
RANDOM Zd-SHIFTS OF FINITE TYPE

KEVIN MCGOFF AND RONNIE PAVLOV

Abstract. In this work we consider an ensemble of random Zd-
shifts of finite type (Zd-SFTs) and prove several results concerning
the behavior of typical systems with respect to emptiness, entropy,
and periodic points. These results generalize statements made in
[26] regarding the case d = 1.

Let A be a finite set, and let d ≥ 1. For n in N and α in [0, 1], de-

fine a random subset ω of A[1,n]d by independently including each

pattern in A[1,n]d with probability α. Let Xω be the (random)
Zd-SFT built from the set ω. For each α ∈ [0, 1] and n tend-
ing to infinity, we compute the limit of the probability that Xω is
empty, as well as the limiting distribution of entropy of Xω. Fur-
thermore, we show that the probability of obtaining a nonempty
system without periodic points tends to zero.

For d > 1, the class of Zd-SFTs is known to contain strik-
ingly different behavior than is possible within the class of Z-SFTs.
Nonetheless, the results of this work suggest a new heuristic: typ-
ical Zd-SFTs have similar properties to their Z-SFT counterparts.

1. Introduction

A shift of finite type (SFT) is a dynamical system defined by finitely
many local rules. SFTs have been studied for their own sake [17, 23], for
their connections to other dynamical systems [6, 10, 16], and for their
connections to the thermodynamic formalism and equilibrium states in
statistical mechanics [6, 30]. We consider SFTs defined on a lattice Zd,
with d ≥ 1. As these systems may be defined by finitely many com-
binatorial constraints, they naturally lend themselves to probabilistic
models. In fact, random Zd-SFTs may be viewed as a class of ran-
dom constraint satisfaction problems (for other examples of random
constraint satisfaction problems, see [1, 2, 3, 4, 12, 19]).

In previous work [26], the first author began a line of investigation
aimed at describing likely properties of Z-SFTs that have been selected
according to a natural probability distribution, there called random
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SFTs. The main goal of the present work is to investigate some likely
properties of random Zd-SFTs for arbitrary d ≥ 1.

For d > 1, the class of Zd-SFTs contains behavior that cannot appear
in Z-SFTs. Consider the following examples of this phenomenon.

• There is an algorithm that decides in finite time whether a given
Z-SFT is empty, whereas no such algorithm exists for Zd-SFTs
when d > 1 [5].
• Every nonempty Z-SFT contains a finite orbit, but for each
d > 1, there exist nonempty Zd-SFTs that contain no finite
orbits [5].
• The set of real numbers that appear as the entropy of some
Z-SFT has an algebraic characterization [24], whereas the cor-
responding set for Zd-SFTs with d > 1 has a computational
characterization [15].

For further illustrations of this phenomenon, see [8, 9, 14, 29]. In light
of the presence of such exotic behavior within the class of Zd-SFTs for
d > 1, one may ask, “how typical is this behavior?” In principle, the
setting of random Zd-SFTs allows one to answer such questions in a
probabilistic sense. From this point of view, a property of Zd-SFTs
may be considered typical if it holds with high probability. Indeed, our
main results establish typical properties of Zd-SFTs in this sense.

We construct random Zd-SFTs as follows. Consider a finite set A
and a natural number d. Let Fn = [1, n]d be the hypercube with side
length n in Zd. Consider AFn , the set of all patterns on Fn, and let
Ωn be the power set of AFn . For n ≥ 1 and α ∈ [0, 1], let Pn,α denote
the probability measure on Ωn given by including elements of AFn in-
dependently with probability α (and excluding them with probability
1 − α). The measure Pn,α depends on A and d, but we suppress this
dependence in our notation. For a subset ω of AFn , let Xω be the
Zd-SFT built from ω:

Xω = {x ∈ AZd : ∀p ∈ Zd, x|Fn+p ∈ ω}.

We view the elements of AFn \ ω as “forbidden patterns,” which place
constraints on the configurations allowed in Xω. When ω is chosen at
random according to Pn,α, we view Xω as a random Zd-SFT.

Our first main result concerns the probability that Xω is the empty
set. To state the result, we define the following zeta function as a
formal power series:

ζX(t) =
∏
i

(
1− t|γi|

)−1
,
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where {γi}i is an enumeration of all the finite orbits in AZd (see Section
2 for precise definitions). When d = 1, the function ζX(t) is the Artin-
Mazur zeta function (see [23]); however, for d > 1, the function ζX(t)
defined here may differ from the zeta function for Zd-actions defined in
[22].

Theorem 1.1. Let A be a finite set, and let d be in N. For each n, let
En ⊂ Ωn be the event that Xω = ∅. Then for each α in [0, 1],

lim
n

Pn,α(En) =

{
ζX(α)−1, if α ∈ [0, |A|−1),
0, if α ∈ [|A|−1, 1].

Furthermore, for α 6= |A|−1, the rate of convergence to this limit is at
least exponential in n.

Notice that for d > 1, despite the fact that there is no algorithm
to decide in finite time whether a given Zd-SFT Xω is empty, we
may nonetheless compute the limit of the probability of the event En.
In particular, the limit of the probability of emptiness is positive for
α < |A|−1 and equal to zero for α ≥ |A|−1. A general discussion of ran-
dom constraint satisfaction problems is beyond the scope of this work;
however, let us note that in the language of random constraint satis-
faction problems, Theorem 1.1 identifies α = |A|−1 as the satisfiability
threshold for this model of random Zd-SFTs.

Our second main result concerns the limiting distribution of entropy
as n tends to infinity. Let h(X) denote the (topological) entropy of a
Zd-SFT X:

h(X) = lim
k

1

kd
log #

{
x|Fk : x ∈ X

}
.

Also, let log+(x) = max(0, log(x)).

Theorem 1.2. Let A be a finite set and d be in N. For each α ∈ [0, 1]
and ε > 0, there exist ρ > 0 and n0 such that if n ≥ n0, then

Pn,α
(∣∣∣h(Xω)− log+(α|A|)

∣∣∣ ≥ ε

)
≤ exp

(
−ρnd

)
.

In other words, the distribution of entropy for random Zd-SFTs con-
verges in probability to a point mass at log+(α|A|), and this conver-
gence is at least exponential in n. From the point of view of constraint
satisfaction problems, Theorem 1.2 may be interpreted as describing
“how many” solutions exist, as entropy provides a natural notion of
the “size” of the solution space.

Observe that Theorems 1.1 and 1.2 hold for any d ≥ 1. Thus, from
the perspective of emptiness and entropy, it appears that random Zd-
SFTs behave similarly to random Z-SFTs, despite the fact that the
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class of Zd-SFTs for d > 1 exhibits strikingly different behavior than
the class of Z-SFTs.

The following two theorems further address the possible differences
between Z-SFTs and Zd-SFTs. Recall that any nonempty Z-SFT con-
tains a finite orbit, but for each d > 1, there exist nonempty Zd-SFTs
that contain no finite orbits. The following theorem shows that the
probability that a random Zd-SFT is nonempty but contains no finite
orbit tends to zero as n tends to infinity.

Theorem 1.3. Let A be a finite set and d be in N. For each n, let
Gn ⊂ Ωn be the event that Xω is nonempty but contains no finite orbits.
Then for each α in [0, 1],

lim
n

Pn,α(Gn) = 0.

Furthermore, for α 6= |A|−1, the rate of convergence to this limit is at
least exponential in n.

Note that the undecidability result of Berger [5], along with many
other constructions of exotic or pathological examples, relies on con-
structing Z2-SFTs in Gn for some n. Here we observe the heuristic
phenomenon, observed in other random constraint satisfaction prob-
lems, that for d > 1, exotic or pathological behavior is possible “in the
worst case,” but such behavior is not typical.

We now consider the periodic entropy of Zd-SFTs. For a Zd-SFT X,
let P be the set of points x in X such that x is contained in a finite
orbit. Then the periodic entropy of X is defined as

hper(X) = lim sup
k→∞

1

kd
log |{x|Fk : x ∈ P}|.

The following theorem gives the limiting distribution of periodic en-
tropy for random Zd-SFTs.

Theorem 1.4. Let A be a finite set and d be in N. For each α ∈ [0, 1]
and ε > 0, there exist ρ > 0 and n0 such that if n ≥ n0, then

Pn,α
(∣∣∣hper(Xω)− log+(α|A|)

∣∣∣ ≥ ε

)
≤ exp

(
−ρnd

)
.

For any Z-SFT X, we have that hper(X) = h(X), but for Zd-SFTs
with d > 1, this equality need not hold. Nonetheless, Theorems 1.2 and
1.4 show that for large n, in a typical Zd-SFT defined by forbidding
blocks of size n, the growth rate of the number finite orbits is about
the same as the growth rate of the number of all orbits, which once
again suggests that typical Zd-SFTs are not dramatically different from
typical Z-SFTs.
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The paper is organized as follows. In Section 2 we present the nec-
essary notation and define random Zd-SFTs in detail. Section 3 deals
with emptiness and finite orbits and contains the proofs of Theorems
1.1 and 1.3. That section is the longest and most difficult of the paper,
reflecting the difficulty of studying emptiness for Zd-SFTs with d > 1.
Indeed, our proofs in Section 3 employ fundamentally different meth-
ods from those used in [26] for the case d = 1. Section 4 details our
considerations related to entropy, as well as the proofs of Theorems
1.2 and 1.4. These proofs use a second moment argument similar in
structure to the one given in [26] for d = 1, although the proofs here
differ from the previous proofs in the details. Finally, we conclude the
paper with some brief remarks and open questions in Section 5.

2. Preliminaries

In this section, we give a precise description of the objects under
consideration.

2.1. Basic notation.

2.1.1. General subsets of Zd. Let d be a natural number. First, we
set some notation regarding subsets of Zd. Let {ei}di=1 denote the
standard basis in Zd. We use interval notation to denote subsets of Z,
e.g., [1, 4] = {1, 2, 3, 4}. For a subset E of Zd and a vector v in Zd, let
E + v = {u+ v : u ∈ E}. Also, let 1 = (1, . . . , 1) ∈ Zd. We use the `∞
metric: for u, v in Rd, let ρ(u, v) = max{|ui − vi| : 1 ≤ i ≤ d}. For x
in Rd and r ≥ 0, we let B(x, r) denote the closed ball centered at x of
radius r in Zd. We will have use for the inner boundary of a set: for
E ⊂ Zd and r > 0, define

∂rE = {x ∈ E : ∃y /∈ E, ρ(x, y) ≤ r}.

We denote the r-interior of a set E by

intr(E) = {x ∈ E : B(x, r) ⊂ E},

and we denote the r-thickening of E by

B(E, r) =
⋃
x∈E

B(x, r).

Let “<” denote the lexicographic ordering on Zd: for p 6= q in Zd, let
i = min{j : pj 6= qj}, and define p < q whenever pi < qi. Also, for
each i in [1, d] and v ⊂ Zd, let πi(v) denote the projection of v to the
hyperplane passing through 1 perpendicular to ei, i.e., (πi(v))i = 1 and
(πi(v))j = vj for j 6= i.
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2.1.2. Rectangles and hypercubes. We also require some definitions re-
garding the geometry of rectangles and hypercubes in Zd. For n in N,
let Fn be the hypercube with side length n in Zd, i.e., Fn = [1, n]d ⊂ Zd.
Let k be in N. For each I ⊂ [1, d] and s : I → {1, k}, define

Fk(I, s) = {(x1, . . . , xd) ∈ Fk : ∀i ∈ I, xi = s(i)}.

A set of the form Fk(I, s) is called a face of Fk, and we define the
dimension of Fk(I, s) to be dim(Fk(I, s)) = d − |I|. For example, if
I = ∅ (and s : ∅ → {1, k} is the empty map), then Fk(∅, s) = Fk,
which has dimension d. For 0 ≤ ` ≤ d, define Fk,` to be the `-skeleton
of Fk:

Fk,` =
⋃

E face of Fk
dim(E)=`

E.

Note that the number of faces of dimension ` is 2d−`
(
d
`

)
, which we

denote by cd,`.
For a face E = Fk(I, s), we also require the “n-thickened interior”

of E:

Tn(E) =

{
p ∈ Fk :∀i ∈ I, |s(i)− pi| ≤ n, and

∀i /∈ I, pi ∈ [n+ 1, k − n]

}
.

A face E has some restricted coordinates (indexed by I) and some
free coordinates (those not in I). In this sense, Tn(E) consists of the
n-thickening of E in the restricted directions and the n-interior of E
in the free directions (see Figure 1). For k > 2n, the collection of sets
Tn(E), where E ranges over all faces of Fk, is a partition of Fk (see
Figure 1). Furthermore, note that for any ` ∈ [0, d], we have

(2.1) Fk =

(
Fk ∩B(Fk,`, n)

)
∪

( ⊔
E face of Fk
dim(E)>`

Tn(E)

)
.

2.1.3. Patterns, repeats, and repeat covers. Let us establish some basic
terminology. A configuration is an element of AZd . For a finite set
E ⊂ Zd and a finite set A, a pattern on E is an element of AE. If
u is a pattern on E, then we say that u has shape E. A pattern u
on E may also be referred to as an E-pattern or a pattern with shape
E. For ease of notation, we consider patterns to be defined only up to
translation, as follows. If F = E + v for some v in Zd and u is in AS
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k

1
n k

n

Figure 1. Partition of Fk by the sets Tn(E), where E
runs over all faces. For each corner E (i.e., face of di-
mension 0), Tn(E) is shaded with broken lines. For each
edge E (i.e. face of dimension 1), Tn(E) is shaded in
gray. For the square Fk (i.e., the only face of dimension
2), Tn(Fk) is the unshaded central region.

where E ∪ F ⊂ S, then we write u|F = u|E to denote the statement
that ut+v = ut for all t in E.

For finite E ⊂ Zd, let Cn(E) denote the set of n-cubes contained in
E, i.e.,

Cn(E) = {Fn + v : v ∈ Zd, Fn + v ⊂ E}.
For a finite set S ⊂ Zd, let m(S) be the lexicographically minimal
element of S. Note that for an n-cube S, we have the relation S =
Fn +m(S)− 1.

In the following, we will work with sets of pairs of n-cubes; that
is, we will work with sets J ⊂ Cn(E) × Cn(E) for various choices of
E ⊂ Zd. For such a set J , let |J | denote the number of pairs in J , and
let A(J) ⊂ E be defined as follows:

A(J) =
⋃

(S1,S2)∈J

S2.

We will seek to understand the structure of “repeated sub-patterns”
within patterns on finite subsets of Zd. We make this notion precise
with the following definition, which plays an important role in Section
3.

Definition 2.1. Let A be a finite set. Let E ⊂ Zd, and let u be in
AE. A pair (S1, S2) in Cn(E) × Cn(E) is an n-repeat in u if S1 6= S2,
u|S1 = u|S2 , and S1 is the lexicographically minimal appearance of the
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pattern u|S1 in u. If (S1, S2) is an n-repeat in u, then the pattern w =
u|S1 = u|S2 is called a repeated Fn-pattern. A set J ⊂ Cn(E)×Cn(E) is
an n-repeat cover for u if

(1) each (S1, S2) ∈ J is an n-repeat in u, and
(2) if (S1, S2) is an n-repeat in u, then S2 ⊂ A(J).

When n is clear from context, we drop the prefix n from this terminol-
ogy.

Let us make two remarks about this definition. First, if J is a re-
peat cover for u, then the set A(J) depends only on u and not on the
particular choice of repeat cover J . Second, repeat covers always exist,
since the set of all pairs in Cn(E)×Cn(E) satisfying property (1) gives
an n-repeat cover. However, we will often seek “more efficient” repeat
covers, in the sense of including fewer repeats (i.e., minimizing |J |).
This pursuit is taken up in Section 3.4.

2.2. Symbolic dynamical systems. Now we introduce symbolic dy-
namical systems and Zd-SFTs. Let A be a finite set (alphabet). For

any set Y contained in AZd , let Wn(Y ) be the set of Fn-patterns seen
in Y :

Wn(Y ) = {u ∈ AFn : ∃x ∈ Y, ∃v ∈ Zd, u = x|Fn+v}.

Endow AZd with the product topology induced by the discrete topology
on A, and let σ : AZd → AZd denote the shift action, defined for each
x in AZd and p, q in Zd by (

σp(x)
)
q

= xp+q.

Note that AZd is a compact, metrizable space, and σp is a homeomor-
phism for each p in Zd. A set Y contained in AZd is a Zd-subshift if Y
is closed and shift-invariant (i.e., σp(Y ) = Y for all p in Zd). A set X

contained in AZd is a Zd-shift of finite type (Zd-SFT) if there exist a
natural number n and a set F ⊂ AFn such that

X =
{
x ∈ AZd : ∀p ∈ Zd, σp(x)|Fn /∈ F

}
.

Any Zd-SFT is a Zd-subshift, but the converse is false.
For S ⊂ Zd and a pattern u ∈ AS, define Wn(u) to be the set of

Fn-patterns that appear in u:

Wn(u) = {v ∈ AFn : ∃S ′ ∈ Cn(S), u|S′ = v}.

For a fixed alphabet A, if n ≤ k and j ∈ [1, (k−n+1)d], then we define
N j
n,k to be the number of patterns with shape Fk containing exactly j
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distinct Fn-patterns:

(2.2) N j
n,k = {u ∈ AFk : |Wn(u)| = j}.

Let X be a Zd-subshift. A finite orbit in X is a nonempty finite set
γ ⊂ X such that for each x in γ, it holds that {σp(x) : p ∈ Zd} = γ.
A point x in X is a totally periodic point if x is contained in a finite
orbit. Let {γi}i be an enumeration of the countable set of finite orbits
contained in X such that if i < j then |γi| ≤ |γj|. We formally define
a zeta function for X as follows:

ζX(t) =
∏
i

(
1− t|γi|

)−1
.

Simple computations show that if X = AZd , then the radius of conver-
gence of ζX(t) is |A|−1 and ζX(t) diverges to infinity at t = |A|−1.

2.3. Random Zd-SFTs. Consider a fixed alphabet A and a natural
number d. Let X = AZd . For each α ∈ [0, 1] and n in N, we make the
following definitions. Set Ωn = {0, 1}Wn(X). For each u in Wn(X), let
ξu : Ωn → {0, 1} be the projection onto the u-coordinate. Let Pn,α be
the product measure on Ωn defined for each u in Wn(X) by

Pn,α(ξu = 1) = α.

We view Pn,α as a probability measure on the Zd-SFTs contained in

AZd , which we explain as follows. For n ≥ 1 and ω in Ωn, let

F(ω) = {u ∈ Wn(X) : ξu(ω) = 0}.

Then for each ω in Ωn, let Xω be the Zd-SFT built from ω by forbidding
the patterns in F(ω):

Xω = {x ∈ X : ∀p ∈ Zd, σp(x)|Fn /∈ F(ω)}.
This definition is equivalent to the description given in the introduction.

Let Kn(X) denote the finite set of Zd-SFTs contained in X that
may be defined by forbidding only patterns in Wn(X). We include
the empty Zd-SFT as an element of Kn(X) for all n. Then the map
ω 7→ Xω is a surjection from Ωn onto Kn(X). Therefore Pn,α projects
to a probability measure on Kn(X), and it is in this sense that we refer
to Xω as a random Zd-SFT.

2.4. Two simple combinatorial lemmas. We will use the following
two elementary lemmas, whose proofs are included for completeness.

Lemma 2.2. Suppose S is a finite set and {Ui : i ∈ I} is a collection
of subsets of S such that for each s in S,

|{i ∈ I : s ∈ Ui}| ≤ c.
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Then ∑
i∈I

|Ui| ≤ c|S|.

Proof. Let S̃ = {(i, s) ∈ I × S : s ∈ Ui}. Then we have∑
i∈I

|Ui| = |S̃| =
∑
s∈S

|{(i, s) : s ∈ Ui}| ≤ c|S|.

�

Lemma 2.3. Let {Li}i∈I be a finite set of intervals in Z. Then there
exists I ′ ⊂ I such that ⋃

i∈I

Li =
⋃
i∈I′

Li,

and for each x in Z, it holds that

|{i ∈ I ′ : x ∈ Li}| ≤ 2.

Proof. Let I0 = I. Now assume for induction (onm) that Im is defined.
If there exist i1, i2, i3 ∈ Im such that Li1 ⊂ Li2 ∪ Li3 , then let Im+1 =
Im \{i1}. As I is finite, this process eventually halts, resulting in a set
I ′ ⊂ I. Note that the union of intervals in each Im is the same as the
union of the intervals in I. Also, if there exists x in Z contained in three
distinct intervals in I ′, then at least one of those intervals is contained
in the union of the other two, which contradicts the definition of I ′.
Hence I ′ has the desired properties. �

3. Emptiness and finite orbits

In this section, we investigate the probability of the event that the
random Zd-SFT is empty, an event that we refer to simply as emptiness.
As evidenced by the presence of the zeta function in Theorem 1.1,
the probability of emptiness is intimately related to the probabilities
associated to allowing each of the finite orbits. For an idea about
how this connection might arise, consider the basic observation that
any finite orbit γ is contained in the random Zd-SFT with probability
α|Wn(γ)|, since γ is in Xω precisely when each of the Fn-patterns in
γ is allowed. If n is large relative to |γ|, then |γ| = |Wn(γ)|. In
this case, the probability of forbidding γ is 1 − α|γ|. Now if each of
the finite orbits were forbidden independently (which is most certainly
not the case), then the probability of forbidding all the finite orbits

would be the infinite product
∏
i

(1 − α|γi|) = ζX(α)−1. Furthermore,

if emptiness were equivalent to forbidding all the finite orbits (which
is also not the case), then we would obtain that the probability of
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emptiness equals ζX(α)−1. The proof of Theorem 1.1 involves showing
that despite the fact that above heuristics are not true, the result still
holds asymptotically as n tends to infinity.

Let us give a brief outline of this section. To find the limiting behav-
ior of the probability of emptiness, we find upper and lower bounds on
this probability for finite n and then deduce the limiting behavior from
these bounds. The upper bound, which is not difficult, appears in Sec-
tion 3.1. Note that the upper bound alone implies Theorem 1.1 in the
case α ≥ |A|−1, since the upper bound tends to zero in that regime.
The most difficult part of the paper involves finding an appropriate
lower bound for the probability of emptiness in the sub-critical regime,
α < |A|−1. Towards that end, we investigate the behavior of finite
orbits in Section 3.2. In Sections 3.3 and 3.4, we prove several lemmas
that help us show that the dominant contribution to the probability
of emptiness comes from the finite orbits; that is, if the finite orbits
are forbidden from the random Zd-SFT, then with high probability, all
other orbits are forbidden as well. Finally, we put these pieces together
in Section 3.5 and prove Theorems 1.1 and 1.3.

3.1. Upper bound on probability of emptiness. The purpose of
this section is to present Proposition 3.2, which gives upper bounds on
the probability of emptiness. For X = AZd , by [26, Remark 6.3], the
following upper bound holds, with Rper as the radius of convergence of
ζX and En as the event Xω = ∅:

lim sup
n

Pn,α(En) ≤
{
ζX(α)−1, if α ∈ [0, Rper)
0, if α ∈ [Rper, 1].

This bound is sufficient to give the correct upper bound on the limit in
Theorem 1.1, but in order to establish a rate of convergence of Pn,α(En)
to its limit, we use the more detailed estimates in Proposition 3.2.

Before we prove Proposition 3.2, we require the following lemma,
which gives a condition under which two distinct finite orbits have
disjoint sets of Fn-patterns. The importance of this lemma is that if
a collection of orbits has disjoint sets of Fn-patterns, then these orbits
behave independently with respect to Pn,α.

Lemma 3.1. Suppose γ1 6= γ2 are finite orbits such that |γi| ≤ n/2 for
i = 1, 2. Then Wn(γ1) ∩Wn(γ2) = ∅.

Proof. Suppose for contradiction that γ1 and γ2 are finite orbits with
|γi| ≤ n/2 and Wn(γ1) ∩ Wn(γ2) 6= ∅. We would like to show that
γ1 = γ2. Let u be in Wn(γ1) ∩Wn(γ2), and let xi be in γi such that
xi|Fn−1 = u. Let us show that x1 = x2, which implies that γ1 = γ2
(since they are assumed to be finite orbits).
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Let p = (p1, . . . , pd) be in Zd. Let us show that x1(p) = x2(p).

Define q0 = 0 ∈ Zd, and qk =
∑k

j=1 pjej, for k = 1, . . . , d. Let us prove

by induction on k that σqk(x1)|Fn−1 = σqk(x2)|Fn−1 for k = 0, . . . , d.
Since x1|Fn−1 = u = x2|Fn−1 by construction, the statement holds for
k = 0. Now suppose that σqk(x1)|Fn−1 = σqk(x2)|Fn−1 for some k < d.
Recall that πk+1(Fn) = {v ∈ Fn : vk+1 = 1}. For i = 1, 2, define
fi : Z→ Aπk+1(Fn) by

fi(m) = σqk(xi)|πk+1(Fn)−1+mek+1
.

Since γi is a finite orbit and |γi| ≤ n/2, we have that fi is periodic
with period less than or equal to n/2. Furthermore, by the inductive
hypothesis, f1(m) = f2(m) for m = 0, . . . , n − 1. Thus, by the Fine-
Wilf Theorem [11], we have that f1 = f2. In particular, we have shown
that σqk+1(x1)|Fn−1 = σqk+1(x2)|Fn−1, which completes the inductive
step. Hence, σp(x1)|Fn−1 = σp(x2)|Fn−1, which gives in particular that
x1(p) = x2(p). Since p was arbitrary, we conclude that x1 = x2, which
finishes the proof. �

The following proposition gives upper bounds on the asymptotic be-
havior of the probability of emptiness. The main idea of the proof is to
use Lemma 3.1 to find a large set of finite orbits which are independent
with respect to Pn,α.

Proposition 3.2. Let A be a finite set, d be in N, and X = AZd. Let
Per(Xω) be the set of finite orbits in Xω. Then for each α in [0, 1] and
any n,

(3.1) Pn,α
(
Per(Xω) = ∅

)
≤

∏
|γ|≤n/2

(
1− α|γ|

)
,

where the product runs over the finite orbits γ in X satisfying |γ| ≤ n/2.
Furthermore, for each α < |A|−1, there exist C > 0 and β ∈ (0, 1) such
that for large enough n,

(3.2) Pn,α(Per(Xω) = ∅) ≤ ζX(α)−1(1 + Cβn),

and for each α > |A|−1, there exist C > 0 and β > 1 such that for
large enough n,

(3.3) Pn,α(Per(Xω) = ∅) ≤ exp(−Cβn).

Proof. Let X and Per(Xω) be as above, and let α be in [0, 1]. For a
finite orbit γ in X, let F (γ) be the event that γ is forbidden in Xω (i.e.,
γ /∈ Per(Xω)). By Lemma 3.1, if γ1 6= γ2 and |γi| ≤ n/2 for i = 1, 2,
then Wn(γ1) ∩Wn(γ2) = ∅, and therefore the events F (γ1) and F (γ2)
are independent. In fact, the entire collection of events {F (γ) : |γ| ≤
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n/2} is independent. Thus, by inclusion, independence, and the fact
that Pn,α(F (γ)) = 1− α|Wn(γ)| = 1− α|γ| whenever |γ| ≤ n/2, we have

Pn,α(Per(Xω) = ∅) ≤ Pn,α

( ⋂
|γ|≤n/2

F (γ)

)

=
∏
|γ|≤n/2

Pn,α
(
F (γ)

)
=

∏
|γ|≤n/2

(
1− α|γ|

)
,

which proves (3.1).
Now suppose α < |A|−1 (so that α|A| < 1). Choose λ such that

|A| < λ and αλ < 1. Let Pj be the set of finite orbits γ in AZd such
that |γ| = j. Then by (3.1) and the fact that 0 < ζX(α) < ∞ for
α < |A|−1, we have

Pn,α(Per(Xω) = ∅) ≤
∏
|γ|≤n/2

(
1− α|γ|

)

= ζX(α)−1 exp

(
−
∑
|γ|>n/2

log(1− α|γ|)

)

= ζX(α)−1 exp

(
−
∑
j>n/2

|Pj| log(1− αj)

)
.

(3.4)

Note that for all j in N, we have |Pj| ≤ jd+1|A|j (see [22, Proposition
4.3]). Thus, there exists n0 such that for j > n0/2, it holds that |Pj| ≤
λj. Let β1 = (αλ)1/2, and note that β1 < 1 (since αλ < 1). By calculus,
there exist C1, C2 > 0 and n1 ≥ n0 such that if n ≥ n1 and j > n/2,
then − log(1−αj) ≤ C1α

j and exp(C1(1−αλ)−1βn1 ) ≤ 1+C2β
n
1 . Then

for n ≥ n1, using these facts and (3.4), we obtain

Pn,α
(
Per(Xω

)
= ∅) ≤ ζX(α)−1 exp

(
−
∑
j>n/2

|Pj| log(1− αj)
)

≤ ζX(α)−1 exp

(
C1

∑
j>n/2

λjαj
)

= ζX(α)−1 exp

(
C1β

n
1 (1− αλ)−1

)
≤ ζX(α)−1(1 + C2β

n
1 ).

Taking C = C2 and β = β1, we obtain (3.2).
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Now suppose α > |A|−1 (so that α|A| > 1). Choose λ < |A| such
that αλ > 1. By (3.1), we have

Pn,α
(
Per(Xω

)
= ∅) ≤

∏
|γ|≤n/2

(
1− α|γ|

)

= exp

(∑
j≤n/2

|Pj| log(1− αj)

)
.

(3.5)

To get a lower bound on |Pj|, we count the finite orbits of cardinality
j that are constant along directions e2, . . . , ed. A point in such an
orbit can be obtained by concatenating a word of length w of length j
along direction e1, provided that the infinite sequence of repeated w’s
has least period j. There are at least |A|j/2 words w that with that
property, which shows that there are at least |A|j/(2j) finite orbits
of size j obtained in this way. Hence, |Pj| ≥ |A|j/(2j), and therefore
there exists n2 such that if j ≥ bn2/2c, then λj < |Pj|. Also, there exist
C3 > 0 and n3 ≥ n2 such that if j ≥ bn3/2c, then log(1−αj) ≤ −C3α

j.
Hence, for n ≥ n3, by these facts and (3.5), we have

Pn,α
(
Per(Xω

)
= ∅) ≤ exp

(∑
j≤n/2

|Pj| log(1− αj)

)

≤ exp

(
λbn/2c log

(
1− αbn/2c

))
≤ exp

(
−C3(αλ)bn/2c

)
.

Setting C = C3(αλ)−1 and β = (αλ)1/2 completes the proof of (3.3).
�

3.2. Periodic behavior. The ultimate goal of this section is to prove
Lemma 3.5, which states that if |Wn(u)| is small enough, then there
exists a finite orbit γ such that γ is allowed whenever u is allowed.
First, we need some preliminary notation and lemmas.

For the next few lemmas, we’ll consider combinatorics of patterns
with d = 1, which we will call words. Suppose k and n are fixed and
k > n. For a word u in Ak, let W ′

m(u) be the set of words of length
m that appear in u at least once with first coordinate not greater than
k − n+ 1:

W ′
m(u) = {w : ∃1 ≤ i ≤ k − n+ 1, u[i, i+m− 1] = w}.

The following two lemmas are restatements of results by Morse and
Hedlund [27]. Nonetheless, we include proofs for completeness.
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Lemma 3.3. Suppose k > n, u ∈ Ak, and |Wn(u)| ≤ n. Then at least
one of the following conditions holds: (i) there exists m < n such that
every word in W ′

m(u) has a unique right extension in W ′
m+1(u), or (ii)

there exists a symbol b in A such that ut = b for t ∈ [1, k − n+ 1].

Proof. For 1 ≤ m < n, let ρm : W ′
m+1(u) → W ′

m(u) be defined by
removing the last symbol of any word of length m + 1, i.e., if w is
in Am and a is in A, then ρm(wa) = w. Then ρm is surjective, so
|W ′

m+1(u)| ≥ |W ′
m(u)|.

If (ii) holds, then we’re done. Suppose (ii) does not hold, and there-
fore we must have |W ′

1(u)| ≥ 2. If |W ′
m+1(u)| = |W ′

m(u)| for some
m < n, then ρm is a bijection, and hence every word in W ′

m(u) has
a unique extension in W ′

m+1(u). Otherwise, |W ′
m+1(u)| > |W ′

m(u)| for
m = 1, . . . , n− 1, and therefore |W ′

n(u)| ≥ (n− 1) + |W ′
1(u)| ≥ n + 1,

which contradicts |W ′
n(u)| ≤ |Wn(u)| ≤ n. We conclude that if (ii)

does not hold, then (i) must hold. �

In the following lemma, we show that words u (still in the setting
d = 1) satisfying |Wn(u)| ≤ n, can be decomposed into a prefix, a
periodic part, and a suffix, and we give bounds on the lengths of these
parts.

Lemma 3.4. Suppose k > 3n and |Wn(u)| = j ≤ n. Then the word
u[n, k − n] is periodic with period not greater than j.

Proof. If there exists a symbol b in A such ut = b for t ∈ [1, k− n+ 1],
then the conclusion holds trivially. By Lemma 3.3, if there is no such
symbol, then there exists m < n such that every word in W ′

m(u) has
a unique extension in W ′

m+1(u). Let i ∈ [1, k − 2n], and let w =
u[i, i + n − 1]. Write w = w1w2, where |w2| = m. Note that w2 is
in W ′

m(u) (since i < k − 2n and w has length n), and therefore w2

has a unique right extension in W ′
m+1(u). Hence, w has a unique right

extension in W ′
n+1(u). We have shown that u[i+ 1, i+n] is determined

uniquely by u[i, i + n− 1] for each i in [1, k − 2n]. Since |Wn(u)| = j,
there exist 1 ≤ t1 < t2 ≤ j+1 such that u[t1, t1+n−1] = u[t2, t2+n−1].
Since u[i+1, i+n] is determined uniquely by u[i, i+n−1] for each i in
[1, k− 2n], we now have that u[t1 + `(t2− t1), t1 + `(t2− t1) + n− 1] =
u[t1, t1 + n − 1] for all ` such that t1 + `(t2 − t1) ≤ k − 2n. Thus, the
word u[n, k − n] is periodic with period not greater than j. �

We now return to the general setting of patterns on subsets of Zd,
with arbitrary d ≥ 1. Suppose u is in AFk . The following lemma shows
that if |Wn(u)| is small enough, then there exists a finite orbit γ such
that γ appears in Xω whenever u does. In the proof, we show that if
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|Wn(u)| ≤ n/2, then u|intn(Fk) is a totally periodic pattern that can be
extended to a totally periodic configuration on Zd without adding any
new Fn-patterns.

Lemma 3.5. Suppose k > 4n, u ∈ AFk , and |Wn(u)| ≤ n/2. Then
there exists a finite orbit γ such that Wn(u) ⊃ Wn(γ) and |γ| ≤ n/2.

Proof. Let k > 4n and u ∈ AFk with |Wn(u)| ≤ n/2. Recall that πi
is the projection of Zd onto the hyperplane passing through 1 perpen-
dicular to the standard basis vector ei. For each i ∈ [1, d], we define
fi : [0, k − 1]→ Aπi(Fn) by

(3.6) fi(m) = u|πi(Fn)+mei .

Viewing fi as a word of length k (with alphabet Aπi(Fn) and d = 1), we
see that each word of length n in fi corresponds to an Fn-pattern in u.
Hence |Wn(fi)| ≤ |Wn(u)| ≤ n/2. Then by Lemma 3.4, we obtain that
fi|[n,k−n] is periodic with period not greater than n/2.

For each i in [1, d], define ri as the least period of fi|[n,k−n]. Let L be
the lattice in Zd generated by {r1e1, . . . , rded}. Let us now show that
if p ∈ L and Fn + (n− 1)1 + p ⊂ intn(Fk), then

(3.7) u|Fn+(n−1)1 = u|Fn+(n−1)1+p.

Fix such a p, and note that ri divides pi for each i = 1, . . . , d. For
each j in [1, d], let qj =

∑j
i=1 piei, so that p = qd. Let q0 = 0 ∈ Zd.

We claim by induction on j that u|Fn+(n−1)1 = u|Fn+(n−1)1+qj for each
j ∈ [0, d]. The base case (j = 0) is trivial. Now suppose for induction
that u|Fn+(n−1)1 = u|Fn+(n−1)1+qj holds for some j < d. Define g :

[0, k − 1]→ Aπj+1(Fn) by

g(m) = u|πj+1(Fn)+(n−1)1+qj+mej+1
.

Viewing g as a word of length k, we see that |Wn(g)| ≤ |Wn(u)| ≤ n/2.
Then by Lemma 3.4, we obtain that g|[n,k−n] is periodic with pe-
riod not greater than n/2. Furthermore, the inductive hypothesis
gives that g|[n,2n−1] = fj+1|[n,2n−1] (recall that fj+1 was defined in
(3.6) above). Then by the Fine-Wilf Theorem [11], we conclude that
g|[n,k−n] = fj+1|[n,k−n]. Since rj+1 is a period for fj+1|[n,k−n] (by defi-
nition of rj+1) and g|[n,k−n] = fj+1|[n,k−n], we see that rj+1 is a period
for g|[n,k−n]. Since rj+1 divides pj+1 (since p is in the lattice L), we
conclude that

(3.8) u|Fn+(n−1)1+qj+1
= u|Fn+(n−1)1+qj .

Combining the inductive hypothesis with (3.8), we obtain

u|Fn+(n−1)1+qj+1
= u|Fn+(n−1)1+qj = u|Fn+(n−1)1.



RANDOM Zd-SHIFTS OF FINITE TYPE 17

which concludes the inductive step. Hence u|Fn+(n−1)1 = u|Fn+(n−1)1+p,
and we have verified (3.7).

With (3.7) established, let us now construct the finite orbit in the

conclusion of the lemma. Let D = n1 +
∏d

i=1[0, ri − 1]. Let x be the

point in AZd defined by x|D = u|D and x(v+riei) = x(v) for all v in Zd.
Let γ be the finite orbit containing x. Note that D is a fundamental
domain for γ (meaning that every point in γ is uniquely determined by
its restriction to D). Then by (3.7) and the fact that k > 4n, we have
that

(3.9) {x|Fn+v−1 : v ∈ D} = {u|Fn+v−1 : v ∈ D}.
By (3.9), we obtain

Wn(γ) = Wn(x)

= {x|Fn+v−1 : v ∈ D}
= {u|Fn+v−1 : v ∈ D}
⊂ Wn(u).

Furthermore, since D ⊂ Fn+(n−1)1 and any point in γ is determined
by its restriction to D, we have that |γ| = |Wn(x)|. Therefore we have
that |γ| = |Wn(x)| ≤ |Wn(u)| ≤ n/2, which concludes the proof. �

3.3. Basics of repeat covers. In the following lemmas, we establish
some basic results relevant to repeat covers. (Recall that repeat covers
and associated notation are defined in Section 2.1.3.) These results
are used in Section 3.5. First, we show that a pattern u with shape
E is uniquely characterized by a repeat cover J of u and the pattern
u|E\A(J).

Lemma 3.6. Suppose J ⊂ Cn(E) × Cn(E) and w ∈ AE\A(J). Then
there is at most one pattern u in AE such that u|E\A(J) = w and J is
a repeat cover for u.

Proof. Let J ⊂ Cn(E)×Cn(E) and w ∈ AE\A(J) be given, and suppose
u, v ∈ AE satisfy

(a) u|E\A(J) = v|E\A(J) = w,
(b) J is a repeat cover for u, and
(c) J is a repeat cover for v.

We will show that u = v. In fact, we will show that ut = vt for each t
in E by induction on t (in the lexicographic ordering). Let m = m(E)
be the lexicographically minimal element of E. By the definition of
repeat cover, m is not in A(J). Therefore um = vm = wm by (a). Now
suppose for induction that t is in E and us = vs for all s in E with
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s < t. If t is not in A(J), then ut = vt = wt by (a). Suppose that
t is in A(J). Then there exists (S1, S2) ∈ J such that t ∈ S2. Let
p = m(S2)−m(S1). Since (S1, S2) is a repeat for both u and v (by (b)
and (c)), we have that ut = ut−p and vt = vt−p. Since m(S1) < m(S2),
we have that t − p < t, and therefore ut−p = vt−p by the induction
hypothesis. Hence, we have shown that ut = ut−p = vt−p = vt, which
completes the proof. �

In the following lemma, for a pattern u with shape Fk and an n-
repeat cover J for u, we bound the cardinality of Fk \A(J) in terms of
the number of distinct Fn-patterns in u. The rough idea is that each p
in Fk can be associated to a pattern in Wn(u). The pattern associated
to p is either the lexicographically first occurrence of that pattern, in
which case it contributes to |Wn(u)|, or it is a repeated Fn-pattern, in
which case it contributes to |A(J)|. This imprecise argument gives the
idea that |Fk| ≈ |Wn(u)|+|A(J)|. The following lemma makes this idea
precise by defining an injective map from a large subset of Fk \ A(J)
into Wn(u).

Lemma 3.7. Suppose k > (2d + 1)n, u ∈ AFk with |Wn(u)| = j, and
J is an n-repeat cover for u. Then

kd − |A(J)| ≤ j

(
1 +

4dn

k

)
.

Proof. Let k > (2d+ 1)n, and let u be in AFk with |Wn(u)| = j. Let J
be an n-repeat cover for u. For i ∈ [1, d] and ` ∈ [1, k − n + 1], define
H`
i to be the width-n hyperplane perpendicular to ei at position `:

H`
i = {v ∈ Fk : vi ∈ [`, `+ n− 1]}.

Note that
⋃
`(H

`
i \ A(J)) = Fk \ A(J), and for each point p in Fk,

|{` : p ∈ H`
i }| ≤ n.

Therefore (by Lemma 2.2),

(3.10)
∑
`

|H`
i \ A(J)| ≤ n|Fk \ A(J)| = n(kd − |A(J)|).

For each i ∈ [1, d], choose `(i) such that |H`(i)
i \ A(J)| ≤ |H`

i \ A(J)|
for all `. Using that the minimum of a finite set of real numbers is less
than or equal to the average and then applying (3.10), we have that

(3.11) |H`(i)
i \ A(J)| ≤ 1

k − n+ 1

∑
`

|H`
i \ A(J)| ≤ n(kd − |A(J)|)

k − n+ 1
.
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A(J)

1 L(1) L(1)+n k

L(2)

L(2)+n

k

Figure 2. An example of the set T = A(J) ∪ (H
`(1)
1 ∪

H
`(2)
2 ). The set A(J) appears shaded. Here `(i) is labeled

L(i) for each i = 1, 2, and the sets H
`(i)
i are bounded by

dashed lines.

For ease of notation, define the set

T = A(J) ∪
(⋃

i

H
`(i)
i

)
;

see Figure 2. We now claim that there is an injection from Fk \ T into
Wn(u), and therefore

(3.12)
∣∣Fk \ T ∣∣ ≤ |Wn(u)| = j.

Let us prove the claim. For each i ∈ [1, d], let R+
i (R−i ) be the “half-

hypercube” on the “+” (“−”) side of the thickened hyperplane H
`(i)
i ,

i.e., R+
i = {p ∈ Fk : pi > `(i) + n − 1} and R−i = {p ∈ Fk : pi < `(i)}

(so that Fk = R−i tH
`(i)
i tR+

i , as in Figure 3). For each w in {+,−}d,
let R(w) be the “hyper-quadrant” R(w) =

⋂
iR

wi
i . Also, for an n-cube

S in Cn(Fk), let S(w) be the corner in S specified by w: if S = Fn + v,
then S(w) is the point whose i-th coordinate satisfies

S(w)i = vi +

{
1, if wi = −
n, if wi = +.

Now for p in R(w), let Sp be the n-cube in Cn(Fk) such that S(w) = p.

Since each H
`(i)
i has width n (in the i-th direction), we have that the

map Fk \ (∪iH`(i)
i )→ Cn(Fk) given by p 7→ Sp is an injection. Finally,

we have that the map from Fk \ T into Wn(u) given by p 7→ u|Sp is an
injection. Indeed, if p, q /∈ T and u|Sp = u|Sq , then Sp = Sq (since J is
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L k1

k

L+n

Figure 3. A decomposition of Fk as R−1 t H
`(1)
1 t R+

1 ;

here R−1 appears shaded, R+
1 appears with stripes, H

`(1)
1

appears in between, and L = `(1).

a repeat cover and p, q /∈ A(J)), and therefore p = q (since p 7→ Sp is
injective).

By (3.12), union bound, and (3.11) we have that

j ≥
∣∣Fk \ T ∣∣ = kd − |A(J)| −

∣∣∣∣⋃
i

H
`(i)
i \ A(J)

∣∣∣∣
≥ kd − |A(J)| −

∑
i

|H`(i)
i \ A(J)|

≥ kd − |A(J)| − dn(kd − |A(J)|)
k − n+ 1

= (kd − |A(J)|)
(

1− dn

k − n+ 1

)
.

Dividing by 1− dn
k−n+1

gives

(3.13) kd − |A(J)| ≤ j

(
1

1− dn
k−n+1

)
.

Since k > (2d+1)n, we have that n−1 < k/2 and dn/(k−n+1) < 1/2.
Using these facts, along with (3.13) and the elementary fact that if
0 ≤ x ≤ 1/2, then 1

1−x ≤ 1 + 2x, we see that

kd − |A(J)| ≤ j

(
1

1− dn
k−n+1

)
≤ j

(
1 +

2dn

k − n+ 1

)
≤ j

(
1 +

4dn

k

)
,

as desired. �
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3.4. Repeat covering lemmas. The purpose of this section is to
construct “efficient” repeat covers J , where “efficient” means that |J |
is small enough for our purposes. Consider u in AFk with |Wn(u)| = j.
The case j ≤ n/2 is handled by Lemma 3.5, and we will not deal with
that case in this section. For j ≥ n/2, we construct a repeat cover
of u by decomposing Fk into three regions and covering the repeated
Fn-patterns in each region separately. The decomposition of Fk that
we use depends on j as follows. If ` ≥ 1 is an integer such that n`/5d ≤
j < n`+1/3d, then we decompose Fk into the following three regions:
i) a (relatively) small neighborhood of the `-skeleton of Fk, ii) the n-
neighborhood of the `-skeleton of Fk (minus the first region), and iii) the
complement of the first two regions. These three regions are handled
separately with help from Lemmas 3.8, 3.9, and 3.10, respectively. In
Lemma 3.11, we combine these lemmas to produce a repeat cover J
for u with an upper bound on |J |. The culmination of this section
is Lemma 3.12, which gives an asymptotic upper bound on |J | under
some conditions on the asymptotic relationship between the parameters
involved in constructing these repeat covers. The purpose of all of
this work is that Lemma 3.12 plays an important role in the proof of
Theorem 1.1 given in Section 3.5.

3.4.1. Covering sets near a face. The following lemma allows us to find
efficient covers of sets near a face of dimension at least 1. For example,
see Figure 4. We achieve this efficiency by reducing the problem to a
one-dimensional covering problem and applying Lemma 2.3.

Lemma 3.8. Suppose E = Fk(I, s) is a face of dimension ` ≥ 1 in Fk,
and let R = B(E, n) ∩ Fk. Further suppose that C ⊂ Cn(Fk), and let
U = ∪S∈C(S∩R). Then there exists C ′ ⊂ C such that U = ∪S∈C′(S∩R)
and |C ′| ≤ 2|U |/n.

Proof. Let E, R, C and U be as above. Since E has dimension at least
1, we may assume without loss of generality that 1 /∈ I. (If I does
not satisfy this condition, then we may rotate Fk so that it does.) Let
Ln be the line segment of Fn in direction e1 passing through 1, i.e.,
Ln = {1 + me1 : m ∈ [0, n − 1]}. For each S in C, we define the
line segment φ(S) = Ln + v, where v is the unique vector satisfying
S = Fn + v.

Let L be a line in direction e1 that intersects R, and let

F =
⋃
S∈C

φ(S) ∩ L.
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1 kn

k

Figure 4. A union of n-cubes in Fk, near the face E =
Fk(I, s), which is chosen to be the left edge. Notice that
the bold n-cube may be removed without changing the
union of the collection.

By definition, F is contained in the line L, and {φ(S) ∩ F : S ∈ C}
is a cover of F by intervals. By Lemma 2.3, we obtain that there is a
subset C(L) of C such that

• F ⊂
⋃
S∈C(L) φ(S),

• φ(S) ⊂ L for each S ∈ C(L), and
• for each point p in F , we have |{S ∈ C(L) : p ∈ φ(S)}| ≤ 2.

Now let

C ′ =
⋃
L

C(L).

where the union is over all lines L in direction e1 such that L∩R 6= ∅.
As C ′ ⊂ C, we have

⋃
S∈C′ S ∩ R ⊂ U . To show the reverse con-

tainment, let x ∈ U . By definition of U , there exists S in C such that
x ∈ S ∩ R. Let L be the line in direction e1 containing φ(S). By
construction of C(L), we have that φ(S) ⊂ ∪S′∈C(L)φ(S ′), and therefore
S ⊂ ∪S′∈C(L)S ′. Hence there exists S ′ in C ′ such that x ∈ S ′. Since
x ∈ U was arbitrary, we conclude that

U =
⋃
S∈C′

S ∩R.

Furthermore, for each p in U , we have that |{S ∈ C ′ : p ∈ φ(S)}| ≤ 2.
Therefore (using Lemma 2.2)

|C ′|n =
∑
S∈C′
|φ(S)| ≤ 2

∣∣∣∣ ⋃
S∈C′

φ(S)

∣∣∣∣ ≤ 2|U |.
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p

q

Q

1 r n k

r

n

k

Figure 5. Here we choose the face E = Fk(I, s), with
I = {1, 2} and s ≡ 1, i.e. E consists of the point 1.
For the indicated point p (which lies in (Fk ∩B(E, n)) \
B(E, r)), we have πs,1(p) = Q and πs,2(p) = q.

Dividing by n, we obtain that |C ′| ≤ 2|U |/n, as desired. �

3.4.2. Covering regions between faces and interiors. The goal of this
subsection is to prove Lemma 3.9, which will be used in Lemma 3.11 to
construct efficient repeat covers in regions of the form (Fk∩B(Fk,`, n))\
B(Fk,`, r), with r < n. In order to do so, we will require some additional
terminology.

Let E = Fk(I, s) be a face of Fk (with notation as in Section 2.1.2).
For p in Fk and i in I, let πs,i(p) be the point in Fk defined by

πs,i(p)t =

{
pt, for t 6= i
s(i), for t = i.

Note that a single πs,i does not necessarily project all points to E,
because it only projects along a single direction (see Figure 5). Let
Line(p, q) denote the line segment in Fk from p to q.

Given a set T ⊂ Fk and a face E = Fk(I, s), we say that p ∈ T is
(E, T )-necessary if for each i ∈ I, we have that Line(p, πs,i(p)) ∩ T =
{p}. For example, see Figure 6.

Given a set T ⊂ Fk and ` ∈ [0, d], we say that p ∈ T is (`, T )-
necessary if p is (E, T )-necessary for some face E of dimension `. Ob-
serve that if p is an (`, T )-necessary point in Fk \B(Fk,`, r), then there
exist a face Fk(I, s) of dimension ` and i ∈ I such that Line(p, πs,i(p))∩
T = {p} and |Line(p, πs,i(p)) \ {p}| ≥ r.

The following lemma bounds from above the number of (`, T )-necessary
points contained in (Fk ∩ B(Fk,`, n)) \ B(Fk,`, r). This lemma is used
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1
n

k

k

n

Figure 6. Here we choose the face E = Fk(I, s), with
I = {1, 2} and s ≡ 1, i.e. E consists of the point 1.
If T is the shaded region, then there are three (E, T )-
necessary points, marked with bold dots. The dashed
lines demonstrate why the middle point is an (E, T )-
necessary point.

in Lemma 3.11 to find efficient covers of A(J) in the region (Fk ∩
B(Fk,`, n)) \B(Fk,`, r).

Lemma 3.9. Suppose n < k and T ⊂ Fk. Then for any ` ∈ [0, d− 1]
and r ∈ [1, n), the number of (`, T )-necessary points in (Fk∩B(Fk,`, n))\
B(Fk,`, r) is less than d(kd − |T |)/r.

Proof. Let n, k, T, ` and r be as above. Let N be the set of (`, T )-
necessary points in (Fk∩B(Fk,`, n))\B(Fk,`, r). If p is in N , then there
exist a face Fk(I, s) of dimension ` and i ∈ I such that Line(p, πs,i(p))∩
T = {p} and |Line(p, πs,i(p)) \ {p}| ≥ r. Arbitrarily choosing such a
pair (Fk(I, s), i) for each (`, T )-necessary point p, we let Lp = Line(p, πs,i(p))\
{p}. Hence Lp ⊂ Fk \ T and |Lp| ≥ r. Note that for q in Fk,

|p ∈ N : q ∈ Lp| ≤ d,

by the definition of necessary points and the fact that there are only d
cardinal directions in Zd. Thus (by Lemma 2.2), we have that

|N |r ≤
∑
p∈N

|Lp| ≤ d|Fk \ T | = d(kd − |T |),

which shows that |N | ≤ d(kd − |T |)/r. �
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3.4.3. Covering the interiors of hypercubes. In the following lemma, we
produce an efficient sub-cover of the interior of a hypercube under the
condition that the interior is “covered densely,” in some sense.

Lemma 3.10. Let F ⊂ Zd0 be a hypercube with side-length k in dimen-
sion d0. Suppose C ⊂ Cn(F ) has the property that for each p in intn(F ),
there exists S ∈ C such that if c is the center of S, then ρ(p, c) ≤ n/6.
Then there exists C ′ ⊂ C such that

(1) intn(F ) ⊂
⋃
S∈C′ S, and

(2) |C ′| ≤ (2k/n)d0.

Proof. Let F and C be as above. Fix a set P ⊂ intn(F ) that is n/2-
separated and whose n/3-thickening covers intn(F ), i.e.,

(i) if p, q ∈ P and ρ(p, q) ≤ n/2, then p = q;
(ii) intn(F ) ⊂

⋃
p∈P B(p, n/3).

(Note that such a set always exists. For d0 = 1, let k−2n = m(2n/3)+
r, with r < 2n/3. Define points xsi = n+ i(2n/3) + s, for i = 1, . . . ,m.
Then there exists some s < n/3 such that {xsi}i satisfies conditions (i)
and (ii). For d0 > 1, take the d0-fold product of the set constructed for
d0 = 1.)

For each p in P , arbitrarily choose an n-cube S(p) in C such that
ρ(p, c) ≤ n/6, where c is the center of S(p) (and note that it is always
possible to make such a choice by the hypothesis of the lemma). Let
C ′ = {S(p) : p ∈ P}. We claim that C ′ satisfies the conclusions of the
lemma.

To verify (1), let q be in intn(F ). Then by (ii), there exists p in P
such that ρ(p, q) ≤ n/3. Let c be the center of S(p). Then we have

ρ(q, c) ≤ ρ(p, q) + ρ(p, c) ≤ n

3
+
n

6
=
n

2
.

Hence q is in B(c, n/2) = S(p). Since q was arbitrary, we have verified
(1).

Let us now verify (2). First, we show that the map p 7→ S(p) is
injective on P . Indeed, suppose S(p) = S(q) for p, q in P , and let c
be the center of S(p). Then by definition of S(p) and S(q), we have
ρ(p, c) ≤ n/6 and ρ(q, c) ≤ n/6. Hence

ρ(p, q) ≤ ρ(p, c) + ρ(q, c) =
n

6
+
n

6
=
n

3
.

Now by (i), we conclude that p = q, and therefore p 7→ S(p) is injective
on P . Thus |C ′| = |P|.
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We now bound |P|. By (i) and the triangle inequality, we have that
if p, q ∈ P and p 6= q, then B(p, n/4) ∩B(q, n/4) = ∅. Hence

|P|(n/2)d0 =
∑
p∈P

|B(p, n/4)| =
∣∣∣∣⋃
p∈P

B(p, n/4)

∣∣∣∣ ≤ |F | = kd0 .

Thus, we have that |C ′| = |P| ≤ (2k/n)d0 , as was to be shown.
�

3.4.4. Finding efficient repeat covers. In Lemma 3.11, we combine our
results from Sections 3.4.1, 3.4.2, and 3.4.3 to construct “efficient”
repeat covers. Such repeat covers are built by decomposing the hyper-
cube Fk into three pieces and covering each piece separately. Each one
of Lemmas 3.8, 3.9, and 3.10 is used to bound the number of repeats
needed to cover one of these pieces. Note that in our application of
Lemma 3.11, we will choose r and ` depending on j and n.

Lemma 3.11. Suppose r ∈ [1, n), ` ∈ [1, d− 1], j < n`+1/3d, and u is
in AFk with |Wn(u)| = j. Then there exists an n-repeat cover J of u
such that

|J | ≤ 2cd,`
k`rd−`

n
+
d(kd − |A(J)|)

r
+

d∑
d0=`+1

cd,d0

(
2k

n

)d0
,

(recall that cd,` is the number of faces of Fk of dimension `).

Proof. Let r, `, j, and u be as above. Let J ′ be an n-repeat cover of u.
We consider Fk as a union of three regions, Fk = R1 ∪R2 ∪R3, defined
below. We will construct a repeat cover J of u by selecting repeats
from J ′ to cover A(J ′) in each of these regions separately.

Let R1 be the r-thickening of the `-skeleton in Fk: R1 = B(Fk,`, r)∩
Fk. Let R2 be the n-thickening of the `-skeleton in Fk minus R1, i.e.
R2 =

(
Fk ∩ B(Fk,`, n)

)
\ B(Fk,`, r). Lastly, let R3 = Fk \ (R1 ∪ R2) =

Fk \B(Fk,`, n). In light of (2.1), we have that

(3.14) R3 = Fk \B(Fk,`, n) =
⊔

E face of Fk
dim(E)≥`+1

Tn(E),

where Tn(E) denotes the “n-thickened interior” of a face E (defined in
Section 2.1.2).

Let us now select repeats from J ′ that cover R1 ∩ A(J ′). Note that
R1 is the union of all the sets B(E, r) ∩ Fk, where E is a face of Fk
of dimension `. Let C = {S2 : (S1, S2) ∈ J ′}. For each face E of
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dimension `, we apply Lemma 3.8 and conclude that there exists a
subset J1(E) ⊂ J ′ such that

B(E, r) ∩ A(J ′) =
⋃

(S1,S2)∈J1(E)

S2 ∩B(E, r)

= B(E, r) ∩ A(J1(E)),

(3.15)

and

(3.16) |J1(E)| ≤ 2|B(E, r) ∩ A(J ′)|
n

≤ 2k`rd−`

n
.

Let J1 = ∪EJ1(E), where the union runs over all faces of Fk of dimen-
sion `. By (3.15) and (3.16), we have

(3.17) R1 ∩ A(J ′) = R1 ∩ A(J1),

and

(3.18) |J1| ≤ 2cd,`
k`rd−`

n
.

Let us proceed to select repeats from J ′ that cover R2 ∩ A(J ′). Let
T = A(J ′). Let N be the set of (`, T )-necessary points in R2. For
each p in N , arbitrarily choose a repeat (S1(p), S2(p)) in J ′ such that
p ∈ S2(p), and let J2 = {(S1(p), S2(p)) : p ∈ N}. We claim that

(3.19) R2 ∩ A(J ′) = R2 ∩
(
A(J1) ∪ A(J2)

)
.

By definition, the set on the right-hand side is contained in the set
on the left-hand side. Let q be in R2 ∩ A(J ′). If q is in N , then
by construction there exists a repeat (S1, S2) in J2 such that q ∈ S2.
Suppose q is not in N , i.e., q is not (`, T )-necessary. Since q is in
B(Fk,`, n), there exists a face E = Fk(I, s) of dimension ` such that
q ∈ B(E, n). Let D be the region in Fk “between” q and E (consisting
of all vertices along shortest paths from q to E). Then there exists an
(E, T )-necessary point q′ in D (otherwise q would be (E, T )-necessary).
If q′ is in B(E, r), then there exists a repeat (S1, S2) in J1 such that
q′ ∈ S2, and therefore q ∈ S2 (since q is in B(E, n) and q′ is “between” q
and E, any translate of Fn inside Fk that contains q′ must also contain
q). Otherwise, if q′ is not in B(E, r), then q′ is in N , and therefore
q ∈ S2(q

′) (again, since q is in B(E, n) and q′ is “between” q and E,
any translate of Fn inside Fk that contains q′ must also contain q). In
either case, q is in A(J1)∪A(J2). Since q was arbitrary, we deduce that
(3.19) holds.

Furthermore, by definition of J2 and Lemma 3.9, we have

(3.20) |J2| ≤ |N | ≤
d(kd − |A(J ′)|)

r
.
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Finally we select repeats from J ′ that cover R3 ∩A(J ′). Let E be a
face of Fk of dimension d0 ∈ [`+ 1, d], and let C = {E ∩ S2 : (S1, S2) ∈
J ′}. Consider E as a k-hypercube in Zd0 . Let p be in intn(E). In
Zd0 , there nd0/3d0 translates of Fn whose centers are within n/6 of p.
Since nd0/3d0 ≥ n`+1/3d > |Wn(u)|, the patterns in u appearing at
these translates cannot all be distinct, meaning that there is a repeat.
Thus, for each p in intn(E), there exists a repeat (S1, S2) in J ′ such
that ρ(p, c) ≤ n/6, where c is the center of S2. Applying Lemma 3.10,
we conclude that there exists J3(E) ⊂ J ′ such that

(3.21) intn(E) ⊂
⋃

(S1,S2)∈J3(E)

S2 ∩ E,

and

(3.22) |J3(E)| ≤
(

2k

n

)d0
.

By (3.21), we have that

(3.23) Tn(E) ⊂
⋃

(S1,S2)∈J3(E)

S2.

Let J3 = ∪EJ3(E), where the union runs over all faces E with dimen-
sion in [`+ 1, d]. Then by (3.23) and (3.14), we have

(3.24) R3 ∩ A(J ′) = R3 ∩ A(J3).

By (3.22), we have

(3.25) |J3| ≤
d∑

d0=`+1

cd,d0

(
2k

n

)d0
.

Finally, we set J = J1 ∪ J2 ∪ J3. By (3.17), (3.19), and (3.24), we
have that

(3.26) A(J ′) = A(J).

Since J ′ was an n-repeat cover of u and J is a subset of J ′ satisfying
(3.26), we have that J is an n-repeat cover of u. Furthermore, by
(3.18), (3.20), (3.25), and (3.26), we have that

|J | ≤ |J1|+ |J2|+ |J3|

≤ 2cd,`
k`rd−`

n
+
d(kd − |A(J)|)

r
+

d∑
d0=`+1

cd,d0

(
2k

n

)d0
.

�



RANDOM Zd-SHIFTS OF FINITE TYPE 29

We conclude this section with the following lemma, which quantifies
the asymptotic efficiency that we can guarantee for repeat covers. This
lemma plays a crucial role in obtaining the lower bound on the prob-
ability of emptiness in Section 3.5. The proof of the lemma involves
a direct application of Lemma 3.11 and some calculations. In Remark
3.13, we provide examples of sequences {f(n)} and {rn} that satisfy
the hypotheses of the lemma.

Lemma 3.12. Suppose {f(n)} and {rn} are sequences such that

(1) f(n)→∞;
(2) log(n)/rn → 0;
(3) f(n)rn = o

(
(n/ log n)1/d

)
.

Let k = k(n) = nf(n). For any δ > 0, there exists n0 such that if
n ≥ n0 and u ∈ AFk with |Wn(u)| = j ∈ [n/5d, (k−n+ 1)d], then there
exists a repeat cover J for u such that

|J | ≤ δ
j

log n
.

Proof. Fix f(n) and rn as above, and let k = k(n) = nf(n). Let
δ > 0. By hypotheses (2) and (3), we may write rn = logn

g1(n)
and

f(n)rn = g2(n)(n/ log n)1/d, where g1(n) and g2(n) tend to 0 as n tends
to infinity. For u in AFk with |Wn(u)| = j ≥ nd/3d, we apply Lemma
3.8 to the hypercube Fk (considered as a face of Fk of dimension d) and
conclude that there exists a repeat cover J for u such that

|J | ≤ 2|Fk|/n = 2kd/n.

Then since f(n)d ≤ g2(n)dn/ log n and j ≥ nd/3d, we have

|J | ≤ 2kd/n

= 2nd−1f(n)d

≤ 2nd−1g2(n)dn/ log n

= 2g2(n)dnd/ log n

≤ 2 · 3dg2(n)d
j

log n
.

Since g2(n) tends to 0, there exists n1 such that if n ≥ n1, then 2 ·
3dg2(n)d ≤ δ. Then for n ≥ n1, we have that |J | ≤ δj/ log n.

Now suppose n`/5d ≤ j < n`+1/3d for some ` ∈ [1, d − 1]. Then by
Lemma 3.11, for each u in AFk with |Wn(u)| = j, there exists a repeat
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cover J such that

|J | ≤ 2cd,`
k`rd−`n

n
+
d(kd − |A(J)|)

rn
+

d∑
d0=`+1

cd,d0

(
2k

n

)d0
.(3.27)

Fix ε > 0. By Lemma 3.7 and the fact that n/k = 1/f(n) tends to 0
(hypothesis (1)), there exists n2 such that if n ≥ n2 then kd−|A(J)| ≤
(1 + 4dn/k)j ≤ (1 + ε)j. Applying this inequality in (3.27) gives that
for n ≥ n2, we have

|J | ≤ 2cd,`
k`rd−`n

n
+
d(1 + ε)j

rn
+

d∑
d0=`+1

cd,d0

(
2k

n

)d0
.(3.28)

Note that cd,d0 ≤ 2d, and then we have

(3.29)
d∑

d0=`+1

cd,d0

(
2k

n

)d0
≤ d4dkd/nd.

Then for n ≥ n2, by (3.28) and (3.29) we obtain that

|J | ≤ 2cd,`
k`rd−`n

n
+ d(1 + ε)

j

rn
+ d4dkd/nd

≤ 2cd,`n
`−1g2(n)dn/ log n+ d(1 + ε)

g1(n)j

log n
+ d4dg2(n)dn/ log n

≤ 2cd,`n
`g2(n)d/ log n+ d(1 + ε)

g1(n)j

log n
+ d4dg2(n)dn/ log n

≤ (2cd,` + d4d)
g2(n)d

log n
n` + d(1 + ε)

g1(n)j

log n

≤ (2cd,` + d4d)
g2(n)d

log n
5dj + d(1 + ε)

g1(n)j

log n

≤
(

5d(2cd,` + d4d)g2(n)d + d(1 + ε)g1(n)

)
j

log n
.

As g1(n) and g2(n) tend to 0 as n tends to infinity, we see that there
exists n0 ≥ max(n1, n2) such that for n ≥ n0, we have

|J | ≤ δ
j

log n
.

�

Remark 3.13. As an example of sequences {f(n)} and {rn} that sat-
isfy the hypotheses of Lemma 3.12, one may take f(n) = rn = nτ

for any τ satisfying 0 < τ < 1
2d

. In this case, one obtains k =

k(n) = n1+τ , g1(n) = log(n)/nτ , and g2(n) = log(n)1/dn2τ− 1
d . With



RANDOM Zd-SHIFTS OF FINITE TYPE 31

this parametrization, the choice of τ optimizing the upper bound in
the proof of Lemma 3.12 is given by τ = 1

2d+1
, which yields the esti-

mate |J | ≤ Cj/n
1

2d+1 for some constant C.

3.5. Proofs of Theorems 1.1 and 1.3. In this section, we present
proofs of Theorems 1.1 and 1.3. As mentioned previously, the proof
of Theorem 1.1 involves finding both upper and lower bounds on the
probability of emptiness. The upper bound is given by Proposition
3.2. The lower bound requires additional work, and Lemma 3.12 plays
a crucial role in that regard.

Proof of Theorem 1.1. Let X = AZd . Note that the radius of
convergence of ζX(t) is |A|−1. Also note that in the trivial case α = 0,
we have Pn,0(En) = 1 = ζX(0)−1, so the conclusion of the theorem holds
in this case.

First consider the case α ≥ |A|−1. By inclusion, we have Pn,α(En) ≤
Pn,α(Per(Xω) = ∅). Combining this inequality with Proposition 3.2
and letting n tend to infinity, we obtain the conclusion of the theorem
for α ≥ |A|−1 (since ζX(t) diverges to infinity for t ≥ |A|−1).

For the rest of the proof, we assume α < |A|−1. Observe that for
any k ≥ n, we have that

Pn,α(En) ≥ Pn,α
(
Wk(Xω

)
= ∅),(3.30)

by inclusion. For each u in AFk , let F (u) be the event that u is forbid-
den (i.e., Wn(u) ∩ F(ω) 6= ∅). Then by (3.30) we have

(3.31) Pn,α(En) ≥ Pn,α
(
Wk(Xω) = ∅

)
= Pn,α

( ⋂
u∈AFk

F (u)

)
.

Let Pj be the set of finite orbits γ in X such that |γ| = j. To each γ in
Pj with j ≤ n/2, we associate a pattern uγ in AFk such that Wn(uγ) =
Wn(γ) (and therefore |Wn(uγ)| = |γ|). Let S0 = {uγ : |γ| ≤ n/2}, and
let

S1 =

{
u ∈ AFk : ∀γ ∈

⋃
j≤n/2

Pj, Wn(γ) \Wn(u) 6= ∅
}
.

Let S = S0 t S1. Note that if u ∈ AFk \ S1, then there exists a
finite orbit γ such that |γ| ≤ n/2 and Wn(γ) ⊂ Wn(u), and therefore
F (uγ) ⊂ F (u). Hence, we have

(3.32)
⋂

u∈AFk

F (u) =
⋂
u∈S

F (u).

Since each F (u) is a monotone decreasing event (meaning that if
ω /∈ F (u) and ω ≤ τ coordinate-wise, then τ /∈ F (u)), then by (3.31),
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(3.32), and the FKG inequality (see [13] for a proof), we get

Pn,α(En) ≥ Pn,α

( ⋂
u∈AFk

F (u)

)

= Pn,α

(⋂
u∈S

F (u)

)
≥
∏
u∈S

Pn,α(F (u)).

(3.33)

Using (3.33) and then re-writing, we obtain

Pn,α(En) ≥
∏
u∈S

Pn,α(F (u))

=
∏
u∈S

(1− α|Wn(u)|)

=
∏
u∈S0

(1− α|Wn(uγ)|)
∏
u∈S1

(1− α|Wn(u)|)

=
∏
|γ|≤n/2

(1− α|γ|)
∏
u∈S1

(1− α|Wn(u)|).

(3.34)

By Lemma 3.5, if u is in S1, then |Wn(u)| > n/2. From (3.34) and
this fact, we see that

Pn,α(En) ≥
∏
|γ|≤n/2

(1− α|γ|)
∏
u∈S1

(1− α|Wn(u)|)

≥
∏
|γ|≤n/2

(1− α|γ|)
∏

|Wn(u)|>n/2

(1− α|Wn(u)|).
(3.35)

Recall the notation (from (2.2))

N j
n,k = {u ∈ AFk : |Wn(u)| = j}.

Then (3.35) gives

(3.36) Pn,α(En) ≥
∏
|γ|≤n/2

(1− α|γ|)
(k−n+1)d∏
j=bn/2c+1

(1− αj)|N
j
n,k|.

Let us now show that there exist C > 0 and 0 < β < 1 such that for
large enough n, we have

(3.37)

(k−n+1)d∏
j=n/2

(1− αj)|N
j
n,k| ≥ exp

(
−Cβn

)
.
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As α|A| < 1, there exist ε > 0 and δ > 0 such that α|A|1+ε < 1
and 8δd < − log(α|A|1+ε). Also, let {f(n)} and {rn} be sequences
satisfying the hypotheses of Lemma 3.12 (they may be taken as in
Remark 3.13), and let k = k(n) = nf(n). By Lemma 3.12, there exists
n0 such that if n ≥ n0 and u ∈ N j

n,k with n/5d ≤ j ≤ (k−n+ 1)d, then
there exists a repeat cover J of u such that

|J | ≤ δ
j

log n
.

For the moment, fix such a j. To each u in N j
n,k, let Ju be a repeat cover

of u such that |Ju| ≤ δj/ log n, and let wu = u|Fk\A(Ju) ∈ AFk\A(Ju). Let

U = {(J, w) : J ⊂ Cn(Fk)× Cn(Fk), w ∈ AFk\A(J)}.

Define a map φ : N j
n,k → U by φ(u) = (Ju, wu). By Lemma 3.6, φ is

injective, so that |N j
n,k| = |φ(N j

n,k)|. Also, let P(S) denote the power
set of a set S, and define a map π : U → P(Cn(Fk) × Cn(Fk)) by
π(J, w) = J ⊂ Cn(Fk)× Cn(Fk). By construction,

π ◦ φ(N j
n,k) = {Ju : u ∈ N j

n,k}
⊂ {J ⊂ Cn(Fk)× Cn(Fk) : |J | ≤ δj/ log n}.

(3.38)

Using (3.38) and |Cn(Fk)| ≤ kd, we see that

|π ◦ φ(N j
n,k)| ≤ |{J ⊂ Cn(Fk)× Cn(Fk) : |J | ≤ δj/ log n}|
≤ (k2d)δj/ logn+1.

(3.39)

Also, for each J ⊂ Cn(Fk)× Cn(Fk),

(3.40) |π−1(J)| ≤ |A||Fk\A(J)| = |A|kd−|A(J)|.

By Lemma 3.7 and the fact that n/k = 1/f(n) → 0, there exists
n1 ≥ n0 such that if n ≥ n1 and u ∈ N j

n,k, then

(3.41) kd − |A(Ju)| ≤ (1 + 4dn/k)j ≤ (1 + ε)j.

By (3.39), (3.40), and (3.41), we obtain that for n ≥ n1 and n/5d ≤
j ≤ (k − n+ 1)d,

|N j
n,k| = |φ(N j

n,k)|
≤ |π ◦ φ(N j

n,k)| ·max{|π−1(J)| : J ∈ π ◦ φ(N j
n,k)}

≤ k2d(δj+logn)/ logn ·max{|A|kd−|A(Ju)| : u ∈ N j
n,k}

≤ k2d(δj+logn)/ logn · |A|(1+ε)j.

(3.42)
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Since k = nf(n) and {f(n)} satisfies hypothesis (3) from Lemma 3.12,
there exists n2 ≥ n1 such that if n ≥ n2, then k ≤ n2. Then by (3.42),
for n ≥ n2, we have

αj|N j
k,n| ≤ αj|A|(1+ε)jk2d(δj+logn)/ logn

= exp

(
j log(α|A|1+ε) + 2d(δj + log n) log(k)/ log n

)
≤ exp

(
j
(

log(α|A|1+ε) + 4d(δ + log(n)/j)
))

.

(3.43)

Since j ≥ n/5d (so that log(n)/j tends to 0), our choice of δ implies
that there exists n3 ≥ n2 such that if n ≥ n3 then 4d(δ + log(n)/j) ≤
− log(α|A|1+ε)/2. Hence for n ≥ n3, (3.43) yields

αj|N j
k,n| ≤ exp

(
j log(α|A|1+ε)/2

)
.(3.44)

Letting β0 = (α|A|1+ε)1/2 < 1, we see from (3.44) that

(k−n+1)d∑
j=n/2

αj|N j
k,n| ≤

(k−n+1)d∑
j=n/2

βj0 ≤ β
n/2
0

1

1− β0
.(3.45)

By calculus, there exist n4 ≥ n3 and C0 > 0 such that for j ≥ n4/2,

(3.46) − log(1− αj) ≤ C0α
j.

Then for n ≥ n4, by (3.45) and (3.46), we have that

(k−n+1)d∏
j=bn/2c+1

(1− αj)|N
j
n,k| = exp

(
(k−n+1)d∑
j=n/2

|N j
n,k| log(1− αj)

)

≥ exp

(
−C0

(k−n+1)d∑
j=n/2

αj|N j
n,k|

)

≥ exp

(
−C0β

n/2
0

1

1− β0

)
.

Taking C = C0/(1− β0) and β = β
1/2
0 establishes (3.37).

Note that (3.35), (3.36) and (3.37) together imply that for large
enough n,

(3.47) Pn,α(En) ≥
∏
|γ|≤n/2

(1− α|γ|) exp
(
−Cβn

)
.
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Then (3.47) shows that for large enough n, we have

(3.48) Pn,α(En) ≥ ζX(α)−1 exp
(
−Cβn

)
.

By (3.48) and Proposition 3.2 (see (3.2)), we have that for α ∈
(0, |A|−1), there exist C1, C2 > 0 and β1, β2,∈ (0, 1) such that for large
enough n,

(3.49) 1− C1β
n
1 ≤

Pn,α(En)

ζX(α)−1
≤ 1 + C2β

n
2 .

Using (3.49) and calculus, we have that there exist C3 > 0 and β3 ∈
(0, 1) such that for large enough n,

|Pn,α(En)− ζX(α)−1| ≤ ζX(α)−1C3β
n
3 ,

which concludes the proof of the theorem. �

We are now in a position to prove Theorem 1.3. The proof of The-
orem 1.3 follows easily from Proposition 3.2 and an estimate obtained
in the proof of Theorem 1.1.

Proof of Theorem 1.3. Let A, d, and Gn be as the statement of
the theorem. By inclusion, we have

(3.50) Pn,α(Gn) ≤ Pn,α(Per(Xω) = ∅).

For α > |A|−1, the probability that Xω has no finite orbits tends to 0
at least exponentially in n by Proposition 3.2 (see (3.3)), which estab-
lishes the conclusion of the theorem for α > |A|−1. For α = |A|−1, the
combination of (3.50) with Proposition 3.2 yields the desired conclu-
sion.

Now suppose α < |A|−1. By (3.37) and calculus, there exist C4, C5 >
0 and β4, β5 ∈ (0, 1) such that for large enough n,

(3.51) Pn,α(En) ≥ ζX(α)−1 exp(−C4β
n
4 ) ≥ ζX(α)−1(1− C5β

n
5 ).

By (3.2), (3.37), and (3.51), we have that there exist C6, C7 > 0 and
β6, β7 ∈ (0, 1) such that for large enough n,

Pn,α(Gn) = Pn,α({Per(Xω) = ∅} \ En)

= Pn,α(Per(Xω) = ∅)− Pn,α(En)

≤ ζX(α)−1(1 + C6β
n
6 )− ζX(α)−1(1− C7β

n
7 )

≤ ζX(α)−1C8β
n
8 ,

(3.52)

where C8 = 2 max(C6, C7) and β8 = max(β6, β7). By (3.52), we have
completed the proof. �
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4. Entropy

In this section we investigate the entropy of random Zd-SFTs. The
proof of Theorem 1.2, presented in Section 4.2, involves two second
moment arguments, one providing an upper bound on entropy and
the other providing a lower bound on entropy. To prepare for this
proof, we prove several lemmas in Section 4.1. These lemmas estimate
the asymptotic behavior of the first and second moments of several
random variables used to bound entropy. One random variable counts
the number of patterns on Fk that avoid the forbidden Fn-patterns
(see (4.1)), and the other random variable counts the average number
of allowed Fk-patterns that can fill in a fixed periodic boundary pattern
(see (4.15)).

4.1. Entropy lemmas. Throughout this section we will assume that
k > n. Also, as standing notation, we set ` = k − n + 1. For each u
in AFk , let ξu be the random variable that is 1 when u is allowed (i.e.,
when Wn(u) ∩ F(ω) = ∅) and 0 otherwise.

4.1.1. Lemmas for upper bound on entropy. Let φn,k be the number of
allowed Fk-patterns:

(4.1) φn,k =
∑
u∈AFk

ξu.

The following two lemmas, which concern the expectation and variance
of φn,k, will be used to give an upper bound on the limiting distribution
of entropy. We begin by describing the asymptotic behavior of the
expectation of φn,k.

Lemma 4.1. For any k > n, it holds that

(4.2) En,α(φn,k) ≥ α`
d |AFk | = α`

d |A|kd .
Furthermore, if α > |A|−1 and k = k(n) satisfies n/k → 0 and
log(k)/n→ 0, then

lim
n

En,α(φn,k)
1/kd = α|A|.

Proof. Recall N j
n,k = {u ∈ AFk : |Wn(u)| = j}, and note that

En,α(φn,k) =
∑
u∈AFk

En,α(ξu) =
∑
u∈AFk

α|Wn(u)| =
`d∑
j=1

αj
∣∣N j

n,k

∣∣.(4.3)

Then by (4.3),

En,α(φn,k) ≥ α`
d∣∣AFk∣∣ = α`

d |A|kd ,
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which verifies (4.2).
Now assume that α > |A|−1 (so that α|A| > 1) and k = k(n) satisfies

n/k → 0 and log(k)/n→ 0. From (4.2), we see that

(4.4) lim inf
n

(
En,α(φn,k)

)1/kd
≥ lim inf

n
α(`/k)d |A| = α|A|,

since `/k = 1− n/k + 1/k, which tends to one as n tends to infinity.
Let us now bound the cardinality of N j

n,k (for each j ∈ [1, `d]) from

above. Let ε > 0, and consider j in [1, `d]. By Lemma 3.8, for each
pattern u in N j

n,k, there exists a repeat cover J of u such that |J | ≤
2kd/n. By Lemma 3.7 and the fact that n/k → 0, for n large enough,
any repeat cover J of a pattern u in N j

n,k satisfies |Fk \ A(J)| ≤ (1 +
4dn/k)j ≤ (1+ ε)j. Assume now that we have n large enough for these
inequalities to hold. By Lemma 3.6, a pattern u in N j

n,k is determined
by any repeat cover J for u and the pattern w = u|Fk\A(J). Thus,

bounding |N j
n,k| by the number of pairs (J, w), where J ⊂ Cn(Fk) ×

Cn(Fk) with |J | ≤ 2kd/n and w ∈ AFk\A(J), we obtain

(4.5) |N j
n,k| ≤ |A|

(1+ε)j(k2d)2k
d/n+1.

Here (k2d)2k
d/n+1 is an upper bound on the number of subsets J of

Cn(Fk)×Cn(Fk) such that |J | ≤ 2kd/n, and |A|(1+ε)j is an upper bound
on the number of patterns in AFk\A(J) where |Fk \ A(J)| ≤ (1 + ε)j.

Let p1(k) = k4d+1. Then by (4.5), for any ε > 0 and large enough n,
we have that

En,α(φn,k) =
`d∑
j=1

αj|N j
n,k|

≤ α`
d |A|kd +

`d−1∑
j=1

αj|A|(1+ε)jp(k)k
d/n

≤ α`
d |A|kd + p1(k)k

d/n

`d−1∑
j=1

(α|A|1+ε)j

≤ α`
d |A|kd + p1(k)k

d/n(α|A|1+ε)`d(α|A|1+ε − 1)−1

≤ 2 max

(
α`

d |A|kd , p1(k)k
d/n(α|A|1+ε)`d(α|A|1+ε − 1)−1

)
.

(4.6)
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By (4.6) and our assumptions on α (i.e., α|A| > 1) and on k (i.e.,
n/k → 0 and log(k)/n→ 0), we obtain

lim sup
n

(
En,α(φn,k)

)1/kd
≤ α|A|1+ε.

As ε > 0 was arbitrary, we see that

(4.7) lim sup
n

(
En,α(φn,k)

)1/kd
≤ α|A|.

From (4.4) and (4.7), we have that

lim
n

(
En,α(φn,k)

)1/kd
= α|A|.

�

In the following lemma, we show that the variance of φn,k is small
compared to the square of its expectation.

Lemma 4.2. Suppose α|A| > 1 and k = k(n) = nf(n) with f(n)→∞
and f(n) = o((n/ log n)1/d). Then there exist K1 > 0 and ρ1 > 0 such
that for large enough n,

Varn,α(φn,k)

En,α(φn,k)2
≤ K1 exp(−ρ1nd).

Proof. Suppose that α and k = k(n) are as above. We introduce the
notation

Dj
n,k = {(u, v) ∈ AFk×AFk : Wn(u)∩Wn(v) 6= ∅, |Wn(u)∪Wn(v)| = j}.

Observe that the covariance of ξu and ξv is

En,α
((
ξu − En,α(ξu)

)(
ξv − En,α(ξv)

))
= En,α

(
ξuξv

)
− En,α(ξu)En,α(ξv)

= α|Wn(u)∪Wn(v)| − α|Wn(u)|+|Wn(v)|

= α|Wn(u)∪Wn(v)|
(
1− α|Wn(u)∩Wn(v)|

)
.

(4.8)
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Then, since the variance of a sum is the sum of the covariances, we
have

Varn,α(φn,k) =
∑

u,v∈AFk

α|Wn(u)∪Wn(v)|
(

1− α|Wn(u)∩Wn(v)|
)

≤
∑

u,v∈AFk
Wn(u)∩Wn(v)6=∅

α|Wn(u)∪Wn(v)|

=
2`d−1∑
j=1

αj|Dj
n,k|.

(4.9)

Then by (4.2) and (4.9), we have that

Varn,α(φn,k)

En,α(φn,k)2
≤
∑2`d−1

j=1 αj|Dj
n,k|

α2`d |A|2kd
(4.10)

Let (u, v) be in Dj
n,k. Let F ′k be a disjoint copy of Fk; for concreteness,

we take F ′k = Fk + k1. For notational convenience, we assume that
v ∈ AF ′k , so that we may think of (u, v) as an element of AFktF ′k and
use the terminology of repeats as in Section 2.1.3. Let r be the total
number of n-repeats in (u, v). Let p be in F` ∪ (F` + k1), and let
S = Fn + p− 1. Note that either there exists a unique repeat (S1, S2)
for (u, v) such that S = S2 or else S is the lexicographically minimal
appearance of the pattern (u, v)|S in (u, v). Thus, we have that

2`d = j + r,

and hence r = 2`d − j.
Now let V be the repeat region A(J), where J is any repeat cover

for (u, v) (recall that the set A(J) does not depend on the choice of J).
Let (S∗1 , S

∗
2) be the repeat in (u, v) such that S∗2 is lexicographically

minimal. For any n-cube S in Cn(Fk tF ′k), let M(S) denote the lexico-
graphically maximal element of S. Define a map Φ from the n-repeats
in (u, v) into the power set of V as follows:

Φ(S1, S2) =

{
S2, if (S1, S2) = (S∗1 , S

∗
2)

{M(S2)}, otherwise.

Note that if (S1, S2) and (S3, S4) are repeats in (u, v), then Φ(S1, S2)∩
Φ(S3, S4) = ∅. Thus, we have shown that |V | ≥ nd + (r − 1), and
therefore

|V | ≥ nd + (r − 1) = 2`d − j + nd − 1.

Then

(4.11) |(Fk t F ′k) \ V | = 2kd − |V | ≤ 2kd − 2`d − nd + j + 1.
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By Lemma 3.8, there exists a repeat cover J of (u, v) such that |J | ≤
4kd/n. By Lemma 3.6, any element (u, v) in Dj

n,k is uniquely deter-
mined by a repeat cover J for (u, v) and the pattern w = (u, v)|(FktF ′k)\A(J).
Thus, we may bound the cardinality of Dj

n,k by the number of pairs

(J, w), where J ⊂ Cn(Fk t F ′k)× Cn(Fk t F ′k) satisfies |J | ≤ 4kd/n and
w is an element of A(FktF ′k)\A(J) (and we know that |(Fk t F ′k) \ A(J)|
may be bounded as in (4.11)). In this way, we obtain that

|Dj
n,k| ≤ (4k2d)4k

d/n+1|A|2kd−2`d−nd+j+1

≤ p2(k)k
d/n|A|2kd−2`d−nd+j+1,

(4.12)

where 4k2d is an upper bound on the number of pairs of n-cubes con-
tained in Fk t F ′k and p2(k) = (4k2d)5.

By (4.10) and (4.12), we have

Varn,α(φn,k)

En,α(φn,k)2
≤
∑2`d−1

j=1 αj|Dj
n,k|

α2`d |A|2kd

≤
p2(k)k

d/n|A|2kd−2`d−nd+1
∑2`d−1

j=1 (α|A|)j

α2`d |A|2kd

≤ p2(k)k
d/n|A|2kd−2`d−nd+1(α|A|)2`d(α|A| − 1)−1

α2`d |A|2kd

=
p2(k)k

d/n|A|(α|A| − 1)−1

|A|nd
.

(4.13)

By hypothesis, we have k = nf(n), and we may write f(n) = g1(n)(n/ log n)1/d

with g1(n) → 0. Note that for large enough n, we must have k ≤ n2

and p2(k) ≤ k10d+1. Then by (4.13), for n large enough, we have

Varn,α(φn,k)

En,α(φn,k)2
≤ p2(k)k

d/n|A|(α|A| − 1)−1

|A|nd

= |A|(α|A| − 1)−1 exp

(
kd

n
log p2(k)− nd log |A|

)
≤ |A|(α|A| − 1)−1 exp

(
(10d+ 1)

ndg1(n)d

log n
log k − nd log |A|

)
≤ |A|(α|A| − 1)−1 exp

(
2(10d+ 1)ndg1(n)d − nd log |A|

)
= |A|(α|A| − 1)−1 exp

(
nd(2(10d+ 1)g1(n)d − log |A|)

)
.

(4.14)
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By (4.14) and the fact that g1(n)→ 0, we see that there exist K1 > 0
and ρ1 > 0 such that for large enough n,

Varn,α(φn,k)

En,α(φn,k)2
≤ K1 exp(−ρ1nd).

�

4.1.2. Lemmas for lower bound on entropy. The next two lemmas will
be used to give a lower bound on the limiting distribution of entropy.
In order to state these lemmas, we need some additional notation. Let
Vn,k be the (nonrandom) set of periodic patterns on ∂nFk (with period
` in each cardinal direction):

Vn,k = {u ∈ A∂nFk : ut+`ei = ut whenever t, t+ `ei ∈ ∂nFk}.
Also, let Pn,k be the set of Fk-patterns with periodic n-boundaries:

Pn,k = {u ∈ AFk : u|∂nFk ∈ Vn,k}.

Note for future reference that |Pn,k| = |A|`d . Let ψn,k be the average
number of ways of filling in a periodic boundary (i.e., a boundary from
Vn,k):

(4.15) ψn,k =
1

|Vn,k|
∑
b∈Pn,k

ξb.

Note that ψn,k is a random quantity. The following lemma shows that
ψn,k may be used to give a lower bound on the entropy of the random
Zd-SFT.

Lemma 4.3. For k > n and any ω in Ωn, it holds that

1

kd
logψn,k(ω) ≤ hper(Xω) ≤ h(Xω).

Proof. Let k > n, and let ω be in Ωn.
For a periodic boundary b in Vn,k, let W (b) be the set of patterns

u in Wk(Xω) such that u|∂nFk = b. Since the forbidden patterns have
shape Fn and the patterns in Vn,k have thickness n, we have that

ψn,k(ω) =
1

|Vn,k|
∑
b∈Vn,k

|W (b)|.

Since the average of a finite set of real numbers is less than or equal
to its maximum, there exists b in Vn,k such that |W (b)| ≥ ψn,k(ω), and
we fix such a pattern b.

By definition, Xω is a Zd-SFT, and the forbidden patterns that define
Xω all have shape Fn. Thus, if {wp}p∈Zd is any collection of patterns in
W (b) indexed by Zd, then there is a point x in Xω such that x|Fk+`p =
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wp for all p in Zd. In particular, if {wp}p∈Zd is totally periodic, then
the corresponding point x has a finite orbit. Therefore

1

`d
log |W (b)| ≤ hper(Xω) ≤ h(Xω).

Then, using that |W (b)| ≥ ψn,k(ω) and ` ≤ k, we see that

1

kd
logψn,k(ω) ≤ 1

`d
log |W (b)| ≤ hper(Xω) ≤ h(Xω),

as desired. �

In the following lemma, we describe the asymptotic behavior of the
expectation of ψn,k.

Lemma 4.4. For any k > n, it holds that

(4.16) En,α(ψn,k) ≥ |Vn,k|−1α`
d |Pn,k| = |Vn,k|−1α`

d|A|`d .

Further, if α|A| > 1 and k = k(n) satisfies n/k → 0 and log(k)/n→ 0,
then

lim
n

En,α(ψn,k)
1/kd = α|A|.

Proof. Define

Qj
n,k = {u ∈ Pn,k : |Wn(u)| = j},

and note that

|Vn,k|En,α(ψn,k) =
∑
b∈Pn,k

En,α(ξb)

=
∑
b∈Pn,k

α|Wn(b)|

=
`d∑
j=1

αj|Qj
n,k|.

(4.17)

Recall that |Pn,k| = |A|`
d
. Then using (4.17), we obtain

En,α(ψn,k) = |Vn,k|−1
`d∑
j=1

αj|Qj
n,k|

≥ |Vn,k|−1α`
d|Pn,k|

= |Vn,k|−1α`
d |A|`d ,

which verifies (4.16).
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Now suppose that α > |A|−1 (so that α|A| > 1) and k = k(n)
satisfies n/k → 0 and log(k)/n → 0. Since Pn,k ⊂ AFk and |Vn,k| ≥ 1,
we have ψn,k ≤ φn,k. Then by Lemma 4.1, we have that

(4.18) lim sup
n

En,α(ψn,k)
1/kd ≤ lim sup

n
En,α(φn,k)

1/kd = α|A|.

For the sake of notation, define B = log|A| |Vn,k|, and note that

B ≤ |∂nFk| ≤ K(d)nkd−1 for some constant K(d) that depends only
on d, which implies that B/kd → 0. Then by (4.16) and the fact that
n/k → 0, we have that

(4.19) lim inf
n

En,α(ψn,k)
1/kd ≥ lim inf

n
|A|−B/kd(α|A|)(`/k)d = α|A|.

By (4.18) and (4.19), we obtain

lim
n

En,α(ψn,k)
1/kd = α|A|.

�

The following lemma shows that the variance of ψn,k is small com-
pared to the square of its expectation.

Lemma 4.5. Suppose α|A| > 1 and k = k(n) = nf(n) with f(n)→∞
and f(n) = o((n/ log n)1/d). Then there exist K2 > 0 and ρ2 > 0 such
that for large enough n,

Varn,α(ψn,k)

En,α(ψn,k)2
≤ K2 exp(−ρ2nd).

Proof. Define

Ŝjn,k = {(u, v) ∈ Pn,k×Pn,k : Wn(u)∩Wn(v) 6= ∅, |Wn(u)∪Wn(v)| = j},
and

Sjn,k =

j⋃
i=1

Ŝin,k.

As in (4.8) and (4.9), we have

Varn,α(ψn,k) = |Vn,k|−2
∑

u,v∈Pn,k

α|Wn(u)∪Wn(v)|
(

1− α|Wn(u)∩Wn(v)|
)

≤ |Vn,k|−2
∑

u,v∈Pn,k
Wn(u)∩Wn(v) 6=∅

α|Wn(u)∪Wn(v)|

= |Vn,k|−2
2`d−1∑
j=1

αj|Ŝjn,k|.

(4.20)
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Let b = b(n) = 2`d − nd. Then by Lemma 4.4 and (4.20), we have

Varn,α(ψn,k)

En,α(ψn,k)2
≤
∑2`d−1

j=1 αj|Ŝjn,k|
(α|A|)2`d

≤
∑b−1

j=1 α
j|Ŝjn,k|+

∑2`d−1
j=b αj|Ŝjn,k|

(α|A|)2`d

≤
∑b−1

j=1 α
j|Ŝjn,k|+ αb

∑2`d−1
j=b |Ŝ

j
n,k|

(α|A|)2`d

≤
∑b−1

j=1 α
j|Ŝjn,k|+ αb|S2`d−1

n,k |
(α|A|)2`d

(4.21)

We proceed by finding upper bounds for |Ŝjn,k| and |S2`d−1
n,k |.

First, we seek an upper bound for |Ŝjn,k|. As in the proof of Lemma

4.2, we consider pairs (u, v) in Pn,k×Pn,k as elements of AFktF ′k , where
we take F ′k = Fk + k1 for concreteness. For such a pair (u, v), let r
be the total number of repeats in (u, v). Then, as before, 2`d = j + r,
and so r = 2`d− j. Let V be the repeat region, i.e., V = A(J) for any
repeat cover J of (u, v) (recall that the set A(J) is independent of the
choice of J). The map (S1, S2) 7→ m(S2) is an injection of the set of
repeats in (u, v) into the set V ∩ (F` t (F` + k1)), and therefore

|V ∩
(
F` t (F` + k1)

)
| ≥ r = 2`d − j.

Hence,

|
(
F` t (F` + k1)

)
\ V | = 2`d − |V ∩ (F` t (F` + k1))|

≤ 2`d − (2`d − j) = j.
(4.22)

By Lemma 3.8 (viewing the full d-cube Fk as a face of dimension d), for

each (u, v) in Ŝjn,k, there exists a repeat cover J of (u, v) such that |J | ≤
4kd/n. Furthermore, each element (u, v) of Ŝjn,k is uniquely determined
by a repeat cover J and the pattern w = (u, v)|(

F`t(F`+k1)
)
\A(J)

(by

Lemma 3.6 and the fact that u and v have periodic boundary). Thus,

bounding |Ŝjn,k| by the number of pairs (J, w) such that J ⊂ Cn(Fk t

F ′k) × Cn(Fk t F ′k) with |J | ≤ 4kd/n and w ∈ A
(
F`t(F`+k1)

)
\A(J) and

using (4.22), we see that

(4.23) |Ŝjn,k| ≤ (4k2d)4k
d/n+1|A|j.

Here we have used that 4k2d is an upper bound on the number of pairs
of hypercubes in Fk t F ′k. As before, let p2(k) = (4k2d)5.
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Let us now obtain an upper bound on the cardinality of S2`d−1
n,k . Here

we will use the fact that for any pair (u, v) in S2`d−1
n,k , we have that

Wn(u) ∩Wn(v) 6= ∅. Let (u, v) be in S2`d−1
n,k . Due to the periodicity of

the boundary of v, the pattern v|F`+q uniquely determines v for each q
such that F`+q ⊂ F ′k. Choose the lexicographically minimal n-cube S∗2
in Cn(F ′k) such that v|S∗2 ∈ Wn(u) (which exists since Wn(u)∩Wn(v) 6=
∅), and then choose the lexicographically minimal n-cube in S∗1 in Fk
such that v|S∗1 = v|S∗2 . Now choose the lexicographically minimal point
q in F ′k such that S∗2 ⊂ F` + q ⊂ F ′k (and note that q is uniquely
determined by S∗2). Let ϕ map (u, v) to (S∗1 , S

∗
2 , u, v|(F`+q)\S∗2 ). Then ϕ

is injective, and therefore

(4.24) |S2`d−1
n,k | = |ϕ(S2`d−1

n,k )| ≤ k2d|A|`d |A|`d−nd = k2d|A|2`d−nd .

Here we have used that k2d is an upper bound on the cardinality of
the possible pairs (S1, S2) appearing in the first two coordinates of the
image of ϕ. Note that k2d ≤ p2(k) = (4k2d)5.

By (4.21), (4.23) and (4.24), we have

Varn,α(ψn,k)

En,α(ψn,k)2
≤
∑b−1

j=1 α
j|Ŝjn,k|+ αb|S2`d−1

n,k |
(α|A|)2`d

≤
p2(k)k

d/n
∑b−1

j=1 α
j|A|j + αbp2(k)|A|2`d−nd

(α|A|)2`d

≤ (α|A| − 1)−1p2(k)k
d/n(α|A|)b

(α|A|)2`d
+

(α|A|)2`d−ndp2(k)

(α|A|)2`d

≤ (α|A| − 1)−1p2(k)k
d/n

(α|A|)nd
+

p2(k)

(α|A|)nd
.

(4.25)

By hypothesis, we may write k = nf(n), where f(n) = o((n/ log n)1/d).
Using this hypothesis, the fact that α|A| > 1 and (4.25), we see that
there exist K2 > 0 and ρ2 > 0 such that for large enough n,

Varn,α(ψn,k)

En,α(φn,k)2
≤ K2 exp(−ρ2nd).

�

4.2. Proof of Theorems 1.2 and 1.4. Here we present a unified
proof of Theorems 1.2 and 1.4. The proof essentially breaks into two
parts, the upper bound on entropy and the lower bound on the periodic
entropy. In each case we use a second moment argument, relying on
Chebyshev’s inequality. The upper bound is a consequence of Lemmas
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4.1 and 4.2, and the lower bound is a consequence of Lemmas 4.4 and
4.5.

Proof of Theorems 1.2 and 1.4. Choose k = k(n) = nf(n)
with f(n)→∞ and f(n) = o((n/ log n)1/d). By subadditivity, for any
k > n, we have that

(4.26) h(Xω) ≤ 1

kd
log |Wk(Xω)| = 1

kd
log φn,k.

Let βn(ω) = exp(h(Xω)) and ηn(ω) = exp(hper(Xω)). Then (4.26) may
be rewritten as

(4.27) βk
d

n ≤ |Wk(Xω)| = φn,k.

On the other hand, by Lemma 4.3, we have that

1

kd
logψn,k ≤ hper(Xω) = log ηn,

and therefore

(4.28) ψn,k ≤ ηk
d

n .

Suppose α > |A|−1 (so that α|A| > 1), and let ε > 0 be such that
α|A| − ε > 1. Then

Pn,α
(
|βn − α|A|| ≥ ε or |ηn − α|A|| ≥ ε

)
≤ Pn,α

(
φn,k ≥ (α|A|+ ε)k

d
)

+ Pn,α
(
ψn,k ≤ (α|A| − ε)kd

)
,

(4.29)

where the inequality follows from (4.27), (4.28), and ηn ≤ βn by inclu-
sion. Note that

Pn,α
(
φn,k ≥ (α|A|+ ε)k

d
)

= Pn,α
(
φn,k − En,α(φn,k) ≥ (α|A|+ ε)k

d − En,α(φn,k)
)

= Pn,α

(
φn,k − En,α(φn,k) ≥ En,α(φn,k)

((
α|A|+ ε

En,α(φn,k)1/k
d

)kd
− 1

))
.
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Let d1 = (Varn,α(φn,k))
1/2/En,α(φn,k). Then by Chebyshev’s inequality,

Pn,α
(
φn,k ≥ (α|A|+ ε)k

d
)

= Pn,α

(
φn,k − En,α(φn,k) ≥ (Varn,α(φn,k))

1/2 1

d1

((
α|A|+ ε

En,α(φn,k)1/k
d

)kd
− 1

))

≤

(
d1(

(α|A|+ ε)/En,α(φn,k)1/k
d
)kd − 1

)2

.

Since En,α(φn,k)
1/kd tends to α|A| (Lemma 4.1) and d21 ≤ K1 exp(−ρ1nd)

for large enough n (Lemma 4.2), we obtain that there exist K3 > 0 and
ρ3 > 0 such that for large enough n,

(4.30) Pn,α
(
φn,k ≥ (α|A|+ ε)k

d
)
≤ K3 exp(−ρ3nd).

Similarly, letting d2 = (Varn,α(ψn,k))
1/2/En,α(ψn,k) and using Cheby-

shev’s inequality gives

Pn,α
(
ψn,k ≤ (α|A| − ε)kd

)
= Pn,α

(
ψn,k − En,α(ψn,k) ≥ (Varn,α(ψn,k))

1/2 1

d2

((
α|A| − ε

En,α(ψn,k)1/k
d

)kd
− 1

))

≤

(
d2(

(α|A| − ε)/En,α(ψn,k)1/k
d
)kd − 1

)2

.

Since En,α(ψn,k)
1/kd tends to α|A| (Lemma 4.4) and d22 ≤ K2 exp(−ρ2nd)

for large enough n (Lemma 4.5), we obtain that there exist K4 > 0 and
ρ4 > 0 such that for large enough n,

(4.31) Pn,α
(
ψn,k ≤ (α|A| − ε)kd

)
≤ K4 exp(−ρ4nd).

Combining (4.29), (4.30) and (4.31), we have that there exist K5 and
ρ5 such that for large enough n,

Pn,α
(
|βn − α|A|| ≥ ε or |ηn − α|A|| ≥ ε

)
≤ K5 exp(−ρ5nd),

which is equivalent to the conclusions of the theorems for α > |A|−1
by the continuity of the logarithm.

Now suppose that α ≤ |A|−1. Let ε > 0. Choose α′ > |A|−1 such
that log(α′|A|) = ε/2. Since entropy is a monotone increasing random
variable (i.e., if ω ≤ ω′ then h(Xω) ≤ h(Xω′)) and α < α′, then by [13,
Theorem 2.1], we have that

Pn,α(h(Xω) ≥ ε) ≤ Pn,α′(h(Xω) ≥ ε).
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Also, since log(α′|A|) = ε/2, we have

Pn,α′
(
h(Xω) ≥ ε

)
= Pn,α′

(
h(Xω)− log(α′|A|) ≥ ε/2

)
.

Since α′ > |A|−1, we have already shown that there exist K > 0 and
ρ > 0 such that for large enough n,

Pn,α′
(
h(Xω)− log(α′|A|) ≥ ε/2

)
≤ K exp(−ρnd).

By combining the previous three displays and using that hper(Xω) ≤
h(Xω), we obtain the desired conclusions. �

5. Discussion

Let us close with some general remarks and open questions regarding
the behavior of random Zd-SFTs.

Remark 5.1. There is a more general setting for Zd-SFTs than the
one considered in this work. Suppose X is a Zd-SFT. Then one may
obtain a probability distribution on the Zd-SFTs contained in X by
randomly forbidding patterns from Wn(X) with some probability α.
Hence, one may ask about the likely properties of random Zd-SFTs
contained inside an ambient Zd-SFT X. In [26], this more general
setting was studied for Z-SFTs, and results analogous to Theorems 1.1
and 1.2 were shown to hold whenever X is an irreducible Z-SFT. In this
work, we only allow the ambient shift X to be a full shift, as full shifts
seem to provide the only cleanly defined class of Zd-SFTs for d ≥ 2
that possess all of the properties required for our proofs. Nonetheless,
it would be interesting to understand the behavior of random Zd-SFTs
inside of other ambient shifts.

Remark 5.2. It has been quite difficult to prove Zd-SFT versions of
many fundamental theorems about Z-SFTs (for example, consider fac-
tor theorems [7, 8, 25], embedding theorems [18, 20, 21], and uniqueness
of measure of maximal entropy theorems [9, 28]). The difficulty in ex-
tending such theorems is often caused by the strange or pathological
behavior that can occur in some Zd-SFTs, which either removes hope
for the Zd result entirely or forces stringent hypotheses to absolutely
rule out the ”bad” examples.

However, the results of this paper suggest that ”typical” Zd-SFTs
may avoid these pathological behaviors. Therefore, it may be possible
to prove versions of Z-theorems for ”typical” Zd-SFTs. In particular,
there may be some Z-SFT theorems which hold, not for all Zd-SFTs,
but for sets of Zd-SFTs that have probability tending to one as n ap-
proaches infinity (for certain values of α). For example, one may ask
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whether “typical” Zd-SFTs have a unique measure of maximal entropy.
Previous work [26, Theorem 1.4] implies that for α close to one, a ran-
dom Z-SFT has a unique measure of maximal entropy with probability
tending to one as n tends to infinity.

Remark 5.3. As mentioned in the introduction, the class of Zd-SFTs
exhibits strikingly different behavior in the two cases d = 1 and d > 1.
However, our results suggest that these differences may not appear for
“typical” systems. Indeed, the main results presented in this work give
a precise sense in which typical Zd-SFTs behave similarly with respect
to emptiness, entropy, and periodic points, regardless of d. Thus, there
remains an interesting open question, which we formulate as follows.
Does there exist a property Q of SFTs, a probability α ∈ [0, 1], an
alphabet A, and natural numbers d1 6= d2 such that infn Pn,α(Q) > 0
in dimension d1 and limn Pn,α(Q) = 0 in dimension d2?
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