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We derive an inequality for three fermions with six single particle states which reduces to the
sum of the famous Coffman-Kundu-Wootters inequalities when an embedded three qubit system
is considered. We identify the quantities which are playing the role of the concurrence, the three-
tangle and the invariant det ρA + det ρB + det ρC for this tripartite system. We show that this
latter one is almost interchangeable with the von Neumann entropy and conjecture that it measures
the entanglement of one fermion with the rest of the system. We prove that the vanishing of
the fermionic “concurrence” implies that the two particle reduced density matrix is a mixture of
separable states. Also the vanishing of this quantitiy is only possible in the GHZ class, where some
genuie tripartite entanglement is present and in the separable class. Based on this we conjecture that
this “concurrence” measures the amount of entanglement between pairs of fermions. We identify
the well-known “spin-flipped” density matrix in the fermionic context as the reduced density matrix
of a special particle-hole dual state. We show that in general this dual state is always canonically
defined by the Hermitian inner product of the fermionic Fock space and that it can be used to
calculate SLOCC covariants. We show that Fierz identities known from the theory of spinors relate
SLOCC covariants with reduced density matrix elements of the state and its “spin-flipped” dual.
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I. INTRODUCTION

One of the most important ingredients of quantum the-
ory is the phenomenon of entanglement, a feature com-
pletely missing from classical mechanics. Entanglement
can arise between subsystems of a quantum system: a
state is said to be entangled if these subsystems do not
have their own pure states. This feature is of key inter-
est in many areas of modern theoretical physics. In the
field of quantum computation it is regarded as a resource:
entanglement can be used to speed up computational

tasks[1]. It is also an important participant in other ar-
eas such as condensed matter physics[28]. Even the fabric
of spacetime seems to be deeply connected to entangle-
ment as suggested by the Ryu-Takayanagi presciption[2]
in AdS/CFT. These wide variety of applications led to
the emergence of the vast field of quantum information
theory[1] (QIT) which serves as a common language be-
tween different areas of physics with the aim to investi-
gate entanglement. An important goal of QIT is to de-
velop methods to determine the amount and to classify
the type of entanglement a quantum state posesses.

For distinguishable subsystems a wide variety of results
is available. The amount of entanglement is usually mea-
sured with local unitary (LU) invariants[1, 5] such as the
entropy of formation[29]. Locality is a key concept un-
derstood with respect to the subsystems for which entan-
glement is considered. The LU group then arise from the
physically well-motivated idea to measure entanglement:
one considers two states equally entangled if they can be
obtained from each other with local operations and clas-
sical communication[1] (LOCC). Determining the type of
entanglement is also a subtle issue. For example systems
with several subsystems can posess multipartite entan-
glement which turns out to be wildly different and more
complicated than bipartite entanglement[23]. One of the
most well-known results regarding multipartite entangle-
ment is the result of Coffman, Kundu and Wootters[3].
It is known as the monogamy of entanglement: when one
considers three qubits A, B and C it turns out that the
amount of bipartite entanglement of A with the rest of
the system is always greater than the sum of the amount
of its bipartite entanglement with qubit B and C sepa-
rately. The difference between the two is the amount of
genuie tripartite entanglement and is measured by the so
called three-tangle[3].

Entanglement between fermions is a slightly different
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concept: the subsystems under consideration are indis-
tinguishable. However, it is important to keep in mind
that one can consider entanglement between distinguish-
able subsystems of fermionic systems: such as entangle-
ment between particles with high and low momenta. This
is the field of study of entanglement between modes[6–
8]. On the other hand if one is interested in the entan-
glement between identical particles as subsystems one is
inevitably led to consider entanglement between indis-
tinguishable subsystems. Another reason to study this
is that classifying entanglement between fermions turns
out to be somewhat easier than the same task for distin-
guishable subsystems. Since every distinguishable com-
posite system can be embedded into bigger fermionic
systems[12, 21, 26] one can gain information about entan-
glement in distinguishable systems by studying fermionic
entanglement.

Our main aim in this paper to present an analogue
of the equation of Coffman, Kundu and Wootters for
three fermions with six single particle states and iden-
tify the quantities measuring bipartite and tripartite en-
tanglement. This system is the simplest one that pos-
sesses many interesting non-trivial entanglement related
features and hence it has already been the subject of
many studies[10, 12, 22]. Non-trivial constraints for
the important problem of N-representability[9] has been
found by Borland and Dennis[10], they have found the
necessary and sufficient condition for a one particle re-
duces density matrix (RDM) to be obtainable from a
pure state. The condition is that the eigenvalues of
the one particle RDM have to satisfy three equalities
and an inequality: these are constraints on unitary in-
variants of a pure state and hence the result is deeply
entanglement-related. This work was much later ex-
tended to the general framework of entanglement poly-
topes by Klyachko[11]. Three fermions with six single
particle states is also the simplest fermionic system to
possess genuie tripartite entanglement[12]. It is in many
ways a similar system to the one of three qubits[4]. The
structure of entanglement classes under stochastic lo-
cal operations and classical communication[4] (SLOCC) -
which is basically a coarse graining of LOCC - agree. The
system has only one relative invariant under the action of
the SLOCC group which is an analougus quantity to the
three-tangle for three qubits. This property is due to the
fact that the system is a so called prehomogeneous vector
space[13, 14]. Three fermions with seven or eight single
particle states also form a prehomogeneous vector space
with a single SLOCC invariant, however, in the case of
nine single particle states there are already four indepen-
dent continous SLOCC invariants[16] and the physical
meaning of these ones is not so clear yet.

The results in this paper are organized as follows. In
section II. we are studying the system of three fermions
with six single particle states. After a short review of
the SLOCC classes and the covariant K needed to clas-
sify them, in section II A. we derive from a Cauchy-
Schwarz inequality that the absolute value of the quartic

invariant[12, 14] D is always less than the value of a spec-
tral based entropy:

6|D| ≤ 3− Trρ2 ≤ 3

2
, (1)

where ρ denotes the one particle reduced density matrix.
We define a fermionic concurrence as the difference be-
tween these two quantities and in section II B. we show
that for three-qubit-like states of three fermions it re-
duces to the sum of the ususal mixed state squared con-
currences of the pairs of qubits: C2

AB + C2
AC + C2

BC . In
section II C. we show that the “spin-flipped” two particle
reduced density matrix[3, 24] - which is used to define
the concurrences in the three qubit case but its physical
meaning is less transparent - arises as the reduced density
matrix of a conjugate particle-hole dual state. In section
II D. we analyze states with vanishing fermionic concur-
rence. We find here that such states are only possible
in the GHZ and the fully separable classes[4, 12], hence
where the presence of any bipartite entanglement is not
manifest. We show that the spectrum of the one parti-
cle RDM and hence the von Neumann entropy of these
states is a definite function of |D| or equally a function
of the entropy 3−Trρ2. In section II E. we find a similar
result for states from the biseparable class: the spec-
trum and the von Neumann entropy is a definite func-
tion of the entropy 3− Trρ2. In section II F. we analyze
the von Neumann entropy for arbitrary pure states and
based on analytic and numeric results we show that the
previously studied vanishing concurrence and bisepara-
ble states put strict bounds on the relation between the
von Neumann entropy and the entropy 3 − Trρ2. We
conclude that the von Neumann entropy is almost inter-
changeable with 3− Trρ2 and hence this latter quantity
- which participates in our previously derived inequality
- measures entanglement of one fermion with the rest of
the system. In section II G. we analyze the two particle
RDM. As expected, its non-zero eigenvalues agree with
the ones of the one particle RDM. We derive that the
vanishing of the previously introduced fermionic concur-
rence implies that the two-particle RDM is a mixture of
separable states and hence we conjecture that it measures
the amount of bipartite entanglement in a three fermion
state.

In section III. we move to considerations for general
fermionic systems. We analyze the relation between
SLOCC covariants and density matrix elements and find
that the bridge between the two is a canonically de-
fined conjugate particle-hole dual state which is a gen-
eralization of the “spin-flipped” dual for qubits. We
show that this state which looks like a charge-conjugate
and time-reversed state is always uniquely defined on a
fermionic Fock space regardless of any reference to space-
time symmetries. In section III A. we warm up by re-
minding the reader that a distinguishable composite sys-
tem can always be considered as a subspace of a fermionic
system[26]. In section III B. we review the framework of
extended SLOCC transformations[15] which is based on
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the theory of spinors[17]. In section III C. we introduce
the invariant bilinear pairing[17], known from the theory
of spinors, which can be used to generate SLOCC co-
variants and invariants for fermions. Finally in section
III D. we show that the connection between this bilinear
product and the usual Hermitian inner product is made
by a conjugate particle-hole dual state. Using this we
show that absolute values of SLOCC covariants can be
expanded on reduced density matrix elements of the state
and its dual and vice-versa. These expansions are known
as Fierz identities[31] in the theory of spinors.

II. THREE FERMIONS WITH SIX SINGLE
PARTICLE STATES

Let

|P 〉 =
1

3!
Pijk|eijk〉 ∈ ∧3C6 (2)

be an unnormalized three fermion state. Here summation
for the repeated indices i, j, k = 1...6 is understood. We
use the shorthand notation |eijk〉 = |ei〉 ∧ |ej〉 ∧ |ek〉 for a
Slater determinant basis of ∧3C6 built out of single par-
ticle basis vectors |ei〉. Equivalently, we could also write

|eijk〉 = f i
†
f j
†
fk
†|0〉 in creation operator formalism.

We briefly review the classification of this system[12,
16] under SLOCC. By SLOCC classification we mean
the identification of the orbits of the group of invert-
ible SLOCC transformations. The SLOCC group here
is GL(6,C). An invertible SLOCC transformation g ∈
GL(6,C) acts on |P 〉 as

|P 〉 7→ g∗|P 〉 =
1

3!
(g∗P )ijk|eijk〉 ∈ ∧3C6, (3)

where

(g∗P )ijk = gi
′

ig
j′

jg
k′

kPi′j′k′ , (4)

so it is the same invertible transformation of each single
particle index. The SLOCC class of a state can be deter-
mined from the calculation of a 6 × 6 matrix quadratic
in the amplitudes:

Ki
j =

1

2!3!
εiabcdePjabPcde. (5)

Observe that when we apply the invertible SLOCC trans-
formation g ∈ GL(6,C) on |P 〉 the matrix K transforms
as

K 7→ (det g)g−1Kg. (6)

Now it is manifest that the rank of K is invariant under
an invertible SLOCC transformation. It turns out that
this rank determines the SLOCC class of P uniquely. We
review these classes in Table I.

It is also easy to see that the trace of powers of K
are relative invariants under invertible SLOCC transfor-
mation. The term relative invariant refers to a quantity

Type Canonical form of P Rank K

Sep |e123〉 0

Bisep |e123〉+ |e156〉 1

W |e126〉+ |e423〉+ |e153〉 3

GHZ |e123〉+ |e456〉 6

TABLE I. Entanglement classes of three fermions with six
single particle states with their canonical forms, and the rank
of the matrix K.

wich picks up only a one dimensional character when
transformed: in this case a power of the determinant of
a SLOCC transformation. These expressions are poly-
nomials of the amplitudes Pijk and we call them poly-
nomial invariants. It turns out that in the case of three
fermions with six single particle states we have only one
algebraically independent such invariant[12, 14, 22]. Now
TrK = 0 for every state while the trace of the second
power gives the aforementioned quartic SLOCC relative
invariant:

D(P ) =
1

6
TrK2. (7)

Note that the condition D(P ) 6= 0 singles out the GHZ
class of Table I. It is also an important property that the
square of K is always proportional to the identity:

K2 = D(P )I. (8)

This can be easily checked by plugging in the canonical
GHZ state of Table I. and using the relative covariance
of K2.

Now define the one particle reduced density matrix
(RDM) as

ρi
j =

1

2
PinmP̄

jnm. (9)

This is a covariant quantity under local unitary trans-
formations (corresponding to invertible LOCC) but not
under local invertible transformations (corresponding to
invertible SLOCC). Note that we have adopted the con-
vention that a complex conjugation raises an index, how-
ever indices contracted this way only stay invariant under
unitary transformations. Note also that we have adopted
Löwdin normalization[9]: Trρ = 3||P ||2. The entropies
Trρn, n ∈ N are local unitary invariants of |P 〉. Equiv-
alently one can look at the eigenvalues λi, i = 1...6 of ρ
which are also unitary invariants. We recall the classical
result of Borland and Dennis[10] that these eigenvalues
satisfy the (in)equalities:

λ1 + λ6 = 1, λ2 + λ5 = 1,

λ3 + λ4 = 1, λ5 + λ6 ≥ λ4,
(10)

where the eigenvalues are ordered as λ1 ≥ λ2 ≥ ... ≥ λ6.
An important fact to be used later is that in general there
are only three of these eigenvalues are independent.
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A. The CKW inequality

Using the usual identity for Levi-Civita symbols

εi1i2i3i4i5i6εj1j2j3j4j5j6 = δi1 [j1δ
i2
j2δ

i3
j3δ

i4
j4δ

i5
j5δ

i6
j6],
(11)

(the brackets denote antisymmetrization) one can easily
calculate that the following equality holds

Tr(KK†) =
1

3
((Trρ)2 − 3Trρ2). (12)

Note that on the left hand side we have a product of a
SLOCC covariant quantity with its conjugate while on
the right hand side we have a product of LOCC covari-
ant quantities. We will later see in section III D. that
this is nothing else but a Fierz identity known from the
theory of spinors. These type of relations will be of much
interest for us later on. For normalized states we have
Trρ = 3 and hence Tr(KK†) = 3 − Trρ2. We see that
Tr(KK†) measures the distance of Trρ2 from its value on
a separable (single Slater determinant) state.

Now since for any matrix M the matrix MM† is posi-
tive we have the following inequality:

0 ≤ Tr
(
(K − λK†)(K† − λ̄K)

)
, (13)

for any λ ∈ C. It is easy to see that the righ hand side has

minimum at λ = TrK2

|TrK2| . Plugging this back we obtain

the inequality

|Tr(K2)| ≤ Tr(KK†). (14)

Note that this is just the Cauchy-Schwarz inequality for
the Hilbert-Schmidt product of K with K†. This gives a
lower bound on Tr(KK†) in terms of the quartic invariant
of e.q. (7). On the other hand for normalized states one
has TrKK† = Trρ(I − ρ). Thus we also have an upper
bound for TrKK† due to the Cauchy-Schwarz inequality
between ρ and I − ρ:

TrKK† = Trρ(I − ρ) ≤
√

Trρ2Tr(I − ρ)2. (15)

But we know from the classical paper of Borland and
Dennis[10] (see e.q. (10)) that the eigenvalues of ρ come
in pairs and each pair sums to one. This implies that
Trρ2 = Tr(I − ρ)2 =

∑3
i=1(λ2

i + (1 − λi)2). Using this
and (12) we arrive at

TrKK† ≤ Trρ2 = 3− TrKK†, (16)

or after rearrangement

TrKK† ≤ 3

2
. (17)

Note that this inequality is saturated if and only if ρ =
I−ρ and hence ρ = 1

2I which means that the one particle
RDM is maximaly mixed.

We define the non-negative quantity:

Con(P ) = Tr(KK†)− |Tr(K2)|, (18)

which satisfies

0 ≤ Con(P ) ≤ Tr(KK†) ≤ 3

2
. (19)

As we will show in the next subsection Con(P ) is the sum
of the concurrences for embedded three qubit states.

Note that the concurrence vanishes for a state P if and
only if it satisfies K = TrK2

|TrK2|K
†. Here TrK2

|TrK2| is just the

phase of the quartic invariant.

B. Embedded three qubit states

Consider the three qubit state

|ψ〉 =

1∑
ijk=0

ψijk|ijk〉 ∈ C2 ⊗ C2 ⊗ C2. (20)

One can embed this state into the space of three fermions
with six single particle states in several ways and realize
three qubit SLOCC transformations as special fermionic
SLOCC transformations[12, 15]. A convenient choice is

Pψ123 = ψ000, Pψ
123̄

= ψ001, Pψ
12̄3

= ψ010,

Pψ
12̄3̄

= ψ011, Pψ
1̄23

= ψ100, Pψ
1̄23̄

= ψ101,

Pψ
1̄2̄3

= ψ110, Pψ
1̄2̄3̄

= ψ111,

(21)

with all other (independent) amplitudes being zero.
Here we have introduced the relabelling of indices
{1, 2, 3, 4, 5, 6} ↔ {1, 2, 3, 1̄, 2̄, 3̄}. With this choice a
three qubit SLOCC transformation g(1) ⊗ g(2) ⊗ g(3) ∈
GL(2,C)×3 takes the form

g =

 g(1)

g(2)

g(3)

 (22)

where the order of indices in the matrix g ∈ GL(6,C) is
1, 1̄, 2, 2̄, 3, 3̄. One can think of this embedding as select-
ing the subspace of the single occupancy states[15, 21]
of three spin 1

2 fermions which can occupy three nodes.

For example |e123̄〉 represents a state where the first two
nodes are occupied by spin-up fermions while the third
one is occupied by a spin-down fermion.

Let us denote the K matrix defined in (5) for the state
Pψ with Kψ. It is well known that under this embed-
ding the quartic invariant of three fermions reduces to
Cayley’s hyperdeterminant[12, 18]:

1

6
TrK2

ψ = ψ2
000ψ

2
111 + ψ2

001ψ
2
110 + ψ2

010ψ
2
101 + ψ2

100ψ
2
011

− 2(ψ000ψ001ψ100ψ111 + ψ000ψ010ψ101ψ111

+ ψ000ψ100ψ011ψ111 + ψ001ψ010ψ101ψ110

+ ψ001ψ100ψ011ψ110 + ψ010ψ100ψ011ψ101)

+ 4(ψ000ψ011ψ101ψ110 + ψ001ψ010ψ100ψ111).
(23)
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The three-tangle τABC for three qubits is defined
to be four times the absolute value of Cayley’s
hyperdeterminant[3]:

τABC =
2

3
|TrK2

ψ|. (24)

On the other hand the fermionic one particle reduced
density matrix for the state Pψ has the form

ρ =

 ρA
ρB

ρC

 , (25)

where ρA, ρB , ρC are one particle RDMs of the three
qubit state |ψ〉. For normalized three qubit states we
have TrρA,B,C = 1 and Trρ = 3. Using that for 2×2 ma-
trices one has the identity 2 det ρA,B,C = (TrρA,B,C)2 −
Tr(ρA,B,C

2), one can easily show that e.q. (12) reduces
to

Tr(KψK
†
ψ) = 2(det ρA + det ρB + det ρC). (26)

Now recall the Coffman-Kundu-Wootters equations[3] for
three qubits which read as

4 det ρA = τABC + C2
AB + C2

AC ,

4 det ρB = τABC + C2
AB + C2

BC ,

4 det ρC = τABC + C2
CA + C2

CB ,

(27)

where C2
AB , C2

AC , C2
BC are the concurrences[3, 24, 25] be-

tween the qubits AB, AC and BC respectively. Adding
up these equations and using equations (24) and (26) one
arrives at

C2
AB + C2

AC + C2
BC + |TrK2

ψ| = Tr(KψK
†
ψ). (28)

Compare with the definition (18) to arrive at

Con(Pψ) = C2
AB + C2

AC + C2
BC . (29)

Note that these equations written with the use of Kψ

are invariant under the action of the fermionic LOCC
group U(6). Hence we could choose any other isometric
embedding of three qubits into three fermions with six
single particle states and we would have obtained the
same results.

C. The “spin-flipped” density matrix

For three qubit states the concurrence is defined via
the so called “spin-flipped” density matrix[24] ρ̃AB . It is
defined to be

ρ̃AB = (σy ⊗ σy)ρ̄AB(σy ⊗ σy), (30)

where σy is the second Pauli matrix and ρAB is the two-
particle RDM of qubits A and B:

ρABij|kl =

1∑
n=0

ψijnψ̄kln. (31)

The matrix ρAB ρ̃AB has non-negative real eigenvalues.
Let these be λ2

1, λ
2
2, λ

2
3, λ

2
4 in decreasing order. The con-

currence between qubit A and B is defined to be[24, 25]

CAB = max{λ1 − λ2 − λ3 − λ4, 0}. (32)

Here we show that the “spin-flipped” density matrix has
a clear physical meaning in the fermionic context namely
it arises from the RDM of the complex conjugate of the
particle-hole dual state. Later on in section III D. we
will show that once the Hermitian inner product is fixed
this dual state is allway canonically and unambigously
defined for any state in the fermionic Fock space. Here
we define the dual state for three fermions with six single
particle states as

|P̃ 〉 =
1

3!
P̃ijk|eijk〉, (33)

with

P̃ijk =
1

3!
εijklmnP̄

lmn. (34)

We will see later that it is important that the map
|P 〉 7→ |P̃ 〉 is antilinear. It is not difficult to see that for

the embedded three qubit state Pψ, the dual P̃ψ can be
obtained with our embedding (21) from the three qubit

state |ψ̃〉 with coefficients:

ψ̃ijk =

1∑
i′j′k′=0

εii′εjj′εkk′ ψ̄i′j′k′ , (35)

where ε is the totaly antisymmetric 2 × 2 matrix or
ε = iσy. Now using εT ε = 1 it is straightforward to
see that the “spin-flipped” density matrix is just the two
particle RDM of qubits A and B for the state |ψ̃〉. It is
not difficult to see how the two particle RDMs of three
qubits sit inside the fermionic two particle RDMs. Let
ρ(2) denote the fermionic two particle RDM with coeffi-
cients

ρ
(2)
ij

kl
=

1

2
PijnP̄

kln. (36)

We denote by ρ̃(2) the two particle RDM of the dual state
|P̃ 〉. For an embedded state Pψ we have

ρ
(2)
12

12
=

1

2
ρAB00|00, ρ

(2)
12

12̄
=

1

2
ρAB00|01, ρ

(2)
12

1̄2̄
=

1

2
ρAB00|11,

ρ
(2)

12̄

12
=

1

2
ρAB01|00, ..., ρ

(2)

1̄2̄

1̄2̄
=

1

2
ρAB11|11,

ρ
(2)
13

13
=

1

2
ρAC00|00, ..., ρ

(2)

1̄3̄

1̄3̄
=

1

2
ρAC11|11,

(37)
and so on. One observes the scheme that the indices
1, 2, 3 correspond to qubits A,B,C respectively. Cases
where index pairs contain the same number multiple

times like ρ
(2)

22̄

12
or where the lower and upper indices

contain different numbers like ρ
(2)
12

13
give zero. Indices
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without a bar correspond to the corresponding qubit in
|0〉 state while with a bar to the qubit in |1〉 state. The
“spin flipped” density matrix sits in ρ̃(2) in exactly the
same way. Note that in general we have

Tr(KK†) = Tr(ρ(2)ρ̃(2)), (38)

or for the embedded three qubit state

Tr(KψK
†
ψ) = Tr(ρAB ρ̃AB + ρAC ρ̃AC + ρBC ρ̃BC), (39)

which estabilishes a connection with the unnormalized
form of the CKW inequality[3]:

Con(Pψ) = C2
AB + C2

AC + C2
BC

≤ Tr(KψK
†
ψ)

= Tr(ρAB ρ̃AB + ρAC ρ̃AC + ρBC ρ̃BC).

(40)

It is not difficult to show that the one particle RDM of
the dual state (34) is just ρ̃ = Trρ

3 I−ρ, or for normalized

states

ρ̃ = I − ρ. (41)

Since the eigenvalues of a fermionic one particle RDM
are interpreted as occupation numbers this equation
reinforces the particle-hole duality picture behind the
“spin-flipped” state. Later on, in section III D., we will
show that this equation holds for an arbitary number of
fermions with arbitary many single particle states.

D. Vanishing concurrence

Recall that the condition for the vanishing of the quan-
tity Con(P ) defined in e.q. (18) was that

K = eiϕK†, (42)

where we have introduced for the phase of the quartic in-

variant eiϕ = TrK2

|TrK2| . This equation has some interesting

consequences. With a little bit of work one can show that
although the matrices KK† and K†K do depend on the
two particle RDM, the anticommutator {K,K†} is only
a function of the one particle RDM:

({K,K†})ik =
1

3
δik
(
(Trρ)2 − 3Trρ2

)
− 4

(
ρ(

Trρ

3
I − ρ)

)
k

i

(43)

Using equation (12) and that the one particle RDM of

the dual state (34) is just ρ̃ = Trρ
3 I−ρ one can write this

as

({K,K†})ik = δikTr(KK†)− 4(ρρ̃)k
i

(44)

Now using the condition of vanishing concurrence we ar-
rive at

2e−iϕ
(
K2
)i
k

= δik|TrK2| − 4(ρρ̃)k
i

(45)

Now it is well known that for any state the square of K
is proportional to the identity matrix: K2 = 1

6 (TrK2)I
(see e.q. (8)). Plugging this in we arrive at

(ρρ̃)k
i

= |1
6

TrK2|δik = |D(P )|δik. (46)

Now suppose that P is normalized. Then we have Trρ =
3 and as a consequence ρρ̃ = ρ(I − ρ). Using this we see
that all the λi eigenvalues of ρ satisfy the equations

λi(1− λi) = |D(P )|. (47)

The two roots of this equation are

λ∗, 1− λ∗, where λ∗ =
1

2

(
1 +

√
1− 4|D(P )|

)
.

(48)

Now
∑
i λi = 3 implies that three of the eigenvalues are

λ∗ and the other three are 1−λ∗. In particular for these
states the von Neumann entropy is always expressable as
a function of the quartic invariant:

SN = −Tr
ρ

3
log

ρ

3
= 3h(λ∗)

= 3h

(
1

2

(
1 +

√
1− 2/3TrKK†

))
,

(49)

where

h(x) = −1

3

(
x log

x

3
+ (1− x) log(

1− x
3

)

)
. (50)

In the last line of e.q. (49) we have used TrKK† =
6|D(P )| which is valid for states with zero concurrence.
The 1/3 factors in the binary entropy function appear to
restore the probability normalization of the eigenvalues
from the Trρ = 3 normalization. Observe that if D(P ) =
0 then three of the eigenvalues are 1 and the other three
are 0 hence the original state is in the separable class.
This shows that the vanishing of Con(P ) is only possible
in the GHZ and the separable classes where the presence
of two-particle entanglement is not manifest.
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E. Biseparable class

Recall from Table I. that in the biseparable class one
has rankK = 1. This means that there exist two vectors
u and v in C6 such that K is a dyad:

Ki
j = uiv̄j , (51)

or K = uv† in index-free notation. From TrK = 0 we
see that v†u = v̄iu

i = 0. A short calculation gives

{K,K†} = |v|2uu† + |u|2vv†. (52)

Since the projections uu† and vv† are orthogonal this is
already a diagonal decomposition of {K,K†}. We ob-
serve that TrKK† = |u|2|v|2. Using (44) we write

|v|2uu† + |u|2vv† − |u|2|v|2I = −4ρ(I − ρ). (53)

The eigenvectors of the left hand side are u, v and four
arbitrary vectors that are orthogonal to u and v. The
eigenvectors of the right hand side are just the eigenvec-
tors of ρ itself. Multiplying the equation with u or v gives
the equation

0 = λ(1− λ). (54)

We conclude that we have λ6 = 0 and λ1 = 1 as the
eigenvalues corresponding to u and v. Multiplying with
any eigenvector of ρ orthogonal to u and v we get the
equation

λ(1− λ) =
|u|2|v|2

4
=

TrKK†

4
. (55)

We conclude that the remaining eigenvalues are

λ2 = λ3 =
1 +
√

1− TrKK†

2
λ4 = λ5 = 1− λ3.

(56)

For the von Neumann entropy note that for the binary
entropy function defined in (50) we have limx→0 h(x) =

log 3
3 . Using this we arrive at

SN = −Tr
ρ

3
log

ρ

3
=

log 3

3
+ 2h

(
1 +
√

1− TrKK†

2

)
,

(57)
for biseparable states.

F. Entanglement entropy of arbitrary states

We have seen that for biseparable states and for states
with vanishing Con(P ) we have the entanglement en-
tropy SN = −Trρ3 log ρ

3 as a definite function of the quan-

tity TrKK†. For general states the two are not a function
of each other but they are almost interchangeable.

To see this first we prove that the von Neumann en-
tropy of zero concurrence states is an upper bound to
the entropy of all states. Denote the eigenvalues of the
matrix 1

4 ((TrKK†)I − {K,K†}) with µi. From (44) one
sees that µi = λi(1 − λi) holds for the λi eigenvalues of
ρ. Hence for the von Neumann entropy we have

SN = −
6∑
i=1

λi
3

log
λi
3

=

3∑
i=1

h

(
1

2

(
1 +

√
1− 4µi

))
(58)

Recall the classical Borland-Dennis results on the spec-
trum of the on particle RDM: the spectrum consists of
three pairs of eigenvalues and every pair sum to one (see

e.q. (10)). Using this we have TrKK† =
∑6
i=1 µi =

2
∑3
i=1 µi. Now it is easy to see that the function

h

(
1

2

(
1 +

√
1− 2/3x

))
(59)

is concave, hence

3h

(
1

2

(
1 +

√
1− 2/3TrKK†

))
= 3h

1

2

1 +

√√√√1− 4/3

3∑
i=1

µi


≥

3∑
i=1

h

(
1

2

(
1 +

√
1− 4µi

))
= SN ,

(60)

and hence the claim follows.

In Figure 1. and 2. we have plotted the quantity
TrKK† and the von Neumann entropy of ρ for random

generated states. Figure 1. contains 5000 random gen-
erated normalized states marked with blue circles. Since
the GHZ orbit is dense these are definitely all GHZ states.



8

On figure 2. the orange squares are 5000 random W class
states obtained by acting with a random SLOCC trans-
formation on the canonical W state. The upper bound
of states with vanishing concurrence is drawn in with a
dashed-dotted red line, while the entropy of biseparable
states is drawn with a dashed green line. We see that the
majority of GHZ states are close to the upper bound.
Observe that the green line of biseparable states forms a
lower bound for the entanglement entropy and the states
from the W class are generally close to this. In figures 3.
and 4. we made the same plots with the difference that
the states are not arbitarily random generated but they
are in the four parameter canonical form[10, 22]

α|e123〉+ β|e145〉+ γ|e246〉+ δ|e356〉. (61)

This way we can obtain a better coverage of the allowed
domain.

FIG. 1. The distribution of TrKK† and the entanglement
entropy S = −Tr ρ

3
log ρ

3
of random generated states of three

fermions with six single particle states. The blue circles are
5000 random generated states in the GHZ class. The dashed-
dotted red line is the function (49) valid for states with zero
concurrence while the dashed green line is the function (57)
valid for biseparable states. The solid black line is the entropy
calculated from (68) which is valid for special kinds of W
states.

There is one additional curve drawn in black in figures
1. and 2. forming a lower bound in the region 1 ≤
Tr(KK†) ≤ 3

2 . This curve is the entropy of W class
states with four out of six eigenvalues of their one particle
RDMs being 1

2 . Here we give a brief derivation of this
curve.

Consider equation (44). Using K2 = D(P )I it is easy
to see that both K and K† commutes with {K,K†}. As
a consequence

[K, ρρ̃] = 0. (62)

It follows that the eigenspaces of ρρ̃ are invariant sub-
spaces of K. Now apart from accidental degeneracies ρρ̃
has two dimensional degenerate eigenspaces: the eigen-
values are λi(1−λi) which are allway degenerate for pairs

FIG. 2. The distribution of TrKK† and the entanglement
entropy S = −Tr ρ

3
log ρ

3
of random generated states of three

fermions with six single particle states. The orange squares
are 5000 random generated states from the W class. The lines
are the same as in figure 1.

FIG. 3. The distribution of TrKK† and the entanglement
entropy S = −Tr ρ

3
log ρ

3
of random generated states which

are in the four parameter canonical form of e.q. (61). The
blue circles are 5000 random generated states from the GHZ
class. The lines are the same as in figure 1.

due to the classical Borland-Dennis result stated in e.q.
(10). As a consequence K is a block matrix of 2 × 2 di-
agonal blocks in the basis where ρ is diagonal. Denote
these blocks with Kα, α = 1, 2, 3. Using the Cayley-
Hamilton theorem on Kα and that K2

α = D(P )I we see
that (D(P ) + detKα) I = (TrKα)Kα. The determinant
and the trace of this equation give two equations of or-
der two for detKα and TrKα in terms of D(P ). Solving
these equations one sees that the only solution not con-
tradicting TrK =

∑3
α=1 TrKα = 0 is detKα = −D(P )

and TrKα = 0. This shows that when D(P ) = 0 the
maximum possible rank of K is 3. According to Table I.
this is the case if we have a state in the W class. Now in
this case all the blocks are rank one matrices and hence
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FIG. 4. The distribution of TrKK† and the entanglement
entropy S = −Tr ρ

3
log ρ

3
of random generated states which

are in the four parameter canonical form of e.q. (61). The
orange squares are 5000 random generated states from the W
class obtained by putting δ = 0 in (61). The lines are the
same as in figure 1.

can be expressed as a dyadic product of two vectors:

Kα = uαv
†
α. (63)

Block diagonality ensures that vectors with different α
index are orthogonal. We also have u†αvα = 0 due to
K2
α = 0. This is enough to compute the anticommutator

{K,K†} =

3∑
α=1

|vα|2uαu†α + |uα|2vαv†α. (64)

Now multiply e.q. (44) with the eigenvectors of ρρ̃
which are in this case uα and vα and use TrKK† =∑3
α=1 |uα|2|vα|2 to arrive at

3∑
β=1

|uβ |2|vβ |2 − |uα|2|vα|2 = 4λα(1− λα). (65)

Introduce the shorthand notation |uα|2|vα|2 = aα. One
then has the equations

4λ1(1− λ1) = a2 + a3

4λ2(1− λ2) = a1 + a3

4λ3(1− λ3) = a1 + a2,

(66)

from which one can solve for the spectrum of the one
particle RDM. The case when there is a pair of eigenval-
ues being 1

2 corresponds to the equation 4λi(1− λi) = 1
between them. Now set a2 + a3 = a1 + a3 = 1 to have
four 1

2 eigenvalues. Using a1 +a2 +a3 = a1 +1 = TrKK†

implies

4λ3(1− λ3) = a1 + a2 = 2a1 = 2TrKK† − 2. (67)

Observe that one can only get a legitime value for λ3 in
the range 1 ≤ TrKK† ≤ 3

2 . The spectrum of these kind

of states as a function of TrKK† is then given as

λ1 = λ6 = λ2 = λ5 =
1

2
,

λ3 = 1− λ4 =
1

2

(
1 +

√
3− 2TrKK†

)
.

(68)

The entanglement entropy calculated from these eigen-
values gives the black curves of figures 1. and 2.

G. The two particle reduced density matrix

Recall that the two particle RDM has components

ρ
(2)
ij

kl
=

1

2
PijaP̄

kla. (69)

A system of three fermions has the remarkable property
that ρ(2) does not contain any additional spectral infor-
mation compared to the one particle RDM ρ. To see this
consider the following. Denote the eigenvectors of ρ with
e(α):

ρi
je

(α)
j = λ(α)e

(α)
i . (70)

It is easy to see that E
(α)
ij = Pijk(ē(α))k, α = 1, ..., 6 are

eigenvectors of ρ(2):

ρ
(2)
ij

kl
E

(α)
kl = Pijaρ̄

a
n(ē(α))n = λ(α)Pija(ē(α))a = λ(α)E

(α)
ij .

(71)
Now the map vk 7→ Pijkv

k is a linear map from C6 to
∧2(C6)∗ and it can be proved that it has a SLOCC invari-
ant rank[16]. A simple computation on canonical states
shows that this map has full rank when P is picked from
the GHZ or the W classes. It follows that the eigenvec-

tors |E(α)〉 = 1
2!E

(α)
ij f i

†
f i
†|0〉, α = 1, ..., 6 are linearly

independent. Now since all λ(α) ≥ 0 and Trρ(2) = 3 we
conclude that the remaining nine eigenvalues are all zero
and hence the spectrum of the one particle and the two
particle RDM agree. It follows that all spectral based
entropies also agree.

It is important to understand the physical interpreta-
tion of this result. Recall a similar well-known fact: for a
bipartite system the reduced density matrices of the two
subsystems have the same non-zero eigenvalues[1]. This
is also well-known to be true for a composite sytem of
two fermions[30]. In our case one can think of dividing
the system of three fermions into the ”bipartite” system
of one fermion entangled with two fermions. Hence we
have seen that in this case the non-zero eigenvalues of
the reduced density matrices agree as one expects. The
derivation trivialy generalizes to N fermions: the non-
zero eigenvalues of the k particle and the N − k particle
RDMs agree in general.

Note also the important fact that we only have six
non-zero eigenvalues of the two particle RDM and hence
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it can effectively be treated as a 6× 6 matrix instead of
a 15 × 15 one. We have

(
4
2

)
= 6. This suggests that we

effectively lose two single particle states and we are left
with a density matrix of two fermions with four single
particle states which is the fermionic system suited to
describe two qubits as an embedded system.

To determine how much two-particle entanglement is
present in a three particle state |P 〉 one has to deter-
mine the least entangled two particle projectors on which
the two particle RDM can be expanded on[29]. Now we
show that GHZ states with vanishing Con(P ) contain no
two particle entanglement by showing that the natural
orbitals |E(α)〉 with non-zero eigenvalues are separable
states. Here we temporary use exterior algebra notation
to simplify the formulas (for a review of this notation
in the fermionic context see [16]). Let V be a complex
vector space. To show the claim recall that a k fermion
state Q ∈ ∧kV is separable (or single Slater determinant)
if and only if for every ω ∈ ∧k−1V ∗ we have[16, 19]

ιωQ ∧Q = 0. (72)

These are the so called Plücker relations[20]. Apply this
to Q = E(α) = ιē(α)P ∈ ∧2C6 and ω = u ∈ (C6)∗ to get
for the condition of separability:

(ιuιē(α)P ) ∧ ιē(α)P = 0, ∀u ∈ (C6)∗. (73)

Now using the antiderivative propierty of the interior
product we have ιu(ιē(α)P ∧ιē(α)P ) = 2(ιuιē(α)P )∧ιē(α)P
and using ιē(α) ◦ ιē(α) = 0 we have ιē(α)(ιē(α)P ∧ P ) =
ιē(α)P ∧ ιē(α)P . Hence the separability condition takes
the form

ιuιē(α)(ιē(α)P ∧ P ) = 0, ∀u ∈ (C6)∗. (74)

Now it is not difficult to see that ιē(α)P ∧ P is just the
five-form dual to the vector Ki

j(ē
(α))j :

ιē(α)P ∧ P =
1

5!
(Ki

j(ē
(α))j)εiabcdee

abcde. (75)

Using this the condition (74) for separability takes the
form:

u[d(ē(α))eKa]
b(ē

(α))b = 0, ∀u ∈ (C6)∗. (76)

If one defines the two-form κ = 1
2 (ē(α))[eKa]

b(ē
(α))bee∧ea

then this equation can be written as u ∧ κ = 0 for every
one-form u = uded. For dimensions greater than two this
is equivalent with κ = 0 hence

(ē(α))[eKa]
b(ē

(α))b = 0. (77)

Multiply with e(α)
e to get

(e(α)
e(ē

(α))e)Kf
j(ē

(α))j = (e(α)
eK

e
j(ē

(α))j)(ē(α))f ,
(78)

hence we see that e.q. (77) is equivalent with ē(α) being
an eigenvector of K. Now K and ρ̄ sharing all of their
eigenvectors is equivalent with writing

[K, ρ̄] = 0. (79)

This equation is equivalent with |E(α)〉 being separa-
ble and hence it is a sufficient condition for ρ(2) to be
expandable in terms of single Slater rank projections.
Now we are going to show that Con(P ) = 0 implies
[K, ρ̄] = 0. Define C = [K, ρ̄]. It is sufficient to show
that Tr(CC†) = 0. Expanding Tr(CC†) gives

Tr(CC†) = Tr(ρ̄2{K,K†})− 2Tr(Kρ̄K†ρ̄). (80)

The term {K,K†} can be expressed with ρ from (44).
The problematic term is Tr(Kρ̄K†ρ̄). A long calculation
shows that

Tr(Kρ̄K†ρ̄) =
1

324
(Trρ)4 − 1

9
(Trρ3)Trρ

− 1

4
(Trρ2)2 + Trρ4

+
1

3
(Trρ)Tr(KK†ρ̄)− 1

12
|TrK2|2.

(81)

We have seen that Con(P ) = 0 implies KK† = K†K =
|D(P )|I, and λ∗(1 − λ∗) = |D(P )| for the eigenvalues of
the one particle RDM (see sec. II D.). Using this we
write

Tr(CC†) = 2λ∗(1− λ∗)Trρ2 − 2

324
(Trρ)4

+
2

9
(Trρ3)Trρ+

2

4
(Trρ2)2 − 2Trρ4

− 2

3
(Trρ)2λ∗(1− λ∗) +

2

12
62(λ∗(1− λ∗))2,

(82)
for states with zero concurrence. Now according to Sec-
tion II D. ρ can be written as

ρ =



λ∗

λ∗

λ∗

1− λ∗

1− λ∗

1− λ∗


(83)

when diagonalized. Substitute this into (82) to obtain
the desired result

Con(P ) = 0 =⇒ Tr(CC†) = 0 =⇒ E(α) are separable.
(84)

This result together with the fact that Con(P ) = 0 is
only possible in the GHZ and and the separable classes
(see section II D.) suggests that Con(P ) measures the
amount of bipartite entanglement in a three-fermion
state.

III. GENERAL CONSIDERATIONS

A. Fermions and qudits

Before setting up the general framework for fermions
and discussing the “spin-flipped” state it is worth saying
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a few words about the usefulness of studying fermionic
entanglement in the task of understanding entanglement
between distinguishable systems. Consider the compos-
ite system of n distinguishable constituents with Hilbert
spaces of dimensions d1,...,dn respectively. The whole
system has Hilbert space H = Cd1 ⊗ ... ⊗ Cdn . A pure

state of this system is described by the vector

|ψ〉 =

d1∑
µ1=1

...

dn∑
µn=1

ψµ1...µn |µ1〉 ⊗ ...⊗ |µn〉 ∈ H. (85)

Now consider a system of n fermions with single particle
Hilbert space H′ = Cd1 ⊕ ...⊕ Cdn where there is a sum
between the original Hilbert spaces instead of a product.
The fermionic Hilbert space is now ∧nH′. Any |ψ〉 ∈ H
can be embedded[26] in this space using the map

|ψ〉 7→ |Pψ〉 =

d1∑
µ1=1

...

dn∑
µn=1

ψµ1...µnf
µ1†fd1+µ2

†
...fd1+...+dn−1+µn†|0〉. (86)

This embedding has the nice propierty that it also em-
beds the SLOCC group of the distinguishable system into
the fermionic one in a nice way. The SLOCC group of
the distinguishable system is GL(d1,C)⊗ ...⊗GL(dn,C)
acting locally as

ψµ1...µn 7→ (g1)ν1µ1
...(g1)νnµnψν1...νn ,

g1 ⊗ ...⊗ gn ∈ GL(d1,C)⊗ ...⊗GL(dn,C).
(87)

These transformations are implemented via the fermionic
SLOCC transformations

g =

 g1

. . .

gn

 ∈ GL(H′) (88)

This shows that states of the embedded system on the
same GL(d1,C) ⊗ ... ⊗ GL(dn,C) orbit are on the same
GL(H′) orbit when considered as fermionic states. Hence
the entanglement classes of the fermionic system give a
coarse graining of the classes of the distinguishable sys-
tem. As we have seen this coarse graining is a one to
one correspondence in the case of three qubits and three
fermions with six single particle states and in the case
when only bipartite entanglement is considered but it
works remarkably well in the case of other multipartite
systems as well, for example four qubits embedded into
four fermions with eight single particle states[21], or three
qudits embedded into three fermions with nine single par-
ticle states[16].

Note that the embedding (86) has a nice physical in-
terpretation. Consider n nodes where fermions can be
localized and on the kth node a fermion can have dk in-
ternal states. These nodes can be energy levels of atoms
or nodes in a lattice or anything alike. The subspace of
the n fermion Hilbert space H′ defined by (86) is just the
single occupancy subspace of this node interpretation:
where we allow only states where on each node there is
exactly one fermion. If we prescribe this condition it is

clear that the fermions suddenly become distinguishable
and the resulting Hilbert space is just H.

Despite how natural the above physical interpretation
seems, the embedding (86) is by no ways canonical when
the whole Fock space of fermions is considered. For exam-
ple one can use double occupancy states instead of single
occupancy ones and end up with a good embedding[15]
of the distinguishable SLOCC group into the extended
fermionic SLOCC group, which we review in the next
subsection.

B. The extended SLOCC group

In this subsection we briefly review the concept of the
extended fermionic SLOCC group which was recently in-
troduced by us[15]. For an extensive treatment we refer
to this work. The mathematics used to define this con-
cept is known long ago and called the classification of
spinors[17, 27]. The physical interpretation is that we
define states related by a Bogoliubov transformation to
be equally entangled. This way we classify fermionic Fock
spaces without a reference to a specific vacuum which is
only special if a Hamiltonian is specified.

Let H be a d dimensional one particle Hilbert space.
One constructs the Fock space of fermions as

F = C⊕H⊕ ∧2H⊕ ...⊕ ∧dH. (89)

It is clear that dimF = 2d. The term C in the direct
sum is spanned by the so called vacuum and is denoted
by |0〉. Let ei be a basis of H and ei the dual basis of

H∗ satisfying ei(e
j) = δi

j . Note that we have temporary
dropped the bracket notation for the vectors in the one
particle Hilbert space and its dual because we would like
to introduce the Hermitian inner product of H later, to
emphasize what structures are pre-existing on F regard-
less of the choice of a Hermitian inner product. Also, in a
somewhat unorthodox way, we use upper indices for ba-
sis vectors of H and lower ones for its dual. This is done
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to conform with the notation used in the study of exte-
rior algebras. The creation operators assoiciated with ei

are denoted with pi and the annihilation operators asso-
ciated with ei are denoted with fi. We temporary use
p instead of f† since we reserve † for the adjoint with
respect to the Hermitian inner product. These satisfy
{pi, pj} = {fi, fj} = 0 and

{pi, fj} = δi
jI. (90)

Here {., .} denotes the usual anticommutator. Denote the
vector space of creation operators spanned by pi with W .
The dual vector space W ∗ is spanned by the annihilation
operators and the dual action is defined through

{p, f} = f(p)I, p ∈W, f ∈W ∗. (91)

Now consider the vector space W ⊕W ∗ spanned by cre-
ation and annihilation operators together. Since the an-
ticommutator of two such object is always proportional
to the identity, W ⊕ W ∗ is naturally endowed with an
inner product (., .) defined via

{X,Y } = 2(X,Y )I. (92)

If we pick coordinatesX = xip
i+ujfj and Y = yip

i+vjfj
we can write (X,Y ) = 1

2 (xiv
i + uiyi). Notice that the

relation (92) is the defining relation of the Clifford al-
gebra of an inner product space. Hence the creation
and annihilation operators generate the Clifford alge-
bra Cliff(W ⊕ W ∗). Note that the general result[17]
Cliff(W ⊕W ∗) ∼= End(∧•W ) ∼= End(F) implies that
every endomorphism of the Fock space can be obtained
as an element of the Clifford algebra generateted by cre-
ation and annihilation operators.

The orthogonal group of the inner product (., .) is
SO(W ⊕W ∗):

(O(X),O(Y )) = (X,Y ), ∀O ∈ SO(W ⊕W ∗). (93)

By construction the action of this group leaves the anti-
commutator invariant: these are the Bogoliubov transfor-
mations of the space W⊕W ∗ of creation and annihilation
operators. In order to classify states in F we would like
to obtain an action of this group on F . A natural way
to do this is to define the operator O acting on F via the
relation

OXO−1 = O(X), X ∈W ⊕W ∗, O ∈ SO(W ⊕W ∗).
(94)

However this definition is not unique: O and −O both
satisfy this for the same O. On the other hand if we allow
both we end up with the double cover Spin(W ⊕W ∗) of
SO(W ⊕W ∗) acting on the fermionic Fock space F . To
get a feeling of this action it is instructive to work out the
infinitesimal version, where the correspondence between
Spin(W⊕W ∗) and SO(W⊕W ∗) is one to one since they
share the Lie algebra so(W ⊕W ∗). It is easy to see that
the infinitesimal version of (94) is

[T,X] = T (X), (95)

where T satisfies (T X,Y ) + (X, T Y ) = 0. This latter
condition can be parametrized as

T

(
pi

fj

)
=

(
Aik βil

Bjk −Alj

)(
pk

fl

)
,

Bij = −Bji, βij = −βji.

(96)

It is easy to see that the operator implementing (95) is

T =
1

2
Aij [p

j , fi]−
1

2
Bijp

ipj − 1

2
βijfifj . (97)

We parametrize elements from the identity component of
Spin(W⊕W ∗) as O = eT . The action on a state |ψ〉 ∈ F
is

|ψ〉 7→ eT |ψ〉. (98)

We define the extended SLOCC group to be Spin(W ⊕
W ∗) and the entanglement classes of F to be the orbits
of this group with respect to the above action on states.
It is a natural extension for the following main reasons.

• The particle number conserving subgroup is ob-
tained by setting Bij = βij = 0. This acts on
creation operators as OpiO−1 = gijp

j where the

matrix gij is the exponential of the otherwise un-

constrained matrix Aij and hence g ∈ GL(W ) ∼=
GL(H). The action on Slater determinants is

pi1 ...pim |0〉 7→ (det g)−1/2gi1k1p
k1 ...gimkmp

km |0〉, (99)

which is appart from the factor (det g)−1/2 is the
usual action of the fermionic SLOCC group.

• The states |ψ〉 ∈ F for which the annihilator sub-
space Eψ = {X ∈ W ⊕W ∗| X|ψ〉 = 0} is of max-
imal dimension are called pure spinors[17]. These
are considered to be the least entangled states in
this classification. Note that every X ∈ Eψ is
nilpotent since 0 = X2|ψ〉 = (X,X)|ψ〉. It also fol-
lows that Eψ contains isotropic vectors and hence
its maximal dimension is d. It follows that every
pure spinor |ψ〉 can be regarded as a vacuum state
with the operators spanning Eψ regarded as its
annihilation operators. Conversely, every possible
vacuum has a d dimensional annihilator subspace
spanned by its annihilation operators and hence is
a pure spinor. It can be shown that every pure
spinor can be obtained as a B-transform (a spin
transform with A = β = 0) of a Slater determi-
nant. Pure spinors always form a single orbit under
Spin(W ⊕W ∗).

• The action of Spin(W ⊕ W ∗) on F is reducible
with irreducible subspaces F = F+ ⊕ F− where
F+ is the even and F− is the odd particle subspace.
Hence this classification naturally prevents mixing
between fermionic and bosonic multiparticle states.
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When we restore the Hermitian inner product 〈.|.〉
we can restrict ourselves to Spin(W ⊕ W ∗) transfor-
mations which are unitary with respect to this inner
product. This defines the extended LOCC group. It
can be shown[15] that it is the compact real form of
Spin(W ⊕W ∗), which is Spin(2d).

C. The invariant bilinear product

There is a canonical Spin(W ⊕W ∗) invariant bilinear
product[17] on the Fock space F which is defined regard-
less of the existence of a Hermitian inner product. To
construct this, first we need the transpose t of a Clifford
algebra element. It is defined to be

(X1X2...Xk)t = Xk...X2X1, (100)

for elements which are products of vectors Xi ∈W ⊕W ∗
and extended linearly on Cliff(W ⊕W ∗). This naturaly
defines the transpose of elements of the Fock space. For
a Slater determinant we define

(pi1 ...pik |0〉)t = (pi1 ...pik)t|0〉 ≡ (−1)
k(k−1)

2 pi1 ...pik |0〉,
(101)

and extend this to F linearly. The invariant bilinear
product (φ, ψ) of states |φ〉, |ψ〉 ∈ F is defined as

(φ, ψ) = (|φ〉t ∧ |ψ〉)top, (102)

where the subscript top indicates the coefficient multi-
plying the state |top〉 = p1...pd|0〉, the top state with all
single particle states filled. Note that by an abuse of no-
tation we used (., .) for this product as well as the one
living on W ⊕W ∗ defined in e.q. (92). It should always
be clear from the context which one we are referring to.
Note that the symmetry of the pairing depends on the
dimension of the one particle Hilbert space:

(φ, ψ) = (−1)
d(d−1)

2 (ψ, φ). (103)

To see the invariance of this product it is useful to write
it in a different form. Define Ω = f1...fd. It is easy to see
that every state is annihilated by Ω except the subspace
of |top〉:

Ω|top〉 = (−1)
d(d−1)

2 |0〉. (104)

We can write (102) equivalently as

(φ, ψ)|0〉 = (−1)
d(d−1)

2 Ω|φ〉t ∧ |ψ〉 (105)

Now let Ψ ∈ Cliff(W ⊕W ∗) be an operator which cre-
ates |ψ〉 from the vacuum i.e. |ψ〉 = Ψ|0〉. Of course Ψ
is not uniquely determined but this is not a requirement
now. Chose a Φ the same way for |φ〉. Then we have

(φ, ψ)|0〉 = (−1)
d(d−1)

2 ΩΦtΨ|0〉. (106)

With this form one can easily see that for any A ∈
Cliff(W ⊕W ∗) one has

(φ,Aψ) = (Atφ, ψ), (107)

hence the name transpose is justified. Now for the gen-
erators of the spin group defined in e.q. (97) we have
T t = −T . This implies

(φ, Tψ) + (Tφ, ψ) = 0, (108)

which proves the invariance. With the use of this in-
variant bilinear product one can associate covariants to
a state transforming as tensors under SO(W ⊕W ∗). For
example the quantities (ψ, piψ), (ψ, fjψ) together trans-
form as a vector. The covariants can be used to find
the orbit structure of the Fock space and to construct
continous invariants which then serve as entanglement
measures (see [15] for details).

D. The “spin-flipped” dual state

Introduce a Hermitian inner product 〈.|.〉 on H and ex-
tend it to F in the usual way. This introduces a complex
structure on the space W ⊕W ∗ of creation and annihila-
tion operators: for an orthonormal basis 〈ei|ej〉 = δij one
has pi = (fi)

†: the creation operators are the adjoints of
the annihilation operators. In a more formal way for ev-
ery state vie

i ∈ H one can associate a creation operator
pv = vip

i and for every dual state uiei ∈ H∗ one can
associate an annihilation operator fu = uifi. The inner
product introduces an antilinear map A : H → H∗ de-
fined as A(v)(w) = 〈v|w〉. Then the adjoint defined from
this inner product satisfies (fA(v))

† = pv.
The fermionic generalization of the “spin-flipped” state

is just a dual state relating the Hermitian inner product
with the invariant bilinear pairing of e.q. (102). We
define the antilinear automorphism χ : F → F of the
Fock space as

〈χφ|ψ〉 = (φ, ψ), ∀φ, ψ ∈ F . (109)

The “spin-flipped” dual of |φ〉 is then |χφ〉. Using the
form (106) with the assumption that we chose a normal-
ized vacuum we can write this as

〈0|(χΦ)†Ψ|0〉 = (−1)
d(d−1)

2 〈0|ΩΦtΨ|0〉, (110)

from where we can read off the action of χ on an arbitary
state:

|χφ〉 = (−1)
d(d−1)

2 (ΩΦt)†|0〉. (111)

Now it is easy to see that Ω† = f†d ...f
†
1 =

(−1)
d(d−1)

2 f†1 ...f
†
d and hence (−1)

d(d−1)
2 Ω†|0〉 = |top〉.

One is left with

|χφ〉 = (Φt)†|top〉. (112)
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The adjoint conjugates every amplitude in Φ and changes
creation operators to annihilation ones with reversing
the order. The transpose restores the original order

i.e. for Φ = φ(0) + φ
(1)
i f i

†
+ 1

2φ
(2)
ij f

i†f j
†

+ ... one has

(Φt)† = φ̄(0) + (φ̄(1))ifi + 1
2 (φ̄(2))ijfifj + .... This shows

that |χφ〉 is nothing but an interesting particle-hole dual
of |φ〉 with an additional complex conjugation: the com-
plex conjugate state is annihilated out of the fully filled
state. This picture is reassured if one calculates the ac-
tion on Slater determinant states:

χ(f i1
†
...f ik

†|0〉) = (−1)
k(k−1)

2
1

(d− k)!
εi1...ikjk+1...jdf

jk+1
†
...f jd

†|0〉. (113)

From e.q. (111) it is easy to see that χ2 = (−1)
d(d−1)

2 . A
mathematicaly interesting consequence is that either χ or
iχ is an antilinear involution and hence a complex struc-
ture. Since χ is uniquely defined by the Hermitian inner
product it follows that fixing a Hermitian inner product
on H is equivalent with fixing a complex structure on F .

Since unitary invariants are calculated from the Her-
mitian inner product, while SLOCC invariants are cal-
culated from the invariant bilinear pairing one sees that
the role of the “spin-flip” dual is to allow one the cal-
culation of SLOCC invariants from the Hermitian inner
product. It is trivial that the dual state |P̃ 〉 of three
fermions with six single particle states defined in (34) is
just the image of |P 〉 under χ. The reduced density ma-

trix of |P̃ 〉 gave rise to the “spin-flipped” density matrices
of three qubits under the embedding (21). The elements
of the one particle reduced density matrix are given by

ρij = 〈P |f i†fjP 〉 and one can check that the elements of

the matrix K defined in (5) are just Ki
j = (P, f i

†
fjP ).

The relation (41) suggesting the particle-hole picture
for the “spin-flipped” RDM can now be proved generaly.

Using that χ−1 = (−1)
d(d−1)

2 χ and e.q. (103) it is easy
to see that χ is antiunitary: 〈χφ|χψ〉 = 〈ψ|φ〉. Using this
and (112) the following result is straightforward

〈χψ|Aχψ〉 = 〈ψ|Atψ〉. (114)

Since (f i
†
fj)

t = fjf
i† = δij − f i

†
fj we indeed have

ρ̃ij = 〈χψ|f i†fjχψ〉 = δij − 〈ψ|f i
†
fjψ〉 = δij − ρij ,

(115)
for normalized states.

To conclude this section we derive the general relations
between reduced density matrix elements and SLOCC
covariants. The relation of e.q. (44) is a special case
of these relations. To derive these relations first note
that there are two type of projections defined from the
two inner products. The first is the usual one defining
density matrices from pure states:

Pψ : F → F ,
|φ〉 7→ 〈ψ|φ〉|ψ〉.

(116)

We usually write Pψ = |ψ〉〈ψ|. The other one is defined

from the invariant bilinear product:

P ′ψ : F → F ,
|φ〉 7→ (ψ, φ)|ψ〉.

(117)

From the definition (109) one sees that this can be writ-
ten as P ′ψ = |ψ〉〈χψ|. On the other hand from (106)

we have P ′ψ = (−1)
d(d−1)

2 ΨΩΨt. We would now like an
expansion of Pψ and P ′ψ in terms of density matrix el-
ements and SLOCC covariants respectively. To obtain
this we employ that since Cliff(W ⊕ W ∗) ∼= End(F)
the trace of an arbitary Clifford algebra element is well-

defined. Let {|ϑi〉}2
d

i=1 be a basis of F and |ϑ∗i〉 be the
dual basis with respect to the product 〈.|.〉 while |ϑ∗∗i〉
be the dual basis with respect to the product (., .). Ob-
viously |ϑ∗i〉 = |χϑ∗∗i〉. We have

trA =
∑
i

〈ϑ∗i|Aϑi〉 =
∑
i

(ϑ∗∗i, Aϑi),

A ∈ Cliff(W ⊕W ∗).
(118)

It is obvious that

Tr(APψ) = 〈ψ|Aψ〉, (119)

and

Tr(AP ′ψ) = (ψ,Aψ). (120)

Now choose a basis {θi}2
2d

i=1 of Cliff(W⊕W ∗) and denote
its trace-dual with θi i.e. trθiθj = δij . A self-dual basis
for example can be obtained from a gamma matrix basis
of W ⊕W ∗ as { 1

k!γ[i1 ...γik]|{i1, ..., ik} ⊆ {1, ...2d}, 0 ≤
k ≤ 2d}. A gamma matrix basis of W ⊕W ∗ is a basis
which is orthonormal with respect to the inner product
(92) of W ⊕W ∗, i.e. {γi, γj} = 2δij . Using such a basis
and e.q. (119) and (120) with A = θi it is straightforward
to get the expansions

Pψ = |ψ〉〈ψ| =
∑
i

〈ψ|θiψ〉θi,

P ′ψ = |ψ〉〈χψ| =
∑
i

(ψ, θiψ)θi.
(121)

Using these we can easily derive our final results

(ψ,Aψ)(ψ,Bψ) = 〈Bψ|χψ〉〈χψ|Aψ〉

=
∑
i

〈ψ|B†θiAψ〉〈χψ|θiχψ〉, (122)
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and

〈ψ|Aψ〉〈χψ|Bχψ〉 =
∑
i

(ψ, θiψ)(ψ, (AθiB)†ψ), (123)

valid for all A,B ∈ Cliff(W ⊕W ∗). Physically speak-
ing the first relation expresses that a SLOCC covariant
multiplied by its conjugate can be expanded with the use
of reduced density matrix elements of the state and its
“spin-flipped” dual, while the second relation is basically
the inverse of the first. Mathematically speaking these
equations relate spinor bilinears between the spinor |ψ〉
and its dual |χψ〉 with the bilinears of these spinors with
themselves. These kinds of relations between two spinors
are called Fierz identities[31, 32] in the theory of spinors.

IV. SUMMARY

In the first half of this paper we have derived an in-
equality for the absolute value of the quartic invariant
of three fermions with six single particle states which re-
duces to the inequality of Coffman, Kundu and Wootters
when three qubit-like states are considered. Motivated by
this we have defined a concurrence for pure three fermion
states as Con(P ) = (3 − Trρ2) − 6|D(P )| ≥ 0. We have
shown that the vanishing of this quantity is only possi-
ble in the GHZ and the separable classes and that it im-
plies that the two particle RDM is a mixture of separable
states. We gave bounds on the entanglement entropy in
terms of the entropy 3−Trρ2 ≥ 0 and showed that they
are almost interchangeable. Hence we argued that the
equation

3− Trρ2 = 6|D(P )|+ Con(P ) ≤ 3

2
(124)

expresses that the amount of entanglement of a fermion
with the rest of the system is the sum of the amount of
its bipartite and tripartite entanglement.

In the second half of the paper we have related SLOCC
covariants with reduced density matrix elements (or local
unitary covariants) for general fermionic systems. The

bridge between these quantities is a conjugate particle-
hole dual state. This dual state is the fermionic gener-
alization of the ”spin-flipped” dual for qubits and hence
may give a nice, more fundamental physical interpreta-
tion for the latter. When one regards fermionic states
as spinors the relations between SLOCC covariants and
reduced density matrix elements are Fierz identities be-
tween the state and its dual. Since in the first half of the
paper we have seen that the CKW inequality originates
from such a relation we suspect that every monogamy-
like inequality can be tracked back to have roots in a
Fierz identity. Perhaps these findings give another good
argument for studying entanglement between fermions:
the well-known tools used to study entanglement find a
unified origin in the beautiful mathematical theory of
spinors.

There are still many open questions and possible work
to be done in understanding multipartite fermionic en-
tanglement. The SLOCC covariants classifying three
fermions with seven, eight and nine single particle
states[16] and four fermions with eight single particle
states[21] are well known. These play the role of the
matrix K and one can derive similiar inequalities as the
one in this paper. However, finding physical interpreta-
tion of the resulting quantities probably requires a more
involved analysis. The system of three fermions with nine
single particle states and four fermions with eight single
particle states are particulary interesting since they con-
tain the distinguishable system of three qutrits and four
qubits respectively. Inequalities for these systems would
provide inequalities for the corresponding distinguishable
systems too. There is also much work to be done regard-
ing the spinor formalism of fermionic entanglement. For
example the particle-hole dual state can be generalized
to mixed states: a mixed state ρ ∈ Cliff(W ⊕W ∗) has
a canonical dual defined with the transpose of e.q. (100)
as ρ̃ = ρt. It is not difficult to see that while neither ρ
nor ρ̃ transforms covariantly under general SLOCC trans-
formations (just under LOCC) the quantity ρρ̃ does so.
This opens the possibility of generating SLOCC covari-
ants and invariants for mixed states and might allow one
to go beyond the usual convex roof method when classi-
fying mixed state entanglement.
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[16] G. Sárosi and P. Lévay, Phys. Rev. A 89 042310 (2014).
[17] C. Chevalley, The algebraic Theory of Spinors, Columbia

University Press, 1954.
[18] A. Cayley, Camb. Math. 4, pp. 193-209, (1845).
[19] R. Penrose and W. Rindler, Spinors and Space-Time Vol

1., Cambridge Monographs on Mathematical Physics,
Cambridge University Press 1984.

[20] A. Kasman, T. Shiota, K. Pedings and A. Reiszl, The
Proceedings of the American Mathematical Society 136
77-87 (2008).

[21] L. Chen, D. Z. Djokovic, M. Grassl, and B Zeng, Phys.
Rev. A88 052309 (2013).

[22] L. Chen, D. Z. Djokovic, M. Grassl and B. Zeng, J. Math.
Phys. 55 082203 (2014).

[23] J. Kempe, Phys. Rev. A 60 910 (1999).
[24] S. Hill and W. K. Wootters, Phys. Rev. Lett. 78 5022

(1997).
[25] W. K. Wootters, Phys. Rev. Lett. 80 2245 (1998).
[26] P. Vrana and P. Levay, J. Phys. A: Math. Theor. 42,

285303 (2009).
[27] J.I. Igusa, American Journal of Mathematics Vol. 92, No.

4 (1970), pp. 997-1028.
[28] G. Vidal, J. I. Latorre, E. Rico, A. Kitaev, Phys. Rev.

Lett. 90 227902 (2003).
[29] W. K. Wootters, Quant. Inf. Comp. Vol. 1, No. 1 27-44

(2001).
[30] J. Schliemann, J. I. Cirac, M. KuS, M. Lewenstein and

D. Loss, Phys. Rev. A 64 022303 (2001).
[31] M. Fierz, Z. Physik 104 553 (1937).
[32] A. Miemiec, I. Schnakenburg, Fortsch. Phys. 54 5-72

(2006).


	Coffman-Kundu-Wootters inequality for fermions
	Abstract
	 Contents
	I Introduction
	II Three fermions with six single particle states
	A The CKW inequality
	B Embedded three qubit states
	C The ``spin-flipped'' density matrix
	D Vanishing concurrence
	E Biseparable class
	F Entanglement entropy of arbitrary states
	G The two particle reduced density matrix

	III General considerations
	A Fermions and qudits
	B The extended SLOCC group
	C The invariant bilinear product
	D The ``spin-flipped'' dual state

	IV Summary
	 References


