
ar
X

iv
:1

40
8.

64
76

v1
  [

m
at

h.
O

A
] 

 2
7 

A
ug

 2
01

4

AN ASYMPTOTIC PROPERTY OF FACTORIZABLE COMPLETELY POSITIVE

MAPS AND THE CONNES EMBEDDING PROBLEM

UFFE HAAGERUP(1) AND MAGDALENA MUSAT(2)

Abstract. We establish a reformulation of the Connes embedding problem in terms of an asymptotic

property of factorizable completely positive maps. We also prove that the Holevo-Werner channels

W
−
n are factorizable, for all odd integers n 6= 3. Furthermore, we investigate factorizability of convex

combinations of W+
3 and W

−
3 , a family of channels studied by Mendl and Wolf, and discuss asymptotic

properties for these channels.

1. Introduction

The class of factorizable completely positive maps (introduced by C. Anantharaman-Delaroche in [1])

has gained particular significance in quantum information theory in connection with the settling (in the

negative) of the asymptotic quantum Birkhoff conjecture. This conjecture originated in work of J. A.

Smolin, F. Verstraete and A. Winter (cf. [10]), where they provided evidence that every unital quantum

channel might always be well approximated by a convex combination of unitarily implemented ones.

Further support for this conjectured restoration in the asymptotic limit of Birkhoff’s classical theorem

was given by C. Mendl and M. Wolf in [9], where they presented a family of unital quantum channels

outside the convex hull of the unitary ones, exhibiting the interesting property that they fall back into

this set when taking the tensor product of two copies of them.

In [6], we proved that every non-factorizable unital completely positive and trace-preserving map on

Mn(C), n ≥ 3, provides a counterexample for the conjecture, and we gave examples of non-factorizable

unital quantum channels in all dimensions n ≥ 3. It was then a natural question whether every factorizable

unital quantum channel does satisfy the asymptotic quantum Birkhoff property (AQBP, for short). This

question turned out to have an interesting interpretation, in that it seemingly related to the celebrated

Connes embedding problem (cf. [4]), known to be equivalent to a number of other fundamental problems

in operator algebras. We showed in the above-mentioned paper [6] (see Theorem 6.2 therein) that if for all

n ≥ 3, every factorizable unital quantum channel in dimension n does satisfy the AQBP, then the Connes

embedding problem has a positive answer. However, after the paper [6] was submitted for publication, we

discovered that the factorizable channel from Example 3.3 therein does not satisfy the AQBP, thus, there

is no direct connection between the asymptotic quantum Birkhoff property and the Connes embedding

problem. We announced this result in Remark 6.3 of [6]. Furthermore, we also announced therein that the
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Connes embedding problem connects, in fact, to another asymptotic property of factorizable completely

positive maps. Namely, the Connes embedding problem has a positive answer if and only if the following

equality holds for every n ≥ 3 and every factorizable unital quantum channel T in dimension n:

(1.1) lim
k→∞

dcb(T ⊗ Sk, conv(Aut(Mn(C)⊗Mk(C)))) = 0 ,

where Sk is the completely depolarizing channel on Mk(C), i.e., Sk(x) = τk(x)1k, for all x ∈ Mk(C). Here

τk denotes the normalized trace on Mk(C), and 1k is the identity k × k matrix. We give the proof of

these statements in Sections 2 and 3 of this paper. We then prove that the Holevo-Werner channels W−
n

are factorizable, for all odd integers n ≥ 5, and show that they do satisfy the asymptotic property (1.1)

above. We have shown in [6, Example 3.1] that W−
3 is not factorizable. Here we investigate furthermore

factorizability of convex combinations of W+
3 and W−

3 , a family of channels studied by Mendl and Wolf

in [9]. We also determine the cb-distance from W−
3 to the factorizable maps. This is all done in Section

5. The main tool in the proof of these factorizability results is Theorem 4.5, which is the main result of

Section 4. This theorem is motivated by the averaging techniques of Mendl and Wolf from [9], building on

earlier analysis of entanglement measures under symmetry carried out by Vollbrecht and Werner in [11].

In the last section we study further asymptotic properties of the family Tλ = λW+
3 +(1−λ)W−

3 , 0 ≤ λ ≤ 1.

Mendl and Wolf showed in [9] that these channels satisfy the interesting property that Tλ belongs to the

convex hull of automorphisms of M3(C) if and only if λ ≥ 1/3, while furthermore, for some 0 < λ0 < 1/3,

one has Tλ ⊗ Tλ ∈ conv(Aut(M9(C))), for all λ ∈ [λ0, 1] . Our main result in this section is Theorem 6.1

asserting that for every λ ∈ [1/4, 1] and every integer k ≥ 2 , one has T⊗k
λ ∈ conv(Aut(M3k(C))) . Hence

Tλ does satisfy the AQBP, for all λ ∈ [1/4, 1].

Throughout the paper, we denote the set of unital quantum channels in dimension n, that is, unital

completely positive trace-preserving maps on Mn(C), by UCPT(n).

2. An example of a factorizable map which does not satisfy the asymptotic quantum

Birkhoff property

We begin this section by establishing a number of intermediate results, some of which may be of inde-

pendent interest. The first one is probably known (and follows from the work of Choi [3]), but we include

a (possibly different) proof for convenience.

Proposition 2.1. Let T : Mn(C) → Mn(C) be a UCPT(n)-Schur multiplier.

(1) If Tx =
∑d

i=1 a
∗
i xai , for all x ∈ Mn(C), for some a1 , . . . , ad ∈ Mn(C), then a1 , . . . , ad are

diagonal matrices.

(2) If T ∈ conv(Aut(Mn(C))), i.e., Tx =
∑d

i=1 ciu
∗
i xui, x ∈ Mn(C), where ci > 0,

∑d
i=1 ci = 1,

ui ∈ U(n), 1 ≤ i ≤ d, then u1 , . . . , ud are diagonal matrices.

Proof. (1) Suppose that Tx =
∑d

i=1 a
∗
i xai , x ∈ Mn(C), for some a1 , . . . , ad ∈ Mn(C). Let p be a

projection in Dn(C), the set of diagonal n × n complex matrices. We then have p = Tp =
∑d

i=1 a
∗
i pai.

Therefore
∑d

i=1(pai(1 − p))∗(pai(1 − p)) = (1 − p)p(1 − p) = 0, which implies that pai(1 − p) = 0 , for

all 1 ≤ i ≤ d. Similarly,
∑d

i=1((1 − p)aip)
∗((1 − p)aip) = 0, which implies that (1 − p)aip = 0, for all

1 ≤ i ≤ d. Then the commutator [ai, p] : = aip− pai = (1− p)aip− pai(1− p) = 0, for all 1 ≤ i ≤ d. This

shows that ai ∈ Dn(C)
′ ∩Mn(C) = Dn(C), 1 ≤ i ≤ d, as claimed.

(2) follows from (1), by setting ai =
√
ciui , for all 1 ≤ i ≤ d. �
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Theorem 2.2. Let T : Mn(C) → Mn(C) be a UCPT(n)-Schur multiplier, and S : Mk(C) → Mk(C) a

UCPT(k)-Schur multiplier, where n, k are positive integers. The following statements are equivalent:

(1) T ⊗ S ∈ conv(Aut(Mn(C)⊗Mk(C))).

(2) T ∈ conv(Aut(Mn(C))) and S ∈ conv(Aut(Mk(C))).

Proof. The implication (2) ⇒ (1) is clear, so we proceed to showing that (1) ⇒ (2). Let (eij)1≤i,j≤n and

(fst)1≤s,t≤k be the canonical matrix units inMn(C) andMk(C), respectively. If T⊗S ∈ conv(Aut(Mn(C)⊗
Mk(C))), then by Proposition 2.1, there exist a positive integer m and numbers ci > 0, 1 ≤ i ≤ m with∑m

i=1 ci = 1, as well as diagonal unitaries u1, . . . , um ∈ Dnk(C) = Dn(C)⊗Dk(C), such that

(T ⊗ S)(y) =

m∑

i=1

ciu
∗
i yui , y ∈ Mn(C)⊗Mk(C).

For all 1 ≤ i ≤ m, vi : = ui(1n⊗f11) is a unitary in (1n⊗f11)(Mn(C)⊗Mk(C))(1n⊗f11) ≃ Mn(C)⊗f11.

Hence, there exist unitaries wi ∈ Mn(C) such that vi = wi ⊗ f11 , 1 ≤ i ≤ m. Then, for all x ∈ Mn(C),

(T ⊗ S)(x⊗ f11) = (1n ⊗ f11)((T ⊗ S)(x⊗ f11))(1n ⊗ f11)(2.1)

=

(
m∑

i=1

ciw
∗
i xwi

)
⊗ f11.

Since S(f11) = f11, we infer from (2.1) that Tx =
m∑
i=1

ciw
∗
i xwi , for all x ∈ Mn(C), which implies that

T ∈ conv(Aut(Mn(C))). A similar proof shows that S ∈ conv(Aut(Mn(C))). �

Remark 2.3. The Schur multiplier TB constructed in Example 3.3 of [6] is a factorizable UCPT(6)-map

with the property that TB /∈ conv(Aut(M6(C))). In view of the above theorem, it now follows that

T⊗n
B /∈ conv(Aut(M6n(C))) , for any n ≥ 2.

The next result shows that TB does not satisfy the asymptotic quantum Birkhoff property.

Theorem 2.4. Let T be a UCPT(n)-Schur multiplier and S a UCPT(k)-Schur multiplier, where n, k are

positive integers. Then

dcb(T ⊗ S, conv(Aut(Mnk(C)))) ≥
1

2
dcb(T, conv(Aut(Mn(C)))) .

In particular, if T /∈ conv(Aut(Mn(C)), then T fails the asymptotic quantum Birkhoff property.

Proof. Let α = dcb(T ⊗ S, conv(Aut(Mnk(C)))). Then there exists m ∈ N, and for 1 ≤ j ≤ m, there exist

cj > 0 with
∑m

j=1 cj = 1 and unitary nk × nk matrices uj such that
∥∥∥T ⊗ S −∑m

j=1 cju
∗
jxuj

∥∥∥ = α .

As before, let (fst)1≤s,t≤k be the canonical matrix units in Mk(C). Then, for every 1 ≤ j ≤ m, there

exists bj ∈ Mn(C) such that (1n⊗f11)uj(1n⊗f11) = bj⊗f11 . Next, set R(x) =
∑m

j=1 cjb
∗
jxbj , x ∈ Mn(C) .

Then R is a completely positive map, and we claim that

(2.2) ‖T −R‖cb ≤ α .

To prove this, note first that for all z ∈ Mn(C) ⊗ Mk(C), ‖(T ⊗ S)(z) −∑m
j=1 cju

∗
jzuj‖ ≤ α‖z‖ . In

particular, using that S(f11) = f11, it follows for all x ∈ Mn(C) that∥∥∥∥∥∥
T (x)⊗ f11 −

m∑

j=1

cju
∗
j (x⊗ f11)uj

∥∥∥∥∥∥
≤ α‖x‖ .
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This implies that ‖(1n ⊗ f11)(T (x)⊗ f11 −
∑m

j=1 cju
∗
j (x⊗ f11)uj)(1n ⊗ f11)‖ ≤ α‖x‖ . Equivalently,

∥∥∥∥∥∥
T (x)⊗ f11 −




m∑

j=1

cjb
∗
jxbj


⊗ f11

∥∥∥∥∥∥
≤ α‖x‖ , x ∈ Mn(C) ,

which shows that ‖T − S‖ ≤ α . A similar argument applied to T ⊗ idl , l ≥ 2 yields (2.2).

Next, for 1 ≤ j ≤ m, since ‖bj‖ ≤ 1, we have bj = (vj + wj)/2, for some n×n unitaries vj , wj . Further,

set T̃ (x) = (1/2)
∑m

j=1 cj(v
∗
jxvj + w∗

jxwj) , x ∈ Mn(C) . Then T̃ ∈ conv(Aut(Mn(C)). We claim that

(2.3) ‖T̃ −R‖ ≤ α .

Note that (T̃ − R)(x) = (1/4)
∑m

j=1 cj(vj − wj)
∗x(vj − wj) , x ∈ Mn(C), hence T ′ − R is completely

positive. Therefore

(2.4) ‖T̃ −R‖cb = ‖(T̃ − R)(1n)‖ =
1

4

∥∥∥∥∥∥

m∑

j=1

cj(vj − wj)
∗(vj − wj)

∥∥∥∥∥∥
=

∥∥∥∥∥∥

m∑

j=1

cj(1n − b∗jbj)

∥∥∥∥∥∥
.

By using (2.2),
∥∥∥∥∥∥

m∑

j=1

cj(1n − b∗jbj)

∥∥∥∥∥∥
= ‖1n −R(1n)‖ = ‖T (1n)−R(1n)‖ = ‖T −R‖cb ≤ α .

Combined with (2.4), this yields (2.3). An application of the triangle inequality gives that

‖T − T̃‖cb ≤ 2α .

Since T̃ ∈ conv(Aut(Mn(C))), the conclusion follows. �

3. Tensoring with the completely depolarizing channel and a new asymptotic property

Definition 3.1. Let T : Mn(C) → Mn(C) be a UCPT(n)-map. We say that T has an exact factoriza-

tion through Mn(C) ⊗N , for some von Neumann algebra N with a normal, faithful, tracial state τN , if

there exists a unitary u ∈ Mn(C)⊗N such that

(3.1) T (x) = (idn ⊗ τN )(u∗(x⊗ 1N )u) , x ∈ Mn(C) .

Remark 3.2. By (the proof of) Theorem 2.2 in [6], a UCPT(n)-map T has an exact factorization through

Mn(C)⊗N , for some von Neumann algebra N with a normal, faithful, tracial state τN if and only if T is

factorizable in the following more precise sense, that there exist unital completely positive (τn, τn ⊗ τN )-

preserving maps α, β : Mn(C) → Mn(C)⊗N such that T = β∗ ◦ α.

We now introduce another definition:

Definition 3.3. A UCPT(n)-map T : Mn(C) → Mn(C) is said to be factorizable of degree k, for some

integer k ≥ 1, if

(3.2) T ⊗ Sk ∈ conv
(
Aut(Mn(C)⊗Mk(C))

)
,

where Sk is the completely depolarizing channel on Mk(C), i.e., Sk(y) = τk(y) 1k , for all y ∈ Mk(C).

The following result establishes the connection between these notions.
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Proposition 3.4. Let T be a UCPT(n)-map. Then T is factorizable of degree k, for some integer k ≥ 1,

if and only if T has an exact factorization through Mn(C)⊗N , where N = Mk(C)⊗L∞([0, 1],m) . (Here

m denotes the Lebesgue measure on [0, 1].)

Proof. Suppose that T is factorizable of degree k, for some integer k ≥ 1, i.e.,

T ⊗ Sk ∈ conv(Aut(Mn(C)⊗Mk(C))).

The following arguments are in the spirit of the proof of Proposition 2.4 in [6]. Write T ⊗ Sk =∑r
j=1 cjad(uj), for some r ∈ N, cj > 0 , 1 ≤ j ≤ r, with

∑r
j=1 cj = 1, and unitaries uj ∈ Mn(C)⊗Mk(C),

1 ≤ j ≤ r. Then there exist projections p1 , . . . , pr ∈ L∞([0, 1],m), where m is the Lebesgue measure

on [0, 1], such that 1L∞([0,1]) = p1 + . . . + pr and τ(pj) = cj , 1 ≤ j ≤ r, where τ(f) =
∫
[0,1]

f dm, for all

f ∈ L∞([0, 1]). Further, let N = Mk(C)⊗ L∞([0, 1],m), with trace τN = τk ⊗ τ , and set

u =

r∑

j=1

uj ⊗ pj ∈ Mn(C)⊗N.

Note that u is unitary, and for all y ∈ Mn(C)⊗Mk(C), u
∗(y ⊗ 1L∞([0,1]))u =

∑r
j=1 u

∗
jyuj ⊗ pj. Thus,

(3.3) (T ⊗ Sk)(y) =
r∑

j=1

cju
∗
jyuj = (idn ⊗ idk ⊗ τ)(u∗(y ⊗ 1L∞([0,1]))u) , y ∈ Mn(C)⊗Mk(C) .

Further, note that T = (idn ⊗ τk) ◦ (T ⊗ Sk). Combining this with (3.3), we deduce that

T (x) = (idn ⊗ τN )(u∗(x⊗ 1N )u) , x ∈ Mn(C) .

That is, T has an exact factorization through Mn(C)⊗N .

Conversely, assume that T has an exact factorization through Mn(C) ⊗ N , where N = Mk(C) ⊗
L∞([0, 1],m), withm being the Lebesgue measure on [0, 1]. Using the identificationN = L∞([0, 1],Mk(C)),

the trace τN on N is given by

(3.4) τN (y) =

∫

[0,1]

τk(y(t))dm(t), y ∈ N .

By the hypothesis, there exists a unitary u in Mn(N) = L∞([0, 1],Mn(C)⊗Mk(C)) such that

T (x) = (idn ⊗ τN )(u∗(x⊗ 1N )u) , x ∈ Mn(C) .

Under the above identification, u(t) is a unitary in Mn(C)⊗Mk(C), for all t ∈ [0, 1] .

We claim that for all x ∈ Mn(C) and y ∈ Mk(C),

(3.5) (T ⊗ Sk)(x⊗ y) =

∫

[0,1]

∫

U(k)

∫

U(k)

(1n ⊗w)∗u(t)
∗
(1n ⊗ v)∗(x⊗ y)(1n ⊗ v)u(t)(1n ⊗w)dvdwdm(t) ,

which, by interpreting the iterated integrals as a limit of convergent Riemann sums, yields the conclusion.

The proof of (3.5) will be achieved through a few intermediate steps. First, since

∫

U(k)

v∗yvdv = τk(y)1k = Sk(y) , y ∈ Mk(C) ,

5



we can rewrite the right-hand side of (3.5) as
∫

[0,1]

∫

U(k)

∫

U(k)

(1n ⊗ w)∗u(t)
∗
(1n ⊗ v)∗(x⊗ y)(1n ⊗ v)u(t)(1n ⊗ w)dv dw dm(t)(3.6)

=

∫

[0,1]

∫

U(k)

(1n ⊗ w)∗u(t)∗
(
x⊗

∫

U(k)

v∗yvdv

)
u(t)(1n ⊗ w)dw dm(t)

= τk(y)

∫

U(k)

(1n ⊗ w)∗u(t)∗(x ⊗ 1k)u(t)(1n ⊗ w)dw dm(t) .

Next, observe that for all z ∈ Mn(C)⊗Mk(C),

(3.7)

∫

U(k)

(1n ⊗ w)∗z(1n ⊗ w)dw = (idn ⊗ Sk)(z) = (idn ⊗ τk)(z)⊗ 1k ,

where both equalities can be checked easily on elementary tensors z = a⊗b , where a ∈ Mn(C), b ∈ Mk(C).

In particular, by using (3.7) with z = u(t)
∗
(x⊗ 1n)u(t) ∈ Mn(C)⊗Mk(C), t ∈ [0, 1], we get

τk(y)

∫

[0,1]

∫

U(k)

(1n ⊗ w)∗u(t)
∗
(x⊗ 1k)u(t)(1n ⊗ w)dwdm(t)(3.8)

= τk(y)

∫

[0,1]

(idn ⊗ τk)(u(t)
∗
(x⊗ 1k)u(t))⊗ 1k dm(t)

= (idn ⊗ τN )(u∗(x⊗ 1N )u)⊗ Sk(y)

= T (x)⊗ Sk(y) ,

wherein we have used (3.4) and the fact that under the identification N = L∞([0, 1],Mk(C)), the identity

1N of N is given by 1N(t) = 1k, for all t ∈ [0, 1]. Combining (3.8) with (3.6) gives the conclusion. �

Corollary 3.5. If a UCPT(n)-map T has an exact factorization through Mn(C)⊗Mk(C), for some k ≥ 1,

then T is factorizable of degree k.

In the following we give a characterization of the UCPT(n)-maps which admit an exact factorization

through a von Neumann algebra embeddable into an ultrapower Rω of the hyperfinite II1-factor R.

Theorem 3.6. Let T be a factorizable UCPT(n)-map. The following statements are equivalent:

(1) T has an exact factorization through Mn(C)⊗N , where N is a finite von Neumann algebra which

embeds into Rω.

(2) There exists a sequence (Tk)k≥1 of UCPT(n)-maps, where each Tk has an exact factorization

through Mn(C)⊗Ml(k)(C), for some integer l(k) ≥ 1, such that ‖T − Tk‖cb → 0 , as k → ∞ .

(3) lim
k→∞

dcb(T ⊗ Sk, conv(Aut(Mn(C)⊗Mk(C)))) = 0 .

Proof. The proof of (1) ⇒ (2) is based on standard ultraproduct arguments and uses also some of the

ideas of the proof of Theorem 6.2 in [6]. For the sake of completeness of exposition, we include the details.

Let us begin by recalling the necessary background. Given a free ultrafilter ω on N, the ultrapower Rω

of the hyperfinite II1-factor R is the quotient space Rω = ℓ∞(R)/I, where I = {(xk)k≥1 ∈ ℓ∞(R) :

limω ‖xk‖2 = 0}. Let π : ℓ∞(R) → Rω denote the quotient map. Then Rω is a II1-factor with unique

trace τRω satisfying

(3.9) τRω (π(x)) = lim
ω

τR(xk) , x = (xk)k≥1 ∈ ℓ∞(R) .

6



Consider the map idn⊗π : Mn(C)⊗ ℓ∞(R) → Mn(C)⊗Rω . We identify Mn(C)⊗ ℓ∞(R) = ℓ∞(Mn(C)⊗
R) . Let y ∈ Mn(C)⊗Rω and find x = (xk)k≥1 ∈ ℓ∞(Mn(C)⊗R) such that (idn ⊗ π)(x) = y . By (3.9) ,

(3.10) (idn ⊗ τRω)(y) = lim
ω
(idn ⊗ τR)(xk) .

The convergence in (3.10) is a priori entry-wise convergence in Mn(C). However, since all vector space

topologies on the finite dimensional space Mn(C) are the same, we conclude that (3.10) holds with

convergence with respect to the operator norm on Mn(C).

By hypothesis, there exists a von Neumann algebra N with a normal faithful tracial state τN such that

N embeds into Rω, as well as a unitary u ∈ Mn(C) ⊗N so that Tx = (idn ⊗ τN )(u∗(x ⊗ 1N)u) , for all

x ∈ Mn(C) . Since we can view u as a unitary in Mn(C)⊗Rω, the above relation can be rewritten as

Tx = (idn ⊗ τRω)(u∗(x⊗ 1Rω)u) , x ∈ Mn(C) .

The goal is to show that for every ε > 0, there exists a UCPT(n)-map T0 such that ‖T − T0‖cb < ε, and

T0 has an exact factorization through Mn(C)⊗Ml(C), for some integer l ≥ 1.

Let v = (vk)k≥1 ∈ ℓ∞(Mn(C)⊗R) be a unitary lift of u, i.e., (idn⊗π)(v) = u, and each vk ∈ Mn(C)⊗R
is unitary. For every k ≥ 1, define Vk : Mn(C) → Mn(C) by

Vk(x) = (idn ⊗ τR)(v∗k(x⊗ 1R)vk) , x ∈ Mn(C).

Since (v∗k(x ⊗ 1R)vk)k≥1 is a lift of u∗(x⊗ 1R)u), it follows from (3.10) that for all x ∈ Mn(C),

T (x) = (idn ⊗ τRω )(u∗(x⊗ 1Rω)u)(3.11)

= lim
ω
(idn ⊗ τR)(v∗k(x⊗ 1R)vk) = lim

ω
Vk(x) ,

that is, limω Vk = T , where the convergence is with respect to the point-norm topology. Since the space

of linear maps from Mn(C) to Mn(C) is finite dimensional, this implies that (Vk)k≥1 converges to T in

cb-norm, as well. Hence, given ε > 0, there exists k0 ∈ N such that

(3.12) ‖T − Vk0
‖cb < ε/2 .

Further, sinceR = ∪jAj
s.o.t

, where A1 ⊆ A2 ⊆ . . . are unital finite dimensional factors, Aj ≃ M2j(C), it

follows from Corollary 5.3.7 in Vol. I of [7] that there is a sequence (wj)j≥1 of unitaries, wj ∈ Mn(C)⊗Aj ,

converging in strong operator topology to the unitary vk0
∈ Mn(C)⊗R. For every j ≥ 1, define

Tj(x) = (idn ⊗ τAj
)(w∗

j (x ⊗ 1Aj
)wj) , x ∈ Mn(C) ,

where τj is the normalized trace on Aj . By construction, Tj has an exact factorization throughMn(C)⊗Aj .

As above, we can view wj ∈ Mn(C)⊗Aj as a unitary in Mn(C)⊗R, and therefore rewrite

Tj(x) = (idn ⊗ τR)(w∗
j (x ⊗ 1R)wj) , x ∈ Mn(C) .

Since the sequence (w∗
j (x⊗1R)wj)j≥1 converges in weak operator topology to v∗k0

(x⊗1R)vk0
, and idn⊗τR

is w.o.t.-continuous, we deduce that the sequence Tj converges to Vk0
, a priori point-entry-wise, hence as

argued above, in cb-norm. Therefore, there is some j0 ≥ 1 such that

(3.13) ‖Tj0 − Vk0
‖cb < ε/2 .

Combining this with (3.12), we deduce that ‖T − Tj0‖cb < ε, as wanted.

We now prove that (2) ⇒ (3). For every k ∈ N, set δk = inf{‖T − T ′‖cb} , where the infimum is taken

over all UCPT(n)-maps T ′ having an exact factorization throughMn(C)⊗Mk(C) . Note that this infimum
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is actually attained, so it can be replaced by minimum. Further, observe that condition (2) shows that

infk∈N δk = 0 . In the following we will show that this actually implies that

(3.14) lim
k→∞

δk = 0 ,

which yields (3). To prove (3.14), we first claim that for every k, l ∈ N, we have

(3.15) δk+l ≤
k

k + l
δk +

l

k + l
δl .

Indeed, given k, l ∈ N, we can find unitaries uk in Mn ⊗ Mk and ul in Mn ⊗ Ml such that the maps

defined by Uk(x) = (idn ⊗ τk)(uk(x ⊗ 1n)u
∗
k) and Ul(x) = (idn ⊗ τl)(ul(x ⊗ 1n)u

∗
l ) , x ∈ Mn(C) satisfy

‖T − Uk‖cb = δk , respectively, ‖T − Ul‖cb = δl . Set

U(x) = (idn ⊗ τk+l)((uk ⊕ ul)(x ⊗ 1k+l)(u
∗
k ⊕ u∗

l )) , x ∈ Mn(C) .

It is easily checked that

(3.16) U(x) =
k

k + l
Uk(x) +

l

k + l
Ul(x) , x ∈ Mn(C) ,

from which (3.15) follows.

We are now ready to prove (3.14). Let ε > 0 and find j ∈ N such that δj < ε/2. Then, by (3.15),

δkj < ε/2, for all k ∈ N. Set C = max{δ1 , . . . , δj−1} and choose k0 ∈ N such that C/k0 < ε/2. Set

N = k0j . Let m ≥ N . Then m = kj + l , for some k ≥ k0 and 0 ≤ l ≤ j − 1 . By (3.15),

δm ≤ kj

m
δkj +

l

m
δl ≤

kj

m
· ε
2
+

l

m
C < ε ,

which gives (3.14), and completes the proof of (3).

Finally, we show that (3) ⇒ (1). Suppose that T satisfies condition (3). There exists a sequence (εk)k≥1

of positive numbers converging to zero so that for every k ≥ 1, there is Vk ∈ conv(Aut(Mn(C)⊗Mk(C)))

satisfying

(3.17) ‖T ⊗ Sk − Vk‖cb < εk.

Set Tk(x) = ((idn ⊗ τk) ◦ Vk)(x ⊗ 1k), x ∈ Mn(C) . By the proof of Proposition 3.4, we conclude that Tk

has an exact factorization through Mn(C) ⊗Nk, where Nk = Mk(C)⊗ L∞([0, 1]). Note that Nk embeds

into R, hence there exists a unitary uk in Mn(C)⊗R such that

Tk(x) = (idn ⊗ τR)(u∗
k(x ⊗ 1R)uk) , x ∈ Mn(C).

Since T − Tk = (idn ⊗ τk) ◦ (T ⊗ Sk − Vk), it follows by (3.17) that

lim
k→∞

‖T − Tk‖cb = 0 .

Let u : = (idn ⊗ π)((uk)k≥1) ∈ Mn(C)⊗Rω, where, as before, π : ℓ∞(R) → Rω is the canonical quotient

map. Then u is a unitary in Mn(C)⊗Rω , and, moreover,

T (x) = (idn ⊗ τRω )(u∗(x⊗ 1Rω)u) , x ∈ Mn(C) ,

which proves (1) . �

Based on this, we now establish the following reformulation of the Connes embedding problem (cf. [4])

whether every finite von Neumann algebra (on a separable Hilbert space) embeds into Rω .
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Theorem 3.7. The Connes embedding problem has a positive answer if and only if every factorizable

UCPT(n)-map satisfies one of the three equivalent conditions in Theorem 3.6, for all n ≥ 3.

Proof. If the Connes embedding problem has a positive answer, then clearly every factorizable UCPT(n)-

map satisfies condition (1) in Theorem 3.6, for every integer n ≥ 3 .

Conversely, suppose that every factorizable UCPT(n)-map satisfies one of the three equivalent conditions

in Theorem 3.6, for all n ≥ 3. Assume by contradiction that the Connes embedding problem has a negative

answer. Then, as shown by Dykema and Juschenko [5], based on a refinement of Kirchberg’s deep results

from [8], there exists a positive integer n such that Gn \ Fn 6= ∅ . Recall that Fn is defined in [5] as the

closure of the union over k ≥ 1 of sets of n × n complex matrices (bij)1≤i,j≤n such that bij = τk(uiu
∗
j ) ,

where u1, . . . , un are unitary k × k matrices, while Gn consists of all n× n complex matrices (bij)1≤i,j≤n

such that bij = τM (uiu
∗
j ) , where u1, . . . , un are unitaries in some von Neumann algebra M equipped with

normal faithful tracial state τM (where M varies). Let B ∈ Gn \ Fn . By [6, Proposition 2.8], it follows

that the associated Schur multiplier TB is factorizable. By the hypothesis, TB has an exact factorization

through Rω . Then, as shown in proof of Theorem 6.2 in [6], this implies that B ∈ Fn, thus yielding a

contradiction. �

4. The Mendl–Wolf/Vollbrecht-Werner averaging method

The main result of this section (Theorem 4.5 below) is motivated by the averaging techniques used by

Mendl and Wolf in [9], building on the analysis of entanglement measures under symmetry done by

Vollbrecht and Werner in [11] (see also the further references given therein).

Let H be an n-dimensional Hilbert space. Split the tensor product H ⊗ H into its symmetric and

anti-symmetric parts:

(H ⊗H)+ = span{ξ ⊗ η + ξ ⊗ η : ξ, η ∈ H}, (H ⊗H)− = span{ξ ⊗ η − ξ ⊗ η : ξ, η ∈ H},

and note that

dim(H ⊗H)+ = n(n+ 1)/2, dim(H ⊗H)− = n(n− 1)/2.

With (eij)1≤i,j≤n being the canonical matrix units for Mn(C), consider the so-called flip symmetry

(4.1) sn =
n∑

i,j=1

eij ⊗ eji ∈ Mn(C)⊗Mn(C),

which interchanges the factors in the tensor products Cn⊗Cn and Mn(C)⊗Mn(C), i.e., sn(ξ⊗η) = η⊗ ξ

for ξ, η ∈ Cn, and sn(a⊗ b)s∗n = b⊗ a for a, b ∈ Mn(C). The spectral projections

(4.2) p+n = 1
2 (1n + sn), p−n = 1

2 (1n − sn)

of sn are the orthogonal projections onto (H ⊗H)+ and (H ⊗H)−, respectively. We shall also often have

the occasion to consider the one-dimensional projection

(4.3) qn =
1

n

n∑

i,j=1

eij ⊗ eij ∈ Mn(C)⊗Mn(C).

The range of qn is the one dimensional subspace spanned by the unit vector

ξ =
1√
n

(
δ1 ⊗ δ1 + δ2 ⊗ δ2 + · · ·+ δn ⊗ δn

)
,

9



where (δj)
n
j=1 is the standard orthonormal basis for Cn. Note that snξ = ξ, so snqn = qn, which implies

that qn ≤ p+n . We shall often omit the subscript n and write s, p± and q for sn, p
±
n and qn, respectively.

It is clear that the subspaces (H ⊗ H)+ and (H ⊗ H)− are invariant for ρ(u) := u ⊗ u, for each

unitary n×n matrix u. Let ρ+(u) and ρ−(u) denote the restriction of ρ(u) to each of these two invariant

subspaces. Then, by the Schur-Weyl duality for the special case of two-tensor factors, ρ+ and ρ− are

irreducible representations of the unitary group U(n) (see, e.g., [12]). They are obviously not equivalent

because (H ⊗H)+ and (H ⊗H)− have different dimension. It follows that the commutant, ρ
(
U(n)

)′
, of

ρ
(
U(n)

)
in B(H ⊗H) is equal to Cp+ + Cp−. Moreover,

(4.4) E(x) =

∫

U(n)

(u⊗ u)x(u∗ ⊗ u∗) du, x ∈ B(H ⊗H)

is the trace preserving conditional expectation of B(H ⊗H) onto the commutant ρ
(
U(n)

)′
= Cp+ +Cp−.

(The integral is with respect to the Haar measure on U(n).) Being trace preserving, E is the orthogonal

projection of B(H ⊗ H) onto Cp+ + Cp− with respect to the Hilbert–Schmidt norm. Using that the

Hilbert-Schmidt norm of the projections p+ and p− is equal to the dimension of (H⊗H)+ and (H⊗H)−,

respectively, we obtain that

(4.5) E(x) =
2

n(n+ 1)
Trn(xp

+) p+ +
2

n(n− 1)
Trn(xp

−) p−, x ∈ B(H ⊗H),

where Trn denotes the non-normalized trace on Mn(C).

Definition 4.1. For T ∈ B(Mn(C)) and u ∈ U(n), set ρu(T ) = ad(u)T ad(ut) and define

(4.6) F (T ) : =

∫

U(n)

ρu(T ) du.

The map F : B(Mn(C)) → B(Mn(C)) is called the twirling map.

Given u ∈ U(n), since the adjoint of the transposed ut of u is ū, we have

ρu(T )(x) = uT (utxū)u∗, x ∈ Mn(C).

Note that F (T ) belongs to the (point-norm) closed convex hull of {ρu(T ) : u ∈ U(n)}.

Proposition 4.2. The twirling map has the following properties:

(1) F
(
UCP(n)

)
⊆ UCP(n).

(2) F
(
UCPT(n)

)
⊆ UCPT(n).

(3) F
(
conv(Aut(Mn(C)))

)
⊆ conv(Aut(Mn(C))).

Proof. Items (1) and (2) follow from the fact that the sets UCP(n) and UCPT(n) are convex, closed in

the point-norm topology and invariant under ρu for all u ∈ U(n).
(3). By linearity of F , it suffices to show that F (ad(v)) belongs to conv(Aut(Mn(C))) for all unitaries v

in Mn(C). Now, ρu(ad(v)) = ad(uvut). Since conv(Aut(Mn(C))) is convex and closed in the point-norm

topology, we conclude that F (ad(v)) belongs to conv(Aut(Mn(C))). �

Lemma 4.3. The following identity holds:

(4.7)

∫

U(n)

u⊗ ū du =
1

n

n∑

i,j=1

eij ⊗ eij = q.
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Proof. For each a in Mn(C), let La and Ra in B(Mn(C)) be left and right multiplication by a. The map

a⊗ b 7→ LaRbt extends to an algebra isomorphism from Mn(C) ⊗Mn(C) onto B(Mn(C)). Applying this

isomorphism to (4.7) and evaluating at x ∈ Mn(C), we see that (4.7) is equivalent to

(4.8)

∫

U(n)

uxu∗ du =
1

n

n∑

i,j=1

eijxeji, x ∈ Mn(C).

We verify (4.8) by showing that both expressions are equal to Trn(x) 1n. Straightforward calculations

show that the trace of both expressions is equal to Trn(x). Next, the left-hand side of (4.8) belongs

U(n)′ = C1n, while the right-hand side of (4.8) is easily seen to belong to {eij : 1 ≤ i, j ≤ n}′ = C1n.

This gives the conclusion. �

For T ∈ B(Mn(C)) consider its Jamiolkowski transform:

T̂ =
1

n

n∑

i,j=1

T (eij)⊗ eij ∈ Mn(C)⊗Mn(C).

It is well-known, see, e.g., [2, Proposition 1.5.4], that T is completely positive if and only if T̂ is positive.

Part (2) of the lemma below shows that the Jamiolkowski transform intertwines the conditional expectation

E and the twirl map F from (4.6) and (4.4).

Lemma 4.4. The following hold for each T ∈ B(Mn(C)):

(1) ad(u ⊗ u)(T̂ ) = ρ̂u(T ), for all u ∈ U(n).
(2) F̂ (T ) = E(T̂ ).

Proof. (1). If we apply T ⊗ idMn(C) to (4.7) we find that

(4.9) T̂ =

∫

U(n)

T (v)⊗ v̄ dv.

Hence,

ρ̂u(T ) =

∫

U(n)

ρu(T )(v)⊗ v̄ dv =

∫

U(n)

uT (utvū)u∗ ⊗ v̄ dv

=

∫

U(n)

uT (w)u∗ ⊗ uw̄u∗ dw = ad(u⊗ u)
( ∫

U(n)

T (w)⊗ w̄ dw
)

= ad(u ⊗ u)(T̂ ),

as desired. (At the third equality sign we used the substitution w = utvū and invariance of the Haar

measure, and (4.9) is used at the last equality sign.)

(2). It follows from (1) that

F̂ (T ) =

∫

U(n)

ρ̂u(T ) du =

∫

U(n)

(u⊗ u) T̂ (u∗ ⊗ u∗) du = E(T̂ ),

as claimed. �

For each integer n ≥ 2, recall the Holevo–Werner channels W+
n ,W−

n ∈ B(Mn(C)), studied in [9]:

(4.10) W+
n (x) =

1

n+ 1

(
Trn(x) 1n + xt

)
, W−

n (x) =
1

n− 1

(
Trn(x) 1n − xt

)
, x ∈ Mn(C).

11



They can alternatively be expressed as

(4.11) W+
n (x) =

1

2n+ 2

n∑

i,j=1

(eij + eji)x(eij + eji)
∗, W−

n (x) =
1

2n− 2

n∑

i,j=1

(eij − eji)x(eij − eji)
∗,

for x ∈ Mn(C) . (One can easily verify (4.11) by first considering the case where x = ekℓ is a matrix unit.)

We conclude by (4.11) that W+
n and W−

n are UCPT(n)-maps. Using notation set-forth above (cf. (4.2),

(4.3)), the Jamiolskowski transforms of the Holevo–Werner channels and of the identity operator are

(4.12) Ŵ+
n =

2

n(n+ 1)
p+, Ŵ−

n =
2

n(n− 1)
p−, îdn = q.

Recall that the 2-norm on Mn(C) is defined by ‖x‖2 = τn(x
∗x)1/2, x ∈ Mn(C) . As already observed

in [11], the twirling map F is a projection of Mn(C) onto the subspace spanned by W+
n and W−

n , and it

maps UCP(n) onto the line segment spanned by W+
n and W−

n . More precisely,

Theorem 4.5. The following hold for all n ≥ 2:

(1) F (W+
n ) = W+

n and F (W−
n ) = W−

n .

(2) F (T ) = Trn(T̂ p+)W+
n +Trn(T̂ p−)W−

n , for all T ∈ B(Mn(C)).

(3) If T ∈ CP(n) has Choi representation T (x) =
∑d

i=1 aixa
∗
i , x ∈ Mn(C), where d ∈ N and

a1 , . . . , ad ∈ Mn(C), then

F (T ) = c+(T )W+
n + c−(T )W−

n ,

where the coefficients c+(T ) and c−(T ) are given by

c+(T ) =
1

4

d∑

i=1

‖ai + ati‖22, c−(T ) =
1

4

d∑

i=1

‖ai − ati‖22.

Proof. (1). An easy calculation shows that ρu(W
±
n ) = W±

n , for all u ∈ U(n). Therefore (1) holds.

(2). From Lemma 4.4 together with (4.5), and (4.12), we deduce that

F̂ (T ) = E(T̂ ) =
2

n(n+ 1)
Trn(T̂ p

+) p+ +
2

n(n− 1)
Trn(T̂ p

−) p− = Trn(T̂ p
+) Ŵ+

n +Trn(T̂ p
−) Ŵ−

n .

Since the map T 7→ T̂ is linear and injective, we conclude that (2) holds.

(3). Note first that it suffices to consider the case d = 1. We can therefore assume that T (x) = axa∗,

x ∈ Mn(C), for some a ∈ Mn(C). In this case, T̂ = (1/n)
∑n

i,j=1 aeija
∗ ⊗ eij . Hence

(4.13) Trn(T̂ ) =
1

n

n∑

i,j=1

Trn(aeija
∗)Trn(eij) =

1

n

n∑

i=1

Trn(aeiia
∗) = τn(aa

∗).

Let s = sn be the flip symmetry defined above, and write a = (aij)1≤i,j≤n. Then

(4.14)

Trn(T̂ s) =
1

n

n∑

i,j,k,ℓ=1

Trn(aeija
∗ekℓ)Trn(eijeℓk) =

1

n

n∑

i,j=1

Trn(aeija
∗eij) =

1

n

n∑

i,j=1

ajiāij = τn(aā).
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Now use item (2) together with (4.2), (4.13) and (4.14) to conclude that

F (T ) = Trn(T̂ p+)W+
n +Trn(T̂ p−)W−

n

=
1

2
τn(aa

∗ + aā)W+
n +

1

2
τn(aa

∗ − aā)W−
n

=
1

4
‖a+ at‖22 W+

n +
1

4
‖a− at‖22 W−

n .

In the last equality we have used that transposition is trace preserving, along with the identities ata∗ =

(āa)t and at(at)∗ = (a∗a)t. �

Corollary 4.6. Let T be a UCP(n)-map written in Choi form as T (x) =
∑d

i=1 aixa
∗
i , x ∈ Mn(C), for

some d ∈ N, ai ∈ Mn(C), 1 ≤ i ≤ d.

(1) If all ai are symmetric, i.e., ati = ai, 1 ≤ i ≤ d, then F (T ) = W+
n .

(2) If all ai are anti-symmetric, i.e., ati = −ai, 1 ≤ i ≤ d, then F (T ) = W−
n .

Proof. (1). If all ai are symmetric, then c−(T ) = 0, in which case by Theorem 4.5 (3) it follows that

F (T ) = c+(T )W+
n . Use now that F (T ) and W+

n are unital to conclude that c+(T ) = 1. Item (2) is

proved similarly. �

Corollary 4.7 (Mendl–Wolf, [9]).

(1) W+
n ∈ conv

(
Aut(Mn(C))

)
, for all integers n ≥ 2.

(2) W−
n ∈ conv

(
Aut(Mn(C))

)
, for all even integers n ≥ 2.

Proof. (1). It follows from Corollary 4.6 (1), with T = idn, d = 1, and a1 = 1n = at1 that

W+
n = F (idn).

This proves the claim because F (idn) belongs to conv
(
Aut(Mn(C))

)
by Proposition 4.2 (3).

(2). For each even integer n ≥ 2, there is an anti-symmetric unitary v in Mn(C). Take, for example,

v =

(
0 1k

−1k 0

)
∈ Mn(C),

where n = 2k. It follows from Corollary 4.6 (2), with T = ad(v), d = 1, and a1 = v that

W−
n = F (ad(v)).

Furthermore, F (ad(v)) belongs to conv
(
Aut(Mn(C))

)
by Proposition 4.2 (3). �

Lemma 4.8. ‖W+
n −W−

n ‖cb = 2 for all n ≥ 2.

Proof. Since W+
n and W−

n are UCP-maps, they are complete contractions, and hence ‖W+
n −W−

n ‖cb ≤ 2.

To prove the other inequality note first that

W+
n (x)−W−

n (x) =
2n

n2 − 1

(
xt − 1

n
Trn(x) 1n

)
.
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Let s = sn be the flip symmetry defined in (4.1) and let q = qn be the projection defined in (4.3). Then,

by the identity above,

‖W+
n −W−

n ‖cb ≥
∥∥((W+

n −W−
n )⊗ idMn(C)

)
(s)
∥∥ =

2n

n2 − 1

∥∥∥∥nq −
1

n
1n

∥∥∥∥ =
2n

n2 − 1

(
n− 1

n

)
= 2,

thus giving the conclusion. �

Lemma 4.9 (Mendl–Wolf, [9]). For all odd integers n ≥ 1,

min
v∈U(n)

∥∥∥∥
v + vt

2

∥∥∥∥
2

2

=
1

n
.

Proof. In [9] (see Theorem 13 and its proof) it was verified that

(4.15) min
v∈U(n)

τ(vv̄) =
2

n
− 1.

Since ‖v + vt‖22 = 2 + 2τ(vv̄), formula (4.15) is equivalent to the identity we wish to verify. For the

convenience of the reader, we include an elementary proof of the lemma.

Let v ∈ U(n) and set a = (v + vt)/2 and b = (v − vt)/2. Then v = a + b, at = a, and bt = −b. Since

n is odd and det(b) = det(bt) = (−1)n det(b), we conclude that det(b) = 0. Hence bξ = 0, for some unit

vector ξ ∈ Cn. Thus ‖aξ‖ = ‖vξ‖ = 1, so ‖a‖ ≥ 1. It follows that

∥∥∥∥
v + vt

2

∥∥∥∥
2

2

= ‖a‖22 =
1

n
Trn(a

∗a) ≥ 1

n
.

To prove the reverse inequality consider the unitary

(4.16) v = e11 + (e23 − e32) + (e45 − e54) + · · ·+ (en−1,n − en,n−1).

Then v + vt = 2e11, so ‖(v + vt)/2‖22 = ‖e11‖22 = 1/n, which completes the proof. �

Theorem 4.10. For each odd integer n ≥ 3,

dcb
(
W−

n , conv
(
Aut(Mn(C))

))
= 2/n.

Proof. Let v ∈ U(n) be such that ‖(v + vt)/2‖22 = 1/n, cf. Lemma 4.9 or (4.16). Since ‖v‖2 = ‖vt‖2 = 1,

it follows from the parallelogram identity that ‖(v − vt)/2‖22 = (n− 1)/n. By Theorem 4.5 (3),

F (ad(v)) =
1

n
W+

n +
n− 1

n
W−

n .

We know from Proposition 4.2 that F (ad(v)) belongs to conv
(
Aut(Mn(C))

)
, so by Lemma 4.8,

dcb
(
W−

n , conv
(
Aut(Mn(C))

))
≤
∥∥∥∥W−

n −
(
1

n
W+

n +
n− 1

n
W−

n

)∥∥∥∥
cb

=
1

n
‖W−

n −W+
n ‖cb =

2

n
.

Let now v be any unitary in Mn(C). The same reasoning as above shows that F (ad(v)) = λW+
n +

(1 − λ)W−
n , where λ = ‖(v + vt)/2‖22, and it follows from Lemma 4.9 that 1/n ≤ λ ≤ 1. Fix T in
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conv
(
Aut(Mn(C))

)
. By convexity of the line segment

{
λW+

n + (1 − λ)W−
n : 1/n ≤ λ ≤ 1

}
, we see that

F (T ) = λW+
n + (1− λ)W−

n , for some 1/n ≤ λ ≤ 1. It follows that

‖W−
n − T ‖cb ≥ ‖F (W−

n )− F (T )‖cb
= ‖W−

n − (λW+
n + (1 − λ)W−

n )‖cb
= λ‖W−

n −W+
n ‖cb = 2λ ≥ 2/n,

wherein we have used Lemma 4.8. As T ∈ conv
(
Aut(Mn(C))

)
was arbitrarily chosen, we conclude that

dcb
(
W−

n , conv
(
Aut(Mn(C))

))
≥ 2/n , as wanted. �

The corollary below follows immediately from the theorem above and its proof.

Corollary 4.11 (Mendl–Wolf, [9]). For each odd integer n ≥ 1 and for 0 ≤ λ ≤ 1,

λW+
n + (1− λ)W−

n ∈ conv
(
Aut(Mn(C))

)

if and only if λ ≥ 1/n.

5. Factorizability of the Holevo–Werner Channels

It was shown in Corollary 4.7 that the Holevo–Werner channel W+
n , for all integers n ≥ 3, and W−

n for

all even integers n ≥ 4, belong to conv
(
Aut(Mn(C))

)
, and hence they are factorizable. Also, it was shown

in [6, Example 3.1] that W−
3 is not factorizable. We shall prove here that the Holevo–Werner channels

W−
n are factorizable of degree 4, for all odd integers n ≥ 5. Furthermore, we shall discuss factorizability of

convex combinations of W+
3 and W−

3 , and determine the cb-distance from W−
3 to the factorizable maps.

Keeping the notation from [6], we denote by FM(Mn(C)) the set of factorizable UCPT(n)-maps.

Lemma 5.1. There exists five self-adjoint unitaries v1, v2, v3, v4, v5 in M4(C) such that

(1) vivj + vjvi = 0, when i 6= j (anti-commute),

(2) {vivj : 1 ≤ i < j ≤ 5} is an orthonormal set in M4(C) with respect to the inner product arising

from the normalized trace τ4 on M4(C).

Proof. This follows from standard Clifford algebra techniques. Consider the 2× 2 matrices

J =

(
i 0

0 −i

)
, K =

(
0 1

−1 0

)
, L =

(
0 i

i 0

)
.

Check that J , K, and L are anti-commuting skew-adjoint unitaries which satisfy the relations JK = L,

KL = J , and LJ = K. In particular, {12, J,K, L} is an orthonormal basis for M2(C) with respect to the

inner product arising from the normalized trace τ2 on M2(C). Use these relations to see that the following

five 4× 4 matrices

v1 =

(
12 0

0 −12

)
, v2 =

(
0 12

12 0

)
,

v3 =

(
0 −J

J 0

)
, v4 =

(
0 −K

K 0

)
, v5 =

(
0 −L

L 0

)
.

have the desired properties. �
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Theorem 5.2. The following hold:

(1) W−
5 has an exact factorization through M5(C)⊗M4(C).

(2) W−
n is factorizable of degree 4, for all odd integers n ≥ 5.

Proof. (1). Let σ = (σij)1≤i,j≤5 be a unitary matrix in M5(C) which is zero on the diagonal and such

that all off-diagonal entries have modulus 1/2. For example, one can consider

σ =
1

2




0 α β β α

α 0 α β β

β α 0 α β

β β α 0 α

α β β α 0




,

where α = −1/2 + i
√
3/2 and β = −1/2 + i

√
3/2. Use that |α| = |β| = 1 and Re(αβ̄) = −1/2 to verify

that σ has the desired properties. Further, let v1, . . . , v5 be as in Lemma 5.1 and define a unitary u by

(5.17) u =




u11 u12 · · · u15

u21 u22 · · · u25

...
...

...

u51 u52 · · · u55




:=




v1 0 · · · 0

0 v2 0
...

. . .

0 0 v5




(σ ⊗ 14)




v1 0 · · · 0

0 v2 0
...

. . .

0 0 v5




,

where the block matrix entries uij belong to M4(C). We will show that

(5.18) W−
5 (x) = (id5 ⊗ τ4)

(
u(x⊗ 14)u

∗
)
, x ∈ M5(C),

thus proving the assertion that W−
5 has an exact factorization through M5(C)⊗M4(C).

Observe first that

uij = σijvivj , 1 ≤ i, j ≤ 5.

Since σjj = 0, for all j, and the vj ’s anti-commute, we see that uij = −uji, for all 1 ≤ i, j ≤ 5.

Consequently, we can write

(5.19) u =
∑

1≤i<j≤5

aij ⊗ uij ,

where aij = eij − eji, for 1 ≤ i < j ≤ 5, and where (eij)1≤i,j≤5 are the matrix units in M5(C).

Recall from Lemma 5.1 (2) that {vivj}1≤i<j≤5 is an orthonormal set in M4(C) with respect to the inner

product arising from the normalized trace τ4. Using this fact together with (5.19) and (4.11), we can

conclude that for all x ∈ M5(C),

(id5 ⊗ τ4)
(
u(x⊗ 14)u

∗
)

=
∑

1≤i<j≤5

∑

1≤k<ℓ≤5

τ4(uiju
∗
kℓ) aijxa

∗
kℓ

=
∑

1≤i<j≤5

|σij |2aijxa∗ij =
1

4

∑

1≤i<j≤5

aijxa
∗
ij = W−

5 (x),

This proves item (1).

(2). It follows from (1) that (2) holds for n = 5. Suppose now that n ≥ 7 is an odd integer and set

k = (n− 5)/2. Define R ∈ UCPT(n) by

R(x) =

(
W−

5 (x11) 0

0 W−
2k(x22)

)
, x =

(
x11 x12

x21 x22

)
∈ Mn(C),
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where the block matrix decomposition of x is taken with respect to the decomposition Cn = C5 ⊕C2k, so

that x11 ∈ M5(C) and x22 ∈ M2k(C). By Corollary 4.7 (2), W−
2k ∈ conv

(
Aut(M2k(C))

)
, so there exist an

integer s ≥ 1, unitaries u1, . . . , us in M2k(C), and positive scalars c1, . . . , cs with
∑s

i=1 ci = 1, such that

W−
2k =

s∑

i=1

ci ad(ui).

For 1 ≤ i ≤ s, define unitaries u+
i and u−

i in Mn(C) by

u+
i =

(
u 0

0 ui ⊗ 14

)
, u−

i =

(
u 0

0 −ui ⊗ 14

)
,

where u is the unitary defined by (5.17) above. Further define R+, R− ∈ UCPT(n) by

R±(x) =
s∑

i=1

ci (idn ⊗ τ4)
(
u±
i (x⊗ 14)(u

±
i )

∗
)
, x ∈ Mn(C).

Then R = (R++R−)/2, and hence R is factorizable of degree 4. As before, let (eij)1≤i,j≤n be the matrix

units in Mn(C) and set aij = eij − eji for 1 ≤ i < j ≤ n. Then, by (4.11),

R(x) =

(
W−

5 (x11) 0

0 W−
2k(x22)

)
=

1

4

∑

1≤i<j≤5

aijxa
∗
ij +

1

2k − 1

∑

6≤i<j≤n

aijxa
∗
ij

Since atij = −aij , for all i, j, it follows from Corollary 4.6 (2) that

W−
n = F (R) =

∫

U(n)

ρu(R) du.

The map ρu(R) = ad(u)R ad(ut) is factorizable of degree 4 for each u ∈ U(n), and hence so is W−
n . �

We will need a few intermediate lemmas before we can prove Theorem 5.6 below. Given a finite von

Neumann algebra N with normal faithful trace τN and 1 ≤ p < ∞, we shall consider the p-norm of

elements in M3(N) defined as follows:

‖x‖p = (τ3 ⊗ τN )
(
(x∗x)

p

2

)1/p
, x ∈ M3(N) .

Lemma 5.3. Let N be a finite von Neumann algebra with normal faithful trace τN , and let

u =
(
uij

)
1≤i,j≤3

∈ M3(N), uij ∈ N,

be a unitary operator. Let uT = (uji)i,j ∈ M3(N) be the transpose of u, and set b = (u− uT )/2. Then

(1) ‖b‖ ≤ 5/3,

(2) ‖b‖22 ≤ ‖b‖1,
(3) ‖b‖44 ≥ (3/2) ‖b‖42.

Proof. (1). Denote the transposition map x 7→ xt on M3(C) by t3, so that ut = (t3 ⊗ idN )(u) and

b = (1/2)
(
(id3 − t3)⊗ idN

)
(u). It suffices to show that

(5.20) ‖id3 − t3‖cb ≤ 10/3.
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To prove (5.20), we first show that W+
3 − (1/6) id3 is a completely positive map. For this it suffices to

show that its Jamiolkowski transform, Ŵ+
3 − (1/6) îd3 is a positive operator in M3(C) ⊗ M3(C), cf. [2,

Proposition 1.5.4]. We know from (4.12) that

Ŵ+
3 =

1

6
p+, îd3 =

1

3

3∑

i,j=1

eij ⊗ eij = q

where p+ = p+3 and q = q3 are the projection in M3(C) ⊗ M3(C) defined in (4.1) and (4.3). It was

observed right after (4.3) that q ≤ p, and so Ŵ+
3 − (1/6) îd3 ≥ 0. This proves that W+

3 − (1/6) id3 is

completely positive. Furthermore, it follows from the definition of the Holevo–Werner channels in (4.10),

that 2t3 = 4W+
3 − 2W−

3 . Thus id3 − t3 = id3 +W−
3 − 2W+

3 =
(
(2/3) id3 +W−

3

)
− 2

(
W+

3 − (1/6) id3
)
,

and hence

‖id3 − t3‖cb ≤
∥∥∥∥
2

3
id3 +W−

3

∥∥∥∥
cb

+ 2

∥∥∥∥W+
3 − 1

6
id3

∥∥∥∥
cb

≤ 5

3
+ 2 · 5

6
=

10

3
,

because ‖T ‖cb = ‖T (1)‖ for every completely positive map T .

(2). Note that ‖ut‖22 = (1/3)
∑3

i,j=1 ‖uji‖22 = (1/3)
∑3

i,j=1 ‖uij‖22 = ‖u‖22 . Since (uTu∗)∗ = u(uT )∗, it

follows that

Re(τ3 ⊗ τN )
(
(u− b)b∗

)
= (1/4)Re(τ3 ⊗ τN )

(
(u+ ut)(u − ut)∗

)

= (1/4)
(
‖u‖22 − ‖ut‖22 +Re(τ3 ⊗ τN )

(
u(ut)∗ − utu∗

))
= 0.

We conclude that

0 = Re(τ3 ⊗ τN )
(
(u− b)b∗

)
= Re(τ3 ⊗ τN )(ub∗)− ‖b‖22 ≤ ‖ub∗‖1 − ‖b‖22 = ‖b‖1 − ‖b‖22,

which proves (2).

(3). The element b ∈ M3(N) has the following matrix representation

b =




0 z −y

−z 0 x

y −x 0


 , where x =

1

2
(u23 − u32), y =

1

2
(u31 − u13), z =

1

2
(u12 − u21),

and ‖b‖22 = (2/3)
(
‖x‖22 + ‖y‖22 + ‖z‖22

)
. Moreover,

b∗b =



y∗y + z∗z −y∗x −z∗x

−x∗y z∗z + x∗x −z∗y

−x∗z −y∗z x∗x+ y∗y


 .

18



Hence

‖b‖44 = ‖b∗b‖22
=

1

3

(
‖y∗y + z∗z‖22 + ‖z∗z + x∗x‖22 + ‖x∗x+ y∗y‖22 + 2‖x∗y‖22 + 2‖y∗z‖22 + 2‖z∗x‖22

)

=
2

3

(
‖x∗x‖22 + ‖y∗y‖22 + ‖z∗z‖22 + τN (y∗yz∗z) + τN (z∗zx∗x) + τN (x∗xy∗y)

+τN (xx∗yy∗) + τN (yy∗zz∗) + τN (zz∗xx∗)
)

=
1

3

(
‖x∗x+ y∗y + z∗z‖22 + ‖xx∗ + yy∗ + zz∗‖22

)

≥ 1

3

(
τN (x∗x+ y∗y + z∗z)2 + τN (xx∗ + yy∗ + zz∗)2

)

=
2

3

(
‖x‖22 + ‖y‖22 + ‖z‖22

)2
=

3

2
‖b‖42.

Along the way we have used Cauchy–Schwartz inequality, which in our context asserts that |τN (a)| ≤
‖a‖2 · ‖1N‖2 = ‖a‖2, for all a ∈ N . �

Lemma 5.4. Let (N, τN ), u ∈ M3(N), and b = (u− ut)/2 be as in Lemma 5.3. Then ‖b‖22 ≤ 25/27.

Proof. Denote the normal faithful tracial state τ3 ⊗ τN on M3(N) by τ̃ . Consider the positive element

h = (6/5) |b| in M3(N). Then, by Lemma 5.3,

(5.21) 0 ≤ h ≤ 2I, τ̃ (h2) ≤ (6/5) τ̃(h), τ̃ (h4) ≥ (3/2) τ̃(h2)2.

Consider the spectral resolution h =
∫ 2

0 λdE(λ) of h, and define a probability measure µ on [0, 2] by

µ = τ̃ ◦ E. Then

τ̃ (hn) =

∫ 2

0

tn dµ(t), n ≥ 0.

The polynomial p(w) = (w − 1)2(w − 2)(w + 4) = w4 − 11w2 + 18w − 8, w ∈ R, is negative on [0, 2], so

(5.22) τ̃ (h4)− 11τ̃(h2) + 18τ̃(h)− 8 = τ̃ (p(h)) =

∫ 2

0

p(w) dµ(w) ≤ 0.

Set α = τ̃(h2). Then τ̃ (h) ≥ (5/6)α and τ̃(h4) ≥ (3/2)α2 by (5.21). Inserting α into (5.22) yields

(3/2)α2 − 11α+ 18 · (5/6)α− 8 ≤ 0, which implies that τ̃(h2) = α ≤ 4/3. This shows that

‖b‖22 =
(
5

6

)2

τ̃(h2) ≤
(
5

6

)2

· 4

3
=

25

27
,

as desired. �

The following lemma gives a generalization of Theorem 4.5 (3).

Lemma 5.5. Let n ≥ 1 be an integer, N a finite von Neumann algebra with a normal faithful tracial

state τN , and let a = (aij)1≤i,j≤n ∈ Mn(N). Define Ta ∈ CP(n) by Ta(x) = (idn ⊗ τN )
(
a(x ⊗ 1N)a∗

)
,

x ∈ Mn(C). Then

F (Ta) = (1/4) ‖a+ at‖22 W+
n + (1/4) ‖a− at‖22 W−

n ,

where at = (aji)1≤i,j≤n ∈ Mn(N) is the transpose of a.
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Proof. We compute the Jamiolkowski transform of Ta. Write a =
∑n

k,ℓ=1 ekℓ ⊗ akℓ, where akℓ ∈ N . Then

T̂a =
1

n

n∑

i,j=1

Ta(eij)⊗ eij

=
1

n

n∑

i,j=1

(idn ⊗ τN )
(
a(eij ⊗ 1N )a∗

)
⊗ eij =

1

n

n∑

i,j=1

n∑

k,ℓ=1

τN (aikajℓ) eij ⊗ ekℓ .

It follows from Theorem 4.5 (2) that

F (Ta) = Tr(T̂a p
+)W+

n +Tr(T̂a p
−)W−

n ,

where p± = p±n are as in (4.2). Recall that p± = 1
2 (1 ± s), where s = sn is defined in (4.1). Hence

(eij ⊗ ekℓ) p
± =

(
eij ⊗ ekℓ ± eiℓ ⊗ ekj

)
/2. Thus

Tr(T̂a p
±) =

1

2n

n∑

i,j=1

n∑

k,ℓ=1

τN (aikajℓ)Tr(eij ⊗ ekℓ ± eiℓ ⊗ ekj)

=
1

2n

n∑

i,k=1

τN (aika
∗
ik) ± 1

2n

n∑

i,k=1

τN (aika
∗
ki)

=
1

2
(τn ⊗ τN )

(
aa∗ ± a(a∗)t

)
=

1

4
‖a± at‖22.

This proves the claim. �

Theorem 5.6. The following hold:

(1)
2

27
W+

3 +
25

27
W−

3 has an exact factorization through M3(C)⊗M3(C).

(2) dcb
(
W−

3 ,FM(M3(C))
)
=

4

27
.

Proof. Let s = s3 ∈ M3(C)⊗M3(C) be the flip symmetry defined in (4.1) and let q = q3 ∈ M3(C)⊗M3(C)

be the projection defined in (4.3). Since sq = q it follows that u := s− 2q is unitary in M3(C)⊗M3(C).

We claim that

(5.23)
2

27
W+

3 +
25

27
W−

3 = (id3 ⊗ τ3)
(
u(x⊗ 13)u

∗
)
, x ∈ M3(C),

from which (1) will follow. Set aij = eij − eji and bij = eij + eji , 1 ≤ i < j ≤ 3. Recall from (4.11) that

W+
3 (x) =

1

4

( ∑

1≤i<j≤3

bijxb
∗
ij + 2

3∑

i=1

eiixe
∗
ii

)
, W−

3 (x) =
1

2

∑

1≤i<j≤3

aijxa
∗
ij ,

for all x ∈ M3(C). Moreover,

u =
1

3

3∑

i=1

eii ⊗ eii +
1

6

∑

1≤i<j≤3

bij ⊗ bij −
5

6

∑

1≤i<j≤3

aij ⊗ aij .
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Since {e11, e22, e33, b12, b13, b23, a12, a13, a23} is an orthonormal set in M3(C) with respect to the inner

product arising from τ3, and since ‖eii‖22 = 1/3 and ‖aij‖22 = ‖bij‖22 = 2/3, then for all x ∈ M3(C)

(id3 ⊗ τ3)
(
u(x⊗ 13)u

∗
)

=
1

3

(1
3

)2 3∑

i=1

eiixe
∗
ii +

2

3

(1
6

)2 ∑

1≤i<j≤3

bijxb
∗
ij +

2

3

(5
6

)2 ∑

1≤i<j≤3

aijxa
∗
ij

=
2

27
W+

3 (x) +
25

27
W−

3 (x).

This proves (5.23).

(2). It follows from (1) and Lemma 4.8 that

dcb
(
W−

3 ,FM(M3(C))
)

≤
∥∥∥∥W

−
3 −

(
2

27
W+

3 +
25

27
W−

3

)∥∥∥∥
cb

≤ 2

27
‖W−

3 −W+
3 ‖cb =

4

27
.

To prove the reverse inequality, let T ∈ FM(M3(C)). Then T (x) = (id3⊗ τN )
(
u(x⊗ 1N)u∗

)
, x ∈ M3(C),

for some finite von Neumann algebra N with faithful normal trace τN and some unitary operator u ∈
M3(N). By Lemma 5.5,

F (T ) =
1

4
‖u+ ut‖22 W+

n +
1

4
‖u− ut‖22 W−

n = λW+
n + (1− λ)W−

n ,

where λ = (1/4) ‖u+ut‖22. (By the parallelogram identity, (1/4)‖u+ut‖22+(1/4)‖u−ut‖22 = (1/2)‖u‖22+
(1/2)‖ut‖22 = 1.) Recall from Lemma 5.4 that ‖u − ut‖22 ≤ 25/27. Hence λ ≥ 2/27. Since the twirl map

F is a complete contraction and F (W−
3 ) = W−

3 , it follows that

‖W−
3 − T ‖cb ≥ ‖W−

3 − F (T )‖cb
= ‖W−

3 −
(
λW+

n + (1− λ)W−
n

)
‖cb = λ ‖W−

3 −W+
3 ‖cb = 2λ ≥ 4/27 ,

wherein we have used Lemma 4.8. �

The following corollary follows now immediately by convexity of the set of factorizable maps:

Corollary 5.7. Let 0 ≤ λ ≤ 1. Then

λW+
3 + (1− λ)W−

3 ∈ FM(M3(C))

if and only if λ ≥ 2/27.

6. The case of three tensors Tλ ⊗ Tλ ⊗ Tλ

For λ ∈ [0, 1], set Tλ : = λW+
3 +(1−λ)W−

3 . As we have seen (cf. Corollary 4.11), Tλ ∈ conv(Aut(M3(C))

if and only if λ ∈ [1/3, 1] , and, respectively (cf. Corollary 5.7), Tλ ∈ FM(M3(C)) if and only if λ ∈
[2/27, 1] . Further, Mendl and Wolf proved in [9] that for some 0 < λ0 < 1/3, one has

(6.24) Tλ ⊗ Tλ ∈ conv(Aut(M9(C)) , for all λ ∈ [λ0, 1] .

The value λ0 is not stated explicitly in [9], but following the details of their proof one can show (see

Remark 6.5 (ii) below) that (6.24) holds for

λ0 = (
√
2− 1)

(
1− 1√

3

)
≈ 0.17507 .
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It follows that for all λ ∈ [λ0, 1] and for all even integers k ≥ 2, one has T⊗k
λ ∈ conv(Aut(M3k(C))) .

However, the results in [9] do not imply that, e.g., Tλ⊗Tλ⊗Tλ ∈ conv(Aut(M27(C)), for any λ ∈ (0, 1/3).

Our main result in this section is the following:

Theorem 6.1. For every λ ∈ [1/4, 1] and every integer k ≥ 2 ,

T⊗k
λ ∈ conv(Aut(M3k(C))) .

Since Aut(Mp(C)) ⊗ Aut(Mq(C)) ⊆ Aut(Mp(C) ⊗ Mq(C)), for all positive integers p, q, it is clearly

sufficient to prove that for all λ ∈ [1/4, 1],

(6.25) Tλ ⊗ Tλ ∈ conv(Aut(M9(C))) ,

and, respectively,

(6.26) Tλ ⊗ Tλ ⊗ Tλ ∈ conv(Aut(M27(C))) .

In view of Mendl and Wolf’s result (cf. above comments), it suffices to prove (6.26). Nonetheless, in the

process of establishing (6.26), we will also provide an elementary proof of (6.25), based on ideas from [9].

Before proving Theorem 6.1, we establish some preliminary results. Let F ∈ B(M3(C)) be the twirling

map introduced in Definition 4.1, considered in the case n = 3. Then F ⊗F ∈ B(M3(C)⊗M3(C)) is given

by

(6.27) (F ⊗ F )(T ) =

∫

U(3)×U(3)

ad(u⊗ v)T ad(ut ⊗ vt)dudv , T ∈ UCPT(3) .

In particular, we have as in Proposition 4.2 that

(6.28) (F ⊗ F )(UCPT(9)) ⊆ (UCPT(9)) ,

respectively, that

(6.29) (F ⊗ F )(conv(Aut(M9(C))) ⊆ conv(Aut(M9(C)) .

To simplify notation, we set in this section

(6.30) W+ = W+
3 , W− = W−

3 ,

where W+
3 and W−

3 are the Holevo-Werner channels in dimension n = 3 defined in (4.10). Moreover, let

S and A, respectively, denote the symmetrization (resp., anti-symmetrization) map on M3(C), that is,

S(a) = (a+ at)/2 , a ∈ M3(C) ,(6.31)

A(a) = (a− at)/2 , a ∈ M3(C) .(6.32)

Lemma 6.2. Let u ∈ U(M3(C)⊗M3(C)). Then

(F ⊗ F )(ad(u)) = ‖(S ⊗ S)(u)‖22 W+ ⊗W+ + ‖(S ⊗A)(u)‖22 W+ ⊗W−(6.33)

+ ‖(A⊗ S)(u)‖22 W− ⊗W+ + ‖(A⊗A)(u)‖22 W− ⊗W−

Proof. Given a, b ∈ M3(C), define Ta, Ta,b ∈ B(M3(C)) by

Ta,b(x) = axb∗ , Ta(x) = Ta,a(x) = axa∗ , x ∈ M3(C) .

Then for a ∈ M3(C) we have by Theorem 4.5 (3) that

F (Ta) = ‖S(a)‖22W+ + ‖A(a)‖22W− .
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Hence, by using the polarization identity Ta,b = (1/4)(Ta+b − Ta−b + iTa+ib − iTa−ib), it follows that

F (Ta,b) = 〈S(a), S(b)〉W+ + 〈A(a), A(b)〉W− ,

where 〈a, b〉 : = τ3(b
∗a). Furthermore, for a1, a2, b1, b2 ∈ M3(C), Ta1⊗a2,b1⊗b2 = Ta1,b1 ⊗ Ta2,b2 , and hence

(F ⊗ F )(Ta1⊗a2,b1⊗b2) = F (Ta1,b1)⊗ F (Ta2,b2)

= (〈S(a1), S(b1)〉W+ + 〈A(a1), A(b1)〉W−)

⊗ (〈S(a2), S(b2)〉W+ + 〈A(a2), A(b2)〉W−).

Since the map (a, b) 7→ Ta,b is linear in the first variable and conjugate-linear in the second, it follows that

for all a, b ∈ M3(C)⊗M3(C),

(F ⊗ F )(Ta,b) = 〈(S ⊗ S)(a), (S ⊗ S)(b)〉W+ ⊗W+ + 〈(S ⊗ S)(a), (S ⊗A)(b)〉W+ ⊗W−

+ 〈(A⊗ S)(a), (A⊗ S)(b)〉W− ⊗W+ + 〈(A⊗A)(a), (A ⊗A)(b)〉W− ⊗W− .

The conclusion follows now by taking a = b = u in the above equation. �

The following lemma can be extracted from Mendl and Wolf’s paper [9], cf. Remark 6.5 (i) below. We

present here a more direct proof, based on ideas from [9].

Lemma 6.3. Set Wm = (W+ ⊗W− +W− ⊗W+)/2. Then the operators

Q1 = W+ ⊗W+ , Q2 =
2

27
W+ ⊗W+ +

25

27
W− ⊗W− , Q3 =

2

3
Wm +

1

3
W− ⊗W−

are all contained in conv(Aut(M3(C)⊗M3(C))) .

Proof. The statement about Q1 is clear from Corollary 4.7 (1). Consider next the unitary u from the

proof of Theorem 5.6, namely,

u =
1

3

3∑

i=1

eii ⊗ eii +
1

6

∑

1≤i<j≤3

bij ⊗ bij −
5

6

∑

1≤i<j≤3

aij ⊗ aij ,

where bi,j = eij + eji and ai,j = ei,j − eji, 1 ≤ i < j ≤ 3. Then

(S ⊗ S)(u) =
1

3

3∑

i=1

eii ⊗ eii +
1

6

∑

1≤i<j≤3

bij ⊗ bij , (A⊗A)(u) = −5

6

∑

1≤i<j≤3

aij ⊗ aij .

Moreover, (S ⊗A)(u) = 0 = (A⊗ S)(u). Hence, by Lemma 6.2,

(F ⊗ F )(ad(u)) = ‖(S ⊗ S)(u)‖22 W+ ⊗W+ + ‖(A⊗A)(u)‖22 W− ⊗W− .

Using the orthogonality of the set of vectors {e11, e22, e33, b12, b13, b23, a12, a13, a23}, together with the fact

that ‖eii‖22 = 1/3, ‖aij‖22 = ‖bij‖22 = 2/3, 1 ≤ i < j ≤ 3, we obtain that

‖(S ⊗ S)(u)‖22 = 2/27 , ‖(A⊗A)(u)‖22 = 25/27 .

Combined with (6.29), this shows that Q2 = (F ⊗ F )(ad(u)) ∈ conv(Aut(M3(C) ⊗ M3(C))) . Consider

finally the matrix v ∈ M3(C)⊗M3(C) given by

v = v1 + ωv2 + ω̄v3 ,
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where ω = (−1/2) + i(
√
3/2), ω̄ = (−1/2)− i(

√
3/2) and

v1 = e12 ⊗ e12 + e23 ⊗ e23 + e31 ⊗ e31 , v2 = e12 ⊗ e21 + e23 ⊗ e32 + e31 ⊗ e13 ,

v3 = e21 ⊗ e12 + e32 ⊗ e23 + e13 ⊗ e31 .

Note that |ω| = |ω̄| = 1. By the standard identification of M3(C)⊗M3(C) with M9(C), we have

v =




0 0 0 0 1 0 0 0 0

0 0 0 ω 0 0 0 0 0

0 0 0 0 0 0 ω̄ 0 0

0 ω̄ 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 1

0 0 0 0 0 0 0 ω 0

0 0 ω 0 0 0 0 0 0

0 0 0 0 0 ω̄ 0 0 0

1 0 0 0 0 0 0 0 0




,

which shows that v is unitary. Moreover, using ω + ω̄ = −1 and ω − ω̄ = i
√
3, we have the following

(S ⊗ S)(v) = (1 + ω + ω̄) = 0 ,

(A⊗A)(v) = (1 − ω − ω̄)(A ⊗A)(v1) =
1

2

∑

1≤i<j≤3

aij ⊗ aij ,

(S ⊗A)(v) = (1 − ω − ω̄)(S ⊗A)(v1) =
1− i

√
3

4
(b12 ⊗ a12 + b23 ⊗ a23 − b13 ⊗ a13) ,

(A⊗ S)(v) =
1 + i

√
3

4
(a12 ⊗ b12 + a23 ⊗ b23 − a13 ⊗ b13) .

Hence,

‖(A⊗A)(v)‖22 =
1

4

∑

i<j

‖aij‖42 =
1

3
, ‖(S ⊗A)(v)‖22 = ‖(A⊗ S)(v)‖22 =

1

4

∑

i<j

‖aij‖22‖bij‖22 =
1

3
.

By Lemma 6.2 and (6.29), we deduce that

Q3 = (F ⊗ F )(ad(v)) ∈ conv(Aut(M3(C)⊗M3(C))) ,

which completes the proof. �

Next we will consider operators in B(M3(C)⊗M3(C)⊗M3(C)). To simplify the notation, set

W+++ = W+ ⊗W+ ⊗W+ ,

W+
m =

1

3
(W+ ⊗W+ ⊗W− +W+ ⊗W− ⊗W+ +W− ⊗W+ ⊗W+) ,

W−
m =

1

3
(W+ ⊗W− ⊗W− +W− ⊗W+ ⊗W− +W− ⊗W− ⊗W+) ,

W−−− = W− ⊗W− ⊗W− .

Furthermore, let σ ∈ B(M3(C)⊗M3(C)⊗M3(C)) denote the unique linear map for which

(6.34) σ(T1 ⊗ T2 ⊗ T3) =
1

|S3|
∑

π∈S3

Tπ(1) ⊗ Tπ(2) ⊗ Tπ(3) , T1, T2, T3 ∈ B(M3(C) ,
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where S3 is the group of permutations of {1, 2, 3} and |S3| = 6. It is clear that σ maps conv(Aut(M3(C)⊗
M3(C))⊗M3(C)) into itself.

Lemma 6.4. The following four operators

R1 =
1

3
(W+++ + 2W+

m) , R2 =
1

81
(2W+++ + 4W+

m + 25W−
m + 50W−−−) ,

R3 =
1

9
(2W+

m + 5W−
m + 2W−−−) , R4 =

1

189
(4W+++ + 168W+

m + 3W−
m + 14W−−−)

are all contained in conv(Aut(M3(C)⊗M3(C))⊗M3(C)) .

Proof. Recall that (1/3)W+ + (2/3)W− ∈ conv(Aut(M3(C))) . Let Q1, Q2, Q3 ∈ conv(Aut(M3(C) ⊗
M3(C))) be as in Lemma 6.3. By a straightforward computation,

Ri = σ

(
Qi ⊗

(
1

3
W+ +

2

3
W−

))
, i = 1, 2, 3 .

Hence R1, R2, R3 ∈ conv(Aut(M3(C) ⊗M3(C)) ⊗M3(C)) . To prove the same statement for R4, we will

show that

(6.35) R4 =
1

27
W+

27 +
26

27
W−

27

with respect to the standard identification of M3(C) ⊗ M3(C)) ⊗ M3(C) with M27(C) . The desired

conclusion will then follow by Corollary 4.11. We first show that

W+
27 =

1

7
(4W+++ + 3W−

m) ,(6.36)

W−
27 =

1

13
(12W+

m +W−−−) ,(6.37)

from which (6.35) will follow immediately. In order to prove (6.36) and (6.37), observe first that with

respect to the standard identification ofM3(C)⊗M3(C))⊗M3(C) withM27(C), we have S27 = S3⊗S3⊗S3 ,

where Sk is the completely depolarizing channel in dimension k ∈ N. Moreover, t27 = t3 ⊗ t3 ⊗ t3 , where

tk : x 7→ xt is the transposition map on Mk(C). By (4.10),

W+ = (3S3 + t3)/4 , W− = (3S3 − t3)/2 .

Therefore, S3 = (2W+ +W−)/3 and t3 = 2W+ −W− . Hence

(6.38) S27 =
1

27
(2W+ +W−)⊗3 =

1

27
(8W+++ + 12W+

m + 6W−
m +W−−−) ,

and, respectively,

(6.39) t27 = (2W+ +W−)⊗3 = (8W+++ − 12W+
m + 6W−

m −W−−−) .

Since by (4.10),

W+
27 =

1

28
(27S27 + t27) , W−

27 =
1

26
(27S27 − t27) ,

relations (6.38) and (6.39) imply (6.36) and (6.37), which prove (6.35), and complete the proof. �
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Proof of Theorem 6.1: Consider the matrix

B =



0 2

27 0

0 0 2
3

0 25
27

1
3


 .

Note that det(B) 6= 0. By Lemma 6.3,

(Q1 , Q2 , Q3) = (W+ ⊗W+ ,Wm ,W− ⊗W−)B .

Here (x1, x2, . . . , xn) denotes the n-dimensional row vector with components x1, x2, . . . , xn. Hence (W
+⊗

W+ ,Wm ,W− ⊗W−) = (Q1 , Q2 , Q3)B
−1 . Note next that

Tλ ⊗ Tλ = (λW+ + (1− λ)W−)⊗2

= λ2W+ ⊗W+ + 2λ(1− λ)Wm + (1− λ)2W− ⊗W−

= (Q1 , Q2 , Q3)B
−1




λ2

2λ(1− λ)

(1 − λ)2




= p1(λ)Q1 + p2(λ)Q2 + p3(λ)Q3 ,

where



p1(λ)

p2(λ)

p3(λ)


 = B−1




λ2

2λ(1− λ)

(1− λ)2


 . Since (1, 1, 1)B = (1, 1, 1), then also (1, 1, 1)B−1 = (1, 1, 1) . Hence

p1(λ) + p2(λ) + p3(λ) = λ2 + 2λ(1 − λ) + (1 − λ)2 = 1 . It follows that if pi(λ) ≥ 0 , i = 1, 2, 3, then by

Lemma 6.3,

Tλ ⊗ Tλ ∈ conv({Q1, Q2, Q3}) ⊆ conv(Aut(M3(C)⊗M3(C))) .

Elementary computations in MAPLE or MATHEMATICA yield

p1(λ) =
1

25
(21λ2 + 6λ− 2) , p2(λ) =

27

25
(2λ2 − 3λ+ 1) , p3(λ) = 3λ(1− λ) .

The roots of p1 are λ+
1 = (−3 +

√
51)/21 ≈ 0.19721 and λ−

1 = (−3−
√
51)/21 < 0 , while the roots of p2

are 1 and 1/2 . Hence pi(λ) ≥ 0 i = 1, 2, 3 when

(6.40) λ+
1 ≤ λ ≤ 1/2 .

Thus Tλ ⊗ Tλ ∈ conv(Aut(M3(C) ⊗ M3(C))), when λ satisfies (6.40) . Since, on the other hand, Tλ ∈
conv(Aut(M3(C))) when λ ∈ [1/3, 1], we have altogether shown that

(6.41) Tλ ⊗ Tλ ∈ conv(Aut(M3(C)⊗M3(C))) , for λ ∈ [λ+
1 , 1] .

Since λ+
1 < 1/4, this implies (6.25). We next prove (6.26) in a similar way, this time by applying Lemma

6.4. Consider the matrix

C =




1
3

2
81 0 4

189
2
3

4
81

2
9

168
189

0 25
81

5
9

3
189

0 50
81

2
9

14
189


 .

Then det(C) 6= 0, and by Lemma 6.4,

(R1 , R2 , R3 , R4) = (W+++ ,W+
m ,W−

m ,W−−−)C .
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Therefore (W+++ ,W+
m ,W−

m ,W−−−) = (R1 , R2 , R3 , R4)C
−1 . Note next that

Tλ ⊗ Tλ ⊗ Tλ = (λW+ + (1 − λ)W−)⊗3

= λ3W+++ + 3λ2(1− λ)W+
m + 3λ(1− λ)2W−

m + (1− λ)3W−−− .

By arguing further as in the proof of (6.25) above, we have Tλ⊗Tλ⊗Tλ =
∑4

i=1 qi(λ)Ri , where q1, q2, q3, q4

are the polynomials in λ given by



q1(λ)

q2(λ)

q3(λ)

q4(λ)


 = C−1




λ3

3λ2(1− λ)

3λ(1 − λ)2

(1 − λ)3


 .

Moreover, q1(λ) + q2(λ) + q3(λ) + q4(λ) = 1 . Hence, if qi(λ) ≥ 0 , i = 1, 2, 3, 4, then by Lemma 6.4,

Tλ ⊗ Tλ ⊗ Tλ ∈ conv({R1, R2, R3, R4}) ⊆ conv(Aut(M3(C)⊗M3(C)⊗M3(C))) .

Explicit computations in MAPLE or MATHEMATICA yield

q1(λ) =
15

4
λ3 − 123

100
λ2 +

77

100
λ− 149

900
, q2(λ) = −27

8
λ3 +

1971

200
λ2 − 1629

200
λ+

397

200
,

q3(λ) =
15

2
λ3 − 33

20
λ2 + 10λ− 10

9
, q4(λ) = − 7

24
(3λ− 1)3 .

The polynomial q1 has only one real root, λ1 ≈ 0.23971 . The polynomial q2 has three distinct real roots:

λ
(1)
2 ≈ 0.45606 , λ

(2)
2 ≈ 0.75435 and λ

(3)
2 ≈ 1.70959 . Respectively, the polynomial q3 has also three distinct

real roots: λ
(1)
3 ≈ 0.14241 , λ

(2)
3 ≈ 0.89425 and λ

(3)
3 ≈ 1.16334 , while q4 has only one root λ4 = 1/3, with

multiplicity 3. Taking into account the sign of the leading terms in qi(λ) , i = 1, 2, 3, 4, we deduce that

qi(λ) ≥ 0 , i = 1, 2, 3, 4 , whenever λ ∈ [λ1, 1/3] . It follows that for all λ ∈ [λ1, 1/3],

(6.42) Tλ ⊗ Tλ ⊗ Tλ ∈ conv(Aut(M3(C)⊗M3(C)⊗M3(C))) .

Combining this with the fact that Tλ ∈ conv(Aut(M3(C))) when λ ∈ [1/3, 1], we conclude that (6.42)

holds for all λ ∈ [λ1, 1] . This proves (6.26), since λ1 < 1/4, and completes the proof of Theorem 6.1.

Remark 6.5. (i) As mentioned at the beginning of this section, a different proof of Lemma 6.3 can be

extracted from Mendl and Wolf’s paper [9]. We will briefly explain the ideas of their proof using our

terminology. Let σ2 be the unique linear map on B(M3(C)⊗M3(C)) for which

σ2(T1 ⊗ T2) = (T1 ⊗ T2 + T2 ⊗ T1)/2 , T1, T2 ∈ B(M3(C)) ,

and set β : = σ2 ◦ (F ⊗ F ) . Then by (6.29),

(6.43) β(conv(Aut(M9(C))) ⊆ conv(Aut(M9(C)) ,

and by Lemma 6.2, we also have

(6.44) β(conv(Aut(M9(C))) ⊆ conv({W+ ⊗W+ ,Wm ,W− ⊗W−}) ,

Consider next the unique affine map α : conv({W+ ⊗W+ ,Wm ,W− ⊗W−}) → R2 for which

α(W+ ⊗W+) = (1, 1) , α(Wm) = (−1, 0) , α(W− ⊗W−) = (−1, 1) .

In [9, Sections V.A and VII.C] it is proved that the set

(6.45) A = (α ◦ β)(Aut(M9(C)))
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contains the blue area (here denoted by A0) (see [9, Fig. 3, p.17]). Note that A0 is the convex hull of two

points, namely, (1, 1) and (1/9,−7/9), together with the path Γ = {γ(t) : t ∈ [0, 1]} in R2 given by

(6.46) γ(t) =
1

9

(
−8

3
(t+ 1)2 + 3 , 16t2 − 7

)
, t ∈ [0, 1] ,

(cf. [9, formulas (23), (36) and (37)]). The path Γ is obtained by an explicit construction of unitaries

u(θ) ∈ U(M3(C)⊗M3(C)) , θ ∈ [0, π/2] ,

for which (α ◦ β)(u(θ)) = γ(cos θ) . We now have

α(W+ ⊗W+) = (1, 1) ∈ A0 ,

and by letting t = 1 and t = 1/2, respectively, in (6.46), we deduce that

α

(
2

27
W+ ⊗W+ +

25

27
W− ⊗W−

)
=

(
−23

27
, 1

)
∈ Γ ⊆ A0

and, respectively,

α

(
2

3
Wm +

1

3
W− ⊗W−

)
=

(
−1

3
,−1

3

)
∈ Γ ⊆ A0 .

Since α is one-to-one, it follows that Q1 , Q2 and Q3 from Lemma 6.3 are all contained in α−1(A) =

β(conv(Aut(M9(C)))) ⊆ conv(Aut(M9(C))) , as claimed.

(ii) Let α, β, A and A0 be as defined above. Mendl and Wolf’s proof of the fact that there exists

λ0 ∈ (0, 1/3) such that Tλ ⊗ Tλ ∈ conv(Aut(M9(C))) , for all λ ∈ [λ0, 1], is obtained by considering the

path Λ in R2 given by

Λ = {α(Tλ ⊗ Tλ) : λ ∈ [0, 1]} = {(2λ− 1, (2λ− 1)2) : λ ∈ [0, 1]} ,

which is the orange-colored parabola in Fig. 3 of [9]. The two paths Γ and Λ intersect in precisely one

point, called ρT , whose first coordinate is equal to −1/3 − ε, where ε = (2/3)(4 − 3
√
2 −

√
3 +

√
6),

according to [9, Sect. V.A]. Hence ρT = α(Tλ0
⊗ Tλ0

), where λ0 is determined by

2λ0 − 1 = −1/3− ε .

Thus λ0 = −1/3−ε/2 = (
√
2−1)(1−1/

√
3) ≈ 0.17507. By [9, Fig. 3], α(Tλ⊗Tλ) ∈ A0, for all λ ∈ [λ0, 1],

and hence

Tλ ⊗ Tλ ∈ β(conv(Aut(M9(C)))) ⊆ conv(Aut(M9(C))),

for all λ ∈ [λ0, 1] .
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