
ar
X

iv
:1

40
8.

64
16

v2
  [

he
p-

th
] 

 2
6 

O
ct

 2
01

5

Matching the linear spectra of twinlike defects

Yuan Zhong1,2, Yu-Xiao Liu1‡
1Institute of Theoretical Physics, Lanzhou University, Lanzhou 730000, People’s

Republic of China
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Abstract. Twinlike defects refer to topological defect solutions of some apparently

different field models that share the same defect configuration and the same energy

density. Usually, one can distinguish twinlike defects in terms of their linear spectra,

but in some special cases twinlike defects even share the same linear spectrum. In this

paper, we derive the algebraic conditions for two twinlike defects to share identical

linear spectrum from the viewpoint of the normal modes of the linear fluctuations. We

also extend our discussion to braneworld models, where gravity plays an important

role.

PACS numbers: 11.10.Lm, 11.27.+d, 04.50.-h

1. Introduction

Many field models were found to support classical solutions which have finite energies

and extend field configurations. Such solutions are referred to as solitons or defects,

and have been applied in many branches of physics research, ranging from condensed

matter physics [1], particle physics [2], to cosmology [3]. The simplest defect solutions

are the kinks, which are solutions of two-dimensional models with only a single real

scalar field. The temptation for finding higher-dimensional defect solutions in canonical

one-component scalar field theory is forbidden by the Derrick theorem [4]. However,

higher-dimensional defect solutions were found in some scalar field models, where

the scalar fields have noncanonical kinetic terms [5, 6, 7]. Such noncanonical scalar

fields are called K-fields, which were originally introduced in cosmology to trigger the

cosmological inflation [8, 9, 10, 11, 12]. Now K-fields have been repeatedly studied in

string theories [13, 14, 15], braneworld models [16, 17, 18, 19, 20], and massive gravity

theories [21, 22]. It should be interesting to consider the existence and properties of

various defect solutions in K-field models.

Recently, it was found that defect solutions of a standard scalar field model might

have “twins” in some K-field models. Two twinlike defects share the same field

configuration and energy density. We call the corresponding models the twinlike models.

‡ Corresponding author.
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The first couples of twinlike models were reported in Ref. [23], where the authors

studied the domain wall solution of a scalar Dirac-Born-Infeld (DBI) type model§ in

four-dimensional flat space-time.

Suppose the scalar field possesses the following Lagrangian:

L = L(X, φ), (1)

where X = −1
2
∂µφ∂

µφ is the kinetic term of φ, and µ = 0, 1, 2, 3 is the space-time

indices. The authors of Ref. [23] studied a special case where

L = LDBI = 1− (1 + U(φ))
√
1− 2X, (2)

where U(φ) is a function of φ. The authors of Ref. [23] found that when

U =
√

1− 2V (φ)− 1, (3)

no matter what the form V takes, the model (2) always possesses a solution ( dubbed as

“doppelgänger domain wall”), which has the same field configuration and energy density

as the wall solution of the canonical model L0 = X − V (φ).

Thus, by definition the DBI model specified by the Lagrangian (2) and the potential

(3) is a twinlike model of the canonical model. But the DBI model is merely one of the

infinite twinlike models of the canonical model. Suppose the solution of an arbitrary

noncanonical model L(X, φ) traces out a curve C on the (X, φ) plane. Then the sufficient

and necessary conditions for this model to be a twin of the canonical one are [23]:

L = L0, on C, (4)

L,X = L0,X , on C. (5)

Here and in what follows we always use shortcuts like L,X ≡ ∂L
∂X

, et al.. These criteria

do not uniquely determine the form of L. So there are infinite twinlike models for the

canonical model in the case with a single scalar field and without gravity.

For models with multi-scalar fields or with gravity, the above criteria are no longer

valid. Nevertheless, it is still possible to construct twinlike models of braneworld

models [30], cosmological models [31], compacton models [32], multi-scalar field

models [33], and self-dual Abelian-Higgs theories [34].

According to Ref. [23], twinlike defects usually have different linear spectra, and

thus can be distinguished by analyzing their linear fluctuations. It is natural to ask if it

is possible that two twinlike defects also share the same linear spectrum? In Ref. [35],

Bazeia and Menezes gave us a positive answer by providing the first example of twinlike

models that support twinlike defects with identical linear spectrum. For simplicity, let

us call twinlike defects with identical linear structure the special twinlike defects and

call the corresponding models the special twinlike models from now on.

§ The original DBI model was proposed in 1934 by Born and Infeld [24] to solve the problem of the

divergence of electron’s self-energy in electromagnetic field theory. In their model, the kinetic term

of the electromagnetic field is written under a square root. In the 1980s, there was a revival in the

study of DBI model as it was found to arise in the low-energy limit of string/brane physics [25, 26].

Nowadays, similar models have been considered in scalar [27, 28, 14] and gravitational [29] systems,

sometimes these models are also called DBI models for simplicity.
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A number of special twinlike models were constructed later in Ref. [36], where the

Lagrangian L = L(X, V ) was assumed to be a function of X and V (rather than a

function of X and φ). With this Lagrangian, the criteria (4)-(5) can be rewritten as

L| = −2V, (6)

L,X| = 1, (7)

where the vertical line | represents taking the on-shell condition X = −V (see also

Ref. [37]). If in addition to Eqs. (6)-(7), the Lagrangian L also satisfies the following

equations [36]:

L,XX | = 0, (8)

[L,XV + 2V (L,XXX − L,XXV )] | = 0, (9)

[L,V V + L,XV + 2V (L,XV V − L,XXV )] | = 0, (10)

(L,V + 2V L,XV )| = −1, (11)

then the defect solution of the model would share the same defect configuration, energy

density, and linear spectrum with the canonical defect.

Note that Eqs. (8)-(11) were obtained by comparing the noncanonical linear

perturbation equation with the canonical one. However, we notice that the authors

of Ref. [36] did not simplify the former to the final form. In fact, in one of our recent

work [38], we have shown that the linear spectrum of a noncanonical model depends only

on the form of L,X and L,XX. The term L,φ or equivalently L,V can be replaced in terms

of X , L,X , L,XX , and their derivatives. Besides, for twinlike defects, L,X is constrained

by Eq. (7), we expect that the linear spectrum is determined only by L,XX. Therefore,

instead of Eqs. (8)-(11), we need only one equation of L,XX | to tell if a noncanonical

model is the special twin of the canonical one.

As we will show below that Eq. (8) is merely a sufficient condition for a noncanonical

model to be the special twin of the canonical one, and that some noncanonical models

despite violate Eq. (8) can still be special twinlike models of the canonical one. Aside

from this, there is no reports on special twinlike models in gravitational systems. Thus,

the aims of this paper are twofold: to derive the most general criterion for special

twinlike models in two-dimensional flat space-time, and to generalize this criterion to

the braneworld model, which is a simple gravitational model of current interesting in

high energy physics, and whose linear structure is well known.

In the next section, we consider special twinlike models in two-dimensional flat

space-time. We show that Eqs. (8)-(11) can be replaced by a single equation. Using this

equation as well as Eqs. (6)-(7), we construct two special twinlike models (with nontrivial

L,XX | 6= 0) for the canonical model. Then in section 3, we extend our discussions to

braneworld models. We first derive the equation for the normal mode of the linear

fluctuations. From this equation we can read out the constraint for the Lagrangian of

the special twinlike braneworld models. Two example models are constructed. Our

results will be summarized in section 4.
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2. Special twinlike defects in two-dimensional flat space-time

In two-dimensional flat space-time (x0 = t, x1 = x, ηµν =diag(−1, 1)), the standard

kinetic term for a static scalar field φ = φ(x) is

X = −1

2
φ′2. (12)

In this section, a prime represents the derivative with respect to x. Consider a model

described by the Lagrangian

L = L(X, φ), (13)

we obtain the following equation of motion

− L,φ = (L,Xφ
′)′. (14)

One can easily integrate Eq. (14) to obtain the following equation [37]

L − 2XL,X = 0. (15)

The energy density (the Hamiltonian density) is simply

ρ = −L. (16)

For the standard model L0 = X − V , Eq. (15) reduces to

X = −V. (17)

This is a first-order differential equation for φ(x). Specifying the form of V (φ), one

would obtain the solution of φ(x). By substitute Eq. (17) into Eq. (16), we get the

energy density for the canonical defect

ρ0 = 2V. (18)

To construct twinlike defect models for the canonical model, it is convenient to

rewrite L(X, φ) as

L = L(X, V ). (19)

In order for the noncanonical defects to have the same configuration as the canonical

defect, we require X = −V as the on-shell equation. That means no matter how

complicate a Lagrangian is, the final equation of motion must be X = −V .

To ensure that the noncanonical defects share the same energy density with the

canonical defect, we require

ρ = −L| = ρ0 = 2V. (20)

This is nothing but Eq. (6). Using Eq. (15), we immediately obtain Eq. (7):

L,X| = 1. (21)

A noncanonical model whose Lagrangian satisfies Eqs. (6)-(7) must be a twinlike

model of the canonical model. Let us cite here the twinlike models constructed by Adam

and Queiruga in Ref. [36]:
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(i) Model 1:

Lmod-1 =
2N+1
∑

i=3,5,···

fi(V )(X + V )i +X − V, (22)

where fi(V ) ≥ 0 are arbitrary functions of V .

(ii) Model 2:

Lmod-2 = 1−
√
1 + 2V

√
1− 2X − (X + V )2

2(1 + 2V )
. (23)

One can easily proof that both of the above models satisfy Eqs. (6)-(7), and therefore

are twinlike models of the canonical model. In fact, in addition to Eqs. (6)-(7), the

above models also satisfy Eqs. (8)-(11). So, models 1 and 2 are special twinlike models

of the canonical model.

As mentioned in the introduction, our aim is to construct special twinlike models

that has nontrivial L,XX |. To do this, we need to investigate the structure of the linear

spectrum of the general noncanonical model.

2.1. The quadratic action and the linear spectrum

The linearization of the model (13) has been conducted in Ref. [38]. Here we briefly

review the results. Expanding the Lagrangian in Eq. (13) to the second-order of the

field fluctuation δφ, we obtain

δ(2)L =
1

2

{

L,φφ(δφ)
2 + L,XX(φ

′)2(δφ′)2

− L,X∂
µδφ∂µδφ− 2L,φXφ

′δφδφ′

}

. (24)

Using the equation of motion, one can eliminate L,Xφ and L,φφ. By defining G ≡
δφ

√

L,X , we obtain

δ(2)L =
1

2

{

−G∂2
t G + U(x)G2 + γGG ′′

}

, (25)

where

U(x) = −γ
z′′

z
− z′

z
γ′ − 1

2
γ′′, (26)

and

z = φ′L1/2
,X , γ = 1 + 2

L,XXX

L,X
. (27)

When γ > 0, we can introduce a new coordinate x∗

dx∗

dx
≡ γ−1/2 (28)

to rewrite the quadratic action as

δ(2)SG =
1

2

∫

dtdx∗√γ
{

−G∂2
t G + Ueff(x

∗)G2 + GG̈
}

, (29)
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where

Ueff(x
∗) ≡ U(x∗) +

1

4
√
γ

d

dx∗

(

γ̇√
γ

)

. (30)

Here, an over dot represents the derivative with respect to x∗.

Obviously, the normal mode of the quadratic action is

Ĝ =
1√
2
γ1/4G. (31)

In terms of Ĝ, the quadratic action reads

δ(2)S
Ĝ
=

∫

dtdx∗Ĝ
{

− ∂2
t Ĝ +

¨̂G − θ̈

θ
Ĝ
}

, (32)

where

θ ≡ γ1/4z. (33)

From the quadratic action of Ĝ, we know that for

L,X > 0, γ > 0, (34)

the linear perturbation satisfies a Schrödinger-like equation

− ¨̂G +
θ̈

θ
Ĝ = −∂2

t Ĝ. (35)

From the linear perturbation equation (35), the linear spectrum of Ĝ is determined

only by the effective potential, and therefore, by θ. For the standard model, γ0 = 1 and

z0 = φ′, we have θ0 = φ′. Therefore, to obtain a special twinlike model which satisfies

θ̈/θ = θ̈0/θ0, we require

θ ∝ θ0. (36)

Using the definitions in Eq. (27) and L,X | = 1, we immediately obtain

(L,XXX)| = c, (37)

or equivalently,

L,XX | = − c

V
, (38)

where c is a positive constant.

2.2. Explicit examples

With Eq. (38), we can now construct a new class of special twinlike models that are

essentially different from Lmod-1 and Lmod-2. But for comparison, we would like to

construct our models by simply modify Lmod-1 and Lmod-2. Obviously, to ensure

Eq. (38), we only need to modify the X2 terms of Lmod-1 and Lmod-2.
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2.2.1. Example I Adding an X2 term to Lmod-1, we obtain

Lex1 =
∑

i=2,3,···

fex1i (V )(X + V )i +X − V, (39)

where fex1i (V ) ≥ 0. Obviously, this model satisfies the criterions:

Lex1| = −2V, Lex1,X | = 1. (40)

So, it is one of the twinlike models of the canonical model. To upgrade this model to a

special twinlike model, we require

Lex1,XX | = 2fex12 (V ) = − c

V
. (41)

or,

fex12 (V ) = − c

2V
. (42)

For our model,

[L,XV + 2V (L,XXX −L,XXV )] | = −6c

V
, (43)

[L,V V + L,XV + 2V (L,XV V − L,XXV )] | = 0, (44)

(L,V + 2V L,XV )| = −1− 4c. (45)

Obviously, identities (9) and (11) are also violated by our model.

2.2.2. Example II Now, let us turn to another model. We consider

Lex2 = 1−
√
1 + 2U

√
1− 2X + fex22 (V )(X + V )2. (46)

For Eq. (38) to be true, we need

fex22 (V ) = −c+ V + 2cV

2V + 4V 2
. (47)

As a consequence,

[L,XV + 2V (L,XXX −L,XXV )] | = −3c

V
, (48)

[L,V V + L,XV + 2V (L,XV V − L,XXV )] | = 0, (49)

(L,V + 2V L,XV )| = −1− 2c. (50)

So far, we have shown that Eqs. (8)-(11) are not necessary for the construction of

special twinlike models. Only Eqs. (6), (7) and (38) are required. Now let us consider

the construction of special twinlike models for a gravitational model.

3. Special twinlike braneworld models

Defect solutions can also be applied in higher dimensions. In 1983, Rubakov and

Shaposhnikov considered the possibility that our world is a domain wall in a five-

dimensional flat space-time [39]. The domain wall is generated by a background scalar

field with a φ4 interaction. By introducing an Yukawa coupling between the Dirac field

and the background scalar field, the authors of Ref. [39] found that massless left-chiral
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Dirac particle can be trapped on the wall. Later, it was found that gravity can also be

localized on domain walls in five-dimensional warped space-times [40, 41].

In this section, we consider the so-called thick braneworld models, which are

extensions of the Rubakov-Shaposhnikov model in warped space-times [42, 43, 44, 45,

46, 47] (for a review on thick brane, see [48]). There are some successful examples in

twinlike thick brane models [30], but no criteria or explicit examples of special twinlike

thick brane models. Our aim of this section is to fill this blank.

The action of a lot of thick brane models can be written as follows:

S =

∫

d5x
√−g

(

1

2κ2
5

R + L(φ,X)

)

, (51)

where κ2
5 is the gravitational coupling, g is the determinant of the metric gMN , R is the

scalar curvature, and L(φ,X) is the Lagrangian density of the background scalar field

that generates the domain wall. In this section, M,N = 0, 1, 2, 3, 5 represent the indices

of bulk coordinates, and Greek letters µ, ν = 0, 1, 2, 3 denote brane coordinate indices.

For simplicity, let us call the extra dimension as y = x5.

The kinetic term of the scalar field now becomes X = −1
2
gMN∇Mφ∇Nφ. The

standard braneworld model corresponds to the model with L = L0 = X−V (φ). As the

previous section, V is the self-interaction of the scalar field. The Einstein equations for

action (51) are

GMN ≡ RMN − 1

2
gMNR = κ2

5TMN , (52)

where the energy-momentum tensor is

TMN = gMNL+ L,X∇Mφ∇Nφ, (53)

To get thick brane solutions, we choose the following metric [42, 44]

ds2 = a2(y)ηµνdx
µdxν + dy2, (54)

where ηµν = diag(−1,+1,+1,+1) is the four-dimensional Minkowski metric, and

a(y) = eA(y) is called the warp factor. We also assume that the scalar field is static,

namely, φ = φ(y). As a consequence, the energy density takes the following form:

ρ = T00 = −e2AL. (55)

With all these assumptions, we can now explicitly write the Einstein equations as

follows

− 3∂2
yA = κ2

5LX(∂yφ)
2, (56)

6(∂yA)
2 = κ2

5(L+ LX(∂yφ)
2). (57)

The equation of motion for the scalar field is given by

(∂2
yφ)(L,X + 2XL,XX) + L,φ − 2XL,Xφ = −4L,X(∂yφ)(∂yA). (58)

This equation can be derived from Eqs. (56) and (57). Therefore, only two of the

dynamical equations are independent. For the case without gravity, Eq. (58) reduces to

Eq. (14).
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3.1. The superpotential method

To solve the Einstein equations, one can introduce the superpotential W (φ), such that

∂yA = −κ2
5

3
W (φ). (59)

Then for the standard model, we get

∂yφ = Wφ, or X = −1

2
W 2

φ , (60)

from Eq. (56), and

V =
1

2
W 2

φ − 2

3
κ2
5W

2. (61)

from Eq. (57).

Equations (59)-(61) constitute the first-order formalism of the canonical braneworld

model [49]. This formalism reexpresses the original second-order Einstein equations to

some first-order ones, which are easier to solve. With all these expressions, we know

that the on-shell Lagrangian of the canonical model takes the form:

L0|X=− 1

2
W 2

φ
= −W 2

φ +
2

3
κ2
5W

2. (62)

In what follows the evaluation on-shell |X=− 1

2
W 2

φ
will be represented simply by |.

By definition, a twinlike braneworld model should share the same scalar field

configuration, space-time geometry, and energy density with the canonical model [30,

37]. The first two requirements can be fulfilled if the warp factor and the kinetic term

X of the noncanonical model also satisfy Eqs. (59) and (60), respectively. Then, from

Eq. (56), one would obtain the following constraint [37]:

L,X| = 1. (63)

To fulfill the third requirement, the on-shell Lagrangian of the noncanonical model

should be (see Eq. (57))

L| = 2

3
κ2
5W

2 −W 2
φ . (64)

With Eqs. (63)-(64) we are ready to construct twinlike models for the canonical model.

But to construct special twinlike models, we need to analyze the linear structure of the

noncanonical models.

It is convenient for us analyze the linear fluctuation in the conformal coordinate r,

which is defined by dr = a−1dy. In the conformal coordinate, the metric reads

ds2 = a2(r)(ηµνdx
µdxν + dr2). (65)

3.2. Linearization of noncanonical branes

To linearize a noncanonical braneworld model, we need to consider the fluctuations

around both the scalar and the metric

φ = φ̄(r) + δφ(xP ), (66)

gMN = ḡMN(r) + δgMN(x
P ). (67)
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It is more convenient to define δgMN ≡ a2hMN .

It is always possible to decompose the metric perturbation into scalar, vector, and

tensor components (see Ref. [19]):

hµr = ∂µF +Gµ, (68)

hµν = ηµνA+ ∂µ∂νB + 2∂(µCν) +Dµν , (69)

where Cµ and Gµ are transverse vector perturbations:

∂µCµ = 0 = ∂µGµ, (70)

and Dµν is transverse and traceless (TT) tensor perturbation:

∂νDµν = 0 = Dµ
µ. (71)

Note that the indices of the perturbations are always raised and lowered by ηµν , so that

∂µ ≡ ηµν∂ν , and �
(4) ≡ ηµν∂µ∂ν .

The advantage of this decomposition is that different types of perturbations evolve

independently. Therefore, the full linear spectrum of a braneworld model can be

separated into scalar, vector, and tensor modes.

In Ref. [19], we have systematically derived the quadratic action for all three types

of fluctuation modes. So here we only briefly review the results. The quadratic action

for the vector and the tensor modes are

δ(2)Svector =
1

2

∫

d4xdrv̂µ�(4)v̂µ, (72)

and

δ(2)Stensor =
1

4

∫

d4xdrD̂µν
{

�
(4)D̂µν + D̂′′

µν −
(a

3

2 )′′

a
3

2

D̂µν
}

, (73)

respectively, where

v̂µ = a
3

2 (Gµ − C ′
µ), D̂µν = a

3

2Dµν , (74)

and primes represent the derivative with respect to r in this section.

Obviously, the spectra of both the vector and tensor modes are independent of the

Lagrangian of the noncanonical scalar field, they are determined only by the warp factor

a(r). Since twinlike models share the same geometry with the canonical braneworld

model, they also share the same vector and tensor spectra with the canonical model.

It is the scalar modes which render the spectra of the twinlike models different.

Thus, in order to construct special twinlike models, we need to find the condition under

which the twinlike models also share the same scalar spectrum. The derivation of the

quadratic action of the scalar modes is rather lengthy, we only cite the final result here

(see Ref. [19] for details):

δ(2)Sscalar =

∫

d4xdr∗G
{

�
(4)G + G̈ − θ̈

θ
G
}

. (75)
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This action is similar to the one we obtained in Eq. (32). The new coordinate r∗

(corresponds to x∗), quantities θ and γ are similarly defined as previous:

dr∗ = γ−1/2dr, (76)

θ = γ1/4z, (77)

γ = 1 + 2
L,XXX

L,X

. (78)

The over dots on θ and G represent derivatives with respect to r∗.

What different is that now the normal mode of the scalar perturbations is defined

by

G =
κ5

2
γ1/4a3/2

√

L,X

(

2δφ− φ′

HA
)

, (79)

and that the quantity z is given by

z = a3/2
φ′

H
√

L,X, (80)

where H ≡ a′/a.

Clearly, the linear spectrum of the normal mode G is determined only by θ̈/θ. For

the canonical model L0,X = 1 and L0,XX = 0, we get

θ0 = a3/2
φ′

H . (81)

For a twinlike model whose Lagrangian is already constrained by Eqs. (63) and (64),

the requirement that θ̈/θ = θ̈0/θ0 is equivalent to

(L,XXX)| = c, (82)

or

L,XX | = − 2c

W 2
φ

. (83)

We assume that c is a positive constant. Now we are ready to write some special twinlike

braneworld models.

3.3. Examples

It is not necessary for us to start from zero. In fact, in Ref. [37] the authors

have constructed several twinlike braneworld models. Unfortunately, none of these

braneworld models satisfies Eq. (83). Therefore, these models are not the special twinlike

models of the canonical braneworld model. At the time when Ref. [37] was written, the

structure of linear scalar perturbation of an arbitrary K-field braneworld model was

still an open question. So the authors of Ref. [37] did not address when two twinlike

braneworld models would also possess an identical linear structure.

As shown in the previous subsection, the effective potential for the scalar linear

perturbation is determined only by L,XX . So, we only need to modify the X2 terms of

the models given by Ref. [37] to make them satisfy Eq. (83).
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For the first model, we consider

Lex1 = fex1(φ)
(

X +
1

2
W 2

φ

)2

+X − V, (84)

where fex1(φ) ≥ 0, and V is given by Eq. (61). Obviously, this Lagrangian satisfies

Eqs. (63) and (64). In order to satisfy Eq. (83), f(φ) should take the following form:

fex1(φ) = − c

W 2
φ

. (85)

For the second model, we consider the DBI type model:

Lex2 = 1−
√

1 +W 2
φ

√
1− 2X +

2

3
κ2
5W

2 + fex2(φ)
(

X +
1

2
W 2

φ

)2

. (86)

This model will be a special twinlike braneworld model if

fex2(φ) = − c

W 2
φ

− 1

2
(

1 +W 2
φ

) . (87)

The above examples show that it is possible to construct special twinlike models

in gravitational systems, in which L,XX can be a function of the extra dimension.

For comparison and simplicity, we only studied the two types of models given by

Ref. [37]. But in fact, one can construct infinite special twinlike models for the canonical

braneworld model. Besides, although we only considered braneworld models, it is not

difficult to repeat the same procedures for cosmological models.

4. Summary and comments

Field configuration, energy density, and linear spectrum are important features of

a defect solution. Twinlike defects are defect solutions that share the same field

configuration and energy density. Usually, they can be distinguished by their linear

spectra. However, there are some special cases, where the twinlike defects even share

the same linear spectrum. We call such special defects the special twinlike defects. Some

special twinlike defects have been constructed in Refs. [35, 36]. Especially, the authors

of Ref. [36] derived the criteria for special twinlike defects in two-dimensional flat space-

time. They argue that the Lagrangian of a special twinlike model should satisfy the

on-shell condition L,XX | = 0. It is interesting to extend the works of Refs. [35, 36] to

curved and higher space-time and to cases with more general on-shell condition where

L,XX | 6= 0.

In this paper, we successfully constructed special twinlike models in both flat and

warped space-times. We showed that in both cases it is possible to construct special

twinlike models with L,XX | 6= 0. The criteria (38) and (83) does not depend on explicit

solutions. Because the solution is determined only by the superpotential W (φ): given

a superpotential, we can find the corresponding solution of φ(y) and a(y). But in our

discussions above, we did not specify the form of W . Thus our results are valid for all

the special twinlike models correspond to the canonical model L0. Of course, it is also

interesting to consider special twinlike models correspond to noncanonical models, in

this case our criteria will be modified, however.
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The existence of the special twinlike models makes it a theoretical problem

to distinguish the noncanonical models from the canonical one. Because for any

phenomenologically acceptable canonical scalar field model, we can always construct

infinite special twinlike models, which share the same background behaviors and linear

structure with the canonical model.

As the normal twinlike models, the special twinlike models are not a

reparametrization of the canonical model in general. One of the possible ways to

distinguish the canonical model from its special twins is to consider perturbations beyond

the linear order. As the higher-order perturbations are considered, the present work

might be interested. Because in principle, models with L,XX | 6= 0 are different from the

canonical model (where L,XX | = 0). For sure, models with nontrivial L,XX | would have

a richer nonlinear structure than those with L,XX | = 0. It has been shown, at least in

the frame of cosmology [50], that the third-order Lagrangian of the scalar perturbation is

determined by both L,XX and L,XXX . It is known that the nonlinear perturbation is one

of the candidates to offer the primordial non-Gaussianity in the microwave background

radiation. Similarly, L,XX might play an important role in other noncanonical scalar

field models. For this reason, special twinlike models with nontrivial L,XX | deserve
further studies.

Another possible way to distinguish two special twinlike models is to study the

quantum effects. The quantization of a space-dependent static defect configuration

φc(x) can be realized by expanding the action around φc(x), and treating the fluctuation

δφ(x, t) = φ(x, t)−φc(x) as quantum operator (see [51] for a pedagogical introduction).

To the lowest order, we will obtain the quadratic action for δφ, which is nothing but

Eq. (32). Depending on the form of φc(x), the spectrum of Eq. (32) might consist

a zero mode, a few bound states and a continuum of scattering states [51]. As the

massive modes are considered, no matter they are bound states or scattering states,

the special twinlike defects cannot be distinguished. Because as we have shown in the

subsection 2.1, the special twinlike defects share the same linear perturbation equation.

However, one should pay a special attention to the zero mode, whose quantization is

achieved by introducing the collective coordinate or the modulous‖ [53, 54]. It is possible
that special twinlike models can be distinguished even at the lowest order, due to the

quantization of the zero mode. A proof to this conjecture is beyond the scope of the

present work, we would leave it to our future work.
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