodromy groups from the
previous section are lattices in the corresponding orthogonal groups, which is a
very important point for us.

In this paper, we deal with the following example of an ergodic action.

Theorem 3.5: (Calvin C. Moore, [Moo, Theorem 4]) Let Γ be a lattice subgroup
(such as an arithmetic subgroup) in a non-compact simple Lie group G with
finite center, and H ⊂ G a Lie subgroup. Then the left action of H on G/Γ is
ergodic if and only if the closure of H is non-compact.

Let us also state the following classical result.

Theorem 3.6: (Birkhoff ergodic theorem, see for example [W], 1.6) Let µ be a
probability measure on a manifold X , and let gt be an ergodic flow preserving
µ. Then for almost all x ∈ X and any f ∈ L1(µ), the limit of mT (f) =
1

T

∫ T

0
f(gtx)dt as T → +∞ exists and equals

∫
X
fdµ. In particular, for any

measurable subset K and almost all x, the part of time that the orbit of x
spends in K is equal to µ(K).
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3.2 Lie groups generated by unipotents

Here we state some of the main results of Ratner theory. We follow [KSS] and
[Mor].

Definition 3.7: Let G be a Lie group, and g ∈ G any element. We say that g
is unipotent if g = eh for a nilpotent element h in its Lie algebra. A group G
is generated by unipotents if G is multiplicatively generated by unipotent
one-parameter subgroups.

Theorem 3.8: (Ratner orbit closure theorem, [R1])
Let H ⊂ G be a Lie subroup generated by unipotents, and Γ ⊂ G a lattice.
Then the closure of any H-orbit Hx in G/Γ is an orbit of a closed, connected
subgroup S ⊂ G, such that S ∩ xΓx−1 ⊂ S is a lattice in S.

Proof: [Mor, 1.1.15 (2)].

For arithmetic groups Ratner orbit closure theorem can be stated in a more
precise way, as follows.

Theorem 3.9: Let G be a real algebraic group defined over Q and with no
non-trivial characters, W ⊂ G a subgroup generated by unipotents, and Γ ⊂ G
an arithmetic lattice. For a given g ∈ G, let H be the smallest real algebraic
Q-subgroup of G containing g−1Wg. Then the closure of Wg in G/Γ is Hg.

Proof: See [KSS, Proposition 3.3.7] or [Sh1, Proposition 3.2].

Ratner orbit closure theorem is a consequence of her fundamental result on
ergodic measures [R2], known as Ratner measure classification theorem, which
we recall below.

Definition 3.10: Let G be a Lie group, Γ a lattice, and G/Γ the quotient space,
considered as a space with Haar measure. Consider an orbit S ·x ⊂ G of a closed
subgroup S ⊂ G, put the Haar measure on S · x, and assume that its image in
G/Γ has finite Haar measure (this means that S ∩ xΓx−1 is a lattice in S). A
measure on G/Γ is called algebraic if it is proportional to the pushforward of
the Haar measure on S · x/Γ to G/Γ.

If G is a non-compact simple Lie group with finite center and H ⊂ G is a
Lie subgroup with non-compact closure, as in Moore’s theorem (Theorem 3.5),
consider the algebraic measure on G/Γ which is proportional to the pushforward
of the Haar measure of S, where S is taken from the Ratner’s orbit closure
theorem. It follows from Moore’s theorem that the action of H on G/Γ is
ergodic. Ratner’s measure classification theorem states that all invariant ergodic
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measures under the action of subgroups generated by unipotents arise in this
way.

Theorem 3.11: (Ratner’s measure classification theorem, [R2])
Let G be a connected Lie group, Γ a lattice, and G/Γ the quotient space,
considered as a space with Haar measure. Consider a finite measure µ on G/Γ.
Assume that µ is invariant and ergodic with respect to an action of a subgroup
H ⊂ G generated by unipotents. Then µ is algebraic.

Proof: see [Mor, 1.3.7].

Remark 3.12: In most texts, Ratner theorems are formulated for unipotent
flows, that is, H is assumed to be a one-parameter unipotent subgroup {u(t)|t ∈
R}. One gets rid of this assumption using the following lemma.

Lemma 3.13: ([MS, Lemma 2.3] or [KSS, Corollary 3.3.5]) LetH be a subgroup
of G generated by unipotent one-parameter subgroups. Then any finite H-
invariant H-ergodic measure is ergodic with respect to some one-parameter
unipotent subgroup of H .

4 Algebraic measures on homogeneous spaces

The main result of this section (Theorem 4.11) follows from a theorem of Mozes
and Shah [MS, Theorem 1.1].

4.1 Limits of ergodic measures

Definition 4.1: Recall that a Polish topological space is a metrizable topo-
logical space with countable base. Let V be the set of all finite Borel measures
on a Polish topological space M , and C0(M) the space of bounded continu-
ous functions. Weak topology on V is the weakest topology in which for all
f ∈ C0(M) the map V −→R given by µ−→

∫
M

fµ is continuous. If one identi-
fies V with a subset in C0(M)∗, the weak topology is identified with the weak-*
topology on C0(M)∗. This is why it is also called the weak-* topology.

Remark 4.2: It is not hard to prove that the space of probability measures on a
compact Polish space is compact in weak topology. This explains the usefulness
of this notion.

Theorem 4.3: (Mozes-Shah theorem)
Let G be a connected Lie group, Γ a lattice, {ui(t)} ⊂ G a sequence of
unipotent one-parameter subgroups in G, and µi a sequence of ui-invariant,
ui-ergodic probability measures on G/Γ, associated with orbits Si ·xi ⊂ G/Γ as
in Definition 3.10. Assume that limµi = µ with respect to weak topology, with
µ a probability measure on X , and let x ∈ Supp(µ). Then
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(i) µ is an algebraic measure, associated with an orbit S ·x as in Definition 3.10.

(ii) Let gi ∈ G be elements which satisfy gixi = x, and assume that gi → e in
G (so that xi converge to x). Then there exists i0 ∈ N such that for all
i > i0, S · x ⊃ giSi · xi.

Proof: The statement (i) follows from [MS, Theorem 1.1 (3)] and Ratner
measure classification theorem, and (ii) is [MS, Theorem 1.1 (2)].

Remark 4.4: More precisely, in [MS, Theorem 1.1] there is an additional con-
dition that the trajectories {ui(t)}xi, t > 0 should be uniformly distributed
with respect to µi. But this is automatic by another theorem of Ratner (Ratner
equidistribution theorem, see e.g. [Mor], Theorem 1.3.4), and in fact already by
Birkhoff ergodic theorem (Theorem 3.6), which states the uniform distribution
of orbits of one-parameter subgroups for almost all starting points.

The following theorem is an interpretation of Dani-Margulis theorem as
stated in [DM, Theorem 6.1] obtained by applying Birkhoff ergodic therorem.

Theorem 4.5: (Dani-Margulis theorem).
Let G be a connected Lie group, Γ a lattice, X := G/Γ, C ⊂ X a compact
subset, and ε > 0. Then there exists a compact subset K ⊂ X such that for
any algebraic probability measure µ on X , satisfying µ(C) 6= 0 and associated
with a group generated by unipotents, one has µ(K) > 1− ε.

Proof: By Lemma 3.13, µ is invariant and ergodic with respect to a one-
parameter unipotent subgroup u(t). Now apply [DM, Theorem 6.1] to a starting
point x which is one of “almost all points” of Supp(µ)∩C in the sense of Birkhoff
theorem.

Combining Dani-Margulis theorem and Mozes-Shah theorem, one gets the
following useful corollary ([MS, Corollary 1.1, Corollary 1.3, Corollary 1.4]).

Corollary 4.6: Let G be a connected Lie group, Γ a lattice, P(X) be the space
of all probability measures on X = G/Γ, and Q(X) ⊂ P(X) the space of all
algebraic probability measures associated with subgroups H ⊂ G generated by
unipotents (as in Ratner theorems). Then Q(X) is closed in P with respect
to weak-star topology. Moreover, let X ∩ {∞} denote the one-point compact-
ification of X , so that P(X ∩ {∞}) is compact. If for a sequence µi ∈ Q(X),
µi → µ ∈ P(X ∩ {∞}), then either µ ∈ Q(X), or µ is supported at infinity.

4.2 Rational hyperplanes intersecting a compact set

Definition 4.7: Let VQ be an n + 1-dimensional rational vector space with a
scalar product of signature (+,−,−, ...,−), and V := VQ⊗QR. We consider the
projectivization of the positive cone P+V as the hyperbolic space of dimension
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n. Given a k + 1-dimensional subspace WQ ⊂ VQ such that the restriction
of the scalar product to WQ still has signature (1, k), we may associate the
projectivized positive cone P+W ⊂ P+V with W = WQ ⊗Q R. When k = n− 1,
we shall call P+W ⊂ P+V a rational hyperplane in P+V .

Let Γ be a rational lattice in the group of isometries of P+V , and {Si} a set
of rational hyperplanes. We are interested in the images of Si in P+V/Γ. The
following theorem can be used to show that these images all intersect a compact
subset of P+V/Γ.

Theorem 4.8: Let {Si} be a set of rational hyperplanes in P+V , PQ ⊂ VQ

a rational subspace of signature (1, 2), and P+P ⊂ P+V the corresponding 2-
dimensional hyperbolic subspace. Consider an arithmetic lattice Γ ⊂ SO(V,Z),
and let ΓP be the stabilizer of PQ in Γ. Then there exists a compact subset
K ⊂ P+P such that ΓP ·K intersects all the hyperplanes Si.

Proof: Since Γ has finite index in a lattice O(V,Z), ΓP has finite index
in the lattice O(P,Z). One may view ΓP as a multi-dimensional analogue of
Fuchsian or Kleinian group, acting properly discontinuously on the hyperbolic
plane. Then ΓP acts with finite stabilizers, and the quotient of the hyperbolic
plane by ΓP is a hyperbolic orbifold X . We must prove that there is a compact
subset of X such that its intersection with the image of any line Li = Si ∩P+P
is non-empty. But any arithmetic lattice has a finite index subgroup which is
torsion-free (for instance, the congruence subgroup formed by integer matrices
which are identity modulo N for N big enough). Therefore, our orbifold X has a

finite covering X̃ which is a hyperbolic Riemann surface, and it suffices to prove
that there is a compact K̃ ⊂ X̃ such that π(Li) intersects K̃ for any i, where

π : P+P −→ X̃ denotes the projection (quotient by a finite index subgroup

Γ̃P ⊂ ΓP ).
Let ΓLi

be the stabilizer of Li in ΓP . Since ΓLi
has finite index in SO(Li,Z),

the images π(Li) have finite length in X̃ . On the other hand, π(Li) are isometric
images of Li. Therefore, π(Li) are compact; in other words, these are closed

geodesics on X̃. We have reduced Theorem 4.8 to the following well-known
lemma.

Lemma 4.9: Let S be a complete hyperbolic Riemann surface (of constant
negative curvature and finite volume). Then there exists a compact subset
K ⊂ X intersecting each closed geodesic l ⊂ S.

Proof: To obtain K, it suffices to remove from S a neighbourhood of each
cusp: indeed, there are no closed geodesics around cusps. This is an elementary
exercise, apparently well known; see e.g. [MR, Theorem 1.2] which is in the
same spirit. For the convenience of the reader, we sketch an argument here.

Let H = {x ∈ C | Im(x) > 0} be a hyperbolic half-plane, equipped with
a Poincare metric, t > 0 a real number, and Ht = {x ∈ C | t > Im(x) > 0} a
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strip consisting of all x ∈ C with 0 < Im(x) < t. In a neighbourhood of a cusp
point, S is isometric to a quotient Ht/Z, where the action of Z is generated by
the parallel transport γr(x) = x+ r, where r ∈ R is a fixed number. A geodesic
is a half-circle perpendicular to the line Imx = 0; closed geodesic in Ht/Z is a
half-circle which is mapped to itself by a power of γr. Such half-circles clearly
do not exist (see the picture).

A neighbourhood of a cusp point in dimension 2

Remark 4.10: The result of this subsection shall be used in the next one to
justify that a certain sequence of ergodic measures does not have a subsequence
going to infinity. Since all the measures in question come from orbits of the
same subgroup, this is also a consequence of [EMS], Corollary 1.10. We pre-
fer nevertheless to keep our simple observations on hyperbolic geometry which
might have some independent interest.

4.3 Measures and rational hyperplanes in the hyperbolic

space

The hyperbolic space, that is, the projectivization of the positive cone in a real
vector space with a quadratic form of signature (1, n), is a homogeneous space
in an obvious way. Indeed it is an orbit of any positive line by the connected
component of the unity of SO(1, n), and the stabilizer is isomorphic to SO(n).
If z is a negative vector, then z⊥ is a hyperplane which intersects the positive
cone; as in the previous paragraph, by a hyperplane in the hyperbolic space we
shall mean the projectivization of this intersection.

Theorem 4.11: Let G be the connected component of the unity SO+(1, n) of
SO(1, n), where n > 3, H := SO(n), and Γ ⊂ GZ a discrete subgroup of finite
index (and therefore of finite covolume, Remark 3.4). Consider the hyperbolic
space H = H\G = SO(n)\SO+(1, n). Let Y :=

⋃
Si be a Γ-invariant union of

rational hyperplanes. Then either Γ acts on {Si} with finitely many orbits, or
Y is dense in H.

Proof: Let V = R1,n be a real vector space of signature (1, n), G = SO+(V ),
and H = H\G, where H ⊂ G is the stabilizer of an oriented positive hyperplane.
We may identify H with the space of positive vectors x ∈ V , (x, x) = 1. In
order to apply ergodic theory, we replace H by the incidence variety X of pairs
(HW ⊂ H, x ∈ HW ), where HW is an oriented hyperplane in the hyperbolic
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space and x ∈ HW . Clearly, a point of X is uniquely determined by a pair of
orthogonal vectors x, y ∈ V , where x is positive, (x, x) = 1, and (y, y) = −1.
Therefore, X = H0\G, where H0 = SO(n − 1). The important point is that
X is a quotient of G by a compact group (and so is H). Moreover X is fibered
over H in spheres of dimension n− 1.

We can lift our hyperplanes Si to X in the tautological way. To make the
picture transparent, we first treat the case n = 2, where H is a hyperplane
(since in the theorem we have n > 3, this is just to describe the lifting and see
a certain well-known analogy). Here X = SO+(1, 2) is the unit tangent bundle
over H, and a point x ∈ Si lifts as (x, z) where z is the unit tangent vector to Si

in the direction given by the orientation. If we lift all possible hyperplanes to
X in this way, we obtain a foliation known as the geodesic flow: our liftings
never intersect and are tangent to an invariant vector field on X = SO+(1, 2).
Therefore all the lifting are orbits of a Lie subgroupH1 ⊂ G (this one-parameter
subgroup, isomorphic to SO+(1, 1), can be identified with the group of diagonal
two-by-two matrices with et and e−t on the diagonal under an isomorphism
between SO+(1, 2) and PSL(2,R), see the first chapter of Morris’ book [Mor]).

For n > 3, we first tautologically lift the hyperplanes to X and then take
preimages under the projection from G to X . Again, we obtain a translation-
invariant foliation on G, which means that the liftings and their preimages are
orbits of a subgroup H1 ⊂ G (containing H0). This subgroup is isomorphic to
SO+(1, n− 1), that is, generated by unipotents, so that ergodic theory applies.

Let us denote by Ri the preimage in G of the lifting of Si to X . Each Ri is
an orbit of H1. By Theorem 4.8, there is a compact set C such that the Γ-orbit
of any Si intersects C. Since the projection from G to H is proper, the same is
true for the set of Ri. Suppose that Γ acts on the set of Si (and thus Ri) with
infinitely many orbits. Consider the homogeneous space G/Γ. Each Γ-orbit
on the set of Ri corresponds to an algebraic probability measure µi on G/Γ
(note that since the hyperplanes Si are rational, the quotient of each H1-orbit
Ri over its stabilizer in Γ has finite Haar volume by Borel and Harish-Chandra
theorem). The support of µi is the image of Ri in G/Γ. Since the union of
Ri is Γ-invariant, to prove Theorem 4.11, it suffices to show that the union of
Supp(µi) is dense in G/Γ: this will imply the density of Ri in G and therefore
the density of Si in H.

By Corollary 4.6, the sequence µi has a limit point which is either a proba-
bility measure, or is supported at infinity. But the latter option is impossible.
Indeed, by Theorem 4.8 all Supp(µi) intersect the same compact on G/Γ. Thus
there is a (slightly larger) compact C such that µi(C) > 0 for all i, and by
Dani-Margulis theorem, for another compact Kε and all i, µi(K) > 1− ε.

Taking a suitable subsequence, we may therefore suppose that limµi = µ
where µ is an algebraic probability measure.

We have reduced Theorem 4.11 to the following lemma.

Lemma 4.12: Let G be the connected component SO+(1, n) of SO(1, n), where
n > 3, and Γ ⊂ GZ a discrete subgroup of finite index (and therefore of finite
covolume). Let H1 ⊂ G be SO+(1, n − 1). Let µi be a sequence of algebraic
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probability measures on G/Γ associated with the orbits of H1. Suppose µi

converges to an algebraic probability measure µ. Then either µi are finitely
many, or Supp(µ) is G/Γ, so that Supp(µi) are dense in G/Γ.

Proof: By Theorem 4.3 (ii), the support of µ contains a right translate by
gi → e of the support of infinitely many of µi. Moreover, µ is an algebraic
measure associated with an orbit of a closed subgroup F ⊂ G. But there are no
closed intermediate connected subgroups betweenG = SO+(1, n) andH1, which
stabilizes a hyperplane. Therefore, F is either equal to G, or is the stabilizer H
of a hyperplane HW .

In the first case, the support of µ = limµi is G/Γ and thus Supp(µi) are
dense in G/Γ.

In the second case, for i ≫ 0, Supp(µ) = gi Supp(µi), that is, Hx = giH1xi

where gixi = x (where x, xi, gi are as in Theorem 4.3). That is, Hx = Hgi
1 x

and therefore Hgi
1 = H = H1. Since H1 has finite index in its normalizer, this

means that there are only finitely many µi.

5 The proof of Morrison-Kawamata cone con-

jecture

5.1 Morrison-Kawamata conjecture for the Kähler cone

The following theorem is an immediate consequence of Theorem 4.11.

Theorem 5.1: Let M be a projective simple hyperkähler manifold which has
Picard number at least 4. Then the Hodge monodromy group acts with finitely
many orbits on the set of MBM classes of type (1, 1).

Proof: This is the same as to say that the Hodge monodromy group acts
with finitely many orbits on the set of their orthogonal hyperplanes, which by
[AV] are exactly the hyperplanes supporting the faces of the Kähler chambers.

Since the Hodge monodromy group is of finite index in the orthogonal
group of the Picard lattice, which is of signature (+,−, . . . ,−), one can ap-
ply Theorem 4.11 to the Picard lattice, with Γ the Hodge monodromy group.
One concludes that if the number of Γ-orbits is infinite, then the hyperplanes
orthogonal to MBM classes should be dense in the positive cone. This is clearly
absurd, as they should bound the Kähler cone (Subsection 1.1), so the number
of Γ-orbits is finite.

Corollary 5.2: On an M as above, the primitive MBM classes of type (1, 1)
have bounded Beauville-Bogomolov square.

Proof: Indeed, the monodromy acts by isometries.

Theorem 5.3: Let M be a simple hyperkähler manifold such that b2(M) >
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6. Then the primitive MBM classes of type (1, 1) have bounded Beauville-
Bogomolov square.

Proof: If M is not projective or the Picard number of M is less than four,
apply Proposition 2.30 to get a projective deformation M ′ with Picard number
at least four such that all MBM classes of type (1, 1) on M remain of type
(1, 1) on M ′. Then use the deformation invariance of MBM property proved in
[AV] to conclude that these MBM classes remain MBM on M ′ and therefore the
primitive ones must have bounded square by the preceding theorem.

The Morrison-Kawamata conjecture for the Kähler cone now follows in the
same way as in [AV].

Theorem 5.4: Let M be a simple hyperkähler manifold with b2(M) > 6. Then
the automorphism group of M acts with finitely many orbits on the set of faces
of its Kähler cone.

Proof: The argument is the same as in [AV] where the theorem has been ob-
tained under the boundedness assumption on squares of primitive MBM classes,
which we have just proved: see [AV, Theorem 6.6] there for an outline of the
argument and [AV, Theorem 3.14, 3.29] for technicalities.

5.2 Morrison-Kawamata conjecture for the ample cone

Recall from e.g. [MY] that the classical Morrison-Kawamata cone conjecture
is formulated in the projective case and treats the ample cone rather than the
Kähler cone. It also states something a priori stronger than the finiteness of
the number of orbits of the action of automorphism group on the set of faces of
the cone, namely the existence of a finite polyhedral fundamental domain.

Conjecture 5.5: (Morrison-Kawamata cone conjecture for the ample cone)
The automorphism group Aut(M) has a finite polyhedral fundamental domain
on the ample cone.

We shall see in this subsection that this in fact follows from our version of
the cone conjecture, and therefore is true for all simple hyperkähler manifolds
with b2 6= 5.

The ample cone Amp(M) is the convex hull of Kah(M) ∩ H1,1
Q (X) in the

space H1,1
Q (X) ⊗ R = NS(X) ⊗ R, so that a priori new faces could arise from

the “circular part” of the boundary of the Kähler cone. In our case, this is not
a problem, since this part is a piece of the quadric over the rationals defining
Pos(M), and when it has a single rational point, it has a dense set of them.
Thus the Hodge monodromy group acts with finitely many orbits on the set of
faces of the ample cone.
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Denote by C(M) the intersection of Pos(M) with NS(X) ⊗ R. The Hodge
monodromy group Γ acts on PC(M) with finite stabilizers (since the stabilizer
of a point x in PC(M) must also stabilize the orthogonal hyperplane to the line
corresponding to x, and our form is negative definite on such a hyperplane). By
its arithmeticity, replacing if necessary the group Γ by a finite index subgroup,
we may assume there are no stabilizers at all. Indeed, an arithmetic lattice has a
finite index torsion-free subgroup, which can be obtained by taking a congruence
subgroup formed by integer matrices which are identity modulo N for N big
enough. Consider the quotient S := C(M)/Γ. Since Γ is arithmetic, Borel and
Harish-Chandra theorem implies that S is a complete hyperbolic manifold of
finite volume. The image of Amp(M) in S is a hyperbolic manifold T with finite
(that is, consisting of finitely many geodesic pieces) boundary, by Theorem 5.4.
It is known (see [Bow, Proposition 4.7 and 5.6] or [K, Theorem 2.6]) that such
manifolds are geometrically finite, that is, they admit a finite cell decomposition
with finite piecewise geodesic boundary (in fact one even has a decomposition
with a single cell of maximal dimension, the Dirichlet-Voronoi decomposition).
Thus T becomes a union of finitely many cells with finite piecewise geodesic
boundary. Taking the union of suitable liftings of these to Amp(M), we obtain a
finite polyhedron within the closure of Amp(M) which is a fundamental domain
for the subgroup of Γ preserving Amp(M), that is, of the automorphism group
of M . We thus have proved the following

Theorem 5.6: Let M be a projective simple hyperkähler manifold with b2 6= 5.
The automorphism group has a finite polyhedral fundamental domain on the
ample cone of M .
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