
ar
X

iv
:1

40
8.

47
45

v1
 [

cs
.D

M
]

 2
0

A
ug

 2
01

4

Directed Width Measures and Monotonicity of

Directed Graph Searching

 Lukasz Kaiser

CNRS & Université Sorbonne Paris Cité∗,

lukaszkaiser@google.com

Stephan Kreutzer, Roman Rabinovich†, and Sebastian Siebertz

Logic and Semantics, Technical University Berlin

{stephan.kreutzer,roman.rabinovich, sebastian.siebertz}@tu-berlin.de

June 19, 2018

We consider generalisations of tree width to directed graphs, that attracted much
attention in the last fifteen years. About their relative strength with respect to “bounded
width in one measure implies bounded width in the other” many problems remain
unsolved. Only some results separating directed width measures are known. We give
an almost complete picture of this relation.

For this, we consider the cops and robber games characterising DAG-width and di-
rected tree width (up to a constant factor). For DAG-width games, it is an open question
whether the robber-monotonicity cost (the difference between the minimal numbers of
cops capturing the robber in the general and in the monotone case) can be bounded
by any function. Examples show that this function (if it exists) is at least f(k) > 4k/3
[KO08]. We approach a solution by defining weak monotonicity and showing that if k
cops win weakly monotonically, then O(k2) cops win monotonically. It follows that
bounded Kelly-width implies bounded DAG-width, which has been open since the def-
inition of Kelly-width [HK08].

For directed tree width games we show that, unexpectedly, the cop-monotonicity cost
(no cop revisits any vertex) is not bounded by any function. This separates directed
tree width from D-width defined in [Saf05], refuting a conjecture in [Saf05].

1 Introduction

In the study of hard algorithmic problems on graphs, methods derived from structural graph theory
have proved to be a valuable tool. The rich theory of special classes of graphs developed in this area

∗Currently at Google Inc.
†This work was partially supported by the projects Games for Analysis and Synthesis of Interactive Computational
Systems (GASICS) and Logic for Interaction (LINT) of the European Science Foundation.

1

http://arxiv.org/abs/1408.4745v1

has been used to identify classes of graphs, such as classes of bounded tree width or clique-width,
on which many computationally hard problems can be solved efficiently. Most of these classes are
defined by some structural property, such as having a tree decomposition of low width, and this
structural information can be exploited algorithmically.

Structural parameters such as tree width, clique-width, classes of graphs defined by excluded
minors etc. studied in this context relate to undirected graphs. However, in various applications in
computer science, directed graphs are a more natural model. Given the enormous success width
parameters had for problems defined on undirected graphs, it is natural to ask whether they can
also be used to analyse the complexity of hard algorithmic problems on digraphs. While in principle
it is possible to apply the structure theory for undirected graphs to directed graphs by ignoring the
direction of edges, this implies a significant information loss. Hence, for computational problems
whose instances are directed graphs, methods based on the structure theory for undirected graphs
may be less useful.

Reed [Ree99] and Johnson, Robertson, Seymour and Thomas [JRST01] initiated the development
of a decomposition theory for directed graphs with the aim of defining a directed analogue of
undirected tree width. They introduced the concept of directed tree width and showed that the
k-disjoint paths problem and more general linkage problems can be solved in polynomial-time
on classes of digraphs of bounded directed tree width. Following this initial proposal, several
alternative notions of width measures for sparse classes of digraphs have been introduced, for
instance directed path width (see [Bar06], initially proposed by Robertson, Seymour and Thomas),
D-width [Saf05], DAG-width [BDH+12] and Kelly-width [HK08]. For each of these, algorithmic
applications were given, for example in relation to linkage problems or a form of combinatorial
games known as parity games. On the other hand, some other standard graph theoretical problems
such as directed dominating set remain intractable on classes of digraphs of small width with
respect to these measures. More recently, directed width parameters have been used successfully
in areas outside core graph algorithmics, for instance in Boolean network analysis [Tam10], in the
evaluation of simple regular path queries [BBG13], in the theory of verification in form of µ-calculus
model-checking and solving parity games [BDH+12, HK08, BG05].

Despite the considerable interest these parameters have generated, not much is known about
the relation between them. It is known that classes of bounded DAG-width, Kelly-width or D-
width also have bounded directed tree width, making directed tree width the most general of these
parameters. On the other hand, classes of digraphs of bounded directed path width also have
bounded width in the other measures. However, it is still an open problem how DAG-width, Kelly-
width or D-width relate to each other. The main structural contribution of this paper is to give an
almost complete picture of the relationship between these width parameters with strict inequalities
in most cases.

Digraph parameters such as directed tree width, DAG-width or Kelly-width are closely related to
graph searching games, also called cops and robber games in this case. In a graph searching game,
a number of cops tries to capture a robber on a graph or digraph. The robber occupies a vertex
of the graph and so does each of the cops. The game is played in rounds where in each round the
cops first announce their new position and then the robber can move to a different vertex of the
graph to avoid capture. See below for details and see [FT08, Kre11] for recent surveys.

Variations of the game are obtained by restricting the moves of the cops and the robber in several
ways. On every graph or digraph, the cops have a winning strategy that guarantees capturing the
robber by using sufficiently many cops. The minimal number of cops on a digraph G that guarantees
to capture the robber is a natural graph parameter and it turns out that the width measures
discussed above are closely related to these parameters defined by suitable graph searching games.

An important concept in the context of graph searching games is monotonicity. Monotonicity

2

is a restriction on the strategies employed by the cops. We distinguish between cop- and robber-
monotone cop strategies. Roughly speaking, a strategy is cop-monotone if the cops never revisit a
vertex where they have been before, and it is robber-monotone if the set of vertices that the robber
can occupy never increases during a play. Usually, monotone variants of graph searching games
yield nice decompositions corresponding to directed or undirected width measures. For instance,
a tree decomposition corresponds exactly to a cop-monotone winning strategy for the cops in a
particular type of graph searching games.

The (cop- or robber-) monotonicity problem for variants of graph searching games—i.e. the prob-
lem whether on every graph or digraph the number of cops required to capture a robber with a
cop- or robber-monotone strategy is the same as the number of cops required with an unrestricted
strategy—has intensively been studied in the literature. For games that are not monotone, we
call the number of extra cops required for a monotone strategy the monotonicity cost of the game
variant. For graph searching games on undirected graphs this problem has been solved for most
commonly used game variants and usually the games are monotone. For directed graphs, however,
the situation is much less understood. It was shown in [JRST01, Adl07] that the games corre-
sponding to directed tree width are not monotone. In [KO08] it was shown that also the games
corresponding to Kelly- and DAG-width are non-monotone. More precisely, in [KO08] examples are
exhibited where monotone strategies require at least 4

3k cops, but k cops suffice for an unrestricted
strategy. However, all attempts to use the tricks facilitated in these examples to show that the
monotonicity cost is in fact unbounded have failed so far.

Among the most important open problems in the area of cops and robber games at the moment
is the question whether the monotonicity cost for the games corresponding to directed tree width,
Kelly-width or DAG-width can be bounded by a constant factor, or by any function at all. This
question is particularly interesting for DAG-width and Kelly-width games, as it was shown in [HK08]
that bounding the monotonicity cost of these games would imply that DAG-width and Kelly-width
are bounded by each other, i.e. a class of digraphs has bounded Kelly-width if, and only if, it has
bounded DAG-width. The proof relies on translating monotone strategies in one type of game into
(non-monotone) strategies of the other type of game.

For directed tree width games and robber-monotone strategies, the monotonicity question was
answered in the affirmative in [JRST01]. It has been conjectured ([Saf05, Page 750]1) that the cop-
monotonicity cost should also be bounded for directed tree width games. Whether the monotonicity
cost for DAG- and Kelly-width games is bounded is still open as well, despite considerable efforts
in the community. These monotonicity problems are arguably the most important open problems
in cops and robber games.

In this paper we give a negative answer to the cop-monotonicity problem for directed tree width
games. We show that there is a class of digraphs where 4 cops have a winning strategy in the
directed tree width game, but the number of cops required to win with a cop-monotone strategy is
unbounded. We also make progress on the problem for DAG-width games. We introduce a weaker
form of monotonicity, called weak monotonicity, and show that any weakly monotone strategy for k
cops can be transformed into a robber-monotone strategy for k2 cops. While this does not settle the
monotonicity problem for DAG-width games completely, it constitutes significant progress towards
this longstanding open problem is the following sense: in the known examples for non-monotonicity
of DAG-width games, for instance in [KO08], the (unrestricted) strategies used by cops to win the
game are actually weakly monotone in our sense. Hence, our result implies that these tricks
cannot be used to show that there is no bound on the monotonicity cost for DAG-width games.
Furthermore, as explained above, in [HK08] it is shown that monotone strategies in the DAG-width

1Safari actually conjectures that D-width equals directed tree width which would imply cop-monotonicity.

3

or Kelly-width game can be translated into (non-monotone) strategies in the other type of games
(with roughly the same number of cops). It turns out that the translation from Kelly-width games
into DAG-width games actually translates a Kelly-strategy into a weakly monotone DAG-strategy
and hence, by our result, this strategy can further be translated into a monotone strategy (with a
quadratic number of cops). As a consequence, bounded Kelly-width implies bounded DAG-width,
settling one of the open problems in the relation between different width measures. Finally, a
winning cop strategy in weakly monotone DAG-width game induces a decomposition of the graph
of small width, similar to tree width, DAG-width etc. In contrast to DAG decompositions, for
which we do not know whether there exist “small” decompositions (i.e. of size polynomial both in
|G| and in the DAG-width of G), the new decompositions are essentially tress (rather than DAGs)
of size in O(|G|2). Having a simpler structure than DAG decompositions they may be interesting
by themselves both for algorithmical applications and for theoretical research on DAG-width. We
remark that such a decomposition encodes in a compact way a DAG decomposition of width at
most quadratically larger than the optimal one.

Organisation. The paper is organised as follows. In Section 2, after fixing some basic notation,
we introduce graph searching games and prove our first main result, that the cop-monotonicity cost
for directed tree width games are unbounded (Theorem 3.2). As a consequence, we separate directed
tree width from D-width. Our monotonicity results for DAG-width are presented in Section 4 (see
Theorem 4.32). In Section 5, we compare the various directed width measures with respect to
the question whether classes of digraphs of bounded width in one measure have bounded width in
another measure.

2 Preliminaries

We assume familiarity with basic concepts of directed graph theory and refer to [Die12] for back-
ground. The first part of this section serves to review and fix notation and terminology.

We denote the set of positive integers by N and for n ∈ N we write [n] for the set {1, . . . , n}.
The prefix relation on words over some alphabet Σ is denoted by ⊑ and its irreflexive version by ⊏.
The lexicographical order is denoted by � and its irreflexive variant by ≺. We write Σ≤n for the
set of words over Σ of length at most n.

All graphs in this paper are finite, directed and simple, i.e. they do not have loops or multiple
edges between the same pair of vertices. Undirected graphs are directed graphs with symmetric
edge relation, but we write {v,w} for the undirected edge between v and w, i.e. for the pair of edges
(v,w) and (w, v). If G is a graph, then V (G) denotes its set of vertices and E(G) its set of edges.
For a set X ⊆ V (G) we write G[X] for the subgraph of G induced by X and G−X for G[V (G)\X].
The set of vertices reachable from a vertex v ∈ V (G) in G is denoted by ReachG(v). For a set
X ⊆ V (G) we write ReachG(X) for the set {w ∈ V (G) : there is v ∈ X such that w ∈ ReachG(v)}.
For vertices v,w ∈ V (G) we write v ≥ w (or w ≤ v) if w ∈ ReachG(v) and v > w (or w < v) if,
additionally, v 6= w. A path is a sequence of vertices v1, v2, . . . with (vi, vi+1) ∈ E(G) for all i ≥ 0.
A strongly connected component of a digraph G is a maximal subgraph C of G which is strongly
connected, i.e. for all u, v ∈ V (C) we have u ∈ ReachC(v) and v ∈ ReachC(u). All components
considered in this paper will be strong and hence we simply write component. We write e ∼ v if
vertex v is incident with edge e.

We write Ḡ for the underlying undirected graph of G. The depth of an undirected, rooted tree
is the the maximum number of vertices on a path from the root to a leaf of the tree. We write T d

ℓ

for the complete undirected tree of branching degree d and depth ℓ. We assume that the vertices
of a rooted undirected tree of maximum branching degree d are words over {0, . . . , d − 1}, hence

4

the vertex set of T d
ℓ is {0, . . . , d− 1}≤ℓ.

Graph searching games A graph searching game is played on a graph G by a team of cops and
a robber. The robber and each cop occupy a vertex of G. Hence, a current game position can be
described by a pair (C, v), where C is the set of vertices occupied by cops and v is the current
robber position. At the beginning the robber chooses an arbitrary vertex v and the game starts at
position (∅, v). The game is played in rounds. In each round, from a position (C, v) the cops first
announce their next move, i.e. the set C ′ ⊆ V (G) of vertices that they will occupy next. Based
on the triple (C,C ′, v) the robber chooses his new vertex v′. This completes a round and the play
continues at position (C ′, v′). Variations of graph searching games are obtained by restricting the
moves allowed for the cops and the robber. In all game variants considered here, from a position
(C,C ′, v), i.e. where the cops move from their current position C to C ′ and the robber is on v, the
robber would have exactly the same choice of possible moves from any vertex in the component of
G−C containing v. We will therefore describe game positions by a pair (C,R), or a triple (C,C ′, R),
where C,C ′ are as before and R is a component of G− C. We call R the robber component.

Formally a graph searching game on a graphG is specified by a tuple G = (Pos(G), Mvs(G),Mon),
where Pos(G) describes the set of possible positions, Mvs(G) the set of legal moves and Mon specifies
the monotonicity criteria used. In all game variants considered here, the set Pos(G) of positions
is Posc ∪ Posr where Posc = {(C,R) : C ⊆ V (G) , R ⊆ V (G) is a component of G − C} are cop
positions and Posr = {(C,C ′, R) : C,C ′ ⊆ V (G) and R ⊆ V (G) is a component of G − C} are
robber positions.

As far as legal moves are concerned, we distinguish between two different types of games, called
reachability and component games. In both cases the cops moves are Mvsc(G) := {

(

(C,R), (C,C ′, R)
)

:
(C,R) ∈ Posc, (C,C

′, R) ∈ Posr}. The difference is in the definition of the set of possible robber
moves.

Reachability game In the reachability game, Mvs(G) are defined as ReachMvs(G), where ReachMvs(G)
:= Mvsc(G) ∪ {

(

(C,C ′, R), (C ′, R′)
)

: (C,C ′, R) ∈ Posr, (C
′, R′) ∈ Posc and R′ is a component of

G− C ′ reachable from a vertex in R by a directed path in G− (C ∩ C ′)}. I.e. the robber can run
along any directed path in the digraph which does not contain a cop from C ∩ C ′ (i.e. one that
remains on the board).

Component game In the component game, we define Mvs(G) as CompMvs(G), where CompMvs(G)
:= Mvsc(G) ∪ {

(

(C,C ′, R), (C ′, R′)
)

: (C,C ′, R) ∈ Posr, (C
′, R′) ∈ Posc and R′ is a component of

G− C ′ such that R,R′ are contained in the same component of G− (C ∩C ′)}. I.e. in the compo-
nent game, the robber can only run to a new vertex within the strongly connected component of
G− (C ∩C ′) that contains his current position.

Monotonicity The component Mon describes the monotonicity condition and is a set of finite
plays. The cops win all plays (C0, R0), (C0, C1, R0), (C1, R1), . . . in Mon where Ri = ∅ for some i
and the robber wins all other plays. Usually Mon describes cop- or robber-monotonicity; the
latter is defined differently in the component game and in the reachability game: Mon ⊆ cm(G) ∪
rmcomp(G) ∪ rmreach(G). A play (C0, R0), (C0, C1, R0), (C1, R1), . . . is in cmreach(G), called cop-
monotone, if for all i, j, k ≥ 0 with i < j < k we have Ci ∩ Ck ⊆ Cj , i.e. cop-monotonicity means
that the cops never reoccupy vertices. A play (C0, R0), (C0, C1, R0), (C1, R1), . . . is in rmreach(G),
called robber-monotone, if for all i, ReachG−(Ci∩Ci+1)(Ri+1) ⊆ ReachG−(Ci∩Ci+1)(Ri), i.e. once the

5

robber cannot reach a vertex, he won’t be able to reach it forever. Finally, a play is in rmcomp(G),
also called robber-monotone, if Ri+1 ⊆ Ri for all i.

A strategy for the cops is cop- or robber-monotone if all plays consistent with that strategy are
cop- or robber-monotone, respectively.

By combining reachability or component games with monotonicity conditions we obtain a range
of different graph searching games. It follows immediately from the definition that on every digraph
the cops have a winning strategy in each of the graph searching games defined above by simply
placing a cop on every vertex. For a given digraph G, we are therefore interested in the minimal
number k such that the cops have a winning strategy in which no cop position Ci contains more
than k vertices.

Definition 2.1. For any digraph G, we define

• cnG(dtw) as the minimal number of cops needed to win (Pos(G), CompMvs(G), Mon) where
Mon is the set of all finite plays,

• cnG(cmdtw) as the minimal number of cops to win (Pos(G), CompMvs(G),Mon = cmcomp(G)),
• cnG(DAG) as the minimal number of cops needed to win (Pos(G), ReachMvs(G), Mon =
cmreach(G)).

It follows immediately from the definitions that, for all digraphs G, cnG(dtw) ≤ cnG(DAG) and
cnG(dtw) ≤ cnG(cmdtw). The number cnG(cmdtw)− cnG(dtw) is called the cop-monotonicity cost
for the component game on G. Robber-monotonicity cost as well as monotonicity cost for other
game variants are defined analogously.

3 Strong non-cop-monotonicity of directed tree width

Directed tree width can be characterised up to a constant factor by the directed tree width game.

Theorem 3.1 ([JRST01]). The directed tree width of a graph G and cnG(dtw) are within a constant
factor of each other.

Directed tree width is defined by directed tree decompositions (in [JRST01] called arboreal de-
compositions), see ?? for a definition. Such a decomposition can be viewed as a description of a
robber-monotone winning strategy for the cops. The proof of Theorem 3.1 essentially shows that
a winning strategy for k cops can be transfered in a directed tree decomposition of width, roughly,
at most 3k and hence in a robber-monotone winning strategy for approximately 3k cops. It follows
that the robber-monotonicity cost for directed tree width is bounded by a constant factor.

One would expect that the cop-monotonicity cost can be bounded similarly by a slowly growing
function. However, the following theorem shows that the cop-monotonicity cost for directed tree
width cannot be bounded by any function at all.

Theorem 3.2. There is a class {Gn : n > 2} of graphs such that for all n, cnGn(dtw) ≤ 4 and
cnGn(cmdtw) ≥ n.

Proof. Let n > 2. We inductively define a sequence of graphs Gm
n and sets marked vertices

M(Gm
n) ⊆ V (Gm

n) for m ∈ {1, . . . , n+ 1}. We then define Gn as Gn+1
n .

First G1
n is an edgeless graph with a single vertex and M(G1

n) = V (G1
n), i.e. the vertex of G1

n

is marked. Assume that (Gm
n ,M(Gm

n)) has been constructed. Recall that T d
ℓ denotes a complete

undirected tree of branching degree d and depth ℓ. One part of Gm+1
n is a copy of T n+1

n+2 , which has

(n+1)n+2 leaves vs for s ∈ {1, . . . , (n+1)n+2}. The graph Gm+1
n is the disjoint union of T n+1

n+2 and

6

· · ·
..
.

· · ·.· · ·

· · ·
..
.

· · ·
..
.

· · ·.· · ·

· · ·
..
.

· · ·.· · ·

· · ·
..
.

· · ·.· · ·

· · ·
..
.

· · · Gn = Gn+1
n

Hn+1
2 (0n)

Hn+1
1 (0n)

v = 0n

Figure 1: cnGn(dtw) = 4, but the robber wins against n cop-monotone cops. Only the left-most
branch of Gn and the upper part of the left-most branch of Gn

2 (0
n) is shown.

n · (n+ 1)n+2 copies Hm+1
j (vs) of G

m
n where j ∈ {1, . . . , n} and s ∈ {1, . . . , (n + 1)n+2} plus some

additional edges which we describe next. We denote the subgraph T n+1
n+2 of Gm+1

n by T (Gm+1
n).

For every leaf v ∈ {vs : 1 ≤ s ≤ (n + 1)n+2} there is an undirected edge from v to the root
of Hm+1

i (v). Let xm+1
i (v) be the ith vertex on the path from the root of T (Gm+1

n) to v. For all
leaves v of T (Gm+1

n) and all 1 ≤ i ≤ n we add directed edges from xm+1
i (v) to all marked vertices

M(Hm+1
i (v)) of Hm+1

i (v). Finally, for all leaves v of T (Gm+1
n) and all leaves of Hm+1

i (v) we add a
directed edge to v. We define M(Gm+1

n) := V (T (Gm+1
n)). The graph Gn is schematically shown in

?? (edges without arrows mean edges in both directions).

Let us describe a non-cop-monotone winning strategy for 4 cops on Gn. Observe that Gn = Gn+1
n

is an undirected tree with additional edges that connect only vertices of the same branch. In
particular, for each subgraph H i

j(v), if the robber is in H i
j(v) and the cops block the root of

T (H i
j(v)) and xi+1

j (v), then the robber may not leave H i
j(v) as he cannot reenter H i

j(v).
We show that in each play of the game there is a unique sequence

Gn+1
n ,Hn

j(n)(vn),H
n−1
j(n−1)

(vn−1), . . . ,H
1
j(1)(v1)

of subgraphs in which the cops are placed and such that the robber is captured on the unique vertex
of H1

j(1)(v1).

Assume that the root of T (Gn+1
n) is occupied by a cop. Then two additional cops can play in a

top-down manner in T (Gn+1
n) following the robber to his tree branch until the robber is forced out

of T (Gn+1
n) into some Hn

j(n)(v) for some leaf v of T (Gn+1
n). Define vn := v. The cops now occupy

in a first step vn, the root of T (Hn
j(n)(vn)) and xi+1

j(n)(vn). In a second step, they release the cop

from vn and from the root of T (Gn+1
n), as these vertices are no longer available for the robber.

7

Similarly, assume that the root of T (Hn
j(i)(vi)) and xi+1

j(i)(vi) are occupied by cops. As above,

two additional cops can play in a top-down manner in T (Hn
j(i)(vi)) following the robber to his

tree branch until the robber is forced out of T (Hn
j(i)(vi)) into some H i−1

j(i−1)(v) for some leaf v of

T (Hn
j(i)(vi)). Define vi−1 := v. At this point of time, three cops are placed on the graph, one

on vi−1, one on the root of T (Hn
j(i)(vi)) and one on xi+1

j(i)(vi). The cops now first occupy with an

additional cop the root of T (Hn
j(i−1)(vi−1)). They can now release the cop from vi−1 which they

place on xi
j(i−1)(vi−1). Finally they may release the cop from xi+1

j(i)(vi) and thereby establish the
induction hypothesis for i− 1.

In this way the robber is captured at the latest on the single vertex of H1
j(1)(v1).

Now we construct a robber strategy that wins against all cop-monotone strategies for n cops if
n > 2. For a vertex v and subtree T of Gn we say that T is a subtree of v if the root of T is a direct
successor of v. The robber resides on a vertex of T (Gn) that has the least distance to the root of
Gn as long as this is possible. When a cop occupies his vertex v the robber proceeds to a directed
successor of v such that the subtree of v is cop free. Such a successor always exists due to the high
branching degree of Gn. When the robber reaches a leaf wn of T (Gn), every vertex on the path
from the root of Gn to wn has been occupied by a cop. As the length of the path is greater that
the number of cops, there is a vertex xnin(wn) that has been left by a cop. When a cop occupies wn,
the robber goes to Gn

in
(wn). Now on Gn

in
(wn) (which is isomorphic to Gn−1

n) the robber plays in
the same way as on Gn and so on recursively for each m on Gm

im
(wm). Note that until the robber

is captured, there is a path from this vertex to a leaf of Gn and then to all already chosen wj.
Consider a position when the robber arrives at a leaf v of Gn and a cop is landing on this

vertex. Then at most n − 1 cops are on the graph and there is some j such that there is no cop
in T (Gj

ij
(wj)). Thus there is a cop free path from v to wj , then to xjij(wj) within T (Gj

ij
(wj)) and

then via xj−1
ij−1

(wj−1), x
j−2
ij−2

(wj−2), . . . , x
2
i2
(w2) back to v. Note that all those x-vertices are not

occupied by cops by construction. Thus the robber can return to wj and play from wj as before.
In this way the robber will never be captured.

4 Towards monotonicity of the DAG-width game

DAG-width is usually defined by means of DAG decompositions, similar to tree decompositions.
For our purposes a game theoretic characterisation of the DAG-width of a graph G as cnG(DAG)
is more useful, and we take it as a definition and refer to the corresponding game as DAG-width
game. See [BDH+12] for details.

As explained in the introduction, one of the most important open problems in graph searching
is the question whether cop- and robber-monotonicity cost of DAG-width games is bounded by
any function. Towards this goal, we introduce two new constraints for the DAG-width game, weak
monotonicity and a technical notion of shyness.

Weak monotonicity relaxes the winning condition for the cops, so that they win more plays. For a
digraph G we define wm(G) as the set of all finite plays (C0, R0), (C0, C1, R0), (C1, R1), . . . such that
the following condition is satisfied. For all i let c(i) := Ci+1 ∩Ri be the cops which move into the
component of G−Ci currently used by the robber. We call these cops the chasers. All other cops
being placed, i.e. the cops in (Ci+1\Ci)\c(i) are guards. The play (C0, R0), (C0, C1, R0), (C1, R1), . . .
is weakly monotone if for all i and all j with j < i, no vertex in c(j) is reachable by a directed
path from any vertex in Ri in G − (Ci ∩ Ci+1). That is, for weak monotonicity we only require
monotonicity in the cops that are used to shrink the robber space but not in the cops placed outside
of the component to block the paths to previous cop positions. The set wm(G) is the set of all

8

weakly monotone plays on G.
In a shy robber game, the robber can never leave his strong component and therefore has the

same set of possible moves as in the directed tree width game. However, and this is crucial, the
monotonicity conditions are defined based on directed reachability. I.e. the robber can destroy
monotonicity if there is a directed path from his current position to a forbidden vertex. We use the
shy robber games to consider the case in the DAG-width game when the robber decides never to
change his component, even if he could do this: we just enforce him to stay in his component. Of
course, this does not restrict his ability to infur non-monotonicity outside of his component.

Based on weak monotonicity we can now define the following variants of the DAG-width game.

• The weakly monotone game is the game defined by (Pos(G), ReachMvs(G),Mon = wm(G)).
• The weakly monotone shy (robber) game is the game (Pos(G), CompMvs(G),Mon = wm(G)).
• Finally, the strongly monotone shy (robber) game is the game (Pos(G), CompMvs(G),Mon =

cmreach(G)).

We write cnG(shyDAG), cnG(wmDAG) and cnG(wmshyDAG) for the minimal number k of cops
needed to win the corresponding game. The following inequalities are immediate consequences of
the definitions:

cnG(wmshyDAG) ≤ cnG(shyDAG) ≤ cnG(DAG) ;

cnG(wmshyDAG) ≤ cnG(wmDAG) ≤ cnG(DAG).

The following theorem is our main result in this section.

Theorem 4.1. If k cops capture a shy robber in a weakly monotone way, then 18k2 + 3k cops
capture a non-shy robber in a strongly monotone way.

Hence the weak monotonicity cost is bounded by a quadratic function. To prove that the (strong)
monotonicity cost is bounded, it suffices to show that for some function f : N → N a winning strategy
for k cops in the DAG-width game without any monotonicity constraints induces a winning strategy
for f(k) cops against a shy robber in the weakly monotone game. If this is not true, Theorem 4.32
shows that the examples from [KO11] cannot be used to prove this, as the winning strategies used
there are weakly monotone.

4.1 Blocking and the blocking order

Considering the robber whose influence reaches further than his current component (either because
he can leave it or by the weak monotonicity) we study the properties of cops blocking certain
positions from the robber. This is crucial for placing the guards. To make this formal, we define
blocking sets and an order on them, so that we can speak about minimal blocking sets.

Definition 4.2 (Blocking). Let R, M and X be sets of vertices of a graph G. We say that X
blocks R → M if X ∩ R = ∅ and every path from R to M in G contains a vertex in X. When R
and M are clear from the context, we simply say that X is a blocker.

Below, we formulate a few basic properties of blocking. Note that the graph G can, of course,
have cycles. For some X ⊆ V (G) and a path P we say that P is X-free if X ∩ P = ∅.

Lemma 4.3. If X blocks R → M and Y blocks R → X, then Y blocks R → M .

9

M X Y R

Figure 2: Illustration for Lemma 4.3

M Y X R

Figure 3: Illustration for Lemma 4.4

Proof. Assume to the contrary that Y does not block R → M , so there is a Y -free path P from R
to M , see Figure 2. Since X blocks R → M , there is a vertex v on this path which is in X. But then
the prefix up to v of the path P is a Y -free path from R to X, a contradiction to the assumption
that Y blocks R → X.

Lemma 4.4. If X blocks R → M and Y blocks X → M , then Y blocks R → M .

Proof. Assume to the contrary that Y does not block R → M , so there is a Y -free path P from R
to M , see Figure 3. Since X blocks R → M , there is a vertex v on this path which is in X. But
since Y blocks X → M , there must be a vertex in Y on the suffix of P starting from v. This is a
contradiction, as P was assumed to be Y -free.

The following lemma is not used directly in further proofs, but serves as an illustration of the
techniques that will be used later.

Lemma 4.5. If A1 blocks X → M and X blocks A2 → M , then A1 \ A2 blocks X → M .

Proof. The situation is illustrated in Figure 4. Let A = A1 \ A2. Assume to the contrary that A
does not block X → M , so there is an A-free path P from X to M . Since A1 blocks X → M , these
must be a vertex on this path which is in A1. Let w be the last such vertex on P and note that
w ∈ A1 ∩ A2 since P is (A1 \ A2)-free. But, as X blocks A2 → M , there must be a vertex u ∈ X
on the part of P strictly after w. The suffix of P starting from u is then a path connecting X
with M and avoiding A1 (by the choice of w), a contradiction to our assumption that A1 blocks
X → M .

We formulate the following simple observation as a lemma.

Lemma 4.6. Let X be an inclusion-minimal set that blocks R → M . Then for each v ∈ X there
is a path P from R to M such that P ∩X = {v}.

The following is our main technical lemma on blocking.

Lemma 4.7. Let A and B block R → M . Then

10

M A1 X A2

Figure 4: Illustration for Lemma 4.5

M

R

◦ ◦ ◦Brest

Bfree◦ ◦ ◦

× × × × × A′A

A∗

Figure 5: Situation in the proof of Lemma 4.7.

(1) A blocks B → M or

(2) there exists a set B∗ ⊆ A ∪B with |B∗| < |B| which blocks R → B,M , or

(3) there exists a set A∗ ⊆ A ∪B with |A∗| ≤ |A| which blocks A,B,R → M .

Proof. We partition the set B into elements Bfree from which M is reachable via paths which
avoid A and the rest, called Brest, so A blocks Brest → M . Moreover, we let A′ be any inclusion-
minimal subset of A such that the set A′ ∪ Brest blocks R → Bfree. Observe that if A′ = ∅, then
either Bfree = ∅, in which case A already blocks B → M and we are done by ??, or Brest blocks
R → Bfree 6= ∅ and thus R → M , as B blocks R → M , in which case B∗ = Brest is the set we
require in ??. We will now consider the case when A′ 6= ∅. This situation is depicted in Figure 5.
First observe a simple fact.

Claim 1. For every a ∈ A′ there is a B ∪ (A′ \ {a})-free path from R to a.

Proof. As Bfree ∪ A′ blocks Bfree → M , by Lemma 4.6, there is a path P from Bfree to M with
P ∩ (Brest ∪ A′) = {a}. The suffix of P from the last occurrence of a is a path with the desired
properties: it never visits Brest∪A′ and thus also never visits Bfree, as Brest∪A′ blocks Bfree → M .

⊣

We will consider two cases.

11

Case (i): |A′| < |Bfree|.
Define B∗ = A′ ∪Brest – it is smaller than B and blocks B → M , which is ??.

Case (ii): |A′| ≥ |Bfree|.
Define A∗ = Bfree ∪ (A \A′). We claim that A∗ blocks R → M . Assume to the contrary that there
is a path P from R to M which avoids A∗. Since it avoids Bfree and B blocks R → M , this path
must go through Brest. But, since A blocks Brest → M , it must visit A after each visit of Brest.
Let a ∈ A be the last such vertex. Since the path omits A∗, we have a ∈ A′. By Claim 1, there is
a B ∪ (A′ \ {a})-free path P ′ from R to a. Concatenating the P ′ and the suffix of P from a we get
a B-free path from R to M , which contradicts the fact that B blocks R → M . Thus A∗ blocks M
from R.

Now we show that A∗ blocks A,B → M . First, A∗ blocks A′ → M , otherwise there is a Bfree-free
path P0 from A′ to M . Let a′ be the last vertex from A′ on P0. According to Claim 1, there is a
B-free path P1 from R to a′. The concatenation of P1 and the suffix of P0 from a′ is B-free path
from M to R, which contradicts the assumption that B blocks R → M . It follows that A∗ blocks
R → A.

To see that A∗ also blocks R → B, note that A blocks Brest → M and Bfree ⊆ A∗. Finally,
|A∗| ≤ |A| since Bfree is disjoint with A by its definition.

A preorder on blocking sets

The blocking relation induces a partial preorder on sets blocking R → M .

Definition 4.8. Let A and B block R → M in G. We write A ≺R
M B if either |A| < |B|, or

|A| = |B| and A blocks B → M .

Intuitively, the second condition for A ≺R
M B means that A blocks from R as few vertices in

addition to M as possible. From Lemma 4.7 we immediately obtain the following

Corollary 4.9. If A is ≺R
M -minimal and B blocks R → M , then

(1) A blocks B → M or

(2) there exists a set B∗ with |B∗| < |B| which blocks R → B and R → M .

Proof. Assume that the case (3) from Lemma 4.7 holds. Let A∗ be a set with |A∗| ≤ |A| that blocks
A → M , B → M , and R → M . In particular, A∗ blocks A → M , so A is not ≺R

M -minimal.

From Lemma 4.4 we obtain that ≺R
M is transitive, so it is a preorder. Moreover, Corollary 4.9

allows us to show the following lemma.

Lemma 4.10. There is a unique minimal element with respect to ≺R
M .

Proof. Assume that there exist two distinct ≺R
M -minimal sets A and B that block R → M , then

neither A ≺R
M B nor B ≺R

M A. That means, |A| = |B|. Consider the cases given by Lemma 4.7. In
??, A blocks B → M , so A ≺R

M B and B is not minimal. In ??, B∗ ≺R
M B, so B is not minimal as

well. In ??, A∗ ≺R
M A, so A is not minimal.

We will denote the minimal element with respect to ≺R
M , the minimal blocker of R → M , by

mb(R,M).
During the game, it is important to us how minimal blocking sets behave when R becomes smaller

or M becomes bigger, especially in comparison to possible previous blocking sets. The next lemma
allows to compare a minimal set to a possibly non-minimal one.

12

M

A

R

R′

|
B

A′

b

P

P ′B∗

Figure 6: Illustration to Lemma 4.11.

Lemma 4.11. Let A be mb(R,M), let R′ ⊆ ReachG−A(R) and, for the new R′, let A′ be mb(R′,M).
Then A′ blocks R′ → A.

Proof. Let B = ReachG(R
′) ∩ A. It suffices to prove that A′ blocks R′ → B. Apply Lemma 4.7

with Corollary 4.9 to B (as A), A′ (as B), R′ (as R) and M (as M). Consider ??. Assume that
there is a path P from R′ to a vertex b ∈ B that avoids A′. By Lemma 4.6 there is an A \ {b}-free
path P ′ from b to M . Concatenating P with the suffix P ′ from the last occurrence of b in that
path we get a path from R′ to M . As A′ blocks R′ → M , this path goes through A′. As P does
not, there is some a′ ∈ P ′ ∩ A′. As B blocks A′ → M , P ′ visits B after a′. As P ′ ∩ B = {b}, P ′

visits b after a′, but by definition of P ′, it contains b only as the first vertex, which is not a′ ∈ A′,
because a′ ∈ P and P is A′-free.

In Case (3), some set B∗ with |B∗| < |B| blocks A′, B,R′ → M , but A is minimal, so if B∗ 6= B,
we can replace B by B∗ in A to get a blocker R′ → M (because B∗ blocks B → M) with
B∗ ∪ (A \ B) ≺R′

M A. This is impossible, since A is minimal, so B∗ = B. Thus B blocks A′ → M
and we have Case (1).

A similar result is obtained for the case when M grows.

Lemma 4.12. Let A be mb(R,M), let M ′ ⊇ M and, for the new M ′, let A′ be mb(R,M ′). Then A′

blocks R → A and A blocks A′ → M .

Proof. Consider B = {a ∈ A′|M ∩ ReachG(a) 6= ∅} (i.e. B is the part of A′ from which M is
reachable) and apply Lemma 4.7 with Corollary 4.9 to A and B. Case (2) is impossible (replace B
by B∗ in A′, then B∗∪ (A′ \B) blocks R → M ′ and B∗∪ (A′ \B) ≺R

M ′ A′, but A′ is ≺R
M ′-minimal),

so we have Case (1), i.e. A blocks B → M . Then A blocks A′ → M , which shows the second
statement.

Assume that there exists a path P ′ from R to A that avoids B (and thus A′). Let a be the last
vertex on this path. By Lemma 4.6, there is a path P from R to M whose intersection with A is
{a}. Consider the suffix S of P from the last appearance of a. It does not visit B, as A blocks
A′ → M and thus also B → M , so after each visit of B, S would visit A, but P intersects A only

13

R

A′

M ′

|
B

B∗

|

Aa

P ′

S

Figure 7: Illustration to Lemma 4.12.

in a and S does not visit a by definition. Concatenating P ′ with S we get a path from R to M
that avoids A′, which is impossible, as A′ blocks R → M .

4.2 Minimally blocking strategies

In this section we concentrate on a specific kind of strategies for the cops in the shy weakly monotone
game, namely ones that move chasers in the same way, but whose guarding moves are placing the
cops on the minimal blocking set.

Let σ be a strategy for the cops in the weakly monotone shy game on G. We define the minimally
blocking strategy σmb, derived from σ, for possibly more cops than σ, by induction on the length of
play prefixes. This construction also provides a function that maps each history π consistent with σ
to a history πmb of the same length as π that is consistent with σmb such that the following invariants
hold. Let π = (C0, R0), (C0, C1, R0), . . . , P where P = (Ci, Ri) or P = (Ci, Ci+1, Ri), and let
σmb = (Cmb

0 , Rmb
0), (Cmb

0 , Cmb
1 , Rmb

0), . . . , Pmb where Pmb = (Cmb
i , Rmb

i) or P = (Cmb
i , Cmb

i+1, R
mb
i).

(i) Ri = Rmb
i and M(π) = M(πmb),

(ii) after a cop move, i.e. if P = (Ci, Ci+1, Ri), we have Ci+1 ∩Ri = Cmb
i+1 ∩Rmb

i (the chasers are
placed in the same way),

(iii) after a cop move, mb(M(πmb), Ri) ⊆ Cmb
i+1 (the cops occupy the minimal blocker).

Let π[i] be the prefix of π up to position (Ci, Ri). In the first move of the cops, if σ(π([0])) =
σ((∅, R0)) = (∅, C1, R0), with chasers Cc

1 = C1 ∩R0, then we set

σmb(πmb[0]) = (∅, Cc
1 ∪mb(R0, C

c
1), R0),

i.e. we put the chasers and the minimal blocker. Obviously, the invariants hold.
We turn to the inductive step. If the robber is the next to move, then the last position in π has

the form (Ci, Ci+1, Ri) and the next move is to (Ci+1, Ri+1) where Ri+1 is a strongly connected

14

component of (G − Ci+1) with Ri+1 ∩ Ri 6= ∅. As the cops play according to a robber-monotone
strategy, we even have Ri+1 ⊆ Ri. By the inductive hypothesis, the last position in πmb has the
form (Cmb

i , Cmb
i+1, R

mb
i) and Cmb

i+1 ∩Rmb
i = Ci+1 ∩Ri. Thus, in the shy game, the robber has exactly

the same choices for Rmb
i+1 from this position as from the end of π. Therefore we can extend πmb

by (Cmb
i+1, R

mb
i+1) and the conditions (i)–(iii) are satisfied.

Consider now the case that the cops are to move at the end of π, i.e. the last position in π has
the form (Ci, Ri). Let σ(π[i]) = (Ci, Ci+1, Ri), with chasers Cc

i+1 = Ci+1 ∩Ri. We set

σmb(π[i]) = (Cmb
i , Cc

i+1 ∪mb(Rmb
i ,M(π[i])) ∪mb(Rmb

i−1,M(π[i − 1])), Rmb
i) .

Intuitively, we place the same chasers as σ, occupy the current minimal blocker and additionally
the previous minimal blocker. It is straightforward to see that all conditions (i)–(iii) are satisfied.

The construction above defines the strategy σmb and the corresponding plays, but we are, of
course, interested in strategies that are still weakly robber-monotone. Strategy σmb is even strongly
robber-monotone.

Lemma 4.13. Let σ be a strategy for cops in cnG(wmshyDAG). Then the strategy σmb is robber-
monotone.

Proof. Every blocking set mb(Ri,M(π[i])) blocks Ri → M(π[i]), so vertices that have been occupied
by the chasers are not available for the robber. By Lemma 4.11 and Lemma 4.12 previous blocking
sets are blocked by later blocking sets as Ri becomes smaller and M(π[i]) becomes bigger.

Let us calculate the number of cops used by σmb.

Lemma 4.14. Let σ be a winning strategy for k cops in the weakly monotone shy game on G.
Then σmb is a winning strategy for 3k cops in the (strongly monotone) shy game on G.

Proof. The strategy σmb is monotone by the previous lemma, and by property (i) of the definition,
the components available for the robber correspond to those in plays consistent with σ, thus σmb

is winning for the cops. To calculate the number of cops used by σmb, recall that the set of cops
placed in step i is Cmb

i+1 = Cc
i+1∪mb(Rmb

i ,M(π[i]))∪mb(Rmb
i−1,M(π[i−1])), Rmb

i), where Cc
i+1 were

the chasers placed by σ, i.e. the set Ci ∩Ri, where Ci are all cops placed by σ in the corresponding
position. Since σ was a weakly monotone strategy, the set Ci blocks Ri → M(π[i]), and the previous
Ci−1 blocked Ri−1 → M(π[i− 1]). Thus |mb(Ri,Mi)| ≤ |Ci| ≤ k and |mb(Ri−1,Mi−1)| ≤ |Ci−1| ≤
k, and, of course, |Cc

i+1| ≤ k. Therefore |Cmb
i+1| ≤ 3k.

Corollary 4.15. cnG(wmshyDAG) ≤ cnG(shyDAG) ≤ 3 · cnG(wmshyDAG)

To convince oneself that these inequalities are not trivial, and that blocking minimally makes a
difference, consider the following lemma.

Lemma 4.16. There are graphs on which the cops have to make more than one guarding moves
successively in order to win in the weakly monotone shy game, respectively in the strongly monotone
game with the least possible number of cops.

Proof. Let n ≥ 6. Consider the graph Gn depicted in Figure 8 (recall that edges without arrows
denote edges in both directions). Arrows that connect parts of the graph enclosed in a rectangle
lead to or from all vertices of the graph. The graph consists of a vertex c0 and n parts Ai that
are isomorphic to each other and connected only to c0 and in the same way. Every Ai consists of

15

c0

A0 A1

. . .

An−1

c1 c1

c2 c2 c2

B1

g0

g1 g1R
. . .

Bn−1

Figure 8: The cops need more than one guarding move in a row.

a 2-clique with vertices labeled in the picture with c1 and a 3-clique with vertices labeled in the
picture with c2 that are connected to each other and to c0. Further, Ai contains n parts Bj . Each
Bj contains a 3-clique R, a single vertex labeled with g0 and a 2-clique with vertices labeled with
g1. The connections are shown in the figure.

If the cops are allowed to make multiple guarding moves in a row, 6 of them suffice to capture
the robber strongly (and thus weakly) monotonously. One cop is placed on c0 (a chasing move),
the robber chooses a component Ai. Then the cops occupy vertices c1 and c2 in further chasing
moves, the robber chooses a part Bj in Ai. Then the cop from c0 goes to g0, which is a guarding
move, and then the cops from c1 go to the both vertices g1. Note that if the robber remains in R,
placing cops on g1 is again a guarding move. Finally, the cops from c2 capture the robber in R.
Note that if there are 7 cops, it is possible to place this additional cop on a vertex in R instead of
making the second guarding move and then win as before.

If the cops are not permitted to make two guarding moves in a row, the robber has the following
winning strategy in the weakly (and thus strongly) monotone game against 6 cops. In the first
move, the robber occupies c0 and waits there until it is occupied by a cop. In that moment, there is
a cop free component Ai (as there are 6 cops and 6 components A0, . . . , An−1, but one cop occupies
c0). The robber goes to that cop free component Ai and waits on the 5-clique that is build by
vertices c1 and c2. When the cops occupy this clique, there is a cop free part Bj in Ai and the
robber runs there. Note that cops on the clique are chasers, so the only free cop is that from c0. If
he is placed in R, the robber stays, some other cop must move up, and the cops lose. If he is placed
on one of the vertices g1 (which is a guarding move), as no second guarding move is allowed, the
only possible next move for cops is to place the one from g1 on R – and lose as before. Hence, we
can assume that the cop from c0 is placed on g0, a guarding move. The next move must be chasing
and the only possibility is to place a cop from c1 in R. Now the cop on g0 cannot be taken away,
as a path to c1 would be cop free, and the cops on c2 are still bound as well. So is the cop in R
(his move was chasing). Thus there is only one free cop (on c1). He makes a guarding move, then
a chasing move to R and the cops lose.

16

4.3 Decomposition

Our next goal is to define a decomposition of graphs in the spirit of [JRST01] for the strongly
monotone shy game. Let G be a graph. A shy-monotone tree decomposition of G is a tuple (T,C,R)
where T is a directed tree with root r and edges oriented away from the root, and C,R : V (T) → 2G

are functions with the properties listed below, which intuitively correspond to the placements of
the cops and the component of the robber. For a node t ∈ V (T) we write ch(t) for the set of chasers
corresponding to t, i.e. ch(t) = C(t) ∩ R(t), and we denote by g(t) the guards, g(t) = C(t) \R(t).
Moreover, we write m(t) for the union

⋃

s�t ch(s), i.e. for the set of all chasers from the nodes
above t in T .

(1) For the root r, R(r) = V (G).

(2) For every (t, t′) ∈ E(T), R(t′) is a strongly connected component of R(t) \ ch(t).

(3) For every t ∈ V (T) if t1, . . . , tn are all direct successors of t, then

R(t) = ch(t) ∪
n
⋃

i=1

R(ti).

(4) For every (t, t′) ∈ E(T) holds:

m(t) ∩ ReachG−(C(t)∩C(t′))R(t′) = ∅,

i.e. there is no path from R(t′) to m(t) avoiding C(t) ∩ C(t′).

Note that from Item (1) and Item (3) it follows that every vertex of G is contained in the image
of ch,

⋃

ch(V (T)) = V (G). Indeed, for a node t without successors, we obtain from Item (3) that
R(t) = ch(t), and applying this item inductively proves that, for each node t, the component R(t)
is covered by

⋃

t�t′ ch(t
′). Since, by Item (1), in the root R(r) = V (G), we have

⋃

ch(V (T)) = G.

The width of a shy-monotone tree decomposition (T,C,R) is defined as max
{

|C(t)| : t ∈ V (T)
}

.

Proposition 4.17. Let G be a graph. The following statements are equivalent.

(1) k cops capture the robber in the shy-monotone game on G.

(2) There is a shy-monotone tree decomposition (T,C,R) of G of width k.

Proof.

(1) ⇒ (2). Let σ be a strategy for k cops on G. We construct (T,C,R) inductively, starting with
the root r with R(r) = V (G) and we set C(r) to the first placement of the cops chosen by σ.
We continue the construction by following a play consistent with σ in each component chosen
by the robber, and setting C(t′) to the vertices occupied by cops placed if the robber makes
the respective move to R(t′). Items (2) and (3) follow from the general definition of the game,
while Item (4) follows from the game being weakly-monotone.

(2) ⇒ (1). From the decomposition (T,C,R) we construct a strategy σT . The first move of the cops
is to C(r), where r is the root of T . For each move of the robber to R′, the cops respond with
the move to C(t′), where t′ is the successor of t with R(t′) = R′. Items (2) and (3) guarantee
that this strategy is well defined, while Item (4) guarantees that it is winning. Obviously, the
number needed cops is the width of the decomposition.

17

split(v,w)

vw

m(split(v,w))

Figure 9: The order ⊳ ”to the right of”.

We continue with an analysis of the decompositions. Let σ be a strategy for the cops in the
shy-monotone game on G and T the corresponding decomposition tree. For a non-empty set of
vertices A there is a unique split vertex split(A) which is the latest common predecessor of all
vertices of A. We also write split(a, b) for split({a, b}) and split(a,A) for split({a} ∪A).

The proof of the next lemma is easy and we omit it.

Lemma 4.18. If weak DAG-width of a graph G is k, then there is a winning strategy σ for the
cops that always prescribes to place exactly one cop in a move, i.e. if (M,C,R) → (M ′, C,C ′, R) is
a move according to σ, then |C ′ \ C| = 1.

It follows that we can turn any shy-monotone tree decomposition into one with |ch(t)| = 1 for
all t ∈ V (T).

Corollary 4.19. For every graph G with cnG(wmshyDAG) = k there is a shy-monotone tree
decomposition (T,C,R) of width k where for all t ∈ V (T), there is a vertex w ∈ V (G) with
|ch(t)| = {w}.

We define an order on the vertices of a graph that corresponds the order in which the robber
is chased in some plays which are played according to T . Let G be a graph and let T be its shy-
monotone tree decomposition with |ch(t)| = {t}, for each t ∈ V (T). Let v and w be two vertices of
the graph. We say that w is to the right of v (and v is to the left of w) and write v ⊳ w if

1) w is on the path from the root of T to v, or

2) there is a path from w to v in G−m(split(w, v)).

In other words, w is to the right of v in G if, in a position in which a chaser occupies w, there is a cop
free path from w to v. In the decomposition, we have in that case either v ∈ R(w) and w /∈ R(v),
or split(v,w) /∈ {v,w} and there is a path from w to v that avoids vertices above split(v,w), see
Figure 9 for the explanation of our terminology.

Clearly, ⊳ is a partial order. We abuse the notation and denote any linearisation of ⊳ also by ⊳.
As a next step, we show a simple, but useful property of a shy-monotone tree decomposition.

Informally, the following lemma says that there is no path from left to right in the decomposition
tree which avoids common predecessors of the first and the last vertices on the path.

18

Lemma 4.20. If v ⊳ w and split(v,w) /∈ {v,w}, then m(split(v,w)) blocks v → w.

Proof. Let P be a path from w to v and let P ′ be a path from v to w. We show that P ′ ∩
m(split(v,w)) 6= ∅. Let u ∈ G be a vertex in P ′ such that split(u,w) has a minimal distance
from the root of the decomposition tree. Then P ′ ⊆ R(split(u,w)). Indeed, if there is a vertex
u′ ∈ P ′ \ R(split(u,w)), then split(u′, R(split(u,w))) is nearer to the root than split(u,w) (by
Item (2) of the definition of a shy-monotone tree decomposition) and thus nearer than split(u,w)
(as w ∈ R(split(u,w))) contradicting the choice of u.

As split(v,w) /∈ {v,w} and by the definition of split(·), u and w are in different components of
R(split(u,w)) − split(u,w). As there is a path from w to u (concatenate P with with prefix of
P ′ up to u), there is no path from u to w in R(split(u,w)) − split(u,w), i.e. split(u,w) ∈ P ′, so
P ′ ∩m(u,w) 6= ∅. By the choice of u, we have m(u,w) ⊆ m(v,w), so P ′ ∩m(v,w) 6= ∅.

If the robber leaves his component, he moves from the right to the left in the decomposition tree.
By property (2) he can return to his left component only via ch(t) for some. However ch(t) are
vertices where there are or have been chasers, so a winning cop strategy does not allow the robber
to visit them. Thus he cannot return.

Lemma 4.21. For every winning strategy σ in the weakly monotone game in every play π =
(C0, R0), (C0, C1, R0), . . . consistent with σ, if the robber leaves a component R with a move (Ci, Ci+1, Ri) →
(Ci+1, Ri+1), then the cops on Ci ∩ Ci+1 block Ri+1 → R. Thus the robber will never be able to
enter Ri again.

It is not known whether determining the DAG-width of a graph is solvable in non-deterministic
polynomial time. For weak DAG-width, however, it is. The argument is that shy-monotone tree
decompositions have polynomial size in the size of the graph.

Theorem 4.22. Given a graph G and a natural number k, it is in NP to decide whether G has
weak DAG-width at most k.

Proof. The algorithm guesses the decomposition tree, which has size O(|G|2) (because for each new
chaser the guards have to be moved at most at most |G| many times) and checks in polynomial
time whether it is correct.

4.4 From shy to weakly monotone game, shy-similar strategies

First we define some conditions on the players’ strategies that can be assumed without loss of
generality.

Definition 4.23. A chasing (guarding) move of cops is a move where only chasing (guarding) cops
are placed. (Note that both sorts of cops may be taken.) A cop strategy is pure if it consists only
of guarding and chasing moves (and has no mixed moves).

Lemma 4.24. If k cops have a winning strategy, then k cops have a pure winning strategy.

Proof. Assume an arbitrary winning strategy f for k cops in the weakly monotone game on a
graph G. At the beginning, only chasing moves are possible. Later on, instead of a mixed move
(C, v) → (C,C ′, v) ,where Cc = (′\C)∩cmpt(v,C) are the new chasers and Cg = (C ′\C)\cmpt(v,C)
are the new guards, make first the guarding part, i.e. place cops on Cg of the move. If the robber
changes his component, take the cops from G away and continue translating the strategy as if the
robber went to the new component one move ago, i.e. before the cops move to C ′. This is possible,

19

as the cops were guarding and thus did not change the component and thus the resulting position
is still consistent with f . Note that the number of times the robber changes his component is finite.
So assume w.o.l.g. that the robber remains in his component. Then the cops make the chasing
part of their move, i.e. the cops are placed on C. It is easy to see that every robber move leads
to position that is consistent with f . Further, no strong non-monotonicity occurs. Thus the new
strategy is winning for the cops.

Lemma 4.25 (cf. [PR10], Lemma 8). In a weakly monotone DAG-width game, if the robber has a
winning strategy σ against k cops, then he also has a strategy that never prescribes to change his
component if no cop was placed on a vertex reachable for the robber in the previous move.

Proof. Assume that σ prescribes to move to a component C although no cop was placed in the
reachability region of the robber. Change the strategy such that the robber never moves in such
positions. Obviously, some cop eventually must be placed in the region, otherwise the robber wins.
After this, the robber can still move to the same component of the current position as from C.

Proposition 4.26. If k cops have a winning strategy in the strongly monotone shy robber game
on G, then 2k cops have a winning strategy in the weakly monotone game on G.

Proof. We say “shy game” for the strongly monotone shy robber game and “weak game” for the
weakly monotone game. We translate the moves of the robber from the weak game to the shy game
and the moves of the cops vice versa. Let σ be a pure winning strategy for the cops in the shy
game. We describe the new shy-similar strategy shy-sim(σ) for the weakly monotone game.

Consider a robber move (M ′, C,C ′, R) 7→ (M ′, C ′, R′) in the weak game. If R′ ⊆ R, then we
translate the move as (M ′, C,C ′, R) 7→ (M ′, C ′, R′) and take the next move according to σ, so
that nothing changes with respect to σ. Otherwise, i.e. if R′ is not a subset or R, we consider the
latest move (Mi, Ci, Ri) 7→ (Mi+1, Ci, Ci+1, Ri) of the cops, such that Ri ⊇ R′. (Since it is the
latest such move, we know that Ri+1 6⊇ R′.) As σ is strongly monotone, Mi is blocked from R′ by
C ′ \R. Furthermore, M ′ \Ci+1, i.e. the set of vertices where chasers have been placed after position
(Mi+1, Ci, Ci+1, Ri), is not reachable from R′ either. Let us place all the guards for the position
where R′ appears in the continuation of the play from (Mi+1, Ci, Ci+1, Ri) towards R′. Due to
Lemma 4.25 we can assume that the robber remains on R′ during this time. After this move, we
remove the other guards (here weak non-monotonicity can occur) and place the chasers as in the
position for R′. This is the only place where (weak) non-monotonicity occurs. We have the same
position that would occur if the robber would have moved to R′ in the shy-monotone game, and
we continue to play σ from there.

Definition 4.27. A winning strategy σ′ is shy-similar if there is a winning strategy σ for the
cops in the strongly monotone shy robber game such that σ′ = shy-sim(σ) where shy-sim(σ) is the
strategy that is constructed from σ as shown in Proposition 4.26.

Corollary 4.28. If k cops win the weakly monotone cops and robber game on G, then 6k cops win
the weakly monotone game on G.

Proof. If cnG(wmDAG) ≤ k, then cnG(wmshyDAG) ≤ k because the cops can use the same winning
strategy. By Corollary 4.15, cnG(shyDAG) ≤ 3k and by Proposition 4.26, cnG(wmDAG) ≤ 6k.

20

4.5 Strongly monotone strategies: two attempts

In this section, we use the decomposition defined above to construct a strongly monotone winning
strategy for a bounded number of cops. Our construction is a combination of two approaches:
leaving tied cops and freezing the context. Leaving cops is a transformation of a strategy σ by not
removing tied cops, i.e. those wo must be removed according to σ, but whose removal would imme-
diately lead to strong non-monotonicity. Freezing the context changes a given strategy by marking
the current robber component R and playing further only in R, i.e. omitting any changes outside
the component, until the robber leaves R or is captured: the cops outside of R are “frozen”. In
particular, no cops are placed outside the robber component. Obviously, both transformations pro-
duce strongly monotone strategies, but may use more cops than σ. In the following we define both
approaches formally and show that, first, both taken independently lead to an unbounded number
of additional cops they introduce, but, second, they can be combined into one transformation that
uses only a quadratic number of additional cops.

4.5.1 Leaving tied cops is not enough

To make precise which cops are tied, we define the front of a subset X of vertices of a graph G
with respect to R. Let X,R ⊆ G, X ∩R = ∅. Then the front frontG(R,X) is the inclusion minimal
subset of X that blocks R → X in G. If R = {v}, we also write frontG(v,C). Let us prove that
this set is unique. Indeed, assume that two distinct minimal subsets X0 ⊆ X and X1 ⊆ X block
R → X. Then w.l.o.g. there is a vertex v ∈ X0 \X1. As X0 is minimal, there is a X0 \ {v}-free
path from R to v. As X1 blocks R → X, this path goes through a vertex w ∈ X1 \X0. However
the prefix of the path from R to w is X0-free, which contradicts that X0 blocks R → X.

The leaving-cops strategy σlc is as σ, but it leaves the cops from frontG(v,C) on their vertices.
Here v is the robber vertex and C is the placement of the cops. More formally, we define σlc as
a memory strategy. The memory stores the cop placement we would have playing according to σ.
So a memory state is a set P ⊆ V . Initially, P = ∅. When the robber moves, P does not change.
In a position (C, v) with a memory state P , the new strategy prescribes to move as if the position
was (P, v), but removing only those cops that are not reachable from the robber vertex. In other
words,

σlc(C, v) = frontG(v,C ∪ σ(P, v)) .

Obviously, if σ is a strongly monotone winning strategy for k cops, then σlc is strongly monotone
winning strategy for k cops. If σ is a weakly monotone winning strategy, then so is σlc, but σlc may
use more cops.

It is not a priori clear whether there is a class of graphs and a strategy σ such that σ uses a
bounded and σlc an unbounded number of cops on graphs from that class. However, we show in
this subsection that σlc can be arbitrarily bad compared to σ. The idea is to iterate the argument
from [KO08], with the (rough) correspondence between the graph G2 in Figure 10 and their graph
Dp (Figure 1 in [KO08]) as follows. The component C1 in G2 corresponds to C0 in Dp, the
component R1 corresponds to C2 in Dp, A1 corresponds to C1

1 , and finally C2 in G2 to C2
1 in Dp.

Disregarding the sizes, the only Dp-edges missing in G2 are between C1
1 and C0, which corresponds

to connecting A1 and C1 in G2. While adding an edge from C1 to A1 is possible in G2, it is essential
that no A1 → C1 edge is present. But these edges, corresponding to C1

1 → C0 edges in Dp, are not
important in Dp.

Lemma 4.29. Let m ≥ 1. There is a class of graphs (Gn)n>0 and winning strategies σn for 4m
cops such that σn

lc uses 4m2(n− 1) cops.

21

C1 C2
. . .

Cn−1 Cn

R1 R2
. . .

Rn−1 R− n

a1 a2
. . .

an−1 an

Figure 10: Strategy σlc uses an unbounded number of additional cops.

Proof. Consider the graph Gn in Figure 10. It consists of n cliques C1, . . . , Cn of size 2m, n cliques
R1, . . . , Rn of size 3m, and n independent sets A1, . . . , An of size m (we could also take cliques
instead of independent sets). Each clique Ci is connected to the clique Ci−1, for i = 2, . . . , n, i.e.
there are edges from every vertex of Ci to every vertex of Ci−1. Furthermore, each Ci is connected
to Ri, each Ri to Ai, and each Ai to Cn for i = 1, . . . , n. Finally, each Ai is connected to Aj for
i = 2, . . . , n and j < i.

The strategy σn is as follows. At the beginning, 2m cops occupy C1. We can assume that the
robber goes to R1 because all other components are reachable from R1. Then m cops occupy
A1. If the robber remains in A1, the cops from C1 go to R1 and capture the robber. The other
possibility for the robber is to switch to the component that contains C2. Now the cops from A1

are taken away from the graph (inducing weak non-monotonicity). The robber can only remain in
his component. Then 2m new cops occupy C2, the robber goes to R2, m cops from C1 occupy A2,
the robber switches to the component containing C3, the cops are taken from A2 and the rest of
C1 and placed on C3 and so on. In the last step, the cops occupy Cn, the robber is in Rn and m
cops occupy Aa. The robber switches to some Ai, but the cops from An expel him from any Ai and
the robber is captured in A1. Note that in every move during the described game, An and thus all
Ai are reachable from the robber component. Hence, the robber sticking to the same strategy as
above (always switching to the new Ci), the strategy σn

lc prescribes to leave cops on all Ai.

4.5.2 Freezing the context is not enough

Given a strategy σ, the context freezing strategy σ^ is obtained from σ as follows. We define two
memory variables: P stores the placement of cops as if we played according to σ (analogously to
the case of σlc) and R = (R1, . . . , Rn) is a stack of memorized robber components with Ri+1 ⊂ Ri,
for all i. Initially, P = ∅ and R = () is the empty stack. A robber move (C,C ′, v) → (C ′, w) does
not change P and R = (R1 . . . , Ri) is updated by deleting all Rj with w /∈ Rj.

For the cop move, let (C, v) be a position in a play consistent with σ^ played so far and let P
and R = (R1, . . . , Ri) be the current memory state. The variable P is updated to σ(P, v). We

define σ^ by

σ^(C, v) =
(

C \ cmptG(v,C)
)

∪
(

σ(P, v) ∩ cmptG(v,C)
)

,

i.e. “the context” (G− cmptG(v,C)) is not changed and we place cops as prescribed by σ, but only

22

. . .

. . .

. . .

. . .

...

...

...

...
...

Figure 11: DAG-w(Gn) = 4 but the robber wins against n cops if they never guard.

within the robber component. If (σ(P, v) ∩Ri) \ cmptG(v,C) = ∅ (all cops are placed outside the
robber component), the stack R remains unchanged. Otherwise we push cmptG(v,C) on the stack,
thus freezing the new context.

The next lemma states that changing an arbitrary weakly monotone winning strategy σ to σ^

may introduce an unbounded number of additional cops: it is essential that the cops are placed
also in the context. The counter examples are double trees, shown in Figure 11.

Lemma 4.30 ([PR11]). There exist graphs Gn, for all n ∈ N, such that DAG-w(Gn) ≤ 4 but every
winning strategy of the cops which is restricted to place cops only inside the robber component uses
at least n+ 1 cops.

Sketch. Let, for i ∈ {0, 1} and 0 < m,n ∈ N, A(i,m, n) = ({1, . . . , n} × {i})≤m be the set of
all sequences of length at most m over the alphabet {1, . . . , n} labeled with i (the labeling is
used only to distinguish vertices). Let, for a v = (v0, i), . . . , (vl, i) ∈ A(i,m, n), v′ be the word
(v0, 1 − i), . . . , (vl, 1 − i) ∈ A(1 − i,m, n). Consider the following class of directed graphs Gn =
(Vn, En) for 0 < n ∈ N (see Figure 11). Hereby Vn = T 0

n ∪ T 1
n where T 0

n = A(0,m + 1, n) and
T 1
n = A(1,m+ 1, n). The edges are defined by En = E0

n ∪ E1
n ∪ E′

n. Hereby E0
n = {(v, vj), (vj, v) :

v ∈ A(0, n, n), j ∈ A(0, 1, n)}, E1
n = {(vj, v) : v ∈ A(1, n, n), j ∈ A(1, 1, n)}, and E′

n = {(v, v′) : v ∈
A(0,m+ 1, n)} ∪ {(vj, v′) : v ∈ A(1, n, n), j ∈ A(1, 1, n)}.

The first statement of the theorem is easy to see. For the second one, note that it makes no sense
for the cops to leave out holes, i.e. to place cops on subtrees of (T 0

n , E
0
n) rooted at a vertex v ∈ T 0

n ,
but not on v. Indeed, due to the high branching degree, the robber can switch between subtrees of
v going into those having no cop in them until v is occupied by a cop. Clearly, in this position, there
is no need to have cops in subtrees other than the one with robbers in it. So we can assume that
the cops play top-down, i.e. they never leave out holes. Then the robber strategy is just to stay in
the left-most branch. Note that after a vertex v ∈ T 0

n is occupied by a cop the vertex v′ ∈ T 1
n is not

in the SCC of the robber any more. It is easy to see that more and more cops become bounded,
i.e. for every cop on a vertex v, there is a cop free path from the robber vertex to v.

4.5.3 Combining leaving cops and freezing

In this section we define a translation of a winning strategy in the weakly monotone game to a
winning strategy in the strongly monotone game. Our solution is a combination of the approaches
discussed in the previous sections. First we describe the strategy informally.

Recall that frontG(R,X) is the inclusion minimal subset of X that blocks R → X in G. The

combined strategy σ^lc is obtained from σ as follows. Recall that robber components are defined

23

with respect to the set M of vertices that have been occupied by chasers. The cops start to play
sticking to σ until the robber changes his component. If σ prescribes to remove a cop from some
vertex v such that weak non-monotonicity occurs, the cop is not removed (and neither any other
tied cops, but let us concentrate on v for now). The cops play further according to σ as if the tied
cops were removed until the robber chooses a component R such that v /∈ R. If that never happens
and the robber always chooses the component containing v, then a new cop, say occupying w, can
be tied only if the cop on v becomes not tied (and we can continue with w in place of v). Indeed,
if σ is strongly monotone against a shy robber, a cop can become tied only if the (now not shy)
robber changes his component; if the robber component R contains v and the robber leaves R
towards some R′, then v is not reachable from R′ by Lemma 4.21.

When we have v /∈ R, the context of R is frozen. In that position we have at most k cops in the
context of R including v. Now the cops play according to σ restricted to R until the robber leaves
it, or he is captured. Hereby, if a cop becomes unreachable from the robber vertex, he is removed
from the graph and can be reused later. If the robber leaves R and enters another component R′,
the placement of the cops outside R is still the same as when the robber chose R (and not R′), so
he will be captured in or expelled from R′ and from any other such component in the same way as
for R, and the cops win.

It remains to see that the new strategy uses at most k2 cops. Our argument is that any tied cop
becomes untied before k2 other cops become tied. When a cop on v is tied, we freeze at most k
cops and continue to play only within R. Up to the position when according to σ the last kth
cop enters R, we have enough cops by induction on the number of cops used by σ: we need at
most (k − 1)2 = k2 − (2k − 1) cops. If the robber is already captured in R, we are done. If he
leaves R before the kth cops enters R according to σ, we argue for his next component as for R.
For the (most interesting) case that the kth cop comes to R, we are going to show that the cop
tied at the beginning, i.e. that on v, is now untied. If the cop on v was still tied, he would be in
particular reachable from the robber vertex, so the robber can leave R. We will see that then he
can also reach some vertices that induce strong non-monotonicity, which contradicts the fact that σ
is weakly monotone.

The combined strategy Let σ be a shy-similar strategy. We define the combined strategy σ^lc by
induction on the maximal number of cops that appear in a play consistent with σ. The combined

strategy uses the same memory as σ^: it keeps track of a play consistent with σ by memorizing a
cop placement P and stores the history of freezing in a stack R. If p is a position, then P (p) and
R(p) are the values of P and R, respectively, in position p. At the beginning of a play, P (∅) = ∅
and R(∅) = (). A robber move (C,C ′, v) → (C ′, w) does not change P and R = (R1 . . . , Ri) is
updated by deleting all Rj with w /∈ Rj.

For the cop move, let (C, v) be a position in a play consistent with σ^lc played so far and
let R(C, v) = (R1, . . . , Ri). The variable P is updated to σ(P, v). In the cop move, there are

two differences to σ^. The more substantial one is that now the cops are placed also outside the
robber component, but still not outside Ri. The other one is that we can change the cop placement
in the context removing some cops if this does not directly lead to non-monotonicity. Note that

removing those cops could also be performed for σ^. We did not do it to keep the description

of σ^ simpler, but this would not make σ^ work. Formally we define

σ^lc (C, v) := frontG(v,C) ∪ (σ(P (C, v), v) ∩Ri) .

Note that within Ri, even σ prescribes only strongly monotone moves and removes unreachable

24

cops, so we could represent σ^lc in a way more similar to σ^:

σ^lc (C, v) = (Ĉ \Ri) ∪ (σ(P (C, v), v) ∩Ri)

where Ĉ = C ∩ frontG(v,C).
We update the stack R by pushing cmptG(v,C) on R if (σ(P (C, v), v) ∩ Ri) \ cmptG(v,C) 6= ∅

and let R unchanged otherwise.

As frontG(v,C) ⊆ σ^lc (C, v), it is immediately clear that σ^lc is strongly monotone. It also

guarantees a capture of the robber because σ^ does it and σ^(C, v) ⊆ σ^lc (C, v), so σ^lc prescribes

to place a cop into the robber component again and again. We have to prove that σ^lc uses at
most k2 cops.

Lemma 4.31. If σ is a shy-similar winning strategy for k cops, then σ^lc uses at most k2 cops.

Proof. We show that, for every shy-similar winning strategy σ for k cops in the weakly monotone

game and every graph G, every tied cop in a play consistent with σ^lc on G becomes not reachable
from the robber vertex before k2 new cops are tied. Clearly, this implies the statement of the
lemma.

The proof is done by induction on k. Without loss of generality, assume that G is strongly
connected (otherwise repeat the argument for every strongly connected component). Consider a

fixed play π consistent with σ^lc . If k = 1, then there are no tied cops and the statement is trivial.
Let k > 1. Let (C0, C1, v0) → (C1, v1) be a move in π such that R0 = R(C0, v0) = (R1, . . . , Ri)
and R1 = R(C1, v1) = (R1, . . . , Rj) with j ≤ i. Assume that the move results in a new tied cop
on v ∈ C1.

Either v is in the robber component until the end of π, or not. We show that in the first case
there are no further tied cops, so we are done. As σ is shy-similar, tied cops appear only when
robber changes his component, compare the proof of Proposition 4.26. If another cop on w becomes
tied, then the robber changes his component, say from R1 to R2. But then either v /∈ R1, or v /∈ R2,
so there is a position in that the robber is not in the same component as v.

For the other case, let (C2, C3, v2) → (C3, v3) be the first move such that v /∈ cmpt(v3, C3).
Let R(C3, v3) = (R0, . . . , Rm). Without loss of generality we can assume that the rest of π is
played in Rm. Otherwise, until the robber leaves Rm and goes to some component R′, cops are
placed only in Rm, which is not reachable from R′ without introducing strong non-monotonicity
(by Lemma 4.21), so we would repeat our arguments for Rm for R′.

Until σ prescribes to place k cops in Rm, i.e. while |σ(P, v)∩Rm| < k, by the induction hypothesis
for σ and Rm, we have at most (k − 1)2 tied cops. Note that Rm is strongly connected, so we do
not violate our assumption that the graph on that we play is strongly connected. Consider the
first move (C4, v4) → (C4, C5, v4) with |P (C5, v4) ∩ Rm| = k. We want to show that then v if not
reachable from v4, which means that the cop on v is not tied any more.

As G is strongly connected, there is a path P from v to v4 in G. Recall that v /∈ Rm by the
case distinction, but by our assumption that the remaining of the play takes place in R4, we have
v4 ∈ Rm. If v were reachable from Rm in G − P (C5, v4), by Lemma 4.21, cops outside of Rm

block {v4} → Rm. However, in position (P (C5, v4), v4) all cops are in R4, a contradiction.

We can count the number of additional cops more accurately. For the first tied cop we need to
freeze at most k new cops, for the next tied cop at most k − 1 cops and so on, so in total, we can
come up with k2/2 + k/2 cops. Finally, we obtain the desired result.

25

Theorem 4.32. If k cops have a winning strategy in the weakly monotone shy robber game, then
18k2 + 3k cops have a winning strategy in the strongly monotone game.

Proof. Assume that k cops have a winning strategy σ in the weakly monotone shy robber game.
Then by Corollary 4.15 mb(σ) is a winning strategy for 3k cops in the strongly monotone shy
robber game. By Proposition 4.26 one needs 2 · 3k = 6k cops to win weakly monotonically. Finally
one needs ((6k)2 + 6k)/2 = 18k2 + 3k cops to win strongly monotonically.

5 Comparing Width Measures with Respect to Generality

This section is devoted to the question, given two measures a and b, whether the class of graphs
with bounded values of a is a subclass of the class of graphs with bounded values of b.

5.1 Comparing DAG-width and Kelly-width

Kelly-width is a complexity measure for directed graphs introduced by Hunter and Kreutzer
in [HK08]. Kelly-width is similar to DAG-width and can be defined by a decomposition, by a
graph searching game and by an elimination oder, similar to tree width.

An elimination order ⊳ for a graph G = (V,E) is a linear order on V . For a vertex v define
V⊲v := {u ∈ V : v ⊳ u}. The support of a vertex v with respect to ⊳ is

supp⊳(v) := {u ∈ V : v ⊳ u and there is v′ ∈ ReachG−V⊲v(v) with (v′, u) ∈ E} .

The width of an elimination order ⊳ is maxv∈V | supp⊳(v)|. The Kelly-width Kelly-w(G) of G is
one plus the minimum width of an elimination order of G.

Hunter and Kreutzer conjecture in [HK08, Conjecture 30] that DAG-width and Kelly-width
bound each other by a constant factor. More generally, the question is whether there is a func-
tion f : N → N such that, for every graph G, we have

(1) DAG-w(G) ≤ f ·Kelly-w(G) and

(2) Kelly-w(G) ≤ f · DAG-w(G).

In [HK08] it is shown that if Kelly-w(G) = k, then 2k − 1 cops have a (possibility non-monotone)
winning strategy σ in the DAG-width game. We demonstrate that σ is, in fact, weakly monotone,
thus answering the first question affirmatively.

Theorem 5.1. If Kelly-w(G) = k + 1, then wm-DAG-w(G) ≤ 2k + 1.

Proof. Our proof follows the proof of Theorem 20 from [HK08], which shows that an elimination
order of width k induces a (possibly non-monotone) strategy for 2k + 1 cops in the DAG-width
game. What we prove additionally is just that the constructed strategy is weakly monotone.

Let ⊳ be an elimination order for G of width k. We define a weakly monotone winning strategy σ
for 2k + 1 cops in the weakly monotone game on G.

Any play consistent with σ can be partitioned into two kinds of rounds: the blocking rounds and
the chasing rounds. A blocking round consists of a blocking cop move and an answer of the robber.
A chasing round may contain a longer sequence of moves. The cops are divided into two teams: a
team of k+1 blockers and a team of k chasers. While a play proceeds, a cop may change his team.

During the play, after every blocking round, the following invariant will hold. Let the blockers
occupy the set of vertices B, let the chasers occupy the set C and let the robber be on v.

26

1. |B| ≤ k + 1, C = ∅.

2. If u is the ⊳-least vertex from B, then v ⊳ u and B blocks {v} → V⊲u \B.

In the first move, k + 1 blockers occupy the ⊳-maximal vertices of G and the robber chooses some
vertex. It is trivial that the invariant holds.

Consider a position after some blocking round has been just finished. Let v be the robber
vertex, B the set of vertices occupied by blockers and C the set of vertices occupied by chasers
such that the invariant holds. Let u = min⊳(B) and let R be the set of components of G − VDu

where VDv = V⊲ ∪{u}. Let ⊏ be the linear order on R defined by R⊏R′ if and only if max⊳(R)⊳
max⊳(R

′) and let ⊑ be its reflexive closure. Let R be the component in R with v ∈ R and let
w = max⊳(R). The chasing round proceeds as follows. The cops announce to place (at most k)
chasers on supp⊳(w). The robber choses a vertex v′ in a component R′. If R′⊑R, then in the next
position the chasers on supp⊳(w) block every path from v′ to VDu′ where u′ = min⊳(supp⊳(w)).
(Indeed, assume that there is a path P from v′ to some u′′ with u′⊳u′′ such that P ∩supp⊳(w) = ∅.
Let (a, b) be the first edge with u′⊳ b. Then there is a path from w to b′ via v′, thus b ∈ supp⊳(w),
a contradiction.) This competes the chasing round.

If R ⊏ R′, then the chasers are removed from supp⊳(w) and placed on supp⊳(w
′) where w′ =

max⊳(R
′). As the robber can change to a ⊏-greater component only until he reaches B, this

process is finite and at some point the robber is blocked by the chasers, i.e. we have the previous
case. Note that by the definition of supp⊳, for all w ∈ V we have w ⊳min⊳(supp⊳(w)). Hence, as
w is chosen to be the ⊳-maximal in the robber component, the chasers are always placed outside of
the robber component. Thus placing and removing them in a chasing round never induces strong
non-monotonicity.

When the chasing round is over, the next blocking round begins. Let v be the robber vertex,
R the robber component of G − V⊳u (where V⊳u = {v ∈ V : v ⊳ u} and u is still the ⊳-minimal
element in B), and w the ⊳-maximal element of R. In the blocking round, the chasers from the
previous chasing round become blockers (let B′ be the set of vertices they occupy) and a blocker
from B is placed on w. Other old blockers from B become chasers and are removed from the graph.
After the robber makes his move (say, he goes to v′), the blocking round is finished.

We have to check that the invariant still holds and that no strong non-monotonicity occurred
during the last blocking round. The first invariant property holds because we used at most k
cops as chasers and the new blockers are the old chasers plus the cop on w. Furthermore, the
chasers have been removed from the graph. The second property (that B′ blocks {v′} → V⊲u′ \B
where u′ = min⊳(B

′)) holds by the construction and implies that removing cops from B was (even
strongly) monotone. Finally, the space available for the robber shrinks after every blocking round
because the cops occupy w, so the robber is finally captured.

Corollary 5.2. If Kelly-w(G) = k, then DAG-w(G) = O(k2).

5.2 Separating D-width from DAG-width, Kelly-width and directed tree width

Safari suggests in [Saf05] D-width as another structural complexity measure. Recall that for a di-
rected graph G, we denote its undirected underlying grap by Ḡ. A D-decomposition of a graph G is a
pair (T, (Xt)t∈V (T)) where T is a directed tree with edges oriented away from the root. Furthermore
for all t ∈ V (T), Xt ⊆ V (G) and

(1)
⋃

t∈V (T)Xt = V (G), and

27

(2) for all strongly connected sets S ⊆ V (G) the underlying undirected subgraph of T [{t ∈ V (T) :
Xt ∩ S 6= ∅}] is a connected subtree of T̄ .

The width of (T, (Xt)) is maxt∈V (T) |Xt|.
2 The D-width D-w(G) of G is the minimum width of a

D-decomposition of G.
The following definition of D-width may be more useful in algorithmic applications and suits our

goals better. For a graph G, if X,Y ⊆ V (G) and X is a union of strongly connected components
of G−Y , we say that X is Y -normal. DS-width is a complexity measure that differs from D-width
at most by the factor of two. Let G be a graph. A DS-decomposition of G is pair (T, (Xt)t∈V (T))
where T is a directed tree with edges oriented away from the root r and Xt are sets of vertices of
G such that the following holds. Let X≥t =

⋃

q≥tXq for all t ∈ V (T). Then

(1)
⋃

t∈V (T)Xt = V (G),

(2) for all v ∈ V (G) the set {t ∈ V (T) : v ∈ Xt} is connected in T̄ ,

(3) for all edges (s, t) ∈ E(T), X≥t \Xs is (Xs ∩Xt)-normal.

The width of (T, (Xt)) is maxt∈V (T) |Xt|. The DS-width of G, DS-w(G) is the minimum of the
widths of all DS-decompositions of G.

Lemma 5.3 (See [Gru08]). For all graphs G, D-w(G) ≤ DS-w(G) ≤ 2D-w(G).

Proof. Let (T, (Xt)t∈V (T)) be a D-decomposition of width k. We obtain a DS-decomposition
(T ′, (X ′

t′)t′∈V (T ′)) of width 2k from (T, (Xt)t∈V (T ′)) as follows. Replace every edge (s, t) ∈ E(T)
by a new node st and edges (s, st) and (st, t) and let Xst be Xs ∪Xt. Then (T ′, (X ′

t′)t′∈V (T ′)) is a
DS-decomposition of G. Indeed, assume that for some edge (s, st) ∈ E(T ′) there is a path P from
some w ∈ X≥st \ Xs = X≥t \ Xs to some v ∈ V (G) \ (X≥st \ Xs) and back to w. Assume for a
contradiction that P avoids Xs ∩ Xst = Xs. Then P is a strongly connected subgraph of G, so
by the second property of D-decomposition, the set {t ∈ V (T) : P ∩ Xt 6= ∅} is connected in T̄ .
Thus Xs ∩ P 6= ∅, but we assumed that this is not true. Hence X≥st \Xs is (Xs ∩X≥st)-normal.
With the same argument one can see that for all edges of the form (st, t), the set X≥t \ Xst is
(Xt ∩X≥st)-normal.

Properties (1) and (2) follow trivially form the properties of the D-decomposition. Furthermore,
it is clear that the width of (T ′, (Xt′)t′∈V (T ′)) is at most 2k.

Now assume that we have a DS-decomposition (T, (Xt)t∈V (T)) of width k. We show that it is also
a D-decomposition. Let S be a strongly connected set of G and assume that {t ∈ V (T) : Xt∩S 6= ∅}
is not connected in T̄ . Let q, s and t be some nodes of T such that Xq ∩S 6= ∅, Xt ∩S 6= ∅, Xs = ∅
and s is on the path Ptqs from t to q in T̄ . Choose s, q and t such that Ptqs has minimal length.
Either q < s or q < t, say q < t, then (q, t) ∈ E(T) (the case q < s is analogous). As S is strongly
connected, there is a path P from X≥t \ Xq to X≥s \ Xq and back within S. As S ∩ Xq = ∅, P
avoids Xq. Note that (X≥s \Xq)∩ (X≥t \Xq) = ∅, so P leaves X≥t \Xq and returns there without
visiting Xq thus violating the normality condition of the DS-decomposition for the edge (q, t).

We separate D-width from directed tree width, DAG-width, Kelly-width, and from the cop- and
robber-monotone component game. First we show in Theorem 5.4 that if D-width is bounded, then
a bounded number of cops suffices to capture the robber in a cop- and robber-monotone way in the
component game. It follows that then directed tree width is bounded as well (this is already known
from [Saf05]). It is known that there are classes of graphs where directed tree width is bounded but

2In [Saf05] the width is maxt∈V (T) |Xt| − 1.

28

neither Kelly-width, nor DAG-width are: undirected binary trees with additional edges forming
the upward transitive closure [BDH+12]. The D-width of those graphs is also bounded. We show
that there is a class G of graphs where three (four) cops win in the cop- and robber-monotone
component (resp. reachability) game, but whose D-width is unbounded (Theorem 5.6). Hence,
directed tree width and DAG-width are bounded on G, but D-width is unbounded. We also show
that Kelly-width is bounded on G. Finally, we use Theorem 3.2 to separate D-width from directed
tree width in another way in Theorem 5.7.

Theorem 5.4. For all graphs G, if there is a DS-decomposition of G of width k, then cnG(cmdtw) ≤
k.

Proof. Let (T, (Xt)t∈V (T)) be a DS-decomposition of width k. The cops have the following winning
strategy. In te first move they occupy Xr where r is the root of T . In general they keep the invariant
true that if the current position is (C,R), then C = Xs for some s ∈ V (T) and R ⊆ X≥t \ Xs

for some t with (s, t) ∈ E(T). Then the next move of the cops is to (C,Xt, R) and after the next
robber move the invariant holds. Note that Xt \Xs ⊆ R. Note also that R is a strongly connected
component of G − (Xs ∩Xt), so the play is robber-monotone. Furthermore, by property (2), it is
also cop-monotone. When the cops reach a leaf, the robber is captured. Clearly, exactly k cops are
used.

The opposite direction fails because the cops may be forced to occupy the same vertex when the
robber goes to different components. Assume that we reached a position (C,C ′, R) and the robber
can choose R′

1 or R′
2. In both cases after playing some time the cops must occupy a vertex v:

in the first case because v ∈ R′
1 and in the second case because they have to block the robber

in R′
2. The decomposition corresponding that strategy has v in different successors of the bag

that corresponds to position (C,R), but not in the bag of (C,R) itself. However this violates the
connectivity condition of a DS-decomposition. Theorem 5.6 shows that the described situation is
unavoidable.

In the proof of Theorem 5.6 we use a technical notion of a game which at least partially corre-
sponds to D-width. The D-width game on a graph G is another type of graph searching games that
does not match our framework. At the beginning the cops group components of G into equivalence
classes and the robber choses one class and goes there. At this moment the cops do not see the
robber and only know his class. From now on every cop can be placed only within that class. Then
the cops make a move as in all games described before and group the emerging components within
the current class into new classes and so on.

Formally the cop positions are (C,R) where C ⊆ V (G) and R = {R1, . . . , Rm} is a set of
components of G − C. Hereby every Ri is a component the cops consider to be a possible robber
component. The cops can move to a position (C,C ′,∼,R) where C ′ ⊆

⋃

1≤i≤mRi and ∼ is an
equivalence relation on components of G−C ′. From (C,C ′,∼,R) the robber can move to a position
(C ′,R′) whereR′ = {R′

1, . . . , R
′
s} is the set of components R′

j (for j ∈ {1, . . . , s}) of G−C ′ such that
R′

j ⊆ Ri for some Ri and all R′
j are ∼-equivalent. In other words the robber choses an equivalence

class of components, a group. If there is a path from some R′
j outside of R

′
j and then back to R′

j in
G− (C ∩C ′), then the robber wins (by the non-robber-monotonicity). He also wins all infinite and
all non-cop-monotone plays. The cops win if the capture the robber (i.e. he has no legal move).

Lemma 5.5. If DS-w(G) = k, then 2k cops have a winning strategy in the D-width game on G.

Proof. Let (T, (Xt)t∈V (T)) be a DS-decomposition where the root of T is r. Note that for all
(s, t) ∈ E(T) the set

⋃

q≥tXq \Xs is a union of components of G−Xs. The cops occupy r in the
first move and for components R1 and R2 of G − Xr they define R1 ∼ R2 if and only if R1 and

29

R2 are both contained in
⋃

q≥tXq \ Xr for some (r, t) ∈ E(T). The robber choses a ∼-class, i.e.
essentially an edge (r, t). Note that the robber is blocked in

⋃

q≥tXt \Xr by Xr ∩Xt. Then the
cops occupy Xr ∪Xt and define the equivalence relation in the same way as before whereby now t
plays the role of r. Finally the cops capture the robber at the latest in some Xs for a leaf s ∈ V (T).
The cop strategy is cop-monotone by the monotonicity of the DS-decomposition.

Theorem 5.6. There is a class of graphs Gn such that 3 cops have a cop- and robber-monotone
winning strategy in the directed tree width and DAG-width games on each Gn and Kelly-w(Gn) = 4,
but D-w(Gn) ≥ n.

Proof. Informally, the graph Gn consists of two vertex disjoint parts (below we give a formal
definition). One is a copy of T n

n+1 with root r(T n2

n+1) and additional edges forming the downward
transitive closure. The other part has (another copy of) V (T n

n+1) as its vertex set and edges
{

(va, v) : v ∈ {0, . . . , n}n, a ∈ {0, . . . , n}
}

. We denote the second part as T ′. The parts are
connected by edges going from a vertex v in T n

n+1 to its copy v′ in T ′ and from v′ to the parent of v.
Now we transform the resulting graph by applying the following operation once on each vertex of
T n
n+1 (except the root) in a top-down manner. The current vertex v ∈ V (T n

n+1) (except the root)
is replaced by n copies v1, . . . , vn. Let w be the parent of v. Then the edge {v,w} is replaced by
edges {vi, w} and the edge (v, v′) by edges (vi, v

′). Every vn is the root of a copy of the subtree of
T n
n+1 rooted at v. Hereby the edges going to and from T ′ are also copied.

Formally V (Gn) is the disjoint union of V (T n2

n+1) and V (T n
n+1) with edges ET , Etr, Eup and

Ecross where ET =
{

{v, va} : v ∈ {0, . . . , n2 − 1}≤n, a ∈ {0, . . . , n2 − 1}
}

are edges forming

T n2

n+1, Etr =
{

(v, vw) : v,w, vw ∈ {0, . . . , n2 − 1}≤n
}

is the downward transitive closure on T n2

n+1,

Eup =
{

(va, v) : v ∈ {0, . . . , n}≤n, a ∈ {0, . . . , n}
}

forms T n
n+1 and Ecross connects T

n2

n+1 and T n
n+1 as

follows. For a word w = w1 . . . wm ∈ {0, . . . , n2 − 1}≤n with |w| > 0 let w′ be the word w′
1, . . . , w

′
m

with w′
i = ⌊wi/n⌋. Then there are edges (w,w′) ∈ V (T n2

n+1 × T n
n+1) and (w′, w1 . . . wm−1) (i.e. if

w = w1, then the edge is (w′, ε)).
The winning strategy for the cops in the cop-monotone directed tree width game is, roughly, to

traverse T n2

n+1 and T n
n+1 in parallel downwards. As long the robber is in T n2

n+1, the cops descend

from the root of T n2

n+1 to some leaf w which is in the current robber component and in T n
n+1 also

from the root to the leaf w′. If the robber changes to T n
n+1, he finds himself in a component that

consists of one vertex and is captured in the next move. It is easy to see that three cops suffice to
win.

In the DAG-width game, four cops follow the robber, in T n
n+1 in the same way as in T n2

n+1: in
parallel downwards. For the Kelly-width, consider the elimination order where every vertex of T n

n+1

is smaller than every vertex of T n2

n+1 and vertices within T n
n+1 and within T n2

n+1 are ordered in the
obvious way (following the depth-first search). Then the support of every vertex is at most three,
so the Kelly-width is four.

We show by induction on n that the robber has a winning strategy in the D-width game against n
cops. At the beginning he choses the group containing the component with r(T n2

n+1) and continues
to do so as long as the root is not occupied by the cops in a move (C,R) → (C,C ′,∼,R). For
vertex v ∈ V (T n2

n+1) the subtree of T n2

n+1 rooted at v is denoted Tv and similarly we write Tv′ for

the subtree of T ′ = T n
n+1 rooted at v′. Let r1, . . . , rn2 be the direct successors of r(T n2

n+1). Due
to the robber-monotonicity the cops have visited vertices in at most n − 1 sets Tri ∪ Tr′i

. Hence
there are at least n vertices ri, say r1, . . . , rn, with the same successor r′ in T n

n+1 such that all Tri

for 1 ≤ i ≤ n and Tr′ are cop free. Every Tri and Tr′ are current components and the equivalence
relation ∼ declared by the cops defines groups of them.

30

There are two cases. In the first case there are at least two groups. One of them contains some
Tri , but not Tr′ . The robber choses this group and plays from now on only on Tri . His strategy
is to remain in the group containing a vertex v that is possibly high in the tree. Due to the high
branching degree when the cops occupy v, there is a direct successor w of v such that Tw is cop
free. The robber choses the group containing w and plays further in the same way. During this
play the cops occupying the vertices v1, v2, . . . on the path from r(T n2

n+1) to v cannot be removed
because there is a path from w via Tr′ to all vi and then back to w. This path is cop free because
the cops are not allowed to occupy Tr′ , which is not in the current group. Hence if the cops leave
some vi, the robber wins by non-robber-monotonicity. When the robber reaches a leaf, all n cops
stay om the path from r(T n2

n+1) to that leaf and cannot be removed, so the robber wins.
In the other case there is only one group. The robber may be in each component C containing

some Tri . Each such component has an isomorphic copy Gn−1 as a subgraph. (Note that C is not
a copy of Gn−1 because its branching degree is still n2 and not (n− 1)2 as in Gn−1.) Thus by the
induction hypothesis the robber wins against n − 1 cops, so if the cops should win, they need the
cop from r(T n2

n+1) in C. But then the robber can reach r(T n2

n+1) from another Trj , which causes the
non-robber-monotonicity.

It was conjectured that directed tree width and D-width are the same ([Saf05, Page 750]3). We
show, however, that the gap between them is not bounded by any function (which is clear from
Theorem 5.6, but we give yet another proof.)

Theorem 5.7. There is a class of graphs with bounded directed tree width and unbounded D-width.

Proof. Consider the class of graphs from Theorem 3.2. The directed tree width of the graphs
from that class is bounded. If the D-width were bounded, DS-width would be bounded as well
(Lemma 5.3), and by Lemma 5.4 a bounded number of cops could capture the robber on each
graph in a cop-monotone way, but this is not the case.

5.3 Oriented tree width

Definition 5.8. Let G be an undirected graph. A tree decomposition of G is a tuple (T, (Xt)t∈V (T))
where T is an undirected tree and

•
⋃

t∈V (T)Xt = V (G),

• for all {v,w} ∈ E(G) there is some t ∈ V (T) with {v,w} ⊆ Xt,

• for all v ∈ V (G) the set {t ∈ V (T) : v ∈ Xt} induces a (connected) subtree of T .

Definition 5.9. Let G be a directed graph. An oriented tree decomposition is a pair (T, (Xt)t∈T)
where T is an orientation of an undirected tree and for each t ∈ V (T), Xt ⊆ V (G) such that E(G)
can be partitioned into two, possibly empty, sets E(G) = Et∪Eshc (the tree edges and the shortcut
edges) and the following conditions hold.

(1) (T̄ , (Xt)t∈T) is a tree decomposition of (V (G), Et).

(2) If (u, v) ∈ Eshc, u ∈ Xs, and v ∈ Xt, then there is a path from s to t in T .

3Safari actually conjectures that D-width equals directed tree width which would imply cop-monotonicity.

31

We say that an edge e ∈ E(G) is covered by the tree if e is contained in some bag Xt. Otherwise
we say that e is a shortcut edge. The width of an oriented tree decomposition (T, (Xt)t∈T) is
maxt∈T |Xt|.

The oriented tree width otw(G) of a graph G is the minimum width over all oriented tree decom-
positions of G.

The following lemma states that all undirected edges are covered by the tree. The proof is easy
and we omit it.

Lemma 5.10. Let G be a graph. Let (T, (Xt)t∈V (T)) be an oriented tree decomposition of G and

let E(G) = Et ∪ Eshc be a corresponding partition of E(G). If (v, u) ∈ E(G) and (u, v) ∈ E(G),
then (u, v) ∈ Et or (v, u) ∈ Et.

In the next lemma we give a normal form for oriented tree decompositions.

Lemma 5.11. Let G be a graph, let (T, (Xt)t∈V (T)) be an oriented tree decomposition of G and let

Et ∪Eshc be a corresponding partition of E(G). Then there is an oriented tree decomposition of G
of the same width such that for all (s, t) ∈ V (T), Xs 6⊆ Xt.

Proof. We construct a new decomposition by successively eliminating bags whose neighbours are
their supersets. This suffices as by monotonicity if Xs ⊆ Xt, then Xs ⊆ Xq for all q ∈ V (T) on the
path between s and t in T̄ . Let (s, t) ∈ E(T) be nodes with Xs 6⊆ Xt. The new decomposition is
(T ′, (Xr)r∈T ′) where V (T ′) = (V (T) \ {s}) and E(T ′) =

(

E(T) \ {(r, s), (s, r) : r ∈ T}
)

∪ {(t, t)′ :
(s, t′) ∈ E(T)} ∪ {(t′, t) : (t′, s) ∈ E(T)}. It is straightforward to check that all conditions of an
oriented tree decomposition hold. Furthermore the width of the decomposition did not change.

Our next goal is to compare oriented tree width with D-width.

Theorem 5.12. For all graphs G, D-w(G) ≤ otw(G).

Proof. Let (T, (Xt)t∈V (T)) be an oriented tree decomposition of G. We argue that it is also a
D-decomposition (of the same width). First,

⋃

t∈V (T)Xt = V (G), as (T̄ , (Xt)t∈V (T̄)) is a tree

decomposition of Ḡ. Let S be a strongly connected set of vertices of G and assume that there are
s, q and t in V (T) with Xs ∩ S 6= ∅, Xq ∩ S = ∅, and Xt ∩ S 6= ∅ such that q is on the path from s
to t in T̄ . We choose s, q, and t such that the path from s to t has minimum length. As S is
strongly connected, there is a path P from some vertex in Xs ∩ S to Xt ∩ S in G. Let (v,w) be
the first edge of P with v ∈ (P ∩Xs) \Xt and w ∈ (P ∩Xt) \Xs. (If (v,w) does not exist, then
there is a vertex u ∈ Xs ∩ P ∩Xt and thus u ∈ Xq, as q is between s and t in T̄ , but P ⊆ S, so
u ∈ Xq ∩ S, a contradiction.) By the choice of s, q and t, the edge (v,w) is not covered by the
tree (otherwise there would be an edge of the tree decomposition connecting s and t, but there is
another path from s via q to t). It follows that (v,w) is a shortcut edge and hence all edges of the
tree decomposition on the path from s to t are oriented from s to t. By a symmetric argument we
can show that all edges are oriented from t to s, a contradiction.

By ?? it follows that directed tree width is bounded in oriented tree width as well.

Corollary 5.13. For every class G of graphs, if oriented tree width is bounded on G, then directed
tree width is bounded on G.

32

G3
iG3

i G3
i

Figure 12: The graph G3
i+1.

Recall that undirected binary trees with the additional upward transitive closure from [BDH+12]
separate directed tree width and D-width from DAG-width and Kelly-width. It is easy to see that
the oriented tree width of such a graph G is also small. The oriented decomposition tree has the
same shape as G and all tree edges are oriented upwards, so otw(G) = 2. Thus on some graphs
oriented tree width is bounded, but DAG-width and Kelly-width are not. The next theorem shows
that the opposite is also true: on some graph classes with bounded directed tree width, DAG-
width and Kelly-width, oriented tree width is not bounded by any function, so the measures are
incomparable in this sense.

Theorem 5.14. There is a family of graphs Gn with cnGn(dtw) = DAG-w(Gn) = Kelly-w(Gn) =
D-w(Gn) = 2 such that for each k > 2 there is some n with otw(Gn) > k.

Proof. The graph Gn is constructed inductively. Let Gm
1 be a single vertex. Then Gm

i+1 has a new
root r(Gm

i+1) with m successors v1, . . . , vm. Each such successor vi is the root r(G
m
i) of a copy of Gm

i

and has outgoing edges to all leaves of the copies Gm
i rooted at vj with j < i. The construction of the

graph G3
i+1 from G3

i is shown in ??. Finally, Gn = Gn
n. Formally, V (Gn) = [n]≤n is the set of words

of length at most n over the alphabet [n], E(Gn) = Et ∪ Er where Et = {(w,wa), (wa,w) : w ∈
[n]<n, a ∈ [n]} are edges forming the tree and Er = {(wa,wbv) : a, b,∈ [n], b < a, |v| = n− |w|+1}.

In the DAG-width game two cops play from the top to the bottom of R along the path chosen
by the robber. If the robber changes to a smaller subtree, the last placed cop follows him to that
subtree on its root. Of course, one cop is unable to win. So DAG-w(G) = 2 and for the same
reason also cnG(dtw) = 2. The elimination order for the Kelly-width is the depth-first search with
choosing the right-most successor first. The D-decomposition is the usual tree decomposition of a
tree (every bag contains two neighboured vertices and one bag contains only the root): edges from
Er do not destroy the conditions of a D-decomposition.

Now assume towards a contradiction that there is an oriented tree decomposition (T, (Xt)t∈V (T))

of Gn of width k where n = k+ 3. Let E(Gn) = Et ∪Eshc be the corresponding partition of edges
of Gn. We first analyse the tree decomposition of Tn := (V (Gn), Et). By Lemma 5.10, Et ⊆ Et.

For a connected subgraph G′ of an undirected graph G with tree decomposition (T, (Xt)t∈V (T)),
the restriction of (T, (Xt)t∈V (T)) to G is (T ′, (X ′

t)t∈V (T ′)) where T
′ is the subgraph of T induced by

bags t with Xt ∩ V (G′) 6= ∅ and X ′
t = Xt ∩ V (G). Note that the restriction is a tree decomposition

of G′ of width at most the width of (T, (Xt)t∈V (T)).

Claim 2. There is a subtree T ′
n of Tn of (the same) depth n and such that

• every node of T ′
n which is not a leaf has two children, and

• the restriction (T ′, (X ′
n)) of (T, (Xt)) to T ′

n is a natural decomposition, i.e. up to isomorphism:

– T ′ = T ′
n,

33

– X ′
r = {ε} (the root bag contains only the root of T ′

n), and

– X ′
t = {s, t} where s is the predecessor of t if t is not the root bag.

Proof (of Claim 2). We use the characterisation of tree width by the tree width game. It is played
on an undirected graph as the DAG-width game. It is well known that a tree decomposition of
width k induces a winning strategy for k+1 cops. In the first move they occupy the root bag. The
robber chooses a subtree of the decomposition tree and the cops occupy the root of that subtree in
the next move. Continuing in that way they finally capture the robber in a leaf bag.

Let σ be the strategy for k+1 cops on Tn. For a vertex v ∈ Tn let Tv be the subtree of Tn rooted
at v. Consider a position of a play consistent with σ where the robber is in Tv and Tv is cop free.
Then the following lemma holds.

Claim 3. There are two children w1 and w2 of v such that in any play from the current position
that is consistent with σ, for i = 1, 2, wi is the first vertex of Twi

occupied by a cop.

Indeed, v has more children than there are cops. If a cop is placed in a subtree rooted at a child
of v, then there will be at least one cop in that subtree until v is occupied (otherwise the robber-
monotonicity is violated).

Now we define T ′
n in a top-down manner. The root of T ′

n is the root of Tn. Assume that a subtree
of Tn up to some level is constructed. Let v be a current leaf and let w1, w2 ∈ Tn be the children
of v whose existence is guaranteed by Claim 3. Then v has two children in T ′

n: w1 and w2. Then
(T ′

n, (X
′
t)t∈V (T ′

n)
) is a natural decomposition. This proves the claim.

Without loss of generality let T ′
n = ({0, 1}n, {{v, va} : v ∈ {0, 1}n − 1, a ∈ {0, 1}}). Consider the

edges e1 = (01, 0n) and e2 = (1, 01n−1) in Er. By the construction of (T ′, (X ′
t)t∈V (T ′)), the edge e1

is not covered by the tree. Thus the orientation of T ′ allows the path from 1 to 01n−1. In particular
all edges on the path from ε to 01n−1 are oriented towards 01n−1, i.e. the edge {0, 01} is oriented
as (0, 01). The edge e2 is not covered by the tree either, so the orientation allows the path from 01
to 0n. In particular the edge {0, 01} is oriented as (01, 0), a contradiction.

Theorem 5.15. For all graphs G we have DS-w(G) ≤ D-w(G) ≤ otw(G).

Proof. Let (T, (Xt)t∈V (T)) be an oriented tree decomposition of G of width k and let E(G) =

Et ∪Eshc be a corresponding partition of E(G). Let {s, t} ∈ G(T̄) be an edge of T̄ . Let T t be the
maximal subtree of T̄ containing t, but not s and T s the maximal subtree containing s, but not
t. Let Xt = (

⋃

q∈V (T t)Xq) \Xs and Xs = (
⋃

q∈V (T s)Xq) \Xt. Let (v,w) ∈ E(G). If v ∈ Xt and
w ∈ Xs, then (v,w) is a shortcut edge and (t, s) ∈ E(T) (and thus (s, t) /∈ E(T)).

Let r be an arbitrary node of T that we declare to be the root. Let Tr be the orientation of T
such that all edges are oriented away from r. We claim that (Tr, (Xt)t∈V (Tr)) fulfils all requirements
of a DS-decomposition except, possibly (4). Note that (T, (Xt)t∈V (T)) and (Tr, (Xt)t∈V (Tr)) have
the same width. Requirements (1) and (2) hold because (T̄ , (Xt)) is a tree decomposition. For (3)
assume for some (s, t) ∈ E(Tr) that there is a path P that starts in Xt, leaves it and then returns
to Xt such that P ∩Xs∩Xt = ∅. Then there is an edge (v,w) ∈ E(G) that goes from Xt to Xs, so
(t, s) ∈ E(T) (and (s, t) /∈ E(T)), and there is an edge that goes from Xs to Xt, so (s, t) ∈ E(T),
a contradiction.

34

dtw

rmdtw

cmdtw DAG-w

wmDAG-w

K-w

D-w

DS-w

otw

=[JRST01]

<
Th. 3.2

<

[BDH+12]

= Th. 4.32

≤

Th. 5.1

≤

Th. 5.4, Th. 5.6

=L. 5.3, [Gru08]

≶

Th. 5.6, [BDH+12]

<
Th’s 5.12, 5.14

≶

Th.

5.14,

[BDH+12]

≶

Th.

5.14,

[BDH+12]

≶ Th. 5.14, [BDH+12]

Figure 13: The relations between different measures.

6 Conclusion

6.1 The Relations between Widths and Cop Numbers

The relations between directed tree width, cnG(rmdtw) (the robber monotone cop number in the
component game), cnG(cmdtw), DAG-width, weakly monotone DAG-width, Kelly-width, D-width,
and oriented tree width are presented in ??. All relations are considered in terms of boundedness.
If a and b are two measures from the above list, a ≤ b means that there is a function f : N → N

such that for all graphs G, a(G) ≤ f(b(G)). We write a < b if a ≤ b and there is a class G of graphs
and a number t ∈ N such that for all G ∈ G, a(G) ≤ t and for all s ∈ N there is a graph G ∈ G
with b(G) > s, i.e. a is bounded on G and b is not. We write a = b if there is a function f : N → N

such that for all graphs G, a(G) ≤ f(b(G)) and b(G) ≤ f(a(G)). Finally a ≶ b means that there is
a class of graphs on which a is bounded and b is not and vice versa: there is a class of graphs on
which b is bounded and a is not.

6.2 Future Work

We believe that the quadratic blowup in the number cops when we change from a weakly monotone
winning strategy for the cops to a strongly monotone strategy can be reduced to a linear one.
The largest ratio between the numbers of needed cops in the weakly monotone and the strongly
monotone cases we are aware of is 4/3 from the examples by Kreutzer and Ordyniak. However,
the induction on the number of cops needed by the weakly monotone strategy seems to enforce the
use of quadratically many cops. It would be interesting to achieve a linear upper bound or to find
better lower bound than 4/3.

Another topic for the future work is the gap between the non-monotone and weakly monotone
case. This question seems to be the most interesting in this area. It would be also important to
determine whether the inequality DAG-w ≤ Kelly-w should be strict or an equality.

It is not known whether DAG-width can be decided in NP as Kelly-width. Neither is known
whether Kelly-width can be computed in time nO(k) where n is the size of the given graph and k
is its Kelly-width.

35

References

[Adl07] Isolde Adler. Directed tree-width examples. J. Comb. Theory, Ser. B, 97(5):718–725,
2007.

[Bar06] János Barát. Directed Path-width and Monotonicity in Digraph Searching. Graphs and
Comb., 22(2), 2006.

[BBG13] Guillaume Bagan, Angela Bonifati, and Benoit Groz. A trichotomy for regular simple
path queries on graphs. In Proc. 32nd Symposium on Principles of Database Systems,
pages 261–272, New York, NY, USA, 2013.

[BDH+12] Dietmar Berwanger, Anuj Dawar, Paul Hunter, Stephan Kreutzer, and Jan Obdržálek.
The DAG-width of directed graphs. J. Comb. Theory, 102(4):900–923, 2012.

[BG05] Dietmar Berwanger and Erich Grädel. Entanglement—A Measure for the Complexity
of Directed Graphs with Applications to Logic and Games. In LPAR ’04, volume 3452
of LNCS. Springer, 2005.

[Die12] Reinhard Diestel. Graph Theory, 4th Edition. Springer, 2012.

[FT08] Fedor V. Fomin and Dimitrios M. Thilikos. An annotated bibliography on guaranteed
graph searching. Theoretical Computer Science, 399(3):236–245, 2008.

[Gru08] Hermann Gruber. On the D-width of directed graphs. Manuskript, February 2008.

[HK08] Paul Hunter and Stephan Kreutzer. Digraph measures: Kelly decompositions, games,
and orderings. Theor. Comput. Sci., 399(3), 2008.

[JRST01] Thor Johnson, Neil Robertson, Paul Seymour, and Robin Thomas. Directed Tree-
Width. J. Comb. Theory, Ser. B, 82(1), 2001.

[KO08] Stephan Kreutzer and Sebastian Ordyniak. Digraph decompositions and monotonicity
in digraph searching. In Graph-Theoretic Concepts in Computer Science: 34th Inter-
national Workshop, WG 2008, Durham, UK, June 30 - July 2, 2008. Revised Papers.
Springer, 2008.

[KO11] Stephan Kreutzer and Sebastian Ordyniak. Digraph decompositions and monotonicity
in digraph searching. Theor. Comput. Sci., 412(35):4688–4703, 2011.

[Kre11] Stephan Kreutzer. Graph searching games. In Krzysztof R. Apt and Erich Grädel,
editors, Lectures in Game Theory for Computer Scientists, chapter 7, pages 213–263.
CUP, 2011.

[PR10] Bernd Puchala and Roman Rabinovich. Parity games with partial information played
on graphs of bounded complexity. In MFCS ’10, volume 6281 of LNCS. Springer, 2010.

[PR11] Bernd Puchala and Roman Rabinovich. Graph searching, parity games and imperfect
information. arXiv:1110.5575v1 [cs.GT], 2011.

[Ree99] Bruce Reed. Introducing directed tree-width. Electronic Notes in Discrete Mathematics,
3:222 – 229, 1999.

36

http://arxiv.org/abs/1110.5575

[Saf05] Mohammad Ali Safari. D-width: A more natural measure for directed tree width. In
Joanna Jedrzejowicz and Andrzej Szepietowski, editors, MFCS, volume 3618 of Lecture
Notes in Computer Science, pages 745–756. Springer, 2005.

[Tam10] Hisao Tamaki. A directed path-decomposition approach to exactly identifying attractors
of boolean networks. In Communications and Information Technologies (ISCIT), 2010
International Symposium on, pages 844–849, Oct 2010.

37

	1 Introduction
	2 Preliminaries
	3 Strong non-cop-monotonicity of directed tree width
	4 Towards monotonicity of the DAG-width game
	4.1 Blocking and the blocking order
	4.2 Minimally blocking strategies
	4.3 Decomposition
	4.4 From shy to weakly monotone game, shy-similar strategies
	4.5 Strongly monotone strategies: two attempts
	4.5.1 Leaving tied cops is not enough
	4.5.2 Freezing the context is not enough
	4.5.3 Combining leaving cops and freezing

	5 Comparing Width Measures with Respect to Generality
	5.1 Comparing DAG-width and Kelly-width
	5.2 Separating D-width from DAG-width, Kelly-width and directed tree width
	5.3 Oriented tree width

	6 Conclusion
	6.1 The Relations between Widths and Cop Numbers
	6.2 Future Work

