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CURVATURE-DIMENSION INEQUALITIES ON
SUB-RIEMANNIAN MANIFOLDS OBTAINED FROM
RIEMANNIAN FOLIATIONS, PART II

ERLEND GRONG
ANTON THALMAIER

ABSTRACT. Using the curvature-dimension inequality proved in Part I, we look
at consequences of this inequality in terms of the interaction between the sub-
Riemannian geometry and the heat semigroup P; corresponding to the sub-
Laplacian. We give bounds for the gradient, entropy, a Poincaré inequality
and a Li-Yau type inequality. These results require that the gradient of P:f
remains uniformly bounded whenever the gradient of f is bounded and we give
several sufficient conditions for this to hold.

1. INTRODUCTION

One of the most important relations connecting the geometric properties of a
Riemannian manifold (M, g) with the properties of its Laplace operator A is the
curvature-dimension inequality given by

1 1
5 Allgrad f]2 — {grad fgrad Af)g > —(Af)? + pll grad £

In the above formula, n = dim M, p is a lower bound for the Ricci curvature
of M and f is any smooth function. In the notation of Bakry and Emery [5], this
inequality is written as

No() > (LI 4pl(), L=A,
where
(1) T(f9) = 3 (L(fg) ~ FLg—gLf). ) =15 5).
(12)  To(fog) = 5 (LT(f,9) = T(,Lo) ~T(LFg)),  Talf) = Talf. f).

For a good overview of results that follow from this inequality, see [20] and references
therein.

This approach has been generalized by F. Baudoin and N. Garofalo in [§] to
sub-Riemannian manifolds with transverse symmetries. A sub-Riemannian mani-
fold is a connected manifold M with a positive definite metric tensor h defined only
on a subbundle H of the tangent bundle T'M. As is typical, we will assume that
sections of ‘H and their iterated Lie brackets span the entire tangent bundle. This
is a sufficient condition for the sub-Riemannian structure (H,h) to give us a metric
d.. on M, where the distance between two points with respect to d.. is defined
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by taking the infimum of the lengths of all curves tangent to H that connect the
mentioned points. For the definition of sub-Riemannian manifolds with transverse
symmetries, see [8, Section 2.3] or Part I, Section 4.3. We extended this formalism
in Part I to sub-Riemannian manifold with an integrable metric-preserving com-
plement, consisting of all sub-Riemannian manifolds that can be obtained from
Riemannian foliations.

Given such a metric-preserving complement V to H, there exist a canonical
corresponding choice of second order operator A} which locally satisfies

n
h= Z A? 4+ lower order terms.
i=1
with Ay,..., A, being a local orthonormal basis of H. We proved in Part I that un-
der mild conditions, there exist constants n, p1, p2,0 and ps 1 such that the operator
satisfies a generalized version of the curvature-dimension inequality

M) + 47 (1) 2 (L) + (o~ €T + (0 + oo )T (),

for any f € C°°(M) and £ > 0. Here, ['(f) and '3(f) is defined as in (1)) and (T2)
with L = A}, while IV (f) = v*(df, df) for some v* € T'(Sym® TM) and Ty (f)
is defined analogously to '2(f). We also gave a geometrical interpretation of these
constants. A short summary of the results of Part I is given in Section

In this paper, we want to explore how this inequality can be used to obtain
results for the heat semigroup of A} . In Section Bl we will address the question of
whether a smooth bounded function with bounded gradient under the action of the
heat semigroup will continue to have a uniformly bounded gradient. This will be
an important condition for the results to follow. For a complete Riemannian man-
ifold, a sufficient condition for this to hold is that the Ricci curvature is bounded
from below, see e.g. [22] and [I9] Eq 1.4]. We are not able to give such a sim-
ple formulation for the sub-Laplacian, however, we are able to prove that it holds
in many cases, including fiber bundles with compact fibers and totally geodesic
fibers. This was only previously only known to hold for sub-Riemannian manifolds
with transverse symmetries of Yang-Mills type [8, Theorem 4.3], along with some
isolated examples in [21l Section 4] and [1I0, Appendix]. We give several results
using the curvature-dimension inequality of Part I that only rely on the bounded-
ness of the gradient under the heat flow. Our results generalize theorems found in
[8, 16, [7]. In particular, if A} is a sub-Laplacian on (M, #,h) satisfying our gener-
alized curvature-dimension inequality, then under certain conditions (analogous to
positive Ricci curvature in Riemannian geometry) we have the following version of
the Poincaré inequality

1
Ilf = farllzavor) < Ta ldf [ L2 (n=).-

Here, « is a positive constant, h* is the co-metric of (H,h), fas is the mean value
of a compactly supported function f and for any n € T'(T*M) we use

71l 2 () ::/ h*(n,n) dvol.
M

In Section ] we look at results which require the additional assumption that
Y (f,T(f)) = T(f,TV"(f)). This is important for inequalities involving logarithms.
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We give a description of what this condition means geometrically and discuss re-
sults that follow from it, such as a Li-Yau type inequality and parabolic Harnack
inequality.

In Section Bl we give some concrete examples, mostly focused on case of sub-
Riemannian structures appearing from totally geodesic foliations with a complete
metric. Here, all previously mentioned assumptions are satisfied. In this case,
we also give a comment on how the invariants in our sub-Riemannian curvature-
dimension inequality compare to the Riemannian curvature of an extended metric.

In parallel with the development of our paper, part of the results of Theorem [3.4]
and Lemma (] was given in [9] for the case of sub-Riemannian obtained from
Riemannian foliations with totally geodesic leaves that are of Yang-Mills type.

1.1. Notations and conventions. Unless otherwise stated, all manifolds are con-
nected. If &€ — M is any vector bundle over a manifold M, its space of smooth
sections is written I'(£). If s € T'(€), we generally prefer to write s|, rather than
s(x) for its value in € M. By a metric tensor s on &, we mean smooth section
of Sym? &* which is positive definite or at least positive semi-definite. For every
such metric tensor, we write ||el|ls = y/s(e, e) for any e € &€ even if s is only posi-
tive semi-definite. All metric tensors are denoted by bold, lower case Latin letters
(e.g. h,g,...). We will only use the term Riemannian metric for a positive definite
metric tensor on the tangent bundle. If g is a Riemannian metric, we will use g*,
AFg* .. for the metric tensors induced on T*M, /\k T*M,....

If « is a form on a manifold M, its contraction or interior product by a vector
field A will be denoted by either taa or a(A4,.). We use L4 for the Lie derivative
with respect to A. If M is furnished with a Riemannian metric g, any bilinear
tensor s : TM ® TM — R can be identified with an endomorphism of T'M using g.
We use the notation tr s(x, x) for the trace of this corresponding endomorphism,
with the metric being implicit. If H is a subbundle of T M, we will also use the
notation try s(x, x) := trs(pry X, pry X ), where pry, is the orthogonal projection
to H.

2. SUMMARY OF PART I

In this section, we briefly recall the most important definitions and results from
Part I.

2.1. Sub-Riemannian manifolds. A sub-Riemannian manifold is a triple (M, H, h)
where M is a connected manifold and h is a positive definite metric tensor defined
only on the subbundle H of TM. Equivalently, it can be considered as a manifold
with a positive semi-definite co-metric h* that is degenerate along a subbundle of
T*M. This latter mentioned subbundle will be Ann(#), the annihilator of H, that
consist of all covectors vanishing on . Define f*": p — h* (p,.) EHCTM. We
will assume that the subbundle # is bracket-generating, i.e. its sections and their
iterated brackets span the entire tangent bundle. Then we have a well defined met-
ric de. on M by taking the infimum over the length of curves that are tangent to

H.

2.2. Two notions of sub-Laplacian. Let vol be any smooth volume form on
M. We then define the sub-Laplacian relative to the volume form vol as A f =
div 4P df, where the divergence is defined relative to vol. From the definition,
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it is clear that Ap is symmetric relative the measure vol, i.e. | 1 JAngdvol =
Jos 9ARf dvol for any f,g € C°(M) of compact support.

We also introduced the concept of a sub-Laplacian defined relative to a comple-
ment V of H. Let g be any Riemannian metric satisfying g|y = h and let V be
the orthogonal complement of 7. Consider the following connection,

(2.1) %AZ:er Vopr,, APty Z + pry Vi, apry, Z
+ pry[pry A, pry, Z] + pry[pry, 4, pry Z],
where V is the Levi-Civita connection of g. We define the sub-Laplacian of V as
11 = tI"H Vi X f
It is simple to verify that this definition is independent of g |y, it only depends on
h and the splitting TM =H & V.

Remark 2.1. If V is the vertical bundle of a submersion 7 : M — B into a Riemann-
ian manifold (B, g) and if h is a sub-Riemannian metric defined by pulling back g
to an Ehresmann connection # on 7, then the sub-Laplacian A} of V satisfies

A(fom)=(Af)yom,
where A is the Laplacian of g and f € C*(B).

2.3. Metric-preserving complement. A subbundle V is integrable if [I'(V),T'(V)] C

I'(V). By the Frobenius Theorem, such a subbundle gives us a foliation on M. We
say that an integrable complement V of H is metric-preserving if

Lypry;h=0, forany VeI(V),

where pry, is the projection corresponding to the choice of complement V. Let g
be any Riemannian metric such that g|y = h and H+ = V. If we define V as in
@), then V is metric preserving if and only if Vh* = 0. The foliation of V is then
called a Riemannian foliation.

2.4. Generalized curvature-dimension inequality. For a given smooth sec-
ond order differential operator L without constant term and for any section s* of
Sym? T'M, define

r"(f,9) =s"(df. dg), (£ 1) =T(f)
15 (f9) =5 (LM (F9) ~TLE9) =T (£.Lg) . T5 (L) =T5(f).

Assume that

N~

S (L(7g) ~ fLg — gLf) = b (df, dg).

for some positive semi-definite section h* of Sym? T'M. We say that L satisfies the
generalized curvature-dimension inequality (CD¥) if there is another positive semi-
definite section v* of Sym? T'M, a positive number 0 < n < oo and real numbers
P15 p2,0 and pe 1 such that for any ¢ > 0 and f € C*°(M),

(@) () 2 LA+ (o1 — I () + (20 + o) ().

Let (M, H,h) be a sub-Riemannian manifold with H being a bracket-generating
subbundle of T'M. Assume that we have an integrable metric-preserving comple-
ment V and let g be a Riemannian metric such that H and V are orthogonal, with
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h =g|y and v :=g|y. Let h* and v* be their respective co-metrics. Relative to
these structures, we make the following assumptions.

(i) We define the curvature of A relative to the complement V as the vector
valued 2-form

R(Aa Z) :prV[pr’H Aapr’H Z]v A7Z € F(TM)
We assume that there is a finite, minimal positive constant .#5 < oo such

that |R(v,.)|

zero when V # 0, we can normalize v by requiring .#5; = 1. Let my be the

g g < Myl pryvllg for any v € TM. Since .45 is never

maximal constant satisfying ||[(R(.,.))||rzns > my||a||v+ pointwise for any

a € I'(T*M). Note that mg can only be non-zero if H is bracket-generating
of step 2, i.e. if H and its first order brackets span the entire tangent bundle.

(ii) Define Ricy(Z1, Z2) = tr (A — RV (pry A, Z1)Z2). This is a symmetric 2-
tensor, which vanishes for vectors in V. We assume that there is a lower
bound p,, for Ric,,, i.e. for every v € T'M, we have

Ricy, (v, 0) > pygll pryg o3
(iii) Write Ag,. = supy, ||Vv*(, Dl and assume that it is finite.
Define

g* ® Sym? g*

(ALV*)(Q, a) = trﬂ(ﬁi,x"*)(av a)

and assume that (Ayv*)(a, @) > pary-
(iv) Finally, introduce Ricyy as

al|?. pointwise for any o € T'(T*M).

Ricwn(4,7) = 3 tr (84, (V. R)(x, 2)) + 87, (V. R)(x, 4)) .

Assume then that Ricyy(Z, Z) > =244y || pry Z||v| pry Z||n pointwise.
These assumptions guarantee that the sub-Laplacian A} of V satisfies (CD¥).

Theorem 2.2. Define [ with respect to L = A}. Then A}, satisfies (CD¥) with

n = rank H,
P1L = Py — C_l7
2.2 1
(22) p2,0 = Em% — c( Moy + M),
1
P21 = §PA;nv* - ///év*,

for any positive ¢ > 0.

See Part I, Section 3.2 for a geometric interpretation of these constants.

2.5. The case when V preserves the metric. Assume that we can find a metric
tensor v on V satisfying Vv* = 0. Then A}, = Ap, where Ay, is defined relative
to the volume form of the Riemannian metric g defined by g* = h* + v*. Hence,
L = Ay, is symmetric with respect to this volume form and satisfies the inequality

(cD) P (1) 2 (LA (o1~ )T+ o™ ()
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with

P1L =Py — C_l7

(2.3) 1
po = Sl — My,
for any positive ¢ > 0. We shall also need the following result.

Proposition 2.3. For any f € C*>°(M), and any ¢ > 0 and £ > 0,
() < T () (T () = (o1 — €O () — ol ().
) < TR,

where 01 = py — c ! and g2 = —c,///fw.

2.6. Spectral Gap. Let (M, #,h) be a compact sub-Riemannian manifold where
‘H is bracket-generating. Let L be a smooth second order operator without constant
term satisfying q; = h* and assume also that L is symmetric with respect to some
volume form vol on M. Assume that L satisfies (CD¥) with p2 o > 0. Let A be any
nonzero eigenvalue of L. Then

np2.0 ( )

0 (L, ) o k= max{0, —pa . ).
n+pao(n—1) P P2,0>_ ? {0,=p2a}

3. RESULTS UNDER CONDITIONS OF A UNIFORMLY BOUNDED GRADIENT

3.1. Diffusions of second order operators. Let T?M denote the bundle of
second order tangent vectors. Let L be a section of T2M, i.e. a smooth second
order differential operator on L without constant term. Consider the short exact
sequence

inc

0—TM =5 T*M % Sym*TM — 0
where q, = q(L) is defined by

(3.1) ar(df,dg) = 5 (L(fg) — fLg—gLf), f,g€ C™(M).

Assume that qp is positive semi-definite. Then for any point x € M and relative
to some filtered probability space (Q,.%,P), we have a %L—diffusion X = X(x)
defined up to some explosion time 7 = 7(z), see [I12, Theorems 1.3.4 and 1.3.6]. In

N =

other words, there exist an .%-adapted M-valued semimartingale X (z) satisfying
Xo(z) = = and such that for any f € C°(M),

A (X)) = FLACX) de

is the differential of a local martingale up to 7(z). The diffusion X (z) is defined
on the stochastic interval [0, 7(x)), with 7(x) being an explosion time in the sense
that the event {7(x) < oo} is almost surely contained in {limy, X;(z) = co}. For
a construction of X;(z) in the case of L = A}, see Part I, Section 2.5.

Let P, be the corresponding semigroup P, f(z) = E[l,<, f(X(z))] for bounded
measurable functions f. Note that in general P1 < 1 with equality if and only if
T(x) = 0o a.s. Also note that for any compactly supported f € C°(M), we have
O P f = %LPtf. If 7 = o a.s., then uy = P, f is the unique solution to dyu; = %Lut
with initial condition ug = f, where (¢, z) — u.(z) is a smooth function on R4 x M.
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Since qy, is positive semi-definite, we can write L (non-uniquely) as

k
L=> 7} +Z,
i=1
where k is an integer and Zy, Z1,. .., Zy are vector fields, not necessarily linearly
independent at every point. If we assume that these vector fields and their brackets
span the entire tangent bundle, then L is a hypoelliptic operator [I1]. Hence, it
has a smooth heat kernel with respect to any volume form on M. By [I8], we also
have P,f > 0 for any nonnegative function f € C°°(M), not identically zero, see
also [13] Introduction]. We will only consider such second order operators in this
paper.
Write h* = qz. Assume that L satisfies (CD¥) for some v*. We want to use this
inequality to obtain statements of P;. However, we are going to need the following
condition to hold to make such statements.

3.2. Boundedness of the gradient under the action of the heat semigroup.
The most important property which we are going to need for all of our results, is the
following condition. Let C5° (M) be the collection of all bounded smooth functions.

(A) We have P;1 = 1 and for any f € Cg°(M) with " V' (f) € C°(M)
and any T > 0, it holds that sup,cjo 7 [V (PLf)|| Lo < o0.

To understand condition (A]) better, let us first discuss the special case when h = g
is a Riemannian metric, v¥* = 0 and L = A is the Laplacian of g. Then (CD¥)
holds if and only if the Ricci curvature is bounded from below, see e.g. [20]. If
we in addition know that g is complete, then (A is satisfied. However, even if we
know that P;1 =1 and that the manifold is flat, condition (A still may not hold if
g is an incomplete metric. See [19] for a counter-example.

We list some cases where we are ensured that (A is satisfied. We expect there
to be more cases where this condition holds.

3.2.1. Fiber bundles with compact fibers. Let L be a second order operator on a
manifold M with q; = h*. Let v* be any other co-metric such that h* + v* is
positive definite. The following observation was given in [2I, Lemma 2.1, Proof (i)].

Lemma 3.1. Assume that there exists a function F' € C*°(M) and a constant
C > 0 satisfying

o {x: F(z) < s} is compact for any s > 0,

o LF<CF,

o M+ (F) < CF2.

Then (B) holds for the semigroup Py of the diffusion of L.

Let (B,g) be a complete n-dimensional Riemannian manifold with distance dg
and Ricci bound from below by p < 0. For a given point by € B, define r = dg(bo, »)-
Then the function F' = +/1 + r2 (or rather an appropriately smooth approximation)

satisfies the above conditions relative to A. This follows from the fact that (outside
the cut-locus) M'8(r) = 1 and from the Laplacian comparison theorem

Ar<(n—1) (%—I—\/—_p).
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Now let @ : M — B be a fiber bundle with a compact fiber over this Rie-
mannian manifold B. Choosing an Ehresmann connection H on 7, we define a
sub-Riemannian manifold (M,H,h) by h = n*g|y. Then F o7 clearly satisfies
Lemma B with respect to L = A} +Z where Ay, is the sub-Laplacian of V = ker ,
and Z is any vector field with values in V. It follows that (A) holds in this case.

Remark 3.2. Let m: M — B be a surjective submersion into a Riemannian mani-
folds (B, g). Let H be an Ehresmann connection on 7 and define a sub-Riemannian
structure (H,h) by h = 7*g|4. In this case, 7 is a distance-decreasing map from the
metric space (M, dc.) to (M,dg), where the metrics d.. and dg are defined relative
to (H,h) and g, respectively. This follows from the observation that for any hori-
zontal curve v in M from the point x to the point y, the curve 7oy will be a curve
of equal length in B connecting m(z) with 7(y), hence dc.(z,y) > dg(7(z), 7(y)).
In particular, if d.. is complete, so is dg, and the converse also hold if 7 is a fiber
bundle with compact fibers.

Furthermore, if Ay, is the sub-Laplacian of V = ker 7, satisfying (CD¥), then the
Ricci curvature of B is bounded from below, since, by Remark 2.1} if we insert a
function f o, f € C>(B) into (CD¥), we obtain the usual curvature-dimension
inequality on B,

. 1 .
M5(f) = ~(A)" + mE(f).
A result in [4) Prop 6.2] tells us that p; must be a lower Ricci bound for B.
We summarize all the above comments in the following proposition.

Proposition 3.3. Let (M, H,h) be a complete sub-Riemannian manifold with an
integrable metric preserving complement V. Let F be the foliation induced by V
and let A} be the sub-Laplacian of V. Assume that the leafs of F are compact
and that M/F gives us a well defined smooth manifold. Finally assume that L =
A} + Z satisfies (CD¥) with respect to some v* on V. Then (A) also hold for the
corresponding semigroup Py of L.

Notice that in this case, unlike what we will discuss next, there is no requirement
on the number of brackets needed of vector fields in H in order to span the entire
tangent bundle.

3.2.2. A sub-Laplacian on a totally geodesic Riemannian foliation. Assume that
(M, g) is a complete Riemannian manifold with a foliation F given by an integrable
subbundle V. Let H be the orthogonal complement of V and assume that H is
bracket-generating. Write h = g|3;. Define V relative to the splitting TM = HeV
as in (Z1)). Assume that V g = 0, which is equivalent to stating that V is a metric
preserving complement of (M, #,h) and that F is a totally geodesic foliation. Note
that since g is complete, so is (M, d..), where d.. is defined relative to the sub-
Riemannian metric h. For such sub-Riemannian manifolds, the we can deduce the
following.

Theorem 3.4. Let Ay be the sub-Laplacian of the volume form of g or equiva-
lently V. Assume that Ay satisfies the assumptions of Theorem with mg > 0.
Let k = max{—p,,, #3,} > 0. Then, for any compactly supported f € C°(M),
£>0andt >0,

VIVI(Pf) < PTV (),
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M (Pf)+ T (Pf) < 2P, ( )+ (f)> F 22 1),

where we interpret %(ekt/2 —1) ast when k =0. As a consequence (Bl) holds.
In particular, any %Ah-diﬁusion X (x) with Xo(x) =z € M has infinite lifetime.

We remind the reader that mg > 0 can only happen if T'M is spanned by H
and first order brackets of its sections. The proof is similar to the proof given for
the special case of sub-Riemannian manifolds with transverse symmetries of Yang-
Mills type given in [8, Section 3 & Theorem 4.3]. In our terminology, these are
sub-Riemannian manifolds with a trivial, integrable, metric-preserving complement
V satisfying .#%y = 0. The key factors that allow us to use a similar approach are
Proposition 23] and the relation [Ap, A]f = 0, where A is the Laplace operator of
g and f € C°°(M). The latter results follow from Lemma[AT] (c) in the Appendix.
Since the proof uses spectral theory and calculus on graded forms, it is left to
Appendix[A.3.2] Theorem B4 also holds in some cases when V is not an integrable
subbundle. See Appendix for details.

3.3. General formulation. Let L be an operator as in Section [3.I] with corre-
sponding §L-diffusion X (z) satisfying Xo(z) = = and semigroup P;. We will as-
sume that L satisfies (CD¥) with v* and the constants n, p1, p2o and pa1 being
implicit. Note that if L satisfies (CD¥) for some value of the previously mentioned
constants, then L also satisfies the same inequality for any larger n or smaller values
of p1,p2,0 or p21. For the remainder of the section, no result will depend on n,
however, we will need condition (A) to hold.
Our proofs rely on the fact that, for any smooth function

(t,z) = u(z) € C*(]0,00) x M,R),

we have a stochastic process Y; = u; o X; such that dY; equals ((0¢ + L)us) o Xy dt
modulo differentials of local martingales. Hence, if (0; + L)uy > 0 and if u.(s)
is bounded for every fixed t, then Y; is a (true) submartingale and E[Y;] is an
increasing function with respect to ¢.

In our presentation, we will usually state the result for a smooth, bounded func-
tion f € C°(M) with bounded gradient ™ V7 (f) € C9°(M). Our results gener-
alize theorems found in [8], [6} [7].

We will first construct a general type of inequality, from which many results can
be obtained. See [21, Theorem 1.1 (1)] for a similar result, with somewhat different
assumptions.

Lemma 3.5. Assume that L satisfies the conditions (CD¥) and (B). For any
T >0, let a,¢ € C([0,T],R) be two continuous functions which are smooth and
positive on (0,T). Assume that there exist a constant C, such that

(3.2)  a(t)+ <p1 - %) at) +C >0, 0(t)+ pao+ (pz,l + %) ot) >0,
holds for every t € (0,T). Then
a(0) [he+e0)v” (Prf) < a(T)PTrh*+Z(T)v* (f)+C (PTfZ _ (PTf)Q)

for any f € C2(M) with TR V" (f) € Cg°(M).
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Proof. Define uy by ui(z) = Pr—if(x) for any 0 <¢ < T, x € M. For any x € M,
consider the stochastic process

Yi(x) = a(t)MP OV (1) o X,y (2) + Cu? o Xy ().

Write < for equivalence modulo differentials of local martingales. Then, if ([B.2])
holds

4y, ' (a(t)rh*H(f)V* (ug) + a(t)(t)™ (uy) + O™ (ut)) o X,dt
+ a(t)r;l* VT (Ut) 9} Xtdt
> (a(t) + (p1 — £(t) Ha(t) + C) T (uy) o Xydt
. 1(t .
+ a(t) <€(t) + % + pao + pzylﬁ(t)> M (wg) o Xydt > 0.
Since Y; is bounded by (A, it is a true submartingale. Hence
E[Yr] = a(T)PrT* O (f) + CPrf?
> E[Yy] = a(0)T™ O (Pr f) + C(Pr ).
O O

3.4. Gradient bounds. We give here the first results that follow from Lemma 3.5
Proposition 3.6. Assume that L satisfies conditions (CD¥) and (A). Let f €
C2°(M) be any smooth bounded function satisfying T® V" (f) € C°(M).
(a) For any constant £ > 0, if a(f) = min {p1 — §,p21 + 222}, then
rh™+ev” (Ptf) < efa(l)tpt [h™+ev® (f)
(b) Assume that pao > 0 and let k1 = max{0, —p1} and ko = max{0, —pa1}. Then
. 2 k
i () < (1 L2y <k n —2> t) (P2 = (P)?).
£2,0 P2
(¢) Assume that p1 >0, p2.1 > 0 and p2o > 0. Then
1—e Pt . 2
< (10 2 (- ).
P1 £2,0

where we interpret (1 —e~P1%)/py as t when p; = 0.
(d) Assume that p1, p2,o and p2,1 are nonnegative. Then for any ¢ >0
4 . .
T (Pof? = (Pif)?) < tRTR 0V (),
0+t
Proof. For all of our results (a)—(c), we will use Lemma B3
(a) Let £(t) = £ be a constant, choose C' = 0 and put a(t) = e~ Then B2) is
satisfied and we obtain
I—h*+€v* (PTf) < e—a(@)TPTrh* +ov* (PTf)

(b) For any T' > 0, consider a(t) =T —t and £(t) = 7245 (T — t). Then

U(t) + pao + (/)2,1 + %) (t) >0,
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and Tho 49
. _ +
a(t) + (pr =60 Nalt) = ~1 —ky — ——=,
P2,0
so (B2) is satisfied if we define C =1+ kT + %:2. Using Lemma B.5] we
obtain

Tt TR T (P f) < O(Prf?) — C(Prf)?.
(c) Since the case p; = 0 is covered in (b), we can assume p; > 0. Define
1 — e—Pi(T—1)
a(t) = LR ——
4!
and let

ftT a(s)ds e P (T=) 14 p)(T —t)
U(t) = p2,0 = p2,0 — :
T P (e )

Note that limp €(t) = 0, while limyr a(t)/€(t) = 2/p2,0. The latter number
is also an upper bound for a(t)/¢(t) since

) (2a(t) 1" as)ds + a(t)Z)

iﬂ = >0
dt £(t) p270(ftT a(s)ds)?
from the fact that
T
2a(t) / a(s)ds + a(t)?
¢
1
== (—267P1(T*t) (efpl(TfT) —1+p(T - t)) +(1- efpl(Tft))2)
P1

= p—12 (—2p1(T - t)e_pl(T_t) +1 - e_2p1(T_t)) )

1

and that s — 1 — e72% — 2ze~2 is an increasing function, vanishing at s = 0.

We can then define C' =1+ p%o such that a(t), £(t) and C satisfies (3.2)).

(d) Define a(t) =t, £(t) = % and C = —HLT, then [B.2]) is satisfied. O
(]

We see here that the results of (a) and (d) cannot be stated independently of a
choice of co-metric v*. However, in the case of (a), this does help us to get global
statements that are independent of v*.

3.5. Bounds for the L?-norm of the gradient and the Poincaré inequality.
We want to use an approach similar to what is used in [6, Corollary 2.4] to obtain
a global inequality from the pointwise estimate in Proposition (a) which is
independent of v*.

Lemma 3.7. Let L € T(T?M) be a second order operator without constant term
and with qrp = h* positive semi-definite. Assume also that there exists a volume
form vol, such that

/ngdvol:/ gLfdvol, f,geCX(M),
M M

and that L is essentially self-adjoint on compactly supported functions C°(M).
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Let P, f be the semigroup defined as in Section Bl and let b : C° (M) x [0, 00) —
R be any function such that
(33) I (Pf)llr S B(F8), - for any f € CE(M), t>0.
Assume that B(f,t) = limp_,o0 b(f, T)V/T exist for every t > 0. Then

P () ler < BUDITY (NI for any f € C(M).

Proof. Denote the unique self-adjoint extension of L an operator on L?(M,vol) by
the same letter, and let Dom(L) be its domain. Then e*/2L f is the unique solution
in L2(M,vol) of equation dyu; = & Lu, with initial condition ug = f € C°(M).
Since P, f is in L?(M, vol) whenever f is in L?(M, vol), we have P, f = e'/?L f (see
Appendix [A3] for more details).

Notice that since q;, = h* is positive semi-definite, the self-adjoint operator L
is nonpositive. Let (.,.) denote the inner product on L?(M,vol). Consider the
spectral decomposition L = — [ AdE. Then since I ()2 = —(f, Lf), while

||rh* (Ptf)”Ll = _<f7 LP2tf>a
the Holder inequality tells us that for any 0 <t < T,

1T (Bf) 0 = / TP, 1)
0

< ( / YR FING f>) " < / T (B, f>>(

< b(f,T)YTPR () T,

Let T' — oo for the result. O O

T—t)/T

We combine this result with the curvature-dimension inequality.

Proposition 3.8. Let L be any second order operator such that the Carnot-Cara-
théodory metric d.. defined by the sub-Riemannian co-metric h* := qr, is complete.
Assume that L satisfies (CD¥) and that (A) holds. Assume also that L is symmetric
with respect to any volume form vol, i.e. fM fLgdvol = fM gL f dvol for any f,g €
(a) For any f € C*(M),

I (Pef) e < e I ()l
where k = min{p1, p2,1}.
(b) Assume that p1 > pa1 and pao > —1. Then for any f € C°(M),

* —a * s + s
P (Pf)p < e M ()|, o= 2021
p2,0+1

Furthermore, if & > 0 and h* + v* is a complete Riemannian co-metric, then
vol(M) < oo.

(c) Assume that the conditions in (b) hold with a > 0 and vol(M) < co. Then for
any f € C=(M),

I£ = fulfe < 5 [ P () dvol,

where far = VOI(M)71 fM fdvol. As a consequence, if A is any non-zero eigen-
value of the Friedrichs extension of L, then a < —\.
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Proof. (a) By Proposition Bl (a), we have

()

PP (Pf) s < e @O P (F)]| o

with a(f) = min{py — 1/¢, p2.1 + p2,0/¢} holds for any f € C°(M). It follows
that |[I? (P f)||p < e~ O (f)|| 11 from Lemma 37 For every ¢, we then
take the infimum over ¢ to get

ir}f e < ek with k= min{p1, p2.1}-
With «(¢) defined as in the proof of (a), note that if p1 > po1 and if po > —1,
then
inf et — gyp (_P2OPLEP21,) ot
¢ p2,0+1
which gives us the first part of the result.
For the second part, we assume that p; > ps 1, since if a > 0 with p; = pa2 1,

then we can always decrease p2 1 while keeping o positive. For two compactly
supported functions f, g € C°(M), note that

/M(Ptf — f)gdvol = /M /Ot (%Pj) g dsdvol

1 1/ .
= —/ / (AnPsf)gdvolds = —/ / (P, f, g) dvolds.
2Jo Ju 2J)o Ju
Hence, by the Cauchy-Schwartz inequality

_ - 1 ! h* 1/2 -h*/ \1/2 v
[ s pgaval <3 [ ] i eplize @) vl

which has upper bound

1/2 t
1 * 1 * *
~|rk (f)+7p2’04r v (f) / rh(g)1/2 dvol/ e~ ds,
2 P1 — P21 Lo JM 0

by Proposition 3.6 (a). From the spectral theorem, we know that P;f reaches
an equilibrium P f which is in Dom(L) and satisfies LP f = 0. Since this
implies M (P4 f) = 0, we must have that P, f is a constant.

Assume that vol(M) = oco. Then P, f = 0 and hence, for any f,g € C>°(M),

we have
'/ Fgdvol protl / b (9)1/2 dvol.
M P1 — P21 M

However, since g is complete, we can find a sequence of functions f,, € C(M)
such that f, 1 1 while |8 (f,)|lz~ — 0. Inserting such a sequence for f
in the above formula and letting n — oo, we obtain the contradiction that
Jys g dvol =0 for any g € C2°(M).

Follows from the identity

1 2
”f_fMH%?—/]dedVOl—W (/Mfdvol>
0 e

= /0 6t/M(Ptf) dvol dt

- / i / M (Pf) dvoldt < LT ()|
0 M «

1/2

() + v (f)

1
< —
~ 2«

Lo
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4. ENTROPY AND BOUNDS ON THE HEAT KERNEL

4.1. Commutating condition on ™" and ¥". For some of our inequalities
involving logarithms, we will need the following condition. Let L € T'(T?M) be a
second order operator without constant term with positive semi-definite q; = h*
defined as in ([BI). Assume that L satisfies either (CD¥)) or (CD) with respect to
positive semi-definite v*. We say that condition (Bl holds if

(B) M () =T (£ (F) for every f € C%(M).

We make the following observation.

Lemma 4.1. Let g be a Riemannian metric on a manifold M, with an orthogonal
splitting TM = H &1 V and use this decomposition to define the connection v
as in 2I). Write gl = h and gly = v and let h* and v* be their respective
corresponding co-metrics. Then

ML (D) =T (T ()
holds for every f € C°°(M) if and only if Vv* = Vh* = 0.
Proof. Tt is simple to verify that for any A € I'(H) and V' € T'(V), we have
Vah*=0, Vyvi=0, TY(4,V)=0,

where TV is the torsion of V. Define 8" as in Section @ and let ¥~ be defined
analogously. Using the properties of V, we get

P () =T (LT () = G df)|ldf (13- — (£ df)df|
= 2V g df (1 df) = 2V o df (8 )
+ (Ve gpv) (df, df) — (Vo g™ (f, df)
= (Vgwr g V) (df df) = (Vi 4B (df, df)-

Since T*M = ker h* @ ker v* and since V preserves these kernels, the above expres-
sion can only vanish for all f € C*°(M) if Vh* =0 and Vv* = 0. O O

2
h*

Let L, P, and X (z) be as in Section Bl In this section, we explore the results
we obtain when both conditions (A) and (Bl hold. We will also assume that L
satisfies (CD) rather than (CD¥). The reason for this is that in the concrete case
when L is the sub-Laplacian of a sub-Riemannian manifold with an integrable
metric-preserving complement, the condition (Bl along with the assumptions of
Theorem imply (CD)), see Section 2l For most of the results, we also need the
requirement that po > 0. This means that we can use the results of [, [6] [7].

Let us first establish some necessary identities. Let P; be the minimal semigroup
of %L where q;, = h*. For a given T > 0, let u; := Pr_;f with f € C®(M)nN
L>°(M). 1t is clear that (3L + %)I’S* (ut) = T§ (uz) for any s* € I'(Sym? TM).
Also note that if F': U C R — R be a smooth function, then for any f € C*(M)
with values in U, we obtain

LE(f)=F'(f)Lf +F"() )T (f).

Straight-forward calculations lead to the following identities.
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Lemma 4.2.
(a) If uy = Pr_¢f has values in the domain of F, then

1 0 1 .
(§L ; &> Flug) = 5F @)™ ().
In particular, if us is positive then

1 0 I'h*(ut)
(§L =+ a) logut = —Tug,

1 0 e (u 1 x
<§L + &> Ut 1ogut = 2/54 t) = gutrh (log Ut).

(b) For any s* € T'(Sym* TM), we have

1.0 .
<§L + E) u s (loguy)
= u, TS (logug) + u (rh* (log s, T*" (log uz)) — ™" (log ug, T (log ut))) .

BQ) u ™ (log ug) = u TR (logug). If v* is any co-metric such

(£, T2 (F), then (3L + g7) uel™" (logus) = uely” (log ue)

In particular, ( %L +
that TR (f,TV'(f)) =T
as well.

>k

4.2. Entropy bounds and Li-Yau type inequality. We follow the approach of
[3], [8, Theorem 5.2] and |21, Theorem 1.1].

Lemma 4.3. Assume that L satisfies (CD). Also assume that (B) and (B) hold.
Consider three continuous functions a,b,€ : [0,T] — R with a(t) and £(t) being
non-negative. Let C be a constant. Assume that a(t),b(t) and £(t) are smooth for
t € (0,T) and on the same domain satisfy

W) { 0 < a(t) + (pl — s - 2b(t)) a(t) + C
' 0 < U(t) + ps + SBL(1).

Consider a positive function f € C°(M), f > 0 with bounded gradient T® +V"(f) €
Cp°(M). Then we have

a(0) Prf POV (log Py f) — a(T) Py (T +0 (log f)
< 2C (Pr(flog f) = (Prf)log Prf)

T T
+n </0 a(t)b(t)2dt> Prf—2 </O a(t)b(t)dt) PrLf.

Proof. We have P, f > 0 from our assumptions on L and f. For any T > 0, define
up = Pp_;f for 0 <t <T and

Y; = alt) (ut M (log ue) + £(t)u TV (log ut)) o X,

t
+2C (uglogug) o Xy + / a(s) (nb(s)*us — 2b(s)Lus) o X, ds.
0



16 E. GRONG, A. THALMAIER

Let us write < for equivalence modulo differentials of local martingales. We use
that
™ (uq)

= wLlogu;, +u, M (log uy)
Ut

Lus = usLlogus +
and (CD) to obtain
dY, 'E (a(t) — 2a(t)b(t) + C) u, ™ (loguy) o X, dt

+ (a(t)e(t) + ah)i()) 1" (logue) o X, dt
+alt)u s Y (logug) o Xy dt
+ a(t)uy (nb(t)* — 2b(t)L1oguy) o X, dt

> (a(t) + <p1 - % - 2b(t)> at) + c> wT (log ug) o X, di

alt)

+ a(t) (é(t) + p2 + mé(t)) M (logug) o Xy dt
+ na(t)ug (b(t) — Llogus)® o Xy dt.

Y is then a submartingale from (@II). The result follows from E[Yr] > E[Y;]. O

O

We look at some of the consequences of Lemma

Corollary 4.4. Assume that L satisfies (CD) with p2 > 0, and that (A) and (B)
also hold. Let f € C(M) be any bounded smooth function with TR +V(f) €
Cpo(M).
(a) (Entropy bound) Assume that p1 > 0 and that f > 0. Then for any x € M,
l—emt . 2 f f
———— T (log P, x<(1+—)P( lo >a:
2p1 (log Fuf)(z) < ) "\ Pfl@) " Pifw) )

(b) (Li-Yau inequality) Assume that n < oo in (CD) and that f > 0, not identically
zero. Then for any 1 < B < 2 and for any t > 0,

' (p.f) BLf _n aj
4.2) ———=* —(ag — bppyt < — | —————— — p1t(2a5 — bgp1t
-1
where ag = pat P and bg = BT
The special case of § = 2/3 in [@2) is described with consequences in [8, The-
orem 6.1]. If p; > 0, then for many application 8 = /(2 + p2)(1 4+ p2) — p2 is a

better choice, as this minimizes the ratio of a[%/(Q — B)(B8 — 1) over ag. With this
choice, we obtain relation

1 (Pf) PLf N
) D (Bf?  Bf -1
where
() N 2WZEetVTERE g, VR2E )t )

4 P2 P2
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Proof. Recall that if f € Cp°(M) is non-negative and non-zero, then P, f is strictly
positive.

(a) We will use Lemma As in Proposition B8l (c), for any T > 0, define

1 —e Tt " a(s)ds e P Tt 1 4 py (T —t

alt) = ——, L@}t) = Pz,ou = p2,0 - il—(t )
p1 a(t) p1(1l —e=r(T=0)

and C =1+ 2/ps. If we define b(t) = 0, condition (AT is satisfied. Hence,

—emT [R5V (p
: le PTf( ) < <1+%) (Pr(flog f) — (Prf)log Prf).

Divide by Prf and evaluate at x for the result.
(b) For any ¢ > 0, define f = f+¢e > 0. For any « > 0 and T > 0, define

Ut) = 25(T —t), a(t) = (T —)**" and

1 a 1 1 a+2 1
b(t) = = ) =2 (p - 1 ).
©) 2<”1+a f) 2<”1 (‘” M )T—t)

Note that
T
1 2
/ a(t)b(t)dt = = (LTW - (1 + L) T““) ,
0 2\a+2 p2(a+1)
Hb(t)  dt = -
/0 a(t)p(t) 4 \a+2 p2(a+1)

2 2
(LTQH —2p1 <1 4 L) Totl
_|_

2 2
(a+1) <1+ a+2 ) o
a p2(a+1)
If we put C' = 0, then ({I) is satisfied and so if we use f. in Lemma 3] and
let € L 0, we get

&Y' (p 2
Prf) (g (14 _2*2 ) poy
a+2 p2 )

brf (a+1
2 2 2
n p3 a+2 (a+1) ( a+2 ) 1
< - T-2 1 1 — | Prf.
! (a—|—2 pl( +p2(a—|—1)) Sl— +p2(a—|—1) T f
Define 8 := (o +2)/(a + 1) to obtain ([@.2)). O
O

Using ([£3]) and the approach found in [8, Remark 6.2 and Section 7] and [7], we
obtain the following results.

Corollary 4.5. Assume that L satisfies (CD) relative to v* with py > 0,p2 > 0
and n < co. Write g* = h* +v*. Also assume that (B) and (B) hold and that L
is symmetric with respect to the volume form vol. Let pi(x,y) be the heat kernel of
%L with respect to vol. Finally, let N and D be as in [@4). Then the following
holds.

(a) pe(w,x) <t~ N2py(z,2) for any x € M.

(b) For any 0 <ty < t1 and any f € Cg°(M) non-negative, not identically zero,

dee(, y)2)

N/2
(4.5) Py f(z) < (P f)(y) (t—l) exp <D 2ty — to)

to
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where dee is the Carnot-Carathéodory distance. If g* is the co-metric of a
complete Riemannian metric, then

dcc(y, 2)2 )
2(t1 —to) )

There are several more results which we can obtain when (A) and (B]) hold, along
with the fact that L satisfies (CD) with p2 > 0, which can be found in [8] [6] [7].

We list some of the most important results here, found in [8, Theorem 10.1] and [7]
Theorem 1.5].

1\ V2
ptO(I,y) < ps (517,2) (5) exp <D

Theorem 4.6. Let L be a second order operator satisfying (CD)) with respect to v*
and with pa > 0. Assume that it is symmetric with respect to some volume form
vol. Define g = h* + v* and assume that this is a complete Riemannian metric.
Finally, assume that conditions (A) and (Bl hold. Let B,.(z) be the ball of radius
r centered at x € M with respect to the metric d...

(a) (Sub-Riemannian Bonnet-Myers Theorem) If p1 > 0, then M is compact.
(b) (Volume doubling property) If p1 > 0, there exist a constant C' such that

vol(Ba,(z)) < Cvol(B,(x)), for anyr > 0.

(¢) (Poincaré inequality on metric-balls) If p1 > 0, there exist a constant C such
that

/ If = fB,|? dvol < Cr2/ " (f)dvol,
B, (x) B, (z)

for any r >0 and f € C* (B,(z)) where fg5, = vol(B,(z))"" / f dvol.
B, (z)

5. EXAMPLES AND COMMENTS

5.1. Results in the case of totally geodesic Riemannian foliations. Let us
consider the following case. Let (M, g) be a Riemannian manifold, and let H be a
subbundle that is bracket generating of step 2, i.e. the tangent bundle is spanned by
the sections of H and their first order brackets. Let V be the orthogonal complement
of H with respect to g. Define V with respect to the decomposition TM =H &V
and let h and v be the respective restrictions of g to H and V. Let us make the
following assumptions:

- V is integrable, g is complete, V g = 0 and the assumptions (i)—(iv) of Section 2
hold with mg > 0.
From our investigations so far, we then know that

- V is a metric-preserving complement of (M, H, h); the foliation of V is a totally
geodesic Riemannian foliation.

the sub-Laplacian Ay, of V is symmetric with respect to the volume form vol of g;
- Ay is essentially self-adjoint on CS°(M);

- Ay, satisfies ([CD) with respect to v*;

both (&) and (B]) hold.

We list the results that can be deduced on such manifolds using the approach of
the generalized curvature-dimension inequality. We will split the results up into
two propositions.
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Proposition 5.1. Define k = sm%py, — M3, and assume that k > 0. Let f €
Cp° (M) be non-negative, not identically zero. Define

2<\/20H+/£+ \/PH+/£) b \/(Ii+pH)(f€+2pH)

, .
4 K K

(a) Assume that TP TV (f) € C3°(M). Then for any 1 < 8 < 2, we have

M (Pf) (Hp_ﬂﬁ) RLf _n [ (1+58)°
2Kk

(P:f)? Bf 4\ (2-pB-1)

(b) Let pi(z,y) be the heat kernel of 5 Ay with respect to vol. Then

1
pe(z,x) < Wpl(w,w)

for any x € M and 0 <t < 1. Furthermore, for any 0 < ty < t1,

Puf(@) < (P 1)) (ti)N/Q exp (D M) |

to 2(t1 —to)

1

In both results, if k = 0, we interpret the quotient k/p,, as Em%.

Note that if .#3;y = 0, the constant in the above result is independent of py,.

Proof. From the formulas (23), we know that Ay, satisfies (CD]) with ps > 0 and
p1 > 0. In particular, we can choose ¢ = 1/p,, if p,, > 0 and oo if p;; = 0. This

choice gives us p; = 0, while maximizing p,. Note that if p,, = 0, then ./ must
be 0 as well, since we have required x > 0. ([ ([

Ezample 5.2 (Free nilpotent Lie algebra of step 2). Let h be a vector space of
dimension n with an inner product (.,.) and let £ denote the vector space /\2 b.
Define a Lie algebra g as the vector space h @ ¢ with Lie brackets determined by ¢
being the center and for any A, B € h, we have

[A,B]=AABE€t,.

This is clearly a nilpotent Lie algebra of step 2 and dimension n(n + 1)/2.

Let G be a simply connected nilpotent Lie group with Lie algebra g. Define a
sub-Riemannian structure (H, h) by left translation of b and its inner product. Let
Ay, ..., A, be a left invariant orthonormal basis of # and define L = > | A?.
From Part I, Example 4.4, we know that L satisfies (CD]) with respect to some v*,
n = rankh, p1 = 0 and ps = m This choice of v* also gives us a complete

Riemannian metric g satisfying Vg = 0 and with L being the sub-Laplacian of the
volume form of g. We then obtain that for any 0 < tp < t; and f € Cp°(M)

dee(,9)?
2(t1 — to))

where N = 2 (\/4n — 3+ v/2n — 1)2 and D = /(2n — 1)(4n — 3).

Pof(@) < (P f)(w) (ﬁ—)N/ exp (D
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Proposition 5.3. Define k = %m?,sz — M3}y, and assume that k > 0. Then the
following statements hold.

(a) M is compact.

(b) If f € C(M) is an arbitrary function and

2
2K

2Mry + mpn/ 20y + 2K
we have

1™ Bl < eI (P, and 17 = farla < = / M (f) dvol
M

where far = vol(M fM f dvol.
(¢) Let feC®(M ) be an arbitrary function. Then

=

. 2
tr* (Pf) < <1+ %) (P:f? = (P.f)?).
(d) Let f be a strictly positive smooth function. Then for any x € M,

- ) 2p ARV B
tr™ (log P f)( )§2<1+ )Pt(f(w)lgf(w))( )

Proof. From the formulas (2.3), we know that Ay, satisfies (CD]) with ps > 0 and

p1 > 0.

(a) Follows directly from Theorem (4.0]) (a).

(b) We use Propositions 3.6l (a) and B8 (b). With our assumption of Vv = 0, the
formulas (2Z2]) show that we can choose pp 1 = 0 and both p; and po strictly
positive, since k > 0. The result follows by max1m1z1ng p 2p % with respect to c.

(¢) We use Proposition B (¢) and using 2.3) with ¢ = 1/pH.
(d) Similar to the proof of (¢), only using Corollary 4] (a) instead. O
(]

Ezxample 5.4. Let g be a compact semisimple Lie algebra with bi-invariant metric

(A, B) = —4ip tr ad(A)ad(B), p > 0.
Let G be a (compact) Lie group with Lie algebra G and with metric g given by
left (or right) translation of the above inner product. Then p > 0 is the lower Ricci
bound of G.

Let b be the subspace of the Lie algebra g @ g consisting of elements on the form
(A,24), A € g. Define the subbundle H on G x G by left translation of h. If we
use the same symbol for an element in the Lie algebra and the corresponding left
invariant vector field, we define a metric h on H by

h((A,24), (4,24)) = (A, A).

Define 7 : G X G — G as projection on the second coordinate with vertical bundle
V = ker 7, and give this bundle a metric v determined by

1
1A, 013 = 1, AA)
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If we then define V relative to H @ V and g = prj, h + pr}, v, then %g = 0. Let
Ay, be the sub-Laplacian with respect to V, which coincides with the sub-Laplacian
of the volume form vol of g. We showed in Part I, Example 4.6 that this satisfies

([CD) with respect to v*, n =dim G, p1 = py; = 4p and po = gm% = 1/4.
We then have that for any f € C*(G x G),

”f - fG><GH%2 = 43/)/]\4 I'h*(f) dvol

where foxg = vol(G x G)~ foG f dvol.

5.2. Comparison to Riemannian Ricci curvature. Let us consider a sub-
Riemannian manifold such as in Section B.Il Given the results of Proposition 5.1
and Proposition 5.3 it seems reasonable to consider sub-Riemannian manifolds
with kK > 0 or kK > 0 as the analogue of Riemannian manifolds with respectively
non-negative and positive Ricci curvature. However, given the extra structure in
the choice of v on V, it is natural to ask how these sub-Riemannian results compare
to the Ricci curvature of the metric g = prj, h + pr}, v. We give the comparison
here.
Introduce the following symmetric 2-tensor

Ricy, (Y, Z) = tr (V — pry RV (V, Y)Z) .
Then the Ricci curvature of g can be written in the following way.

Proposition 5.5. The Ricci curvature Ricg of g satisfies
. . . 1
(5.1) Ricg(Y,Y) = Ricy, (Y,Y) + Ricyp(Y,Y) + —H g(V,R(x,.))|2%: -

] 3
+Ric, (YY) = [|R(Y, Iz o

Before we get to the proof, let us note the consequences of this result. If x =
$pym%k — M3, is respectively non-negative or positive, this ensures that the first
line of (5.I) has respectively a non-negative or positive lower bound. Furthermore,

note that this part is independent of any covariant derivative of vertical vector
fields.

of Proposition Let V be the Levi-Civita connection of g. Define a two tensor
B(A,Z) =V aZ —VaZ. Then it is clear that

RY(A,Y)Z = RV (A,Y)Z + (VaB)(Y, Z) - (VyB)(A, Z)
+B(B(Y,A), Z) + B(A,B(Y, Z)) — B(B(A,Y), Z) — B(Y, B(A, 2)).
Furthermore, it is simple to verify that
B(A, 2) =5 R(A, Z) - 388(AR(Z,.)) - 518(Z.R(A, )

Let Ay,..., A, and Vq,...,V, be local orthonormal bases of respectively H and V.
Then

> g(4i, RY(A;,2)Z — R¥ (A, 2)Z)
=1

1
5” g(27 R('7 '))"3\2 g*

:Z ,(Va,R) AMZ))——HR( e
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Similarly, 3%, g(RY (Vs, 2)Z — R¥ (Vi, Z)Z,V3) = 0. O O

5.3. Generalizations to equiregular submanifolds of steps greater than
two. Many of the results in Section Bl and Section [ depend on the condition
p2 > 0. A necessary condition for this to hold is that our sub-Riemannian manifold
is bracket-generating of step 2. Let us note some of the difficulties in generalizing
the approach of this paper to sub-Riemannian manifolds (M, H, h) of higher steps.

As usual, we require H bracket-generating. Assume also, for the sake of simplic-
ity, that H is equiregular, i.e. there exists a flag of subbundles H = H' C H? C
H3 C -+ CH" such that

HE = span {Z|,,[A,Z]|,: Z € T(HY), AcT(H)}, z€ M.

Choose a metric tensor v on V and let g = prj, h + prj, v be the corresponding
Riemannian metric. Let V, be the orthogonal complement of H* in H*T!. Let
pry, be the projection to Vi relative to the splitting H & V;y @ -+ - @ V,—1. Define
vi = v]y, and let v} be the corresponding co-metric. We could attempt to con-
struct a curvature-dimension inequality with I (f), TVi(f),...,[V7—1(f). How-
ever, a condition similar to (B) could never hold in this case, i.e. [* (f,TVi(f)) =
MVe(f,T2"(f)) cannot hold for any k < r — 2.

To see this let @ and g be forms that only are non-vanishing on respectively Vj,
and Vi1 for k <7 —2. Then M (f,TVe(f)) = IV&(f,T""(f)) holds if and only if
Vh* = 0 and ﬁAV,’; =0 for any A € I'(}). Hence we obtain

0= (Vavi)(a, B) = B([A, §¥a]).

However, this is a contradiction, since by our construction, Vi1 must be spanned
by orthogonal projections of brackets on the form [A, Z], A e T'(H), Z € T'(Vy).

APPENDIX A. GRADED ANALYSIS ON FORMS

A.l. Graded analysis on forms. Let (M,H,h) be a sub-Riemannian manifold
with an integrable complement V, and let v be a chosen positive definite metric
tensor on V. Let g = prj, h + pr}, v be the corresponding Riemannian metric. The
subbundle V gives us a foliation of M, and corresponding to this foliation we have
a grading on forms, see e.g. [2, [I]. Let Q(M) be the algebra of differential forms
on M. Let Ann(#H) and Ann(V) be the subbundles of T*M of elements vanishing
on respectively H and V. If either a or b is a negative integer, then n € Q(M)
is a homogeneous element of degree (a,b) if and only if n = 0. Otherwise, for
nonnegative integers a and b, 7 is a homogeneous element of degree (a, b), if it is a
sum of elements which can be written as

aAB, aeD(A"Am(V)), 8 € D(A” Ann(H)).

Relative to this grading, we can split the exterior differential d into graded com-
ponents

d — dl,O +d0’1 4 d2,71.

The same is true for its formal dual

§=0 104 8% 4572t
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i.e. the dual with respect to the inner product on forms of compact support «, 3,
defined by

(A1) (o, B) = / a A\ xf, a, B of compact support,
M

where * is the Hodge star operator defined relative to g. Note that 6~ is the
formal dual of d*® from our assumptions that # and V are orthogonal. We will
give formulas for each graded component.

A.2. Metric-preserving complement and local representation. We will use
b: TM — T*M for the map v — g(v, .) with inverse #. Let V be defined as in (1)
relative to g and the splitting TM = H ® V. If « is a one-form and Ay,..., A, and
Vi,...,V, are respective local orthonormal bases of H and V, then locally

da:ZbAi/\ﬁAia—l—Zsz/\%x/sa—chR,
=1 s=1

and hence each of the three terms are local representations of respectively d'°c,
d*'a and d>~'a. Local representations on forms of all orders follow.

Assume now that %g = 0, i.e. V is a metric-preserving compliment of (#,h)
with a metric tensor v satisfying Vv* = 0. From the formula of dOn =" bA;A
6,41,77, we obtain 610 = =" | LAiﬁAin for any form 7. Let Ay be the sub-
Laplacian of V or equivalently vol. Let A be the Laplacian of g. Then it is clear
that for any f € C*° (M), we have

Af =—bdf,  Anf=—6"10d"0F.
Lemma A.1. For any form n € Q(M), we have
(A2) 571,0d0,1a — _d0,1571,0a 50,71d1,0a — _dl,O(SO,fla'
As a consequence, for any f € C°(M) we have AbAf = AAyf.

The following result is helpful for our computation in Part I, Lemma 3.3 (b) and
Corollary 3.11.

Lemma A.2. (a) For any horizontal A € T'(H), a vertical V € T'(V) and arbitrary
vector filed Z € T'(TM), we have

g(RV(A,V)Z, A) = 0.
(b) ]fV g = 0, then for every point xg, there exist local orthonormal bases Ay, ..., Ay,
and Vq,...V,, defined in a neighborhood of xo, such that for any Y € T(TM),
1
2
of Lemma [A] Tt is sufficient to show one of the identities in ([A.2]), since §—19¢%1

is the formal dual of 6% ~1d%?. From Lemmal[A2] (a), any A € ['(H) and V € T'(V)
satisfy

VzAilsy = 8(Z,R(Ai, Nlaos  VzVilsy = 0.

LA%{/%AQ = LA%Aﬁva + LAﬁ[VyA]a.

From the definition of V, it follows that v (A, V) =0, where TV is the torsion of
V. For a given point xg € M, let Ay,..., A, and Vi,...,V, be as in Lemma[A2] (b).
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All terms below are evaluated at the point xg, giving us

v n

A5 00 = =" bV, AV, Va,o
o
=- ZV:ZH:WS Nigy, 4, Va,a— Zy:ibvs Nea,Vv,Vaa
s=11i=1 s=11i=1
= —% sz: ”i_l g(Va, R(Ai, Aj))bVe Ara,Va,o
- ZZW Noa ¥ a o Zzw NeaTsy p iy,
= XV: i La, (bVS A @Aﬁvs) a
po
= XV: Zn: 1A Va, (Ve AV, ) o= =600 .,
po

Next, we prove the identity [Ap, A]f = 0. If we consider the degree (1, 1)-part
of d? =0, we get
dOLgh0 4 glogor .

The same relation will then hold for their formal duals. Since Af = Ay, f—8§%1d%! f,
it is sufficient to show that Apé%~1d%! f = §0~1d%1 Ay, f. This gives us the result

Ahéo,—ldO,lf _ —5_1’0d1’060’_1d0’1f _ —60’_1d0’15_1’0d170f _ 60’_1d0’1Ahf,
since we have to do an even number of permutations. O ([l

A.3. Spectral theory of the sub-Laplacian. Let L be a self-adjoint operator on
L?(M,vol) with domain Dom(L). Define ||f||%om(L) = |flI%2 + | Lf]|32. Write the

spectral decomposition of L as L = ffooo AdE) with respect to the corresponding
projector valued spectral measure FE. For any Borel measurable function ¢: R —
R, we write ¢(L) for the operator ¢(L) := [ ¢(\)dEx which is self adjoint on
its domain

oo

Dom(p(L)) = { f € L*(M,vol) : /

— 00

RN f>} |

In particular, if ¢ is bounded, ¢(L) is defined on the entire of L?(M,vol). See [15,
Ch VIIL.3] for details.

Let (M,#,h) be a sub-Riemannian manifold with sub-Laplacian Ay, defined
relative to a volume form vol. Assume that # is bracket-generating and that

(M,d..) is complete metric space, where d.. is the Carnot-Carathéodory metric
of (#,h). Then

/ fAng dvol:/ gAnf dvol and /fAhfdvolgO.
M M

From [I7, Section 12], we have that Ay is a an essentially self adjoint operator on
C°(M). We denote its unique self-adjoint extension by A as well with domain
Dom(Ap) € L?(M,vol).



CURVATURE-DIMENSION INEQUALITIES ON SR-MANIFOLDS, PART II 25

Since Ay, is non-positive and the maps A — e‘*/2 and A — Me!*/2 are bounded
on (—00,0] for t > 0, j > 0, we have that f — e'/?r f is a map from L?(M,vol)
into N3 Dom(A{l). Define P, f as in Section Bl with respect to 3Ap-diffusions
for bounded measurable functions f. Then clearly || P;f||re < ||f]lLe. Since Ap
is symmetric with respect to vol and P;1 < 1, we obtain | P.f||r: < ||f||z: as well.
The Riesz-Thorin theorem then ensures that || P f|| e < || f|lze for any 1 < p < occ.
In particular, P,f is in L?(M,vol) whenever f is in L?(M,vol). This implies that
P.f = e/?An f for any bounded f € L?(M,vol) by the following result.

Lemma A.3 ([I4, Prop], [8, Prop 4.1]). Let L be equal to the Laplacian A or
sub-Laplacian Ay defined relative to a complete Riemannian or sub-Riemannian
metric, respectively. Let ui(z) be a solution in L?(M,vol) of the heat equation

(8t - L)ut = O, ug = f,
for a function f € L*(M,vol). Then u(x) is the unique solution of this equation

in L?(M,vol).

Hence, we will from now on just write P, = e*/?2» without much abuse of
notation.

A.3.1. Global bounds using spectral theory. We now introduce some additional as-
sumptions. Assume that g is a complete Riemannian metric with volume form vol,
such that g |3 = h,H* =V and g |y = v. Let A be the Laplace-Beltrami operator
of g and write Af = Apf + Ay f where A, f = div§¥ df. Since g is complete, A
is also essentially self-adjoint on C'°(M) by [16] and we will also denote its unique
self-adjoint extension by the same symbol.
Assume that Vg = 0 where V is defined as in ([ZI)). Recall that Ap and A

commute on C2°(M) by Lemma [AT]
Lemma A.4.
(a) The operators Ay and A spectrally commute, i.e. for any bounded Borel func-

tion ¢ : R — R and f € L*(M,vol),

©(An)p(A)f = e(A)p(An)/f.

Also Dom(A) C Dom(Ap).
(b) Assume that Ay satisfies the assumptions of Theorem with mg > 0. Then

there exist a constant C' = C(p1, p2) such that for any f € C>°(M)NDom(A3),

Cllfomcazy = € (1172 + |1 AR F1Z2)
is an upper bound for
/ () dvol, / 2 (f) dvol, / V' (f)dvol and / [y (f) dvol.
M M M M

Proof. (a) Note first that for any f € C°(M), using Lemma [A] and the inner

product ([AT))
/ Avahf dvol = <60’_1d0’1f, 6_1’Od1’0f> _ <d0’1f, d0’16_170d1’0f>
M

_ —<d0’1f, 5_170d0’1d170f> — <d170d0’1f, d1,0d0,1f> Z 0.
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Hence
/(Ahf)deolg/ ((Ah+Av)f)2dv01:/ (Af)? dvol,
M M M

and hence ||Anf|rz < ||Af]|z2 is true for any f € Dom(A). We conclude
that Dom(A) € Dom(Ayp). Define Q; = e*/?2. Tt follows that, for any f €
Dom(Ap), uy = AnQ.f is an L?(M, vol) solution of

o 1
<§ — §A) Ut = O, Uug = Ahf
In conclusion, by Lemma [A3] we obtain ApQ:f = Q:Anf.
For any s > 0 and f € L2(M,vol), we know that Qsf € Dom(A) C
Dom(Ap), and since
1
(0 — §Ah)QsPtf =0,

it again follows from Lemma [A3] that P;Qsf = QsP.f for any s,t > 0 and
f € L?(M,vol). It follows that the operators spectrally commute, see [15]
Chapter VIIL5].

(b) From Theorem 2.2 we know that Ay, satisfies (CD) with p2 > 0 and an appro-
priately chosen value of ¢. The proof is otherwise identical to [8, Lemma 3.4 &
Prop 3.6] and is therefore omitted. O

O

A.3.2. Proof of Theorem B4l We are going to prove that (A) holds without using
stochastic analysis. We therefore need the following lemma.

Lemma A.5 ([8 Prop 4.2]). Assume that (M,g) is a complete Riemannian man-
ifold. For any T > 0, let u,v € C°(M x [0,T]), (x,t) — us(x), (z,t) — ve(x) be
smooth functions satisfying the following conditions:

(i) For anyt €1[0,T), us € L?>(M,vol) and fOT |l 2dt < oo.

(ii) For some 1 < p < oo, fOT T2 ()Y 2| 1 dvol < oo.

(iil) Foranyt € [0,T], vy € LY(M,vol) and fOT lve]| Ladt < 00 for some 1 < g < oo.
Then, if (L + %)u > v holds on M x [0,T], we have

t
Prur > ug +/ Pivdt.
0

Let P, = e*/?An. For given compactly supported f € C2°(M) and T > 0, define
function

(A.3) e = (rV* (Pr_.f) + 52) VL

with e > 0,¢ € [0,T]. Since P, f € Dom(A?), Lemma [A4] (b) tells us that,
s < [ P (Proi)vol < CIPr— Flbomag) < .

so that z; . € L?(M, vol). By Proposition 2.3

(A1) M (2p) < O (Prad))

<Y (Pr_.f).
< yr—— <T3 (Pr—«f)
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From Lemma [A] (b) it follows that both (i) and (ii) of Lemma is satisfied.
Hence, using that from Proposition 2.3]

(A5) <8t — %Ah) Zns

1 . . | T
= (Y (Pr_ )TY (Pr—ef) — =T (I (Pr- >0
s (7 P (Proag) = 7 (Proa)) 2 0
we get Prar. = Pr(TV (f) +e3)Y2 — Pre > 2. = (IV (Prf) + €?)'/? —¢. By
letting € tend to 0, we obtain

(A.6) VIV P < Pry/TY ().

Next, let gy = (T (Pr_of) + €)'/

and define

— €, choose any o > max{—p,,, . #%,} > 0

Up e = efa/Q(Tft) (yt,a + gl—v* (PT—t (f)))
Note first that

o 1
(a + §Ah) Ut e

PO (e p (g Ty (P (e
—m(z (Pr—of) +LyeT5 ( T_tf)_4162,5 (™ ( T—tf)))
—a/2(T—1)

ae . .
e (i T (Procf))

+ 2yr. + 22 ( (Pr—t+f) + e+ Ly, (Pr—+f)

We use Proposition 23] with ¢ replaced by fy; . to get

1

I'h*(rh* (Pr-if)) < I'g*(f) —(py — o E_lyt_,al)rh* (f)

+ by TS (f) — cdF,TY (f)

As a result, for any ¢ > 0, (% + %Ah) U, has lower bound

4y?

,€

_e_a/2(T_t) —1 —1, —1\rh* —
2y . + 2¢ ((pH —c =t Yt.e T (Prif) — el T (PT—tf))
€
ce—a/2(T—t) ) )
e (P (Pra) o s (Prat).
,€

Since it is true for any value of ¢ > 0, it remains true for ¢ = ¢y, ., and hence
o 1A e—a/Z(T—t)
= 4= >
gt T gth) e = l

In a similar way as before, we can verify that the conditions of Lemma [A-5] hold by
using Lemma [A4l We can hence conclude that

uge = eI (yo . + LTV (Prf))
e—a(T—t)/2

T
< Prur. +/ P——dt
0 'g

< Pr(yre +0 (1)) + a% (1-eom2).
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Multiplying with e®7/2 on both sides, letting ¢ — 0 and v — k := max{—py,, #5 },

we finally get that for any ¢ > 0,
(A7) )+ 0 ) < T (P () 4 R

where

Z(eM/2 1) ifk
Felt) Z(e )1 > 0,
t if k=0.

Since this estimate holds pointwise, it holds for £ = (PrlV" (f) =TV (Prf)) 2 or
¢ = oo at points where PrV' (f) — V" (Prf) = 0. The resulting inequality is

(A8) /T (Prf) < /2Pp\[T0 (f) + (M2 4 F(T)VPrTV (f) =TV (Pif).

We will now show how this inequality implies (A]). Since g is complete, there
exist a sequence of compactly supported functions g, € C*(M) satisfying g,, 1 1
pointwise and ||I* V" (g,,)|| e — 0. It follows from equation (A.6) and (A.S) that

lim [ (Pugn)| = — 0

n—00

as well. Hence, since Pig, — P;1 and ||dP;gy,
that 8" (P;1) = 0. It follows that P;1 = 1.

To finish the proof, consider a smooth function f € C®(M) with ||f||L~ <
oo and [[* V' (f)||p= < co. Define f, = gof € C®°(M). Then Prf, — Prf
pointwise. It follows that

g+ approach 0 uniformly, we have

b b
(A.9) [ aresteyde =t [ apes, ) di

n—oo a

for any smooth curve 7 : [a,b] = M. We want to use the dominated convergence
theorem to show that the integral sign and limit on the right side of [A9]) can be
interchanged.

Without loss of generality, we may assume that || (g,,)||r=~ < 1 for any n. We

then note that
<=+ [P
LOO

This relation, combined with (A.6) and (A.S), gives us

= K < .
LOO

M (fn)

/T2 (P fu) e < (264772 4+ F(T) + 1) K.

Furthermore, the dominated convergence theorem tells us that both PrTY" (o, — f)
and limy,_,oo Prl® (fn — fm) approach 0 pointwise as n,m — oco. By inserting
fn — fm into (AB) and (AS), we see that M* V' (Prf,) at any fixed point is a
Cauchy sequence and hence convergent. We conclude that

/ab dPr f((t))dt = /ab (nlgr;o dPTfn> (5(8))dt.

It follows that dP;f — lim,_, o dP;f vanishes outside a set of measure zero along
any curve, so

IP* (Prpllae = T [T (Prfa) e < oo.
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In conclusion, we have proven that condition (A]) holds. Without any loss of gen-

erality we can put ¢ = 1, since we can obtain all the other inequalities by replacing
f with ¢f. O

Remark A.6. If we know that any %Ah-diffusion starting at a point has infinite
lifetime then using Lemma [A4] we can actually make a probabilistic proof. We
outline the proof here. We will only prove the inequality (A.6]) as the proof of (A7)
is similar.

We will again use z;. as in (A3). Let X = X(z) be an 1Ap-diffusion with
Xo(z) =2 € M. We define Z° by Z; = z; .0 X;. Then Z° is a local submartingale
by (A5). By using the Burkholder-Davis-Gundy inequality, there exist a constant
B such that

t
1
E [ sup Z;‘} < BE { <Z8>t] +20.0(z) + E [/ (85 — =Ap)zs.c 0 Xy ds

0<s<t 0 2
where (Z¢); = fot M7 (25..) 0 X, ds is the quadratic variation of Z¢. By the Cauchy-
Schwartz inequality and the bound (A.4), we get the conclusion

E [\/<Z€>t} < pot(z, ) \//Ot Ty (Pr—sf)||zr dt < oo

which means that E [SUPogsgt/\T Z§] < oo. Hence, Z¢ is a true submartingale,
giving us (A.G).

A 4. Interpretation of Ricyy. Let V be any integrable subbundle. Choose a
subbundle H such that TM = H & V. Any such choice of H correspond uniquely to
a constant rank endomorphism pr = pry, : T'M — V C T'M. This can be considered

as a splitting of the short exact sequence V — T'M 51Mm /V.
Let (M) be the the exterior algebra of M with Z X Z-grading of Section [A.1]
Choose nondegenerate metric tensors

v € T(Sym? V*) and g € I'(Sym*(TM/V)*)

onVand TM/V. Since \” V*® A" (TM/V)* is canonically isomorphic to A" T* M,
the choices of v and g gives us a volume form vol on M.

We also have an energy functional defined on projections to V. Relative to pr,
define a Riemannian metric g, = F' *¢ + pr* v. We introduce a functional £ on
the space of projections pr by

Bon) = [ [Roelf g ., ol

where Ry, is the curvature of H = kerpr. We can only be sure that the integral
is finite if M is compact, so we will assume this, and consider our calculations as
purely formal when this is not the case.

Let V = VPT be the restriction of the Levi-Civita connection of g, to V. Intro-
duce a exterior covariant derivative of dy on V-valued forms in the usual way, i.e.
for any section V' € T'(V), we have dyV = VV and if « is a V-valued k-form, while
u is a form in the usual sense, then

dy(aAp) = (dva) A p+ (=1)Fa A dpu.

We can split this operator into graded components dy = d%o + d%l + d%fl and do
the same with its formal dual oy = 561"0 + 5%71 + 5%71.
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Proposition A.7. The endomorphism pr is a critical value of E if and only if
5%1’07% = 0. In particular, if g satisfies

(A.10) try(Lag)(x,x) =0, forany A€ T(H),
then pr is a critical value if and only if Ricyy = 0.

Recall from Part I, Section 2.4 that condition (AI0) is equivalent to the leafs
of the foliation of F being minimal submanifolds. If V is the vertical bundle of a
submersion 7: M — B, then we can identify TM/V with #*TB. In this case, a
critical value of E can be considered as an optimal way of choosing an Ehresmann
connection on 7.

Proof. We write id := idpys for the identity on TM. Let pr be a projection to V
and a : TM — V be any V-values one-from with V C ker a. Define a curve in the
space projections pr, = pr +ta. Then

8:(v,v) 1= gy, (v,0) = (v, v) + 2tv(aw, prv) + t2v(aw, av).
Let R¢ be the curvature of pr,. Then
Ri(A,Z)=R(A,Z)+ ta|(id — pr)A, (id — pr) Z]
— t (prfad, (id - pr)Z] + pr((id — pr)4, aZ]) + O(t?).
If V! = VP then
VLY = VAV + %tdva(A, V) — %tﬁv* g(dya(4,.),V), and
dye pr; = dy pr —l—%t(dva)m — %t(dva)L +tdya + O(t?),
where (dv )11 is the (1,1)-graded component of dya and
v((dva){ (A, V1), V2) = v((dva)1,1(4, V1), Va).

Since R; = —d%_l pr,, we get

d
EE(PIE)

- / (A2 Epr ® gpr)(d%_l pr, d@oa) dvol
t=0 M

- _/ (h* @ v)(0g""R, @) dvol.
M
Hence, pr is a critical value if and only if 5;1’07% =0.

We give a local expression for this identity. Let Ay, ..., A, be alocal orthonormal
basis of H. Then

0" 'R ==Y "V, R)(Ar,.) + R(N,.)
k=1

where N is defined by g, (4, N) = — 5 try(Lpr,, 4 8)(X, X) andV is the (0,0)-degree
component of the Levi-Civita connection, i.e.

ﬁ,z =pry Vapry Z +pry Vapry Z.
This coincides with Riczy when (AJ0) holds. O O
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A.5. If V is not integrable. Let (M, g) be a complete Riemannian manifold and
let H be a bracket-generating subbundle of T'M with orthogonal complement V.
Define V as in 1) with respect to g and the splitting TM = H & V and assume
that V g = 0. Let Ay, be the sub-Laplacian defined relative to V or equivalently to
the volume form of g. Then it may happen that (CD]) holds for Ay even without
assuming that V is integrable. More precisely, we will need the condition

(A.11) tr R(v,R(v,.)) =0, veTM,

R(sz) = prV[pr’H Avpr’H Z]v ﬁ(sz) = pr’H[prV Aaprv Z]v AaZ € F(TM)
We refer to R and R as respectively the curvature and the co-curvature of H.
In Part I, Section 3.8, we showed that Theorem and Proposition [2.3] hold
with the same definitions and with V not integrable, as long as (A1) also holds.
The same is true for Theorem B4 We give some brief details regarding this.

First of all, in Section[A.1] the exterior derivative d now also has a part of degree
(—1,2), determined by

d?f=0, da=-aoR, feC®M), acl(T"M),

and hence, the co-differential has a degree (1, —2)-part. However, these do not
have any significance for our calculations. More troubling is the fact that both
Lemma[A2 (a) and the formula for VzV;|,, in Lemma[A32 (b) are false when V is
not integrable. However, (AT1]) ensures that

> 8(RY(4;,V)Z,A:) =0
i=1
for any orthonormal basis A1, ..., A, of H and vertical vector field V', which is all
we need for the proof of Lemma[A. Il Furthermore the same proof is still holds even
if now VzVilzy = HR(Z, )|, in Lemma (b), as the extra terms cancel out.
Once Lemma [A 1] holds, there is no problem with the rest of the proof of Theo-
rem [3.4l See Part I, Section 4.6 for an example where this theorem holds.
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