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MAXIMALLY FROBENIUS-DESTABILIZED VECTOR BUNDLES OVER SMOOTH

ALGEBRAIC CURVES

YIFEI ZHAO

Abstract. Vector bundles in positive characteristics have a tendency to be destabilized after pulling
back by the Frobenius morphism. In this paper, we closely examine vector bundles over curves that are,
in an appropriate sense, maximally destabilized by the Frobenius morphism. Then we prove that such
bundles of rank 2 exist over any curve in characteristic 3, and are unique up to twisting by a line bundle.
We also give an application of such bundles to the study of ample vector bundles, which is valid in all
characteristics.

0. Introduction

Given a normal projective variety X over an algebraically closed field k of characteristic p 6= 0, with
a fixed ample divisor, it can happen that pulling back by an inseparable morphism f : Y → X destroys
semistability of vector bundles over X . In the simplest case, where X is a smooth curve and f = Frel is
the (relative) Frobenius morphism, semistable vector bundles whose pullback under f fail to be semistable
are called Frobenius-destabilized vector bundles. They are closely related to the study of the generalized
Verschiebung.

In this paper, we are primarily interested in rank-r vector bundles E over a curve X of genus g ≥ 2
with the following property:

(∗) the Harder-Narasimhan filtration of F ∗
relE admits line bundle quotients L1, · · · , Lr, and deg(Li) =

deg(Li+1) + 2g − 2 for all i = 1, · · · , r − 1.

If themselves semistable, such bundles are the “most destabilized” ones possible. We will call a semistable
vector bundle E with property (∗) a maximally Frobenius-destabilized vector bundle (cf. Def. 2.11).
These vector bundles appear in the works of many authors. Notably, over a genus-2 curve, all rank-2
Frobenius-destabilized vector bundles are maximally Frobenius-destabilized (cf. [8, Prop. 3.3]); the work
of S. Mochizuki [17] gave a precise formula counting the number of such bundles with trivial determinant
over a general curve in arbitrary characteristic, and B. Osserman [18] counted them over an arbitrary curve
in small characteristics. In another direction, K. Joshi et al. [9] gave a relation between certain Frobenius-
destabilized bundles and pre-opers, a concept originated from the geometric Langlands program; their
observation was later used by X. Sun [20] to prove that stability is preserved under Frobenius-pushforward.

We prove that vector bundles with property (∗) exhibit an interesting trichotomy:

Theorem. Let E be a rank-r vector bundle over a curve X of genus g ≥ 2 with property (∗). Then

(i) if r < p and p does not divide g − 1, then E is stable (Prop. 2.6);
(ii) if r > p, then E is not semistable (Prop. 2.8); and
(iii) if r = p, then E is stable if and only if E is the Frobenius-pushforward of a line bundle (Prop. 2.10;

this is already discovered by L.-G. Li, H. Lange and C. Pauly).

The result (i) reflects a general observation of K. Joshi et al. that high instability of the Frobenius-pullback
F ∗
relE implies high stability of E. The main technical ingredient in the proof of (i) is an improvement of

an inequality due to N. Shepherd-Barron [19, Cor. 2p]: Lmax(E) − Lmin(E) ≤ (r − 1)(2g − 2)/p. Here
Lmax and Lmin are measures of maximal slope of subbundles and minimal slope of quotient bundles
respectively, taken over all finite pullbacks. We split Shepherd-Barron’s inequality into

Lmax(E)− µ(E), µ(E)− Lmin(E) ≤ (r − 1)(g − 1)/p (0.1)

as well as giving an equality criterion for both. As we will see, the improved inequalities (0.1) have many
independent applications as well. The result (ii) shows that maximally Frobenius-destabilized vector
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bundles do not exist with rank r > p. For the critical value r = p, property (∗) is intimately related to
pre-opers; the result (iii) is known (cf. Li [15, Lem. 3.1] and Lange and Pauly [13, Prop. 1.2]) and a more
general version is given by C. Liu and M. Zhou [16].

In characteristic p = 3, B. Osserman [18] has constructed rank-2 maximally Frobenius-destabilized
vector bundles with trivial determinant over an arbitrary curve of genus 2, and showed that there are
exactly #Pic(X)[2] = 16 of them. We derive from the previous theorem that, for arbitrary genus, such
bundles are precisely the rank-2 vector bundles E satisfying

S2(E) ∼= (Frel)∗T (0.2)

where S2(E) is the second symmetric power of E, and T is the tangent sheaf. Then we turn (0.2) around,
and construct vector bundle E whose second symmetric power is isomorphic to (Frel)∗T . Our main result
in this direction is

Theorem (Thm. 3.10). Over any curve X of genus g ≥ 2 in characteristic 3, there exist precisely
#Pic(X)[2] = 22g rank-2 maximally Frobenius-destabilized vector bundles of trivial determinant, and
they are related to one another via twisting by an order-2 line bundle.

Y. Wakabayashi [21, Thm. A] recently gave a formula counting the number of rank-2 Frobenius-
destabilized bundles on a general curve of genus g, subject to the condition 2(g− 1) < p. In contrast, our
result holds for p = 3 and arbitrary genus.

In characteristic zero, a vector bundle E over a curve is ample if and only if the minimal slope of vector
bundle quotients of E is positive (cf. [6, Thm. 3.2.7]). In positive characteristics, a numerical criterion for
ample vector bundles over curves is given by H. Brenner [3, Thm. 2.3] and I. Biswas [2]. We generalize
their result to higher dimensions:

Theorem (Thm. 4.3). Let X be a smooth projective variety over an algebraically closed field k, and E
be a vector bundle over X. Then E is ample if and only if there exists some real number ε > 0, such that
for any integral, closed curve C in X, there holds Lmin(E|C) ≥ ε‖C‖.

Here, the norm ‖ · ‖ on A1(X) is fixed with respect to a chosen basis.
The improved inequalities (0.1) together with the above ample criterion show that semistable vector

bundles with degree greater than r(r − 1)(g − 1)/p over nonrational curves are ample. On the other
hand, maximally Frobenius-destabilized vector bundles with degree less than r(r − 1)(g − 1)/p are not
ample (Cor. 4.5). We use this last observation to construct certain non-ample semistable vector bundles
of positive degree.

Acknowledgements. First and foremost, the author thanks A. J. de Jong for supervising this project and
for many helpful conversations. He is also grateful to A. Langer and H. Brenner for suggesting many
additional references, and to the anonymous referee for pointing out an error in an earlier version of this
paper.

1. Preliminaries

We first fix some notations. Let X be a normal projective variety over an algebraically closed field k,
and let E be a torsion-free coherent sheaf over X . Fix an ample line bundle H over X . With respect
to H , we set µmax(E) to be the maximal slope of a coherent subsheaf of E, and µmin(E) to be the
minimal slope of a torsion-free coherent quotient sheaf of E. If 0 = E0 ⊂ E1 ⊂ · · · ⊂ El = E is the
Harder-Narasimhan filtration of E with successive quotients Qi = Ei/Ei−1, then

µmax(E) = µ1(E) > µ2(E) > · · · > µl(E) = µmin(E)

where µi(E) = µ(Qi) is the slope of Qi. With respect to the ample line bundles pulled back from H , we
also set

Lmax(E) = sup
f :Y→X

µmax(f
∗E)

deg(f)
, and Lmin(E) = inf

f :Y→X

µmin(f
∗E)

deg(f)
(1.1)

where both the supremum and the infimum are taken over all finite morphisms f : Y → X of normal
projective varieties over k. We note the following standard
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Lemma 1.1. Let f : Y → X be a finite, separable morphism of normal projective varieties. Let E be
a torsion-free coherent sheaf over X with Harder-Narasimhan filtration 0 = E0 ⊂ E1 ⊂ · · · ⊂ El = E.
Then 0 = f∗E0 ⊂ f∗E1 ⊂ · · · ⊂ f∗El = f∗E is the Harder-Narasimhan filtration of f∗E.

Sketch of proof. Using an argument similar to that of [6, Lem. 3.2.2], one first proves that if E1 is the
maximal destabilizing subsheaf of E, then f∗E1 is the maximal destabilizing subsheaf of f∗E. Apply
this fact with E replaced by E/Ei for all i = 1, · · · , l − 1, and the result follows. �

Corollary 1.2. If the ground field k has characteristic zero, then Lmax(E) = µmax(E), and Lmin(E) =
µmin(E).

Proof. In this case, every finite morphism f : Y → X of normal projective varieties is separable. Hence
the lemma shows that

µmax(f
∗E)

deg(f)
= µmax(E), and

µmin(f
∗E)

deg(f)
= µmin(E)

The corollary then follows from the definitions of Lmax(E) and Lmin(E). �

If the ground field k has characteristic p 6= 0, we may let Fabs : X → X be the absolute Frobenius
morphism, which factors through the relative Frobenius morphism Frel : X → X(1) as in the following
commutative diagram:

X
Fabs

&&

Frel

##●
●●

●●
●●

●

��

X(1) //

��

X

��

Spec(k)
a 7→ap

// Spec(k)

Here, the commutative square is a pullback diagram.

Corollary 1.3. If the ground field k has characteristic p 6= 0, then

Lmax(E) = lim
k→∞

µmax((F
k
rel)

∗E)

pk
, and Lmin(E) = lim

k→∞

µmin((F
k
rel)

∗E)

pk
(1.2)

Observe that we may replace Frel by Fabs in (1.2) since X and X(1) are isomorphic as schemes. This
corollary shows that our definitions of Lmax(E) and Lmin(E) agree with those in [14].

Proof. Note that the sequence µmax((F
k
rel)

∗E)/pk is nondecreasing. We only need to show for every finite
morphism f : Y → X of normal projective varieties, there exists some k ∈ N such that

µmax(f
∗E)

deg(f)
≤

µmax((F
k
rel)

∗E)

pk

Indeed, given such a morphism f : Y → X , upon further pulling back, we may assume the induced field
extension K(X) ⊂ K(Y ) is normal. Thus we may factor f into the composition of a separable morphism
g : Y → Y ′ of normal projective varieties, and a purely inseparable morphism h : Y ′ → X ; moreover, h
is “dominated” by a composition of Frel as illustrated in the following commutative diagram:

Y
g

//

f
  ❅

❅❅
❅❅

❅❅
❅ Y ′

h

��

X(−k)oo

Fk
rel{{①①

①①
①①
①①
①

X

Applying Lem. 1.1 to morphism g, we obtain

µmax(f
∗E)

deg(f)
=

µmax(h
∗E)

deg(h)
≤

µmax((F
k
rel)

∗E)

pk

as desired. The proof for the second identity is similar. �



4 YIFEI ZHAO

One of the most important properties of Lmax(E) and Lmin(E) is that they are determined after pulling
back by Frel finitely many times. This result is due to A. Langer:

Theorem 1.4 (A. Langer). Let X be a smooth projective variety over an algebraically closed field of
positive characteristic p, and let E be a torsion-free coherent sheaf over X. Then there exists a natural
number k0 such that if

0 = E0 ⊂ E1 ⊂ · · · ⊂ El = (F k0

rel)
∗E

is the Harder-Narasimhan filtration of (F k0

rel)
∗E, then for every k ≥ k0,

0 = (F k−k0

rel )∗E0 ⊂ (F k−k0

rel )∗E1 ⊂ · · · ⊂ (F k−k0

rel )∗El = (F k
rel)

∗E

is the Harder-Narasimhan filtration of (F k
rel)

∗E. In other words, the successive quotients Qi = Ei/Ei−1

are strongly semistable.

Proof. This is [14, Thm. 2.7]. �

We now assume the ground field k has characteristic p 6= 0. Given a coherent sheaf E over X , and a
connection ∇ : E → E⊗ΩX , the p-curvature of∇ is the p-linear sheaf morphism Derk(OX) → EndOX

(E)
given by

θ 7→ (∇θ)
p −∇θp

There is a canonical connection ∇can : F ∗
relE → F ∗

relE ⊗ ΩX(−1) , defined locally in a straightforward
manner. A theorem of Cartier (see, for example, [11, Thm. 5.1]) shows the following equivalence of
categories:

(

coherent sheaves
over X

)

E 7→(F∗

relE,∇can)
−−−−−−−−−−−→

(

coherent sheaves on X(−1) with integrable
connections of vanishing p-curvature

)

An immediate consequence of Cartier’s theorem is the following

Lemma 1.5. Let X be a smooth projective variety, and E be a torsion-free coherent sheaf over X. Then
for every coherent subsheaf F ⊂ F ∗

relE, we have

(i) F is the pullback of some subsheaf of E along Frel if and only if ∇can(F ) ⊂ F ⊗ ΩX(−1) .
(ii) If F is not the pullback of any subsheaf of E along Frel, then the induced map ∇can : F →

(F ∗
relE/F )⊗ ΩX(−1) is a nonzero OX(−1) -linear morphism.

Proof. For (i), the “only if” direction is clear. For the “if” direction, observe that ∇can, when restricted to
F , gives an integrable connection of vanishing p-curvature. By Cartier’s theorem, the inclusion F → F ∗

relE
is the pullback of some morphism E′ → E. On the other hand, Frel is flat when X is smooth, so this
morphism E′ → E has to be an inclusion. (ii) follows directly from (i), except that the OX(−1) -linearity
has to be checked locally. �

2. Maximally Frobenius-destabilized vector bundles

In this entire section, X will denote a smooth projective curve over an algebraically closed field k of
characteristic p 6= 0, with genus g ≥ 1. For notational convenience, we will denote X(−1) by Y , thus
writing the relative Frobenius morphism Frel : Y → X .

We start by refining the following inequality discovered by I. N. Shepherd-Barron [19, Cor. 2p] and
generalized to higher dimensions by A. Langer [14, Cor. 6.2]:

Lmax(E)− Lmin(E) ≤
(r − 1)(2g − 2)

p
(2.1)

for any rank-r semistable vector bundle E over X .

Proposition 2.1. Let E be a semistable vector bundle over X of rank r. Then

Lmax(E)− µ(E) ≤
(r − 1)(g − 1)

p
and µ(E)− Lmin(E) ≤

(r − 1)(g − 1)

p
(2.2)

Furthermore, the following are equivalent, provided g ≥ 2:

(i) Lmax(E)− µ(E) = (r − 1)(g − 1)/p;
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(ii) µ(E)− Lmin(E) = (r − 1)(g − 1)/p;
(iii) F ∗

relE satisfies the following condition:

Its Harder-Narasimhan filtration consists entirely of rank-one quotients
L1, · · · , Lr and µ(Li) = µ(Li+1) + 2g − 2 for all i = 1, · · · , r.

(2.3)

We will see later (Prop. 2.8) that (iii) cannot be satisfied for semistable vector bundles E of rank r > p.
Hence the inequalities (2.2) are not sharp for r > p. In that case, we will supply a better inequality
(Prop. 2.16).

Proof. We start with a technique used by Langer in the proof of [14, Cor. 6.2]. By Thm. 1.4, we may fix
some sufficiently large k ∈ N such that

Lmax(E) =
µmax((F

k
rel)

∗E)

pk
and Lmin(E) =

µmin((F
k
rel)

∗E)

pk

There is a connection

η : (F k
rel)

∗E → (F k
rel)

∗E ⊗ (ΩX(−k) ⊕ · · · ⊕ (F k−1
rel )∗ΩY )

given by η = (∇can, · · · , (F
k−1)∗∇can), where ∇can is the canonical connection induced by the Frobenius

morphism. Let 0 = E0 ⊂ · · · ⊂ El = (F k
rel)

∗E be the Harder-Narasimhan filtration of (F k
rel)

∗E. Since E
is semistable, none of the Ei’s are pullbacks of subbundles of E by F k

rel. By Lem. 1.5, there is a nonzero
OX(−k) -linear morphism for each Ei:

Ei → ((F k
rel)

∗E/Ei)⊗ (ΩX(−k) ⊕ · · · ⊕ (F k−1
rel )∗ΩY )

i.e. given each i, there is a nonzero morphism Ei → ((F k
rel)

∗E/Ei)⊗(F j
rel)

∗ΩX(j−k) for some j = 0, · · · , k−
1. Thus

µi((F
k
rel)

∗E) ≤ µi+1((F
k
rel)

∗E) + pj(2g − 2) ≤ µi+1((F
k
rel)

∗E) + pk−1(2g − 2)

where the second equality is attained if and only if Ei is the pullback of some subbundle of F ∗
relE by

F k−1
rel .

Claim 2.2 (cf. [9], Lem. 4.2.4). Fix µ, η ∈ R and r ∈ N; assume η ≥ 0. For any sequence of real numbers
µ1 > µ2 > · · · > µl with µi ≤ µi+1 + η, and any sequence of natural numbers r1, · · · , rl of indeterminate
length such that r1 + · · ·+ rl = r and r1µ1 + · · ·+ rlµl = rµ, there hold

µ1 ≤ µ+
(r − 1)η

2
and µl ≥ µ−

(r − 1)η

2
(2.4)

Furthermore, the following are equivalent if we assume η > 0:

(i) µ1 = µ+ (r − 1)η/2;
(ii) µl = µ− (r − 1)η/2;
(iii) l = r, ri = 1 for all i, and µi = µi+1 + η.

Assuming the claim and applying it to µ = µ((F k
rel)

∗E), η = pk−1(2g − 2), µi = µi((F
k
rel)

∗E), and
ri = rank(Ei), the inequalities (2.2) readily follow. Furthermore, in the g ≥ 2 case, both equalities are

attained when each Ei is pullback of a subbundle of F ∗
relE by F k−1

rel , and the Harder-Narasimhan filtration
of F ∗

relE must have rank-one quotients L1, · · · , Lr, with µ(Li) = µ(Li+1) + 2(g − 1).
We now prove the elementary claim. First, if η = 0, then l = 1 and µ = µ1 = µl; the inequalities (2.4)

are trivially satisfied. We now assume η > 0. Indeed, using µi ≥ µ1 − (i − 1)η, we find

µ =
1

r
(r1µ1 + · · ·+ rlµl) ≥ µ1 −

η

r
(r2 + 2r3 + · · ·+ (l − 1)rl)

where equality is attained if and only if µi = µi+1 + η for each i. If l = 1, we obtain strict inequalities in
(2.4) thank to the η > 0 assumption. Now, for any l = 2, · · · , r, the maximum of r2+2r3+ · · ·+(l− 1)rl,
subject to the condition r1 + r2 + · · ·+ rl = r, is obtained when r1 = · · · = rl−1 = 1 and rl = r − l + 1.
Altogether,

r2 + 2r3 + · · ·+ (l − 1)rl ≤ −
1

2
l2 +

(

r +
1

2

)

l − r ≤
1

2
r(r − 1)
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where the last equality is attained when l = r. Summarizing these inequalities, we get

µ1 ≤ µ+
η

r
·
1

2
r(r − 1) = µ+

(r − 1)η

2

and the equivalence of (i) and (iii). The other inequality in (2.4) and the equivalence of (ii) and (iii) can
be deduced in a similar manner. �

Remark 2.3. In the last condition (iii) in Prop. 2.1, the numerical equation µ(Li) = µ(Li+1) + 2g − 2
is equivalent to Li

∼= Li+1 ⊗ ΩY (provided that E is semistable). This can be seen as a consequence of
the following easy

Lemma 2.4. Suppose g ≥ 2, and F ∗
relE satisfies (2.3), and none of the subbundles Ei (1 ≤ i ≤ r − 1)

in the Harder-Narasimhan filtration of F ∗
relE occurs as pullback of a subbundle of E along Frel. Then

∇can maps Ei to Ei+1 ⊗ ΩY , and induces isomorphism Li
∼
−→ Li+1 ⊗ ΩY for all rank-one quotients

Li = Ei/Ei−1.

Proof. By hypothesis and Lem. 1.5, we have a nonzero morphism Ei → (F ∗
relE/Ei) ⊗ ΩY . Let j be the

largest integer such that the image of Ei is not contained in (Ej/Ei)⊗ΩY ; in particular, i ≤ j ≤ r. Then
we have an induced nonzero morphism

Ei → (Ej+1/Ej)⊗ ΩY

and it follows that µ(Li) ≤ µ(Lj+1) + 2g − 2. Given µ(Li) = µ(Li+1) + 2g − 2 for all i, we must have
i = j. Consequently, ∇can maps Ei to Ei+1 ⊗ ΩY , and induces a nonzero morphism Ei → Li+1 ⊗ ΩY .
Since ∇can also maps Ei−1 to Ei⊗ΩY , the above morphism Ei → Li+1⊗ΩY vanishes on Ei−1. Thus we
obtain a nonzero morphism Li → Li+1 ⊗ ΩY of line bundles with the same degree, and as such, it must
be an isomorphism. �

Vector bundles E whose pullbacks F ∗
relE satisfy (2.3) display an interesting trichotomy corresponding

to the relative size of their rank r and the characteristic p. The following lemma is necessary for our
discussion of the r < p case.

Lemma 2.5. Let E be a vector bundle over X, whose pullback F ∗
relE has Harder-Narasimhan filtration

0 = E0 ⊂ E1 ⊂ · · · ⊂ El = F ∗
relE. If the canonical connection ∇can induces isomorphisms Ei/Ei−1

∼
−→

Ei+1/Ei ⊗ ΩY for all i, then F ∗
relE

′ 6⊂ El−1 for every subbundle E′ ⊂ E.

Proof. Suppose the converse that F ∗
relE

′ ⊂ Ei for some i ≤ l − 1, and F ∗
relE

′ 6⊂ Ei−1. Then we have a
commutative square

F ∗
relE

′ nonzero //

∇can

��

Ei/Ei−1 ⊗ ΩY

∇can

F ∗
relE

′ ⊗ ΩX
zero // Ei+1/Ei ⊗ ΩY

which gives a contradiction since the upper composition is nonzero, but the lower one is zero. �

Proposition 2.6 (r < p case). Suppose g ≥ 2 and g − 1 is not divisible by p. Let E be a vector bundle
over X of rank r < p such that F ∗

relE satisfies (2.3), then E is stable.

Proof. Let 0 = E0 ⊂ E1 ⊂ · · · ⊂ Er = F ∗
relE be the Harder-Narasimhan filtration of F ∗

relE, with rank-
one quotients L1, · · · , Lr. We first claim that under the hypothesis, none of the subbundles Ei, for
i = 1, · · · , r − 1, is a pullback along Frel. Indeed, since deg(Li) = deg(Li+1) + 2g − 2, we find

deg(Ei) =

i
∑

j=1

deg(Lj) = i deg(L1)− i(i− 1)(g − 1) (2.5)

In particular, for i = r, we obtain deg(L1) = µ(F ∗
relE) + (r − 1)(g − 1). Substitute this equation back

into (2.5) and simplify, we find

deg(Ei) = iµ(F ∗
relE) + i(r − i)(g − 1) =

ip deg(E)

r
+ i(r − i)(g − 1)
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Now, suppose to the contrary of the claim that Ei = F ∗E′ for some subbundle E′ of E. Then

deg(E′) =
i deg(E)

r
+

i(r − i)(g − 1)

p
(2.6)

is an integer. However, by the hypothesis, p does not divide i(r− i)(g − 1) for all i = 1, · · · , r − 1, and r
is coprime to p. Hence (2.6) cannot possibly be an integer, and the claim is proved.

Now, let E′ be any stable proper subbundle of E. It suffices to show that µ(E′) < µ(E). Lem. 2.4

shows that ∇can induces isomorphisms Li
∼
−→ Li+1⊗ΩY for all i. Therefore, by Lem. 2.5, F ∗

relE
′ 6⊂ Er−1,

and we obtain a nonzero morphism F ∗
relE

′ → Lr. Hence

Lmin(E
′) ≤

µmin(F
∗
relE

′)

p
≤

deg(Lr)

p
(2.7)

A computation similar to (2.5) shows that

p deg(E) = deg(F ∗
relE) = r deg(Lr) + r(r − 1)(g − 1) (2.8)

Let r′ be the rank of E′. Then the second inequality in Prop. 2.1, applied to the stable bundle E′, shows
that

µ(E′)−
(r′ − 1)(g − 1)

p
≤ Lmin(E

′) ≤
deg(Lr)

p
≤

deg(E)

r
−

(r − 1)(g − 1)

p

where in the second and third inequalities, we used (2.7) and (2.8), respectively. Simplify this inequality,
and we obtain

µ(E′) ≤ µ(E)−
(r − r′)(g − 1)

p
< µ(E)

by the hypotheses that g ≥ 2 and r > r′. �

The condition that g − 1 is not divisible by p is necessary in Prop. 2.6. Indeed, one can construct
counterexamples to Prop. 2.6 when this condition is dropped.

Remark 2.7. Suppose g ≥ 2. Let E be a vector bundle over X such that F ∗
relE satisfies (2.3). Let

0 = E0 ⊂ E1 ⊂ · · · ⊂ Er = F ∗
relE be its Harder-Narasimhan filtration. The proof of Prop. 2.6 shows that

if none of the Ei’s (1 ≤ i ≤ r − 1) comes from pulling back along Frel, then E is stable.
Suppose now that Eij = F ∗

relGj are those subbundles coming from pullbacks. Applying the argument
to Eij+1/Eij = F ∗(Gj+1/Gj) shows that Gj+1/Gj is stable. Furthermore, the inequality

µ(Gj/Gj−1) =
µ(Eij/Eij−1 )

p
>

µ(Eij+1/Eij )

p
= µ(Gj+1/Gj)

proves that 0 = G0 ⊂ G1 ⊂ · · · ⊂ Gj ⊂ · · · ⊂ E is in fact the Harder-Narasimhan filtration of E, and has
stable quotients.

Proposition 2.8 (r > p case). Suppose g ≥ 2. Let E be a vector bundle over X of rank r > p such that
F ∗
relE satisfies (2.3), then E is not semistable.

Proof. Again let 0 = E0 ⊂ E1 ⊂ · · · ⊂ Er = F ∗
relE be the Harder-Narasimhan filtration of F ∗

relE, with
rank-one quotients L1, · · · , Lr. Since µ(Ei) > µ(F ∗

relE) for each i = 1, · · · , r − 1, we see that if at least
one such Ei is a pullback along Frel, then E is not semistable.

Hence, we may suppose to the contrary that none of the Ei’s (1 ≤ i ≤ r − 1) is a pullback along
Frel. We pick a sufficiently small open affine Spec(A) ⊂ X , whose preimage under Frel is Spec(B), where
B ∼= A[x]/(xp − a) for some a ∈ A, and the inclusion A → A[x]/(xp − a) corresponds to Frel. We use Mi

to denote the free B-module corresponding to the vector bundle Ei, and M for E. By shrinking Spec(A)
if necessary, we may assume ΩB/k

∼= Bdx is free as well. Let e1, · · · , er ∈ M ⊗A B be such that for each
i, the elements e1, · · · , ei form a B-basis for Mi. Write ∇ for ∇can, and by Lem. 2.4, we may suppose

∇(ei) =

i+1
∑

j=1

ωijej
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where ωij = bijdx ∈ Ω1
B/k form a matrix of 1-forms, and ωi(i+1) 6= 0 for all i. On the other hand, let

θ = ∂/∂x, so that

∇(θp)(ei) =
i+1
∑

j=1

ωij(θ
p)ej =

i+1
∑

j=1

bijθ
p(x)ej = 0

We now evaluate the p-curvature of ∇ on θ and e1:

(∇θ)
p(e1)−∇(θp)(e1) = (∇θ)

p(e1)

Note that the coefficient of (∇θ)
p(e1) in front of ep+1 is given by the expression ω12(θ)ω23(θ) · · ·ωp(p+1)(θ).

Since ωi(i+1) 6= 0 for all i and the p-curvature vanishes, we must have ep+1 = 0. This is absurd given
r > p. �

The critical value r = p is a more intricate case. However, using results of K. Joshi, S. Ramanan, E. Xia,
and J.-K. Yu [9, §5.3], we can classify all semistable vector bundles of rank r = p that are maximally
destabilized by the Frobenius morphism.

Lemma 2.9. Let L be a line bundle over Y , then the pushforward (Frel)∗L is stable if g ≥ 2, and
semistable if g = 1.

We point out that this lemma is neither new, nor the most general to date. It is proved by Lange and
Pauly [13, Prop. 1.2] using the classical inequality (2.1) and relative duality, and later generalized by
Sun [20, Thm. 2.2] to the case where L is replaced by any stable vector bundle. We provide a simple
proof using the improved inequality (2.2).

Proof. Let E be a rank-r stable subbundle of (Frel)∗L. Then the inclusion E ⊂ (Frel)∗L gives, by
adjunction, a nonzero morphism F ∗

relE → L. Hence µmin(F
∗
relE) ≤ deg(L). The Riemann-Roch formula

implies that deg(L) = deg((Frel)∗L) − (p − 1)(g − 1). Apply Prop. 2.1 to the first inequality in the
following chain:

µ(E) −
(r − 1)(g − 1)

p
≤Lmin(E) ≤

µmin(F
∗
relE)

p
≤

deg(L)

p

=µ((Frel)∗L)−
(p− 1)(g − 1)

p

Therefore µ(E) ≤ µ((Frel)∗L) − (p − r)(g − 1)/p. If g = 1, then µ(E) ≤ µ((Frel)∗L), and (Frel)∗L is
semistable. If g ≥ 2, then µ(E) < µ((Frel)∗L) for the proper subbundle E, and (Frel)∗L is stable. �

Proposition 2.10 (r = p case). Suppose g ≥ 2. Let E be a vector bundle over X of rank r = p. Then
the following are equivalent:

(i) E is stable, and F ∗
relE satisfies (2.3);

(ii) E is semistable, and F ∗
relE satisfies (2.3);

(iii) E = (Frel)∗L for some line bundle L.

Proof. (i) trivially implies (ii). To show that (ii) implies (iii), let L denote the last rank-one quotient
in the Harder-Narasimhan filtration of F ∗

relE. Then we have a nonzero morphism F ∗
relE → L, which

by adjunction, gives rise to a nonzero morphism E → (Frel)∗L. Under the assumption r = p, the
computation (2.8) shows that

deg(E) = deg(L) + (p− 1)(g − 1)

On the other hand, we obtain from the Riemann-Roch theorem that deg(L) = deg((Frel)∗L)−(p−1)(g−1).
Hence

deg((Frel)∗L) = deg(L) + (p− 1)(g − 1) = deg(E)

and consequently µ(E) = µ((Frel)∗L). Note that (Frel)∗L is stable by Lem. 2.9. Because E is semistable
and µ(E) = µ((Frel)∗L), the morphism E → (Frel)∗L is necessarily surjective. On the other hand,
rank(E) = r = p = rank((Frel)∗L), so this morphism is an isomorphism.

It remains to show that (iii) implies (i). Indeed, E is stable by Lem. 2.9. On the other hand, K. Joshi
et al. (cf. [9, §5], although a detailed proof of this result is given in [20, Lem. 2.1]) proved that the
subbundles 0 = E0 ⊂ E1 ⊂ · · · ⊂ El = F ∗

relE defined by
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(i) El = F ∗E and El−1 = ker(El → L), where the morphism El → L is the counit of the adjunction,
as El = F ∗

rel(Frel)∗L.

(ii) Ei = ker(Ei+1
∇can−−−→ F ∗

relE ⊗ ΩY → (F ∗
relE/Ei+1)⊗ ΩY ) for 0 ≤ i ≤ p− 2.

is a pre-oper, i.e. ∇can(Ei) ⊂ Ei+1 ⊗ ΩY for 0 ≤ i ≤ l − 1, and the induced OY -linear morphism
Ei/Ei−1 → (Ei+1/Ei) ⊗ ΩY is an isomorphism for 1 ≤ i ≤ l − 1. In particular, the quotient El/El−1

is line bundle L, and inductively, each quotient Ei/Ei−1
∼= (Ei+1/Ei) ⊗ ΩY is a line bundle Li, for

i = 1, · · · , l − 1. So l = r, the subbundles 0 = E0 ⊂ E1 ⊂ · · · ⊂ Er = F ∗
relE is the Harder-Narasimhan

filtration of F ∗E with line bundle quotients L1, · · · , Lr−1, Lr = L, and deg(Li) = deg(Li+1)+2g−2. �

Having concluded the discussion on vector bundles whose pullback satisfies (2.3), we make the fol-
lowing definition. As before, X denotes a smooth projective curve over an algebraically closed field k of
characteristic p 6= 0, with genus g ≥ 1.

Definition 2.11. A vector bundle E over X is maximally Frobenius-destabilized if E is stable, the
Harder-Narasimhan filtration of F ∗

relE consists entirely of rank-one quotients L1, · · · , Lr, and µ(Li) =
µ(Li+1) + 2g − 2 for all i = 1, · · · , r (cf. condition (2.3)).

When g = 1, there is no maximally Frobenius-destabilized vector bundles for trivial reasons. Prop. 2.8
shows that maximally Frobenius-destabilized bundles necessarily have rank r ≤ p. Prop. 2.10 guarantees
the existence of rank-p maximally Frobenius-destabilized bundles over an arbitrary curve of genus g ≥ 2.
In general, we cannot expect such bundles with rank r < p to exist over an arbitrary curve. However,
for most g, there exists a curve X of genus g and a maximally Frobenius-destabilized bundle E over X
of arbitrary rank r with 2 ≤ r < p. We construct such bundles in the following way:

Lemma 2.12 (S. Mochizuki, B. Osserman). Suppose p > 2. Then there exists a rank-2 maximally
Frobenius-destabilized vector bundle E over a general curve X of genus 2.

Proof. Osserman’s main theorem (cf. [18, Thm. 1.2], although the part we are using here is originally due
to Mochizuki [17]) states that, over a general curve of genus 2, the number of rank-2 semistable vector
bundles with trivial determinant and whose pullback under F is not semistable equals 2(p3 − p)/3 > 0.

We argue that every such vector bundle E is maximally Frobenius-destabilized (this is [8, Prop. 3.3]).
Indeed, since F ∗

relE is not semistable and of trivial determinant, there exists a line bundle L of positive
degree admitting an exact sequence

0 → L → F ∗
relE → L−1 → 0

Furthermore, Lem. 1.5 gives a nonzero morphism L → L−1 ⊗ ΩY , so 2 deg(L) ≤ deg(ΩX) = 2. Thus we
must have deg(L) = 1, and deg(L) = deg(L−1) + 2 as desired. �

Lemma 2.13. If a rank-2 vector bundle E over a curve of genus g ≥ 2 satisfies condition (2.3), then so
do its symmetric and exterior powers St(E) and Λt(E) for all t ∈ N.

We prove the lemma for St(E). The proof for the exterior power case is completely analogous.

Proof. Indeed, a rank-2 vector bundle E satisfies (2.3) if and only if there exist line bundles L1, L2, and
an exact sequence

0 → L1 → E → L2 → 0

such that deg(L1) = deg(L2) + 2g − 2. Now St(E) has a filtration 0 = E0 ⊂ E1 ⊂ · · · ⊂ Et+1 = St(E)
with rank-one quotients

Ei+1/Ei
∼= St−i(L1)⊗ Si(L2) ∼= Lt−i

1 ⊗ Li
2

so deg(Ei+1/Ei) = t deg(L1)−i(2g−2). Thus this filtration is the Harder-Narasimhan filtration of St(E),
and its successive quotients satisfy deg(Ei/Ei−1) = deg(Ei+1/Ei) + 2g − 2. �

Proposition 2.14. Suppose natural number p, g, and r are all at least 2, and either

(i) r = p, or
(ii) r < p and p does not divide g − 1,

Then there exists a rank-r maximally Frobenius-destabilized vector bundle E over some genus-g curve X.
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Proof. Existence in case (i) follows directly from (2.10), and holds over an arbitrary curve of genus g.
For case (ii), we first consider a general curve Z of genus 2. By Lem. 2.12, there exists a rank-2 vector

bundle G over Z which is maximally Frobenius-destabilized.
Fix n = g− 1. Then n is not divisible by p, so finite étale coverings of Z of degree n are parametrized

by the n-torsion elements of the Picard group Pic(Y )[n] ∼= (Z/nZ)2g . In particular, there exists such
a covering f : X → Z of degree n. Riemann-Hurwitz formula shows that the genus gX of X satisfies
gX = n+ 1 = g. Furthermore, f∗ΩZ = ΩX , so the exact sequence (cf. Rem. 2.3)

0 → L⊗ ΩZ(−1) → F ∗
relG → L → 0

pulls back to an exact sequence under the flat morphism f :

0 → f∗L⊗ ΩY → F ∗
relf

∗G → f∗L → 0 (2.9)

In particular, f∗G is a rank-2 vector bundle over X whose pullback along Frel satisfies condition (2.3).
Taking E = Sr−1(f∗G) and applying Lem. 2.13 and Prop. 2.6 completes the construction of the rank-r
vector bundle E. �

We also note the following

Corollary 2.15. Suppose p > 2, g ≥ 2 and g − 1 is not divisible by p. Let E be a rank-2 vector bundle
over a genus-g curve such that F ∗

relE satisfies (2.3). Then Sp−1(E) = (Frel)∗L for some line bundle L.

Proof. F ∗
relS

p−1(E) also satisfies (2.3), so we know from Prop. 2.10 that it suffices to prove the stability
of Sp−1(E). Let 0 = E0 ⊂ E1 ⊂ · · · ⊂ Ep = F ∗

relS
p−1(E) be the Harder-Narasimhan filtration of

F ∗
relS

p−1(E). We only need to show that none of the Ei’s (1 ≤ i ≤ p− 1) comes from pulling back along
Frel (cf. Rem. 2.7). If some Ei = F ∗

relE
′ for some subbundle E′ of Sp−1(E), then the computation (2.6)

shows that

deg(E′) =
i deg(Sp−1(E))

p
+

i(p− i)(g − 1)

p
(2.10)

On the other hand, it follows from a Chern class computation that

deg(Sp−1(E)) =
p(p− 1)

2
deg(E)

Therefore, under the hypothesis that g − 1 is not divisible by p, the expression in (2.10) cannot be an
integer for 1 ≤ i ≤ p− 1. �

and a partial improvement of the bound in Prop. 2.1 using a theorem of X. Sun:

Proposition 2.16. Suppose g ≥ 2. Let E be a semistable vector bundle over a genus-g curve X. Then

Lmax(E)− µ(E) < g − 1 and µ(E)− Lmin(E) < g − 1

Let r denote the rank of E. When r > p, these inequalities are sharper than Prop. 2.1.

Proof. We first prove the second inequality. Using Thm. 1.4, we may fix some sufficiently large k such
that Lmin(E) = µmin((F

k
rel)

∗E)/pk. Consider the last quotient Ql in the Harder-Narasimhan filtration of
(F k

rel)
∗E, and let Q be the last quotient in the Jordan-Hölder filtration of Ql. Then

µ(Q) = µ(Ql) = µmin((F
k
rel)

∗E)

and there is a surjection (F k
rel)

∗E → Q. By adjunction, we obtain a nonzero morphism E → (F k
rel)∗Q.

Sun’s theorem [20, Thm. 2.2] shows (F k
rel)∗Q is stable. Hence µ(E) ≤ µ((F k

rel)∗Q). Let q denote the rank
of Q. Expressing µ((F k

rel)∗Q) in terms of µ(Q) by the Riemann-Roch formula, we compute

µ(E) ≤ µ((F k
rel)∗Q) =

µ(Q)

pk
+

(

1−
1

pk

)

(g − 1) = Lmin(E) +

(

1−
1

pk

)

(g − 1) (2.11)

and the desired inequality follows.
For the first inequality, consider the maximal destabilizing subsheaf E1 of (F

k
rel)

∗E, and let S be the first
nontrivial subbundle in the Jordan-Hölder filtration of E1. Then there is a surjection (F k

rel)
∗E∨ → S∨,

where S∨ is stable with µ(S∨) = −µ(S) = −µmax((F
k
rel)

∗E). The above computation (2.11) then shows
that µ(E∨) = −µ(E) ≤ −Lmax(E) + (g − 1), which gives the first inequality. �
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3. The characteristic-3 case

In this section, X will denote a smooth projective curve over an algebraically closed field k of charac-
teristic p = 3, with genus g ≥ 2. We will again denote X(−1) by Y , thus writing the relative Frobenius
morphism Frel : Y → X .

We try to turn Cor. 2.15 around by taking a line bundle L, and asking whether (Frel)∗L can be
expressed as the symmetric power of a rank-2 vector bundle. The problem can be reduced to vector
bundles of trivial determinant.

Lemma 3.1. Suppose E is a rank-2 vector bundle, and F ∗
relE satisfies condition (2.3), i.e. there exists

a line bundle L over Y and an exact sequence

0 → L⊗ ΩY → F ∗
relE → L → 0 (3.1)

Then after twisting by a line bundle, E has trivial determinant.

The lemma actually holds in all positive characteristic p 6= 2.

Proof. Pulling back further by the isomorphism X
∼
−→ Y of abstract schemes, we see that (3.1) gives rise

to an exact sequence

0 → L′ ⊗ ΩX → F ∗
absE → L′ → 0

over X , for some line bundle L′. Let Θ be a theta characteristic over X (which exists for p 6= 2). Then
Θ2 ∼= ΩX . On the other hand, the above exact sequence shows that

3c1(E) = c1(F
∗
absE) = c1(L

′ ⊗ ΩX) + c1(L
′) = 2c1(L

′ ⊗Θ)

Let M = det(E)⊗ (L′ ⊗Θ)−1. Then

c1(E ⊗M) = c1(E) + 2c1(M) = 3c1(E)− 2c1(L
′ ⊗Θ) = 0

and therefore det(E ⊗M) ∼= OX . �

Proposition 3.2. Suppose E is a rank-2 vector bundle over X. Then the following are equivalent:

(i) E is maximally Frobenius-destabilized;
(ii) S2(E) is maximally Frobenius-destabilized;
(iii) S2(E) = (Frel)∗L for some line bundle L;

Furthermore, if E is assumed to have trivial determinant, then we can replace L by TY in (iii).

Proof. The equivalence of (ii) and (iii) is already proved in Prop. 2.10.
For (i) =⇒ (ii), note that by Lem. 2.13 and the equivalence (i) ⇐⇒ (ii) in Prop. 2.10, we only need to

show that S2(E) is semistable. By twisting E with a line bundle, we may assume deg(E) = 0. On the
other hand, there is an exact sequence

0 → N → E⊗2 → S2(E) → 0

where N is a line bundle. Since E has degree zero by assumption, all three vector bundles in this sequence
have vanishing slope. The theorem of S. Ilangovan, V. B. Mehta, and A. J. Parameswaran [7] shows that
the tensor product of semistable vector bundles whose ranks add up to less than p+2 is again semistable.
Therefore, E⊗2 is semistable, so all quotients of E⊗2 are of nonnegative degree. Since all quotients of
S2(E) are quotients of E⊗2, the same holds for S2(E).

For (ii) =⇒ (i), to prove the stability of E, let M be any quotient line bundle of E. Therefore, we have a
surjection S2(E) → M2. But S2(E) is stable by assumption, so µ(S2E) < 2 deg(M). On the other hand,
a Chern class computation shows that deg(S2(E)) = 3 deg(E). Thus 2µ(E) = µ(S2(E)) < 2 deg(M), and
E is stable. Again, because S2(F ∗

relE) ∼= F ∗
relS

2(E) is not semistable, the Ilangovan-Mehta-Parameswaran
theorem shows that F ∗

relE is not semistable. Thus F ∗
relE fits into an exact sequence

0 → N → F ∗
relE → R → 0 (3.2)

where deg(N) > µ(F ∗
relE) > deg(R). Therefore, S2(F ∗

relE) admits a filtration with successive quotients
N⊗2, N ⊗ R, and R2. The fact that they are stable, and deg(N2) > deg(N ⊗R) > deg(R2) shows that
this is the Harder-Narasimhan filtration of S2(F ∗

relE). On the other hand, S2(F ∗
relE) satisfies condition
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(2.3), so N ∼= R⊗ΩY . Looking back at the exact sequence (3.2), we see that E is maximally Frobenius-
destabilized.

For the second claim, note that the assumption det(E) ∼= OX implies N ∼= R−1 in (3.2). Hence
R2 ∼= TY . We also observe (cf. proof of “(iii) =⇒ (i)” in Prop. 2.10) that the Harder-Narasimhan
filtration of F ∗

rel(Frel)∗L has successive quotients L⊗Ω2
Y , L⊗ΩY , and L. It follows from the uniqueness

of Harder-Narasimhan filtration that if (Frel)∗L ∼= S2(E), then L ∼= R2 ∼= TY . �

Restricting ourselves to the trivial-determinant case, we seek to express (Frel)∗TY as a second sym-
metric power. We do so using the following rather general machinery:

Lemma 3.3. There is a bijection of sets:

Φ :

(

isomorphism classes of rank-2
vector bundles E over X

)

/

twisting by line bundles
∼
−→

(

pairs (F, q) where F is a rank-3 vector bundle with trivial
determinant and q ∈ H0(X,S2(F )) is a nondegenerate quadric

)

/

equivalences

where the underlying rank-3 bundle of Φ(E) is S2(E)⊗ det(E)−1.

We do not go into details in defining equivalences of pairs (F, q), although they will be clear from the
proof. For our application, we will be looking at a specific vector bundle F , for which the choice of q is
unique up to scaling.

Proof. A pair (F, q) of rank-3 vector bundle F with trivial determinant and q ∈ H0(X,S2(F )) a nonde-
generate quadric corresponds to an SO3-principal bundle, via the standard representation of SO3. On
the other hand, SO3 equipped with the standard representation is equivalent to PGL2 equipped with the
adjoint representation g. Consider the exact sequence of groups

0 → Gm → GL2
p
−→ PGL2 → 0

Let V be the standard representation of GL2. Then the precomposition of g by p is isomorphic to the
representation S2(V )⊗ det(V )−1 of GL2. Taking cohomology, we obtain

H1
ét(X,Gm) → H1

ét(X,GL2) → H1
ét(X,PGL2) → H2

ét(X,Gm)

where H2
ét(X,Gm) vanishes by Tsen’s theorem. The bijection Φ then follows from the isomorphism

H1
ét(X,Gm) ∼= Pic(X). �

For later computations in Prop. 3.8, we first work out an explicit description of relative duality for
the morphism Frel. This material is standard. Around any point x ∈ X , pick an affine neighborhood
Spec(A) ⊂ X , whose preimage under Frel is given by Spec(B) ⊂ Y , with B ∼= A[x]/(x3 − a) for some
a ∈ A. The morphism Frel corresponds to the embedding A → B ∼= A[x]/(x3 − a). By further shrinking,
we may assume ΩA/k

∼= Ada and ΩB/k
∼= Bdx are both free; we abbreviate ΩA/k and ΩB/k by ΩA and

ΩB. There is a trace map (see, for example, [5, Tag 0ADY]):

tr : (Frel)∗ΩY → ΩX (3.3)

defined locally by a map trx,d : (ΩB)A → ΩA of A-modules:

trx,d(dx) = 0, trx,d(xdx) = 0, and trx,d(x
2dx) = da

By the adjunction ((Frel)∗, F
!
rel), we have a nonzero morphism ΩY → F !

relΩX . Locally, this morphism is
defined by a map ΩB → HomA(B,ΩA), sending dx to the A-linear map:

1 7→ 0, x 7→ 0, and x2 7→ da

We see from the local description that this morphism is injective and surjective. In summary,

Lemma 3.4. There is an isomorphism ΩY → F !
relΩX which, by adjunction of ((Frel)∗, F

!
rel), gives the

trace map (3.3). �

We also note that the isomorphism F ∗
relΩX

∼
−→ Ω3

Y , which is locally given by a map ΩA ⊗A B → Ω3
B,

sends da⊗ 1 to (dx)3. The following lemma proves itself.
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Lemma 3.5. For every line bundle L over Y , there is a chain of isomorphisms

(Frel)∗L ∼=(Frel)∗Hom(L−1 ⊗ ΩY ,ΩY ) ∼= (Frel)∗Hom(L−1 ⊗ ΩY , F
!
relΩX)

∼=Hom((Frel)∗(L
−1 ⊗ ΩY ),ΩX) ∼= Hom((Frel)∗(L

−1 ⊗ T 2
Y ⊗ Ω3

Y ),ΩX)

∼=Hom((Frel)∗(L
−1 ⊗ T 2

Y )⊗ ΩX ,ΩX) ∼= ((Frel)∗(L
−1 ⊗ T 2

Y ))
∨

where Lem. 3.4 is used in the second isomorphism, the adjunction ((Frel)∗, F
!
rel) in the third, and the

projection formula in the fifth. �

In particular, (Frel)∗TY is self-dual and (Frel)∗OY is dual to (Frel)∗(T
2
Y ).

For notational simplicity, we will now use F to denote (Frel)∗TY . Observe that there is a canonical
surjection

S2(F ) → (Frel)∗(T
2
Y ) → 0 (3.4)

Since F is self-dual (cf. §3), it has trivial determinant. Given any vector bundle E over X , the nondegen-
erate pairing on E⊗2 and (E∨)⊗2 induces, using 2 < 3, a nondegenerate pairing on S2(E) and S2(E∨).
Thus, the dual of (3.4) gives a canonical injection

0 → (Frel)∗OY → S2(F∨) ∼= S2(F ) (3.5)

In fact, the above two morphisms combine into an exact sequence:

Proposition 3.6. There is a canonically defined exact sequence

0 → (Frel)∗OY → S2(F ) → (Frel)∗(T
2
Y ) → 0 (3.6)

Proof. Indeed, we have a composition (Frel)∗OY → S2(F ) → (Frel)∗(T
2
Y ) from (3.4) and (3.5). This is a

zero morphism, since

deg((Frel)∗OY ) = 2g − 2 > −(2g − 2) = deg((Frel)∗(T
2
Y ))

by a computation using the Riemann-Roch formula, and the two vector bundles are stable by Lem. 2.9.
Therefore the injective morphism (Frel)∗OY → S2(F ) factors through the kernel of S2(F ) → (Frel)∗(T

2
Y ).

By rank considerations, (Frel)∗OY is identified with this kernel. �

Corollary 3.7. S2(F ) has a unique global section up to scaling, and it is given by the image of 1 ∈
H0(X, (Frel)∗OY ) under the canonical injection (3.5).

Proof. (3.6) gives rise to an exact sequence

0 → H0(X, (Frel)∗OY ) → H0(X,S2(F )) → H0(X, (Frel)∗(T
2
Y ))

Since (Frel)∗(T
2
Y ) is stable of negative degree −(2g−2), there is no nonzero morphism OX → (Frel)∗(T

2
Y ).

Therefore H0(X, (Frel)∗(T
2
Y )) = 0, so H0(X,S2(F )) = H0(X, (Frel)∗OY ) has a unique section up to

scaling. �

Proposition 3.8. The image of 1 ∈ H0(X, (Frel)∗OY ) under the canonical injection (3.5) is a nonde-
generate quadric on every fiber of S2(F ).

Proof. We compute the image of 1 ∈ H0(X, (Frel)∗OY ) in H0(X,S2(F )) explicitly. In order to do so, we
have to understand the isomorphism (Frel)∗OY

∼= ((Frel)∗(T
2
Y ))

∨ given by relative duality, find out the
image of 1, and then dualize the canonical surjection S2(F ) → (Frel)∗(T

2
Y ).

Around any point x ∈ X , pick a sufficiently small affine neighborhood, and use the notations in §3 for
the relevant local expressions. The chain of isomorphisms in Lem. 3.5 can be expressed locally as

HomB(ΩB ,HomA(B,ΩA))A HomA((ΩB)A,ΩA)

contraction ❖❖
❖❖

❖❖
❖❖

❖❖
❖

❖❖
❖❖

❖❖
❖❖

❖❖
❖

HomB(ΩB,ΩB)A

F !
relΩX

∼=ΩY

♥♥♥♥♥♥♥♥♥♥♥♥

♥♥♥♥♥♥♥♥♥♥♥♥
identity7→trx,d

22❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢❢

HomA((T
2
B ⊗ Ω3

B)A,ΩA)

projection formula

BA

contraction

((T 2
B)A)

∨?
HomA((T

2
B)A ⊗ ΩA,ΩA)

contraction
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where 1 ∈ BA is sent to the identity morphism in HomB(ΩB ,ΩB)A, and consequently the map trx,d in
HomA((ΩB)A,ΩA), which is then the morphism

(

∂

∂x

)⊗2

⊗ da 7→ 0, x

(

∂

∂x

)⊗2

⊗ da 7→ 0, and x2

(

∂

∂x

)⊗2

⊗ da 7→ da

in HomA((T
2
B)A ⊗ ΩA,ΩA) after contraction and applying the projection formula. This is then finally

the element
(

∂

∂x

)⊗2

7→ 0, x

(

∂

∂x

)⊗2

7→ 0, and x2

(

∂

∂x

)⊗2

7→ 1

in ((T 2
B)A)

∨. Let X1 = ∂/∂x, X2 = x(∂/∂x), and X3 = x2(∂/∂x) be an A-basis for (TB)A, and

{XiXj} a basis for S2((TB)A). The composition BA
∼
−→ ((T 2

B)A)
∨ → S2((TB)A)

∨ sends 1 ∈ BA to
the sum (X1X3)

∨ + (X2
2 )

∨, where (X1X3)
∨ denotes the dual basis for X1X3, and similarly for (X2

2 )
∨.

Since the isomorphism for symmetric powersS2((TB)A)
∨ ∼= S2(((TB)A)

∨) is induced from that for the
tensor powers, the element in S2(((TB)A)

∨) corresponding to (X1X3)
∨ +(X2

2 )
∨ is X∨

1 X
∨
3 +(X∨

2 )
2. This

expression is a nondegenerate quadric. Since nondegeneracy is preserved under linear equivalences, the
corresponding expression in S2((TB)A) via self-duality of (TB)A is still nondegenerate. The proof is
complete, as the choice of x ∈ X is arbitrary. �

Corollary 3.9. There exists a rank-2 vector bundle E over X with trivial determinant, such that S2(E) ∼=
F . Furthermore, the choice of such a vector bundle E is unique up to twisting by a line bundle in
Pic(X)[2].

Proof. Prop. 3.8 and Cor. 3.7 together show that there exists a unique nondegenerate quadric q ∈
H0(X,S2(F )) up to scaling. Therefore, Lem. 3.3 shows that all rank-2 vector bundles E with S2(E) ⊗
det(E)−1 ∼= F occur, by uniqueness of q, as preimage of the pair (F, q) under Φ. Thus they all differ by
line bundle twists. Given such a vector bundle E, since S2(E) ∼= F ⊗ det(E) is maximally Frobenius-
destabilized, the same holds for E itself (Prop. 3.2). It follows from Lem. 3.1 that after twisting by a
line bundle, E has trivial determinant, and thus S2(E) ∼= F . Finally, note that given two rank-2 vector
bundles E, E′ with trivial determinant such that E′ = E⊗L for some line bundle L, then L ∈ Pic(X)[2]
because det(E′) ∼= det(E) ⊗ L2. �

We summarize the results of this section.

Theorem 3.10. In characteristic 3, maximally Frobenius-destabilized vector bundles of rank-2 with trivial
determinant exist over an arbitrary smooth projective curve of genus g ≥ 2, and are unique up to twisting
by an arbitrary line bundle in Pic(X)[2]. Furthermore, such vector bundles are precisely the rank-2 vector
bundles E satisfying S2(E) = (Frel)∗TY .

In particular, there are #Pic(X)[2] number of such vector bundles.

Proof. We already know from Prop. 3.2 that rank-2 maximally Frobenius-destabilized vector bundles
with trivial determinant are precisely the rank-2 vector bundles E satisfying S2(E) ∼= (Frel)∗TY . On
the other hand, by Cor. 3.9, bundles with this property exist and are unique up to twisting by any line
bundle in Pic(X)[2]. �

Even more generally,

Theorem 3.11. In characteristic 3, maximally Frobenius-destabilized vector bundles of rank-2 exist over
an arbitrary smooth projective curve of genus g ≥ 2, and are unique up to twisting by line bundles.
Furthermore, such vector bundles are precisely the rank-2 vector bundles E satisfying S2(E) ∼= (Frel)∗L
for some line bundle L over Y .

Proof. The second claim again follows from Prop. 3.2. Up to twisting by a line bundle, every rank-2
maximally Frobenius-destabilized vector bundle E has trivial determinant, by Lem. 3.1. The result then
reduces to thm. 3.10. �
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Remark 3.12. In [18, Thm. 1.2], B. Osserman proves that over an arbitrary genus-2 curve in character-
istic 3, there are exactly #Pic(X)[2] number of rank-2 Frobenius-destabilized vector bundles. Since over
genus-2 curves, Frobenius-destabilized bundles are precisely the maximally Frobenius-destabilized ones
(cf. [9, Prop. 3.3], or look in the proof of our Lem. 2.12), Thm. 3.10 specializes to Osserman’s counting
formula in the genus-2 case.

4. An application: ample vector bundles

We first give a new criterion for ample vector bundles, which is valid over an arbitrary smooth projective
variety over an algebraically closed field k (of arbitrary characteristic). C. Barton [1] proved a numerical
criterion for ample vector bundles in terms of their pullbacks. His result will form the basis of ours, so we
briefly review it. Given a projective variety X over an algebraically closed field k, we let N1(X) denote
the group of integral 1-cycles of X modulo numerical equivalence, and let A1(X) = N1(X) ⊗Z R. It is
a finite-dimensional vector space (cf. [12, §IV, Prop. 4]). Thus we may fix a basis z1, · · · , zq for A1(X),
and let ‖ · ‖ be the norm on A1(X) for which the basis z1, · · · , zq is orthonormal.

Theorem 4.1 (C. Barton). A vector bundle E over X is ample if and only if there exists a real number
ε such that for any smooth projective curve Y , any finite morphism f : Y → X, and any line bundle
quotient f∗E → L, there holds deg(L)/ deg(f) ≥ ε‖f(Y )‖.

Proof. This is [1, Thm. 2.1]. The main ingredient of the proof is a criterion of amplitude due to S. Kleiman
[12, IV-2, Prop. 2]. �

We also need a result about vector bundles over curves proved by S.-W. Zhang in the arithmetic setting
(though it is possibly older), and we choose the more geometric presentation in [4]:

Theorem 4.2 (S.-W. Zhang). Given a vector bundle E over a smooth projective curve C and any real
number ε > 0, there exists a smooth projective curve C′, a finite morphism f : C′ → C, and a line bundle
quotient f∗E → L such that deg(L)/ deg(f) < µ(E) + ε.

Proof. See [4, Thm. 5.7]. Although the authors prove that there exists a finite, flat cover of C, their proof
actually shows that C′ can be chosen to be smooth. �

Our criterion generalizes [3, Thm. 2.3] and [2, Thm. 1.1] to arbitrary dimensions, and is essentially a
consequence of [12, IV-2, Prop. 2]:

Theorem 4.3. Let X be a smooth projective variety over an algebraically closed field k, and E be a
vector bundle over X. Then E is ample if and only if there exists some real number ε > 0, such that for
any integral, closed curve C in X, there holds Lmin(E|C) ≥ ε‖C‖.

As before, the norm ‖ · ‖ on A1(X) is fixed with respect to a chosen basis. If C is a non-smooth curve,

the notation Lmin(E|C) is used to denote Lmin(ν
∗E) where ν : C̃ → C is the normalization map. The

proof in characteristic zero is a simplified version of the proof in positive characteristic, so we omit the
former.

Proof in characteristic p 6= 0. First suppose that E is ample. Thm. 4.1 provides some ε′ > 0 such that for
any smooth projective curve Y , any finite morphism f : Y → X , and any line bundle quotient f∗E → L,
Barton’s inequality deg(L)/ deg(f) ≥ ε′‖f(Y )‖ holds.

Now consider any integral, closed curve C in X , and let ν : C̃ → C be the normalization map (with

C̃ ∼= C if C is already smooth). Let Ẽ = ν∗(E|C). By Thm. 1.4, we may fix a sufficiently large k, such
that

Lmin(E|C) = Lmin(Ẽ) =
µmin((F

k
rel)

∗Ẽ)

pk

Let Q be the last quotient in the Harder-Narasimhan filtration of (F k
rel)

∗Ẽ. Then µmin((F
k
rel)

∗Ẽ) = µ(Q).

Furthermore, Thm. 4.2 allows us to find a smooth projective curve Y , a finite morphism g : Y → C̃(−k),
and a line bundle quotient g∗Q → L such that

deg(L)

deg(g)
< µ(Q) +

pkε′

2
· ‖C‖
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Divide by pk, and let f = ν ◦ F k
rel ◦ g, then

deg(L)

deg(f)
<

µmin((F
k
rel)

∗Ẽ)

pk
+

ε′

2
· ‖C‖ (4.1)

using deg(f) = pk deg(g), and µmin((F
k
rel)

∗Ẽ) = µ(Q). Since f(Y ) = C, Barton’s inequality deg(L)/ deg(f) ≥
ε′‖C‖ and (4.1) together imply

µmin((F
k
rel)

∗Ẽ)

pk
>

ε′

2
· ‖C‖

Therefore, by letting ε = ε′/2, we obtain Lmin(E|C) ≥ ε‖C‖.
Conversely, suppose we have some real number ε > 0, and inequality Lmin(E|C) ≥ ε‖C‖ for any

integral, closed curve C in X . We will check that E is ample using Thm. 4.1. Let ν, C̃, and Ẽ be as
before. Indeed, given any finite morphism f : Y → X where Y is a smooth projective curve, and any line
bundle quotient f∗E → L, there is a factorization

Y
g

//

f
""❊

❊❊
❊❊

❊❊
❊❊

C̃(−k)

ν◦Fk
rel

��

X

where g is a finite, separable morphism of smooth projective curves. Applying Lem. 1.1 to the morphism
g, we obtain

deg(L)

deg(f)
≥

µmin(f
∗E)

deg(f)
=

µmin((F
k
rel)

∗Ẽ)

pk
≥ Lmin(Ẽ) = Lmin(E|C) ≥ ε‖C‖

and the result follows. �

Corollary 4.4 (H. Brenner [3] and I. Biswas [2]). Let X be a smooth projective curve over an algebraically
closed field k, and E be a vector bundle over X. Then E is ample if and only if Lmin(E) > 0.

Proof. This is Thm. 4.3 in dimension one. �

Combining our criterion for amplitude with earlier results, we find

Corollary 4.5. Let X be a smooth projective curve over an algebraically closed field k of characteristic
p > 0. Let E be a rank-r semistable vector bundle over X. Suppose r ≤ p, then

(i) deg(E) > r(r − 1)(g − 1)/p implies that E is ample;
(ii) if E is maximally Frobenius-destabilized, then deg(E) ≤ r(r − 1)(g − 1)/p implies that E is not

ample.

Suppose r > p. Then deg(E) ≥ r(g − 1) implies that E is ample.

Proof. In the r ≤ p case, Prop. 2.1 shows that µ(E)−Lmin(E) ≤ (r−1)(g−1)/p, and equality is attained if
and only if condition (2.3) holds. Since E is ample if and only if Lmin(E) > 0, by Cor. 4.4, the statements
(i) and (ii) readily follow. In the r > p case, we use the sharper inequality µ(E)− Lmin(E) < g − 1 from
Prop. 2.16. �

We now use Cor. 4.5 to construct non-ample semistable vector bundles.

Corollary 4.6 (r = p). Suppose g ≥ 2. For every integer d ≤ (p− 1)(g− 1), there exists a rank-p vector
bundle E over any smooth projective curve X of genus g such that

(i) deg(E) = d, and
(ii) E is semistable but not ample.

Proof. Choose a line bundle L over X(−1) of degree d− (p−1)(g−1). Then E := (Frel)∗L is a maximally
Frobenius-destabilized vector bundle (Prop. 2.10) of rank p and degree d. In particular, E is semistable,
and Cor. 4.5 shows that E is not ample. �
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Corollary 4.7 (r < p). Suppose g ≥ 2 and p does not divide g − 1; fix a natural number r < p. For
every integer d ≤ r(r − 1)(g − 1)/p which is divisible by r, there exist a smooth projective curve X of
genus g and a rank-r vector bundle E over X such that

(i) deg(E) = d, and
(ii) E is semistable but not ample.

Proof. It follows from Prop. 2.14 that there exists a genus-g curve X , and a rank-r maximally Frobenius-
destabilized vector bundle E0 over X . The construction there shows that deg(E0) = 0. For some line
bundle L over X , the twist E := E0 ⊗L is of degree d. Since E is still maximally Frobenius-destabilized,
Cor. 4.5 shows that E is not ample. �

Remark 4.8. In the r < p case, our technique can only be used to construct non-ample semistable
bundles whose degree is divisible by r. Indeed, the computation (2.8) shows that the degree of any
maximally Frobenius-destabilized vector bundle (with rank r < p) is divisible by r.
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