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CURVATURE-DIMENSION INEQUALITIES ON

SUB-RIEMANNIAN MANIFOLDS OBTAINED FROM

RIEMANNIAN FOLIATIONS, PART II

ERLEND GRONG
ANTON THALMAIER

Abstract. Using the curvature-dimension inequality proved in Part I, we look
at consequences of this inequality in terms of the interaction between the sub-
Riemannian geometry and the heat semigroup Pt corresponding to the sub-
Laplacian. We give bounds for the gradient, entropy, a Poincaré inequality
and a Li-Yau type inequality. These results require that the gradient of Ptf

remains uniformly bounded whenever the gradient of f is bounded and we give
several sufficient conditions for this to hold.

1. Introduction

One of the most important relations connecting the geometric properties of a
Riemannian manifold (M,g) with the properties of its Laplace operator ∆ is the
curvature-dimension inequality given by

1

2
∆‖ gradf‖2g − 〈grad f, grad∆f〉g ≥ 1

n
(∆f)2 + ρ‖ gradf‖2g.

In the above formula, n = dimM , ρ is a lower bound for the Ricci curvature
of M and f is any smooth function. In the notation of Bakry and Émery [5], this
inequality is written as

Γ2(f) ≥
1

n
(Lf)2 + ρΓ(f), L = ∆,

where

Γ(f, g) =
1

2
(L(fg)− fLg − gLf) , Γ(f) = Γ(f, f),(1.1)

Γ2(f, g) =
1

2
(LΓ(f, g)− Γ(f, Lg)− Γ(Lf, g)) , Γ2(f) = Γ2(f, f).(1.2)

For a good overview of results that follow from this inequality, see [20] and references
therein.

This approach has been generalized by F. Baudoin and N. Garofalo in [8] to
sub-Riemannian manifolds with transverse symmetries. A sub-Riemannian mani-
fold is a connected manifold M with a positive definite metric tensor h defined only
on a subbundle H of the tangent bundle TM . As is typical, we will assume that
sections of H and their iterated Lie brackets span the entire tangent bundle. This
is a sufficient condition for the sub-Riemannian structure (H,h) to give us a metric
dcc on M , where the distance between two points with respect to dcc is defined
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by taking the infimum of the lengths of all curves tangent to H that connect the
mentioned points. For the definition of sub-Riemannian manifolds with transverse
symmetries, see [8, Section 2.3] or Part I, Section 4.3. We extended this formalism
in Part I to sub-Riemannian manifold with an integrable metric-preserving com-
plement, consisting of all sub-Riemannian manifolds that can be obtained from
Riemannian foliations.

Given such a metric-preserving complement V to H, there exist a canonical
corresponding choice of second order operator ∆′

h which locally satisfies

∆′
h =

n
∑

i=1

A2
i + lower order terms.

with A1, . . . , An being a local orthonormal basis of H. We proved in Part I that un-
der mild conditions, there exist constants n, ρ1, ρ2,0 and ρ2,1 such that the operator
satisfies a generalized version of the curvature-dimension inequality

Γ2(f) + ℓΓv
∗

2 (f) ≥ 1

n
(Lf) + (ρ1 − ℓ−1)Γ(f) + (ρ2,0 + ℓρ2,1)Γ

v∗

(f),

for any f ∈ C∞(M) and ℓ > 0. Here, Γ(f) and Γ2(f) is defined as in (1.1) and (1.2)

with L = ∆′
h, while Γv

∗

(f) = v∗(df, df) for some v∗ ∈ Γ(Sym2 TM) and Γv
∗

2 (f)
is defined analogously to Γ2(f). We also gave a geometrical interpretation of these
constants. A short summary of the results of Part I is given in Section 2.

In this paper, we want to explore how this inequality can be used to obtain
results for the heat semigroup of ∆′

h. In Section 3, we will address the question of
whether a smooth bounded function with bounded gradient under the action of the
heat semigroup will continue to have a uniformly bounded gradient. This will be
an important condition for the results to follow. For a complete Riemannian man-
ifold, a sufficient condition for this to hold is that the Ricci curvature is bounded
from below, see e.g. [22] and [19, Eq 1.4]. We are not able to give such a sim-
ple formulation for the sub-Laplacian, however, we are able to prove that it holds
in many cases, including fiber bundles with compact fibers and totally geodesic
fibers. This was only previously only known to hold for sub-Riemannian manifolds
with transverse symmetries of Yang-Mills type [8, Theorem 4.3], along with some
isolated examples in [21, Section 4] and [10, Appendix]. We give several results
using the curvature-dimension inequality of Part I that only rely on the bounded-
ness of the gradient under the heat flow. Our results generalize theorems found in
[8, 6, 7]. In particular, if ∆′

h is a sub-Laplacian on (M,H,h) satisfying our gener-
alized curvature-dimension inequality, then under certain conditions (analogous to
positive Ricci curvature in Riemannian geometry) we have the following version of
the Poincaré inequality

‖f − fM‖L2(M,vol) ≤
1√
α
‖df‖L2(h∗).

Here, α is a positive constant, h∗ is the co-metric of (H,h), fM is the mean value
of a compactly supported function f and for any η ∈ Γ(T ∗M) we use

‖η‖L2(h∗) :=

∫

M

h∗(η, η) dvol .

In Section 4 we look at results which require the additional assumption that
Γv

∗

(f, Γ(f)) = Γ(f, Γv
∗

(f)). This is important for inequalities involving logarithms.
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We give a description of what this condition means geometrically and discuss re-
sults that follow from it, such as a Li-Yau type inequality and parabolic Harnack
inequality.

In Section 5 we give some concrete examples, mostly focused on case of sub-
Riemannian structures appearing from totally geodesic foliations with a complete
metric. Here, all previously mentioned assumptions are satisfied. In this case,
we also give a comment on how the invariants in our sub-Riemannian curvature-
dimension inequality compare to the Riemannian curvature of an extended metric.

In parallel with the development of our paper, part of the results of Theorem 3.4
and Lemma 4.1 was given in [9] for the case of sub-Riemannian obtained from
Riemannian foliations with totally geodesic leaves that are of Yang-Mills type.

1.1. Notations and conventions. Unless otherwise stated, all manifolds are con-
nected. If E → M is any vector bundle over a manifold M , its space of smooth
sections is written Γ(E). If s ∈ Γ(E), we generally prefer to write s|x rather than
s(x) for its value in x ∈ M . By a metric tensor s on E , we mean smooth section
of Sym2 E∗ which is positive definite or at least positive semi-definite. For every
such metric tensor, we write ‖e‖s =

√

s(e, e) for any e ∈ E even if s is only posi-
tive semi-definite. All metric tensors are denoted by bold, lower case Latin letters
(e.g. h,g, . . . ). We will only use the term Riemannian metric for a positive definite
metric tensor on the tangent bundle. If g is a Riemannian metric, we will use g∗,

∧k g∗, . . . for the metric tensors induced on T ∗M,
∧k

T ∗M, . . . .
If α is a form on a manifold M , its contraction or interior product by a vector

field A will be denoted by either ιAα or α(A, �). We use LA for the Lie derivative
with respect to A. If M is furnished with a Riemannian metric g, any bilinear
tensor s : TM ⊗TM → R can be identified with an endomorphism of TM using g.
We use the notation tr s(×,×) for the trace of this corresponding endomorphism,
with the metric being implicit. If H is a subbundle of TM , we will also use the
notation trH s(×,×) := tr s(prH ×, prH ×), where prH is the orthogonal projection
to H.

2. Summary of Part I

In this section, we briefly recall the most important definitions and results from
Part I.

2.1. Sub-Riemannian manifolds. A sub-Riemannian manifold is a triple (M,H,h)
where M is a connected manifold and h is a positive definite metric tensor defined
only on the subbundle H of TM . Equivalently, it can be considered as a manifold
with a positive semi-definite co-metric h∗ that is degenerate along a subbundle of
T ∗M . This latter mentioned subbundle will be Ann(H), the annihilator of H, that

consist of all covectors vanishing on H. Define ♯h
∗

: p 7→ h∗(p, �) ∈ H ⊆ TM . We
will assume that the subbundle H is bracket-generating, i.e. its sections and their
iterated brackets span the entire tangent bundle. Then we have a well defined met-
ric dcc on M by taking the infimum over the length of curves that are tangent to
H.

2.2. Two notions of sub-Laplacian. Let vol be any smooth volume form on
M . We then define the sub-Laplacian relative to the volume form vol as ∆hf =
div ♯h

∗

df, where the divergence is defined relative to vol . From the definition,
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it is clear that ∆h is symmetric relative the measure vol, i.e.
∫

M
f∆hg dvol =

∫

M g∆hf dvol for any f, g ∈ C∞
c (M) of compact support.

We also introduced the concept of a sub-Laplacian defined relative to a comple-
ment V of H. Let g be any Riemannian metric satisfying g |H = h and let V be
the orthogonal complement of H. Consider the following connection,

∇̊AZ =prH ∇pr
H

A prH Z + prV ∇pr
V
A prV Z(2.1)

+ prH[prV A, prH Z] + prV [prH A, prV Z],

where ∇ is the Levi-Civita connection of g. We define the sub-Laplacian of V as

∆′
h = trH ∇̊2

×,×f.

It is simple to verify that this definition is independent of g |V , it only depends on
h and the splitting TM = H⊕ V .
Remark 2.1. If V is the vertical bundle of a submersion π : M → B into a Riemann-
ian manifold (B, qg) and if h is a sub-Riemannian metric defined by pulling back qg

to an Ehresmann connection H on π, then the sub-Laplacian ∆′
h of V satisfies

∆′
h(f ◦ π) = (q∆f) ◦ π,

where q∆ is the Laplacian of qg and f ∈ C∞(B).

2.3. Metric-preserving complement. A subbundle V is integrable if [Γ(V),Γ(V)] ⊆
Γ(V). By the Frobenius Theorem, such a subbundle gives us a foliation on M . We
say that an integrable complement V of H is metric-preserving if

LV pr∗H h = 0, for any V ∈ Γ(V),
where prH is the projection corresponding to the choice of complement V . Let g

be any Riemannian metric such that g |H = h and H⊥ = V . If we define ∇̊ as in

(2.1), then V is metric preserving if and only if ∇̊h∗ = 0. The foliation of V is then
called a Riemannian foliation.

2.4. Generalized curvature-dimension inequality. For a given smooth sec-
ond order differential operator L without constant term and for any section s∗ of
Sym2 TM, define

Γs
∗

(f, g) = s∗(df, dg), Γs
∗

(f, f) = Γs
∗

(f),

Γs
∗

2 (f, g) =
1

2

(

LΓs
∗

(f, g)− Γ(Lf, g)− Γs
∗

(f, Lg)
)

, Γs
∗

2 (f, f) = Γs
∗

2 (f).

Assume that
1

2
(L(fg)− fLg − gLf) = h∗(df, dg).

for some positive semi-definite section h∗ of Sym2 TM . We say that L satisfies the
generalized curvature-dimension inequality (CD*) if there is another positive semi-
definite section v∗ of Sym2 TM , a positive number 0 < n ≤ ∞ and real numbers
ρ1, ρ2,0 and ρ2,1 such that for any ℓ > 0 and f ∈ C∞(M),

(CD*) Γh
∗+ℓv∗

2 (f) ≥ 1

n
(Lf)2 + (ρ1 − ℓ−1)Γh

∗

(f) + (ρ2,0 + ℓρ2,1)Γ
v∗

(f).

Let (M,H,h) be a sub-Riemannian manifold with H being a bracket-generating
subbundle of TM . Assume that we have an integrable metric-preserving comple-
ment V and let g be a Riemannian metric such that H and V are orthogonal, with
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h = g |H and v := g |V . Let h∗ and v∗ be their respective co-metrics. Relative to
these structures, we make the following assumptions.

(i) We define the curvature of H relative to the complement V as the vector
valued 2-form

R(A,Z) = prV [prH A, prH Z], A, Z ∈ Γ(TM).

We assume that there is a finite, minimal positive constant MR < ∞ such

that ‖R(v, �)‖g∗ ⊗g ≤ MR‖ prH v‖g for any v ∈ TM . Since MR is never

zero when V 6= 0, we can normalize v by requiring MR = 1. Let mR be the

maximal constant satisfying ‖α(R(� , �))‖∧2h∗ ≥ mR‖α‖v∗ pointwise for any

α ∈ Γ(T ∗M). Note that mR can only be non-zero if H is bracket-generating
of step 2, i.e. if H and its first order brackets span the entire tangent bundle.

(ii) Define RicH(Z1, Z2) = tr
(

A 7→ R∇̊(prH A,Z1)Z2

)

. This is a symmetric 2-
tensor, which vanishes for vectors in V . We assume that there is a lower

bound ρH for RicH, i.e. for every v ∈ TM , we have

RicH(v, v) ≥ ρH‖ prH v‖2h.

(iii) Write M
∇̊v∗ = supM

∥

∥∇̊
�

v∗(�, �)
∥

∥

g∗ ⊗ Sym2 g∗
and assume that it is finite.

Define

(∆′
hv

∗)(α, α) = trH(∇̊2
×,×v

∗)(α, α)

and assume that (∆′
hv

∗)(α, α) ≥ ρ∆′

h
v∗‖α‖2v∗ pointwise for any α ∈ Γ(T ∗M).

(iv) Finally, introduce RicHV as

RicHV(A,Z) =
1

2
tr
(

g(A, (∇̊×R)(×, Z)) + g(Z, (∇̊×R)(×, A))
)

.

Assume then that RicHV(Z,Z) ≥ −2MHV‖ prV Z‖v‖ prH Z‖h pointwise.

These assumptions guarantee that the sub-Laplacian ∆′
h of V satisfies (CD*).

Theorem 2.2. Define Γs
∗

2 with respect to L = ∆′
h. Then ∆′

h satisfies (CD*) with

(2.2)



































n = rankH,

ρ1 = ρH − c−1,

ρ2,0 =
1

2
m2

R − c(MHV + M
∇̊v∗)

2,

ρ2,1 =
1

2
ρ∆′

h
v∗ − M

2
∇̊v∗

,

for any positive c > 0.

See Part I, Section 3.2 for a geometric interpretation of these constants.

2.5. The case when ∇̊ preserves the metric. Assume that we can find a metric
tensor v on V satisfying ∇̊v∗ = 0. Then ∆′

h = ∆h, where ∆h is defined relative
to the volume form of the Riemannian metric g defined by g∗ = h∗ + v∗. Hence,
L = ∆h is symmetric with respect to this volume form and satisfies the inequality

(CD) Γh
∗+ℓv∗

2 (f) ≥ 1

n
(Lf)2 +

(

ρ1 − ℓ−1
)

Γh
∗

(f) + ρ2Γ
v∗

(f)
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with

(2.3)







ρ1 = ρH − c−1,

ρ2 =
1

2
m2

R − cM 2
HV ,

for any positive c > 0. We shall also need the following result.

Proposition 2.3. For any f ∈ C∞(M), and any c > 0 and ℓ > 0,

1

4
Γh

∗

(Γh
∗

(f)) ≤ Γh
∗

(f)
(

Γh
∗+ℓv∗

2 (f)− (̺1 − ℓ−1)Γh
∗

(f)− ̺2Γ
v∗

(f)
)

,

1

4
Γh

∗

(Γv
∗

(f)) ≤ Γv
∗

(f)Γv
∗

2 (f),

where ̺1 = ρH − c−1 and ̺2 = −cM 2
HV .

2.6. Spectral Gap. Let (M,H,h) be a compact sub-Riemannian manifold where
H is bracket-generating. Let L be a smooth second order operator without constant
term satisfying qL = h∗ and assume also that L is symmetric with respect to some
volume form vol on M . Assume that L satisfies (CD*) with ρ2,0 > 0. Let λ be any
nonzero eigenvalue of L. Then

nρ2,0
n+ ρ2,0(n− 1)

(

ρ1 −
k2
ρ2,0

)

≤ −λ, k2 = max{0,−ρ2,1}.

3. Results under conditions of a uniformly bounded gradient

3.1. Diffusions of second order operators. Let T 2M denote the bundle of
second order tangent vectors. Let L be a section of T 2M , i.e. a smooth second
order differential operator on L without constant term. Consider the short exact
sequence

0 → TM
inc−→ T 2M

q−→ Sym2 TM → 0

where qL = q(L) is defined by

(3.1) qL(df, dg) =
1

2
(L(fg)− fLg − gLf) , f, g ∈ C∞(M).

Assume that qL is positive semi-definite. Then for any point x ∈ M and relative

to some filtered probability space (Ω,F
�

,P), we have a 1
2L-diffusion X = X(x)

defined up to some explosion time τ = τ(x), see [12, Theorems 1.3.4 and 1.3.6]. In

other words, there exist an F
�

-adapted M -valued semimartingale X(x) satisfying
X0(x) = x and such that for any f ∈ C∞(M),

d(f(Xt))−
1

2
Lf(Xt) dt

is the differential of a local martingale up to τ(x). The diffusion X(x) is defined
on the stochastic interval [0, τ(x)), with τ(x) being an explosion time in the sense
that the event {τ(x) < ∞} is almost surely contained in {limt↑τ Xt(x) = ∞}. For
a construction of Xt(x) in the case of L = ∆′

h, see Part I, Section 2.5.
Let Pt be the corresponding semigroup Ptf(x) = E[1t≤τf(Xt(x))] for bounded

measurable functions f . Note that in general Pt1 ≤ 1 with equality if and only if
τ(x) = ∞ a.s. Also note that for any compactly supported f ∈ C∞

c (M), we have
∂tPtf = 1

2LPtf . If τ = ∞ a.s., then ut = Ptf is the unique solution to ∂tut =
1
2Lut

with initial condition u0 = f , where (t, x) 7→ ut(x) is a smooth function on R+×M .
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Since qL is positive semi-definite, we can write L (non-uniquely) as

L =

k
∑

i=1

Z2
i + Z0,

where k is an integer and Z0, Z1, . . . , Zk are vector fields, not necessarily linearly
independent at every point. If we assume that these vector fields and their brackets
span the entire tangent bundle, then L is a hypoelliptic operator [11]. Hence, it
has a smooth heat kernel with respect to any volume form on M . By [18], we also
have Ptf > 0 for any nonnegative function f ∈ C∞(M), not identically zero, see
also [13, Introduction]. We will only consider such second order operators in this
paper.

Write h∗ = qL. Assume that L satisfies (CD*) for some v∗. We want to use this
inequality to obtain statements of Pt. However, we are going to need the following
condition to hold to make such statements.

3.2. Boundedness of the gradient under the action of the heat semigroup.

The most important property which we are going to need for all of our results, is the
following condition. Let C∞

b (M) be the collection of all bounded smooth functions.

(A)
We have Pt1 = 1 and for any f ∈ C∞

b (M) with Γh
∗+v∗

(f) ∈ C∞
b (M)

and any T > 0, it holds that supt∈[0,T ] ‖Γh
∗+v∗

(Ptf)‖L∞ < ∞.

To understand condition (A) better, let us first discuss the special case when h = g

is a Riemannian metric, v∗ = 0 and L = ∆ is the Laplacian of g. Then (CD*)
holds if and only if the Ricci curvature is bounded from below, see e.g. [20]. If
we in addition know that g is complete, then (A) is satisfied. However, even if we
know that Pt1 = 1 and that the manifold is flat, condition (A) still may not hold if
g is an incomplete metric. See [19] for a counter-example.

We list some cases where we are ensured that (A) is satisfied. We expect there
to be more cases where this condition holds.

3.2.1. Fiber bundles with compact fibers. Let L be a second order operator on a
manifold M with qL = h∗. Let v∗ be any other co-metric such that h∗ + v∗ is
positive definite. The following observation was given in [21, Lemma 2.1, Proof (i)].

Lemma 3.1. Assume that there exists a function F ∈ C∞(M) and a constant

C > 0 satisfying

• {x : F (x) ≤ s} is compact for any s > 0,
• LF ≤ CF ,

• Γh
∗+v∗

(F ) ≤ CF 2.

Then (A) holds for the semigroup Pt of the diffusion of L.

Let (B, qg) be a complete n-dimensional Riemannian manifold with distance dqg

and Ricci bound from below by ρ ≤ 0. For a given point b0 ∈ B, define r = dqg(b0, �).

Then the function F =
√
1 + r2 (or rather an appropriately smooth approximation)

satisfies the above conditions relative to q∆. This follows from the fact that (outside
the cut-locus) Γqg(r) = 1 and from the Laplacian comparison theorem

q∆r ≤ (n− 1)

(

1

r
+
√−ρ

)

.
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Now let π : M → B be a fiber bundle with a compact fiber over this Rie-
mannian manifold B. Choosing an Ehresmann connection H on π, we define a
sub-Riemannian manifold (M,H,h) by h = π∗qg|H. Then F ◦ π clearly satisfies
Lemma 3.1 with respect to L = ∆′

h+Z where ∆′
h is the sub-Laplacian of V = kerπ∗

and Z is any vector field with values in V . It follows that (A) holds in this case.

Remark 3.2. Let π : M → B be a surjective submersion into a Riemannian mani-
folds (B, qg). Let H be an Ehresmann connection on π and define a sub-Riemannian
structure (H,h) by h = π∗qg|H. In this case, π is a distance-decreasing map from the
metric space (M, dcc) to (M, dqg), where the metrics dcc and dqg are defined relative
to (H,h) and qg, respectively. This follows from the observation that for any hori-
zontal curve γ in M from the point x to the point y, the curve π ◦ γ will be a curve
of equal length in B connecting π(x) with π(y), hence dcc(x, y) ≥ dqg(π(x), π(y)).
In particular, if dcc is complete, so is dqg, and the converse also hold if π is a fiber
bundle with compact fibers.

Furthermore, if ∆h is the sub-Laplacian of V = kerπ∗ satisfying (CD*), then the
Ricci curvature of B is bounded from below, since, by Remark 2.1, if we insert a
function f ◦ π, f ∈ C∞(B) into (CD*), we obtain the usual curvature-dimension
inequality on B,

Γqg
2 (f) ≥

1

n
(q∆)2 + ρ1Γ

qg(f).

A result in [4, Prop 6.2] tells us that ρ1 must be a lower Ricci bound for B.

We summarize all the above comments in the following proposition.

Proposition 3.3. Let (M,H,h) be a complete sub-Riemannian manifold with an

integrable metric preserving complement V. Let F be the foliation induced by V
and let ∆′

h be the sub-Laplacian of V. Assume that the leafs of F are compact

and that M/F gives us a well defined smooth manifold. Finally assume that L =
∆′

h + Z satisfies (CD*) with respect to some v∗ on V. Then (A) also hold for the

corresponding semigroup Pt of L.

Notice that in this case, unlike what we will discuss next, there is no requirement
on the number of brackets needed of vector fields in H in order to span the entire
tangent bundle.

3.2.2. A sub-Laplacian on a totally geodesic Riemannian foliation. Assume that
(M,g) is a complete Riemannian manifold with a foliation F given by an integrable
subbundle V . Let H be the orthogonal complement of V and assume that H is
bracket-generating. Write h = g |H. Define ∇̊ relative to the splitting TM = H⊕V
as in (2.1). Assume that ∇̊g = 0, which is equivalent to stating that V is a metric
preserving complement of (M,H,h) and that F is a totally geodesic foliation. Note
that since g is complete, so is (M, dcc), where dcc is defined relative to the sub-
Riemannian metric h. For such sub-Riemannian manifolds, the we can deduce the
following.

Theorem 3.4. Let ∆h be the sub-Laplacian of the volume form of g or equiva-

lently V . Assume that ∆h satisfies the assumptions of Theorem 2.2 with mR > 0.

Let k = max{−ρH,M 2
HV} ≥ 0. Then, for any compactly supported f ∈ C∞

c (M),
ℓ > 0 and t ≥ 0,

√

Γv∗(Ptf) ≤ Pt

√

Γv∗(f) ,
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√

Γh∗(Ptf) + Γv
∗

(Ptf) ≤ ekt/2Pt

(

√

Γh∗(f) + Γv
∗

(f)

)

+
2

k
(ekt/2 − 1),

where we interpret 2
k (e

kt/2 − 1) as t when k = 0. As a consequence (A) holds.

In particular, any 1
2∆h-diffusion X(x) with X0(x) = x ∈ M has infinite lifetime.

We remind the reader that mR > 0 can only happen if TM is spanned by H
and first order brackets of its sections. The proof is similar to the proof given for
the special case of sub-Riemannian manifolds with transverse symmetries of Yang-
Mills type given in [8, Section 3 & Theorem 4.3]. In our terminology, these are
sub-Riemannian manifolds with a trivial, integrable, metric-preserving complement
V satisfying MHV = 0. The key factors that allow us to use a similar approach are
Proposition 2.3 and the relation [∆h,∆]f = 0, where ∆ is the Laplace operator of
g and f ∈ C∞(M). The latter results follow from Lemma A.1 (c) in the Appendix.
Since the proof uses spectral theory and calculus on graded forms, it is left to
Appendix A.3.2. Theorem 3.4 also holds in some cases when V is not an integrable
subbundle. See Appendix A.5 for details.

3.3. General formulation. Let L be an operator as in Section 3.1 with corre-
sponding 1

2L-diffusion X(x) satisfying X0(x) = x and semigroup Pt. We will as-
sume that L satisfies (CD*) with v∗ and the constants n, ρ1, ρ2,0 and ρ2,1 being
implicit. Note that if L satisfies (CD*) for some value of the previously mentioned
constants, then L also satisfies the same inequality for any larger n or smaller values
of ρ1, ρ2,0 or ρ2,1. For the remainder of the section, no result will depend on n,
however, we will need condition (A) to hold.

Our proofs rely on the fact that, for any smooth function

(t, x) 7→ ut(x) ∈ C∞([0,∞)×M,R),

we have a stochastic process Yt = ut ◦Xt such that dYt equals ((∂t + L)ut) ◦Xt dt
modulo differentials of local martingales. Hence, if (∂t + L)ut ≥ 0 and if ut(�)
is bounded for every fixed t, then Yt is a (true) submartingale and E[Yt] is an
increasing function with respect to t.

In our presentation, we will usually state the result for a smooth, bounded func-
tion f ∈ C∞

b (M) with bounded gradient Γh
∗+v∗

(f) ∈ C∞
b (M). Our results gener-

alize theorems found in [8, 6, 7].
We will first construct a general type of inequality, from which many results can

be obtained. See [21, Theorem 1.1 (1)] for a similar result, with somewhat different
assumptions.

Lemma 3.5. Assume that L satisfies the conditions (CD*) and (A). For any

T > 0, let a, ℓ ∈ C([0, T ],R) be two continuous functions which are smooth and

positive on (0, T ). Assume that there exist a constant C, such that

(3.2) ȧ(t) +

(

ρ1 −
1

ℓ(t)

)

a(t) + C ≥ 0, ℓ̇(t) + ρ2,0 +

(

ρ2,1 +
ȧ(t)

a(t)

)

ℓ(t) ≥ 0,

holds for every t ∈ (0, T ). Then

a(0)Γh
∗+ℓ(0)v∗

(PT f) ≤ a(T )PTΓ
h∗+ℓ(T )v∗

(f) + C
(

PT f
2 − (PT f)

2
)

for any f ∈ C∞
b (M) with Γh

∗+v∗

(f) ∈ C∞
b (M).
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Proof. Define ut by ut(x) = PT−tf(x) for any 0 ≤ t ≤ T , x ∈ M . For any x ∈ M ,
consider the stochastic process

Yt(x) := a(t)Γh
∗+ℓ(t)v∗

(ut) ◦Xt(x) + Cu2
t ◦Xt(x).

Write
loc
= for equivalence modulo differentials of local martingales. Then, if (3.2)

holds

dYt
loc
=
(

ȧ(t)Γh
∗+ℓ(t)v∗

(ut) + a(t)ℓ̇(t)Γv
∗

(ut) + CΓh
∗

(ut)
)

◦Xtdt

+ a(t)Γ
h∗+ℓ(t)v∗

2 (ut) ◦Xtdt

≥
(

ȧ(t) + (ρ1 − ℓ(t)−1)a(t) + C
)

Γh
∗

(ut) ◦Xtdt

+ a(t)

(

ℓ̇(t) +
ȧ(t)

a(t)
+ ρ2,0 + ρ2,1ℓ(t)

)

Γv
∗

(ut) ◦Xtdt ≥ 0.

Since Yt is bounded by (A), it is a true submartingale. Hence

E[YT ] = a(T )PTΓ
h∗+ℓ(T )v∗

(f) + CPT f
2

≥ E[Y0] = a(0)Γh
∗+ℓ(0)v∗

(PT f) + C(PT f)
2.

� �

3.4. Gradient bounds. We give here the first results that follow from Lemma 3.5.

Proposition 3.6. Assume that L satisfies conditions (CD*) and (A). Let f ∈
C∞

b (M) be any smooth bounded function satisfying Γh
∗+v∗

(f) ∈ C∞
b (M).

(a) For any constant ℓ > 0, if α(ℓ) = min
{

ρ1 − 1
ℓ , ρ2,1 +

ρ2,0

ℓ

}

, then

Γh
∗+ℓv∗

(Ptf) ≤ e−α(ℓ)tPtΓ
h∗+ℓv∗

(f).

(b) Assume that ρ2,0 > 0 and let k1 = max{0,−ρ1} and k2 = max{0,−ρ2,1}. Then

tΓh
∗

(Ptf) ≤
(

1 +
2

ρ2,0
+

(

k1 +
k2
ρ2

)

t

)

(Ptf
2 − (Ptf)

2).

(c) Assume that ρ1 ≥ 0, ρ2,1 ≥ 0 and ρ2,0 > 0. Then

1− e−ρ1t

ρ1
Γh

∗

(Ptf) ≤
(

1 +
2

ρ2,0

)

(

Ptf
2 − (Ptf)

2
)

,

where we interpret (1 − e−ρ1t)/ρ1 as t when ρ1 = 0.
(d) Assume that ρ1, ρ2,0 and ρ2,1 are nonnegative. Then for any ℓ > 0

ℓ

ℓ+ t

(

Ptf
2 − (Ptf)

2
)

≤ tPtΓ
h∗+(ℓ+t)v∗

(f).

Proof. For all of our results (a)–(c), we will use Lemma 3.5.

(a) Let ℓ(t) = ℓ be a constant, choose C = 0 and put a(t) = e−α(ℓ)t. Then (3.2) is
satisfied and we obtain

Γh
∗+ℓv∗

(PT f) ≤ e−α(ℓ)TPTΓ
h∗+ℓv∗

(PT f).

(b) For any T ≥ 0, consider a(t) = T − t and ℓ(t) =
ρ2,0

Tk2+2 (T − t). Then

ℓ̇(t) + ρ2,0 +

(

ρ2,1 +
ȧ(t)

a(t)

)

ℓ(t) ≥ 0,
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and

ȧ(t) + (ρ1 − ℓ(t)−1)a(t) ≥ −1− k1 −
Tk2 + 2

ρ2,0
,

so (3.2) is satisfied if we define C = 1 + k1T + Tk2+2
ρ2,0

. Using Lemma 3.5, we

obtain

TΓh
∗+

ρ2,0
Tk2+2

Tv∗

(PT f) ≤ C(PT f
2)− C(PT f)

2.

(c) Since the case ρ1 = 0 is covered in (b), we can assume ρ1 > 0. Define

a(t) =
1− e−ρ1(T−t)

ρ1

and let

ℓ(t) = ρ2,0

∫ T

t a(s) ds

a(t)
= ρ2,0

e−ρ1(T−t) − 1 + ρ1(T − t)

ρ1(1− e−ρ1(T−t))
.

Note that limt↑T ℓ(t) = 0, while limt↑T a(t)/ℓ(t) = 2/ρ2,0. The latter number
is also an upper bound for a(t)/ℓ(t) since

d

dt

a(t)

ℓ(t)
=

a(t)
(

2ȧ(t)
∫ T

t a(s) ds+ a(t)2
)

ρ2,0(
∫ T

t
a(s)ds)2

> 0

from the fact that

2ȧ(t)

∫ T

t

a(s)ds+ a(t)2

=
1

ρ21

(

−2e−ρ1(T−t)
(

e−ρ1(T−T ) − 1 + ρ1(T − t)
)

+ (1 − e−ρ1(T−t))2
)

=
1

ρ21

(

−2ρ1(T − t)e−ρ1(T−t) + 1− e−2ρ1(T−t)
)

.

and that s 7→ 1 − e−2s − 2xe−2s is an increasing function, vanishing at s = 0.
We can then define C = 1 + 2

ρ2,0
such that a(t), ℓ(t) and C satisfies (3.2).

(d) Define a(t) = t, ℓ(t) = (ℓ+T )t
T and C = − ℓ

ℓ+T , then (3.2) is satisfied. �

�

We see here that the results of (a) and (d) cannot be stated independently of a
choice of co-metric v∗. However, in the case of (a), this does help us to get global
statements that are independent of v∗.

3.5. Bounds for the L2-norm of the gradient and the Poincaré inequality.

We want to use an approach similar to what is used in [6, Corollary 2.4] to obtain
a global inequality from the pointwise estimate in Proposition 3.6 (a) which is
independent of v∗.

Lemma 3.7. Let L ∈ Γ(T 2M) be a second order operator without constant term

and with qL = h∗ positive semi-definite. Assume also that there exists a volume

form vol, such that
∫

M

fLg dvol =

∫

M

gLf dvol, f, g ∈ C∞
c (M),

and that L is essentially self-adjoint on compactly supported functions C∞
c (M).
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Let Ptf be the semigroup defined as in Section 3.1 and let b : C∞
c (M)× [0,∞) →

R be any function such that

(3.3) ‖Γh∗

(Ptf)‖L1 ≤ b(f, t), for any f ∈ C∞
c (M), t > 0.

Assume that β(f, t) := limT→∞ b(f, T )t/T exist for every t > 0. Then

‖Γh∗

(Ptf)‖L1 ≤ β(f, t)‖Γh∗

(f)‖ for any f ∈ C∞
c (M).

Proof. Denote the unique self-adjoint extension of L an operator on L2(M, vol) by
the same letter, and let Dom(L) be its domain. Then et/2Lf is the unique solution
in L2(M, vol) of equation ∂tut = 1

2Lut with initial condition u0 = f ∈ C∞
c (M).

Since Ptf is in L2(M, vol) whenever f is in L2(M, vol), we have Ptf = et/2Lf (see
Appendix A.3 for more details).

Notice that since qL = h∗ is positive semi-definite, the self-adjoint operator L
is nonpositive. Let 〈� , �〉 denote the inner product on L2(M, vol). Consider the

spectral decomposition L = −
∫∞

0 λdEλ. Then since ‖Γh∗

(f)‖L1 = −〈f, Lf〉, while
‖Γh∗

(Ptf)‖L1 = −〈f, LP2tf〉,
the Hölder inequality tells us that for any 0 < t < T ,

‖Γh∗

(Ptf)‖L1 =

∫ ∞

0

λe−tλd〈Eλf, f〉

≤
(∫ ∞

0

λe−λT d〈Eλf, f〉
)t/T (∫ ∞

0

λd〈Eλf, f〉
)(T−t)/T

≤ b(f, T )t/T‖Γh∗

(f)‖T/(T−t)
L1 .

Let T → ∞ for the result. � �

We combine this result with the curvature-dimension inequality.

Proposition 3.8. Let L be any second order operator such that the Carnot-Cara-

théodory metric dcc defined by the sub-Riemannian co-metric h∗ := qL is complete.

Assume that L satisfies (CD*) and that (A) holds. Assume also that L is symmetric

with respect to any volume form vol, i.e.
∫

M
fLg dvol =

∫

M
gLf dvol for any f, g ∈

C∞
c (M).

(a) For any f ∈ C∞
c (M),

‖Γh∗

(Ptf)‖L1 ≤ e−kt‖Γh∗

(f)‖L1 ,

where k = min{ρ1, ρ2,1}.
(b) Assume that ρ1 ≥ ρ2,1 and ρ2,0 > −1. Then for any f ∈ C∞

c (M),

‖Γh∗

(Ptf)‖L1 ≤ e−αt‖Γh∗

(f)‖L1 , α :=
ρ2,0ρ1 + ρ2,1

ρ2,0 + 1
.

Furthermore, if α > 0 and h∗ + v∗ is a complete Riemannian co-metric, then

vol(M) < ∞.

(c) Assume that the conditions in (b) hold with α > 0 and vol(M) < ∞. Then for

any f ∈ C∞
c (M),

‖f − fM‖2L2 ≤ 1

α

∫

M

Γh
∗

(f) dvol,

where fM = vol(M)
−1 ∫

M f dvol. As a consequence, if λ is any non-zero eigen-

value of the Friedrichs extension of L, then α ≤ −λ.
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Proof. (a) By Proposition 3.6 (a), we have

‖Γh∗

(Ptf)‖L1 ≤ e−α(ℓ)t‖Γh∗+ℓv∗

(f)‖L1

with α(ℓ) = min{ρ1 − 1/ℓ, ρ2,1 + ρ2,0/ℓ} holds for any f ∈ C∞
c (M). It follows

that ‖Γh∗

(Ptf)‖L1 ≤ e−α(ℓ)t‖Γh∗

(f)‖L1 from Lemma 3.7. For every t, we then
take the infimum over ℓ to get

inf
ℓ
e−αt ≤ e−kt with k = min{ρ1, ρ2,1}.

(b) With α(ℓ) defined as in the proof of (a), note that if ρ1 ≥ ρ2,1 and if ρ2 > −1,
then

inf
ℓ
e−α(ℓ)t = exp

(

−ρ2,0ρ1 + ρ2,1
ρ2,0 + 1

t

)

= e−αt

which gives us the first part of the result.
For the second part, we assume that ρ1 > ρ2,1, since if α > 0 with ρ1 = ρ2,1,

then we can always decrease ρ2,1 while keeping α positive. For two compactly
supported functions f, g ∈ C∞

c (M), note that
∫

M

(Ptf − f)g dvol =

∫

M

∫ t

0

(

d

ds
Psf

)

g ds dvol

=
1

2

∫ t

0

∫

M

(∆hPsf)g dvol ds =
1

2

∫ t

0

∫

M

Γh
∗

(Psf, g) dvol ds.

Hence, by the Cauchy-Schwartz inequality
∣

∣

∣

∣

∫

M

(Ptf − f)g dvol

∣

∣

∣

∣

≤ 1

2

∫ t

0

∫

M

‖Γh∗

(Psf)‖1/2L∞Γh
∗

(g)1/2 d vol,

which has upper bound

1

2

∥

∥

∥

∥

Γh
∗

(f) +
ρ2,0 + 1

ρ1 − ρ2,1
Γv

∗

(f)

∥

∥

∥

∥

1/2

L∞

∫

M

Γh
∗

(g)1/2 dvol

∫ t

0

e−αsds,

by Proposition 3.6 (a). From the spectral theorem, we know that Ptf reaches
an equilibrium P∞f which is in Dom(L) and satisfies LP∞f = 0. Since this

implies Γh
∗

(P∞f) = 0, we must have that P∞f is a constant.
Assume that vol(M) = ∞. Then P∞f = 0 and hence, for any f, g ∈ C∞

c (M),
we have
∣

∣

∣

∣

∫

M

fg dvol

∣

∣

∣

∣

≤ 1

2α

∥

∥

∥

∥

Γh
∗

(f) +
ρ2,0 + 1

ρ1 − ρ2,1
Γv

∗

(f)

∥

∥

∥

∥

1/2

L∞

∫

M

Γh
∗

(g)1/2 dvol .

However, since g is complete, we can find a sequence of functions fn ∈ C∞
c (M)

such that fn ↑ 1 while ‖Γg∗

(fn)‖L∞ → 0. Inserting such a sequence for f
in the above formula and letting n → ∞, we obtain the contradiction that
∫

M
g dvol = 0 for any g ∈ C∞

c (M).
(c) Follows from the identity

‖f − fM‖2L2 =

∫

M

f2 dvol− 1

vol(M)

(∫

M

f dvol

)2

= −
∫ ∞

0

∂

∂t

∫

M

(Ptf)
2 dvol dt

=

∫ ∞

0

∫

M

Γh
∗

(Ptf) dvol dt ≤
1

α
‖Γh∗

(f)‖L1 .
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�

�

4. Entropy and bounds on the heat kernel

4.1. Commutating condition on Γh
∗

and Γv
∗

. For some of our inequalities
involving logarithms, we will need the following condition. Let L ∈ Γ(T 2M) be a
second order operator without constant term with positive semi-definite qL = h∗

defined as in (3.1). Assume that L satisfies either (CD*) or (CD) with respect to
positive semi-definite v∗. We say that condition (B) holds if

(B) Γh
∗

(f, Γv
∗

(f)) = Γv
∗

(f, Γh
∗

(f)) for every f ∈ C∞(M).

We make the following observation.

Lemma 4.1. Let g be a Riemannian metric on a manifold M , with an orthogonal

splitting TM = H ⊕⊥ V and use this decomposition to define the connection ∇̊
as in (2.1). Write g |H = h and g |V = v and let h∗ and v∗ be their respective

corresponding co-metrics. Then

Γh
∗

(f, Γv
∗

(f)) = Γv
∗

(f, Γh
∗

(f))

holds for every f ∈ C∞(M) if and only if ∇̊v∗ = ∇̊h∗ = 0.

Proof. It is simple to verify that for any A ∈ Γ(H) and V ∈ Γ(V), we have

∇̊Ah
∗ = 0, ∇̊V v

∗ = 0, T ∇̊(A, V ) = 0,

where T ∇̊ is the torsion of ∇̊. Define ♯h
∗

as in Section 2 and let ♯v
∗

be defined
analogously. Using the properties of ∇̊, we get

Γh
∗

(f, Γv
∗

(f))− Γv
∗

(f, Γh
∗

(f)) = (♯h
∗

df)‖df‖2v∗ − (♯v
∗

df)‖df‖2h∗

= 2∇̊♯h∗dfdf(♯
v∗

df)− 2∇̊♯v∗dfdf(♯
h∗

df)

+ (∇̊♯h∗dfv
∗)(df, df) − (∇̊♯v∗dfh

∗)(df, df)

= (∇̊♯h∗dfv
∗)(df, df)− (∇̊♯v∗dfh

∗)(df, df).

Since T ∗M = kerh∗⊕kerv∗ and since ∇̊ preserves these kernels, the above expres-
sion can only vanish for all f ∈ C∞(M) if ∇̊h∗ = 0 and ∇̊v∗ = 0. � �

Let L, Pt and X(x) be as in Section 3.1. In this section, we explore the results
we obtain when both conditions (A) and (B) hold. We will also assume that L
satisfies (CD) rather than (CD*). The reason for this is that in the concrete case
when L is the sub-Laplacian of a sub-Riemannian manifold with an integrable
metric-preserving complement, the condition (B) along with the assumptions of
Theorem 2.2 imply (CD), see Section 2. For most of the results, we also need the
requirement that ρ2 > 0. This means that we can use the results of [8, 6, 7].

Let us first establish some necessary identities. Let Pt be the minimal semigroup
of 1

2L where qL = h∗. For a given T > 0, let ut := PT−tf with f ∈ C∞(M) ∩
L∞(M). It is clear that (12L + ∂

∂t )Γ
s∗(ut) = Γs

∗

2 (ut) for any s∗ ∈ Γ(Sym2 TM).
Also note that if F : U ⊆ R → R be a smooth function, then for any f ∈ C∞(M)
with values in U , we obtain

LF (f) = F ′(f)Lf + F ′′(f)Γh
∗

(f).

Straight-forward calculations lead to the following identities.
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Lemma 4.2.

(a) If ut = PT−tf has values in the domain of F , then
(

1

2
L+

∂

∂t

)

F (ut) =
1

2
F ′′(ut)Γ

h∗

(ut).

In particular, if ut is positive then

(

1

2
L+

∂

∂t

)

log ut = −Γh
∗

(ut)

2u2
t

,

(

1

2
L+

∂

∂t

)

ut log ut =
Γh

∗

(ut)

2ut
=

1

2
utΓ

h∗

(log ut).

(b) For any s∗ ∈ Γ(Sym2 TM), we have
(

1

2
L+

∂

∂t

)

utΓ
s∗(log ut)

= ut Γ
s∗

2 (log ut) + ut

(

Γh
∗

(log ut, Γ
s∗(log ut))− Γs

∗

(log ut, Γ
h∗

(log ut))
)

.

In particular,
(

1
2L+ ∂

∂t

)

utΓ
h∗

(log ut) = utΓ
h∗

2 (log ut). If v
∗ is any co-metric such

that Γh
∗

(f, Γv
∗

(f)) = Γv
∗

(f, Γh
∗

(f)), then
(

1
2L+ ∂

∂t

)

utΓ
v∗

(log ut) = utΓ
v∗

2 (log ut)
as well.

4.2. Entropy bounds and Li-Yau type inequality. We follow the approach of
[3], [8, Theorem 5.2] and [21, Theorem 1.1].

Lemma 4.3. Assume that L satisfies (CD). Also assume that (A) and (B) hold.

Consider three continuous functions a, b, ℓ : [0, T ] → R with a(t) and ℓ(t) being

non-negative. Let C be a constant. Assume that a(t), b(t) and ℓ(t) are smooth for

t ∈ (0, T ) and on the same domain satisfy

(4.1)

{

0 ≤ ȧ(t) +
(

ρ1 − 1
ℓ(t) − 2b(t)

)

a(t) + C

0 ≤ ℓ̇(t) + ρ2 +
ȧ(t)
a(t)ℓ(t).

Consider a positive function f ∈ C∞
b (M), f > 0 with bounded gradient Γh

∗+v∗

(f) ∈
C∞

b (M). Then we have

a(0)PT f Γh
∗+ℓ(0)v∗

(logPT f)− a(T )PT

(

fΓh
∗+ℓ(T )v∗

(log f)
)

≤ 2C (PT (f log f)− (PT f) logPT f)

+ n

(

∫ T

0

a(t)b(t)2dt

)

PT f − 2

(

∫ T

0

a(t)b(t)dt

)

PTLf.

Proof. We have Ptf > 0 from our assumptions on L and f . For any T > 0, define
ut = PT−tf for 0 ≤ t ≤ T and

Yt = a(t)
(

ut Γ
h∗

(log ut) + ℓ(t)ut Γ
v∗

(log ut)
)

◦Xt

+ 2C (ut log ut) ◦Xt +

∫ t

0

a(s)
(

nb(s)2us − 2b(s)Lus

)

◦Xs ds.
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Let us write
loc
= for equivalence modulo differentials of local martingales. We use

that

Lut = utL log ut +
Γh

∗

(ut)

ut
= utL log ut + utΓ

h∗

(log ut)

and (CD) to obtain

dYt
loc
= (ȧ(t)− 2a(t)b(t) + C)utΓ

h∗

(log ut) ◦Xt dt

+
(

ȧ(t)ℓ(t) + a(t)ℓ̇(t)
)

Γv
∗

(log ut) ◦Xt dt

+ a(t)utΓ
h∗+ℓ(t)v∗

2 (log ut) ◦Xt dt

+ a(t)ut

(

nb(t)2 − 2b(t)L log ut

)

◦Xt dt

≥
(

ȧ(t) +

(

ρ1 −
1

ℓ(t)
− 2b(t)

)

a(t) + C

)

utΓ
h∗

(log ut) ◦Xt dt

+ a(t)

(

ℓ̇(t) + ρ2 +
ȧ(t)

a(t)
ℓ(t)

)

Γv
∗

(log ut) ◦Xt dt

+ na(t)ut (b(t)− L log ut)
2 ◦Xt dt.

Y is then a submartingale from (4.1). The result follows from E[YT ] ≥ E[Y0]. �

�

We look at some of the consequences of Lemma 4.3.

Corollary 4.4. Assume that L satisfies (CD) with ρ2 > 0, and that (A) and (B)
also hold. Let f ∈ C∞

b (M) be any bounded smooth function with Γh
∗+v∗

(f) ∈
C∞

b (M).

(a) (Entropy bound) Assume that ρ1 ≥ 0 and that f > 0. Then for any x ∈ M ,

1− e−ρ1t

2ρ1
Γh

∗

(logPtf)(x) ≤
(

1 +
2

ρ2

)

Pt

(

f

Ptf(x)
log

f

Ptf(x)

)

(x).

(b) (Li-Yau inequality) Assume that n < ∞ in (CD) and that f ≥ 0, not identically
zero. Then for any 1 < β < 2 and for any t ≥ 0,

Γh
∗

(Ptf)

(Ptf)2
− (aβ − bβρ1t)

PtLf

Ptf
≤ n

4t

(

a2β
(2− β)(β − 1)

− ρ1t(2aβ − bβρ1t)

)

(4.2)

where aβ =
ρ2 + β

ρ2
and bβ =

β − 1

β
.

The special case of β = 2/3 in (4.2) is described with consequences in [8, The-

orem 6.1]. If ρ1 ≥ 0, then for many application β =
√

(2 + ρ2)(1 + ρ2) − ρ2 is a
better choice, as this minimizes the ratio of a2β/(2− β)(β − 1) over aβ. With this
choice, we obtain relation

1

D

Γh
∗

(Ptf)

(Ptf)2
− PtLf

Ptf
≤ N

t
,(4.3)

where

(4.4) N :=
n

4

(
√
2 + ρ2 +

√
1 + ρ2)

2

ρ2
, D =

√

(2 + ρ2)(1 + ρ2)

ρ2
.
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Proof. Recall that if f ∈ C∞
b (M) is non-negative and non-zero, then Ptf is strictly

positive.

(a) We will use Lemma 4.3. As in Proposition 3.6 (c), for any T ≥ 0, define

a(t) =
1− e−ρ1(T−t)

ρ1
, ℓ(t) = ρ2,0

∫ T

t a(s) ds

a(t)
= ρ2,0

e−ρ1(T−t) − 1 + ρ1(T − t)

ρ1(1− e−ρ1(T−t))

and C = 1 + 2/ρ2. If we define b(t) ≡ 0, condition (4.1) is satisfied. Hence,

1− e−ρ1T

ρ1

Γh
∗+

ρ2T

2
v∗

(PT f)

PT f
≤
(

1 +
2

ρ2

)

(

PT (f log f)− (PT f) logPT f
)

.

Divide by PT f and evaluate at x for the result.
(b) For any ε > 0, define fε = f + ε > 0. For any α > 0 and T > 0, define

ℓ(t) = ρ2

α+2 (T − t), a(t) = (T − t)α+1 and

b(t) =
1

2

(

ρ1 +
ȧ

a
− 1

ℓ

)

=
1

2

(

ρ1 −
(

α+ 1 +
α+ 2

ρ2

)

1

T − t

)

.

Note that
∫ T

0

a(t)b(t) dt =
1

2

(

ρ1
α+ 2

Tα+2 −
(

1 +
α+ 2

ρ2(α + 1)

)

Tα+1

)

,

∫ T

0

a(t)b(t)2 dt =
1

4

(

ρ21
α+ 2

Tα+2 −2ρ1

(

1 +
α+ 2

ρ2(α+ 1)

)

Tα+1

+
(α + 1)2

α

(

1 +
α+ 2

ρ2(α+ 1)

)2

Tα

)

.

If we put C = 0, then (4.1) is satisfied and so if we use fε in Lemma 4.3 and
let ε ↓ 0, we get

Γh
∗+

ρ2T

α+2
v∗

(PT f)

PT f
+

(

ρ1
α+ 2

T −
(

1 +
α+ 2

ρ2(α+ 1)

))

PTLf

≤ n

4

(

ρ21
α+ 2

T − 2ρ1

(

1 +
α+ 2

ρ2(α+ 1)

)

+
(α+ 1)2

α

(

1 +
α+ 2

ρ2(α+ 1)

)2
1

T

)

PT f.

Define β := (α + 2)/(α+ 1) to obtain (4.2). �

�

Using (4.3) and the approach found in [8, Remark 6.2 and Section 7] and [7], we
obtain the following results.

Corollary 4.5. Assume that L satisfies (CD) relative to v∗ with ρ1 ≥ 0, ρ2 > 0
and n < ∞. Write g∗ = h∗ + v∗. Also assume that (A) and (B) hold and that L
is symmetric with respect to the volume form vol. Let pt(x, y) be the heat kernel of
1
2L with respect to vol. Finally, let N and D be as in (4.4). Then the following

holds.

(a) pt(x, x) ≤ t−N/2p1(x, x) for any x ∈ M .

(b) For any 0 < t0 < t1 and any f ∈ C∞
b (M) non-negative, not identically zero,

(4.5) Pt0f(x) ≤ (Pt1f)(y)

(

t1
t0

)N/2

exp

(

D
dcc(x, y)

2

2(t1 − t0)

)
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where dcc is the Carnot-Carathéodory distance. If g∗ is the co-metric of a

complete Riemannian metric, then

pt0(x, y) ≤ pt1(x, z)

(

t1
t0

)N/2

exp

(

D
dcc(y, z)

2

2(t1 − t0)

)

.

There are several more results which we can obtain when (A) and (B) hold, along
with the fact that L satisfies (CD) with ρ2 > 0, which can be found in [8, 6, 7].
We list some of the most important results here, found in [8, Theorem 10.1] and [7,
Theorem 1.5].

Theorem 4.6. Let L be a second order operator satisfying (CD) with respect to v∗

and with ρ2 > 0. Assume that it is symmetric with respect to some volume form

vol. Define g∗ = h∗ + v∗ and assume that this is a complete Riemannian metric.

Finally, assume that conditions (A) and (B) hold. Let Br(x) be the ball of radius

r centered at x ∈ M with respect to the metric dcc.

(a) (Sub-Riemannian Bonnet-Myers Theorem) If ρ1 > 0, then M is compact.

(b) (Volume doubling property) If ρ1 ≥ 0, there exist a constant C such that

vol(B2r(x)) ≤ C vol(Br(x)), for any r ≥ 0.

(c) (Poincaré inequality on metric-balls) If ρ1 ≥ 0, there exist a constant C such

that
∫

Br(x)

‖f − fBr
‖2 dvol ≤ Cr2

∫

Br(x)

Γh
∗

(f)d vol,

for any r ≥ 0 and f ∈ C1
(

B̄r(x)
)

where fBr
= vol(Br(x))

−1

∫

Br(x)

f dvol.

5. Examples and comments

5.1. Results in the case of totally geodesic Riemannian foliations. Let us
consider the following case. Let (M,g) be a Riemannian manifold, and let H be a
subbundle that is bracket generating of step 2, i.e. the tangent bundle is spanned by
the sections ofH and their first order brackets. Let V be the orthogonal complement
of H with respect to g. Define ∇̊ with respect to the decomposition TM = H⊕ V
and let h and v be the respective restrictions of g to H and V . Let us make the
following assumptions:

- V is integrable, g is complete, ∇̊g = 0 and the assumptions (i)–(iv) of Section 2

hold with mR > 0.

From our investigations so far, we then know that

- V is a metric-preserving complement of (M,H,h); the foliation of V is a totally
geodesic Riemannian foliation.

- the sub-Laplacian ∆h of V is symmetric with respect to the volume form vol of g;
- ∆h is essentially self-adjoint on C∞

c (M);
- ∆h satisfies (CD) with respect to v∗;
- both (A) and (B) hold.

We list the results that can be deduced on such manifolds using the approach of
the generalized curvature-dimension inequality. We will split the results up into
two propositions.
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Proposition 5.1. Define κ = 1
2m

2
RρH − M 2

HV and assume that κ ≥ 0. Let f ∈
C∞

b (M) be non-negative, not identically zero. Define

N =
n

4

(

√

2ρH + κ+

√

ρH + κ

)2

κ
, D =

√

(κ+ ρH)(κ+ 2ρH)

κ
.

(a) Assume that Γh
∗+v∗

(f) ∈ C∞
b (M). Then for any 1 < β < 2, we have

Γh
∗

(Ptf)

(Ptf)2
−
(

1 +
ρH
2κ

β

)

PtLf

Ptf
≤ n

4t





(

1 +
ρ
H

2κ β
)2

(2 − β)(β − 1)



 .

(b) Let pt(x, y) be the heat kernel of 1
2∆h with respect to vol. Then

pt(x, x) ≤
1

tN/2
p1(x, x)

for any x ∈ M and 0 ≤ t ≤ 1. Furthermore, for any 0 < t0 < t1,

Pt0f(x) ≤ (Pt1f)(y)

(

t1
t0

)N/2

exp

(

D
dcc(x, y)

2

2(t1 − t0)

)

.

In both results, if κ = 0, we interpret the quotient κ/ρH as 1
2m

2
R.

Note that if MHV = 0, the constant in the above result is independent of ρH.

Proof. From the formulas (2.3), we know that ∆h satisfies (CD) with ρ2 > 0 and

ρ1 ≥ 0. In particular, we can choose c = 1/ρH if ρH > 0 and ∞ if ρH = 0. This

choice gives us ρ1 = 0, while maximizing ρ2. Note that if ρH = 0, then MHV must
be 0 as well, since we have required κ ≥ 0. � �

Example 5.2 (Free nilpotent Lie algebra of step 2). Let h be a vector space of

dimension n with an inner product 〈�, �〉 and let k denote the vector space
∧2

h.
Define a Lie algebra g as the vector space h⊕ k with Lie brackets determined by k

being the center and for any A,B ∈ h, we have

[A,B] = A ∧B ∈ k, .

This is clearly a nilpotent Lie algebra of step 2 and dimension n(n+ 1)/2.
Let G be a simply connected nilpotent Lie group with Lie algebra g. Define a

sub-Riemannian structure (H,h) by left translation of h and its inner product. Let
A1, . . . , An be a left invariant orthonormal basis of H and define L =

∑n
i=1 A

2
i .

From Part I, Example 4.4, we know that L satisfies (CD) with respect to some v∗,
n = rank h, ρ1 = 0 and ρ2 = 1

2(n−1) . This choice of v∗ also gives us a complete

Riemannian metric g satisfying ∇̊g = 0 and with L being the sub-Laplacian of the
volume form of g. We then obtain that for any 0 < t0 < t1 and f ∈ C∞

b (M)

Pt0f(x) ≤ (Pt1f)(y)

(

t1
t0

)N/2

exp

(

D
dcc(x, y)

2

2(t1 − t0)

)

where N = n
4

(√
4n− 3 +

√
2n− 1

)2
and D =

√

(2n− 1)(4n− 3).
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Proposition 5.3. Define κ = 1
2m

2
RρH − M 2

HV and assume that κ > 0. Then the

following statements hold.

(a) M is compact.

(b) If f ∈ C∞(M) is an arbitrary function and

α :=





2κ

2MHV +mR

√

2ρH + 2κ





2

,

we have

‖Γh∗

(Ptf)‖L1 ≤ e−αt‖Γh∗

(f)‖L1, and ‖f − fM‖2L2 ≤ 1

α

∫

M

Γh
∗

(f) dvol

where fM = vol(M)
−1 ∫

M f dvol.
(c) Let f ∈ C∞(M) be an arbitrary function. Then

tΓh
∗

(Ptf) ≤
(

1 +
2ρH
κ

)

(Ptf
2 − (Ptf)

2).

(d) Let f be a strictly positive smooth function. Then for any x ∈ M ,

tΓh
∗

(logPtf)(x) ≤ 2

(

1 +
2ρH
κ

)

Pt

(

f

f(x)
log

f

f(x)

)

(x).

Proof. From the formulas (2.3), we know that ∆h satisfies (CD) with ρ2 > 0 and
ρ1 > 0.

(a) Follows directly from Theorem (4.6) (a).

(b) We use Propositions 3.6 (a) and 3.8 (b). With our assumption of ∇̊v = 0, the
formulas (2.2) show that we can choose ρ2,1 = 0 and both ρ1 and ρ2 strictly
positive, since κ > 0. The result follows by maximizing ρ2ρ1

ρ2+1 with respect to c.

(c) We use Proposition 3.6 (c) and using (2.3) with c = 1/ρH.
(d) Similar to the proof of (c), only using Corollary 4.4 (a) instead. �

�

Example 5.4. Let g be a compact semisimple Lie algebra with bi-invariant metric

〈A,B〉 = − 1

4ρ
tr ad(A) ad(B), ρ > 0.

Let G be a (compact) Lie group with Lie algebra G and with metric qg given by
left (or right) translation of the above inner product. Then ρ > 0 is the lower Ricci
bound of G.

Let h be the subspace of the Lie algebra g⊕g consisting of elements on the form
(A, 2A), A ∈ g. Define the subbundle H on G × G by left translation of h. If we
use the same symbol for an element in the Lie algebra and the corresponding left
invariant vector field, we define a metric h on H by

h((A, 2A), (A, 2A)) = 〈A,A〉.
Define π : G×G → G as projection on the second coordinate with vertical bundle
V = kerπ∗ and give this bundle a metric v determined by

‖(A, 0)‖2v =
1

4ρ
〈A,A〉.
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If we then define ∇̊ relative to H ⊕ V and g = pr∗H h + pr∗V v, then ∇̊g = 0. Let
∆h be the sub-Laplacian with respect to V , which coincides with the sub-Laplacian
of the volume form vol of g. We showed in Part I, Example 4.6 that this satisfies

(CD) with respect to v∗, n = dimG, ρ1 = ρH = 4ρ and ρ2 = 1
2m

2
R = 1/4.

We then have that for any f ∈ C∞(G×G),

‖f − fG×G‖2L2 =
5

4ρ

∫

M

Γh
∗

(f) dvol

where fG×G = vol(G×G)
−1 ∫

G×G
f dvol .

5.2. Comparison to Riemannian Ricci curvature. Let us consider a sub-
Riemannian manifold such as in Section 5.1. Given the results of Proposition 5.1
and Proposition 5.3, it seems reasonable to consider sub-Riemannian manifolds
with κ ≥ 0 or κ > 0 as the analogue of Riemannian manifolds with respectively
non-negative and positive Ricci curvature. However, given the extra structure in
the choice of v on V , it is natural to ask how these sub-Riemannian results compare
to the Ricci curvature of the metric g = pr∗H h + pr∗V v. We give the comparison
here.

Introduce the following symmetric 2-tensor

RicV(Y, Z) = tr
(

V 7→ prV R∇̊(V, Y )Z
)

.

Then the Ricci curvature of g can be written in the following way.

Proposition 5.5. The Ricci curvature Ricg of g satisfies

Ricg(Y, Y ) = RicH(Y, Y ) + RicHV(Y, Y ) +
1

2
‖ g(Y,R(� , �))‖2∧2 g∗(5.1)

+ RicV(Y, Y )− 3

4
‖R(Y, �)‖2g∗ ⊗g.

Before we get to the proof, let us note the consequences of this result. If κ =
1
2ρHm2

R − M 2
HV is respectively non-negative or positive, this ensures that the first

line of (5.1) has respectively a non-negative or positive lower bound. Furthermore,
note that this part is independent of any covariant derivative of vertical vector
fields.

of Proposition 5.5. Let ∇ be the Levi-Civita connection of g. Define a two tensor
B(A,Z) = ∇AZ − ∇̊AZ. Then it is clear that

R∇(A, Y )Z = R∇̊(A, Y )Z + (∇̊AB)(Y, Z)− (∇̊Y B)(A,Z)

+ B(B(Y,A), Z) + B(A,B(Y, Z))− B(B(A, Y ), Z)− B(Y,B(A,Z)).

Furthermore, it is simple to verify that

B(A,Z) =
1

2
R(A,Z) − 1

2
♯g(A,R(Z, �)) − 1

2
♯g(Z,R(A, �)).

Let A1, . . . , An and V1, . . . , Vν be local orthonormal bases of respectively H and V .
Then

n
∑

i=1

g(Ai, R
∇(Ai, Z)Z − R∇̊(Ai, Z)Z)

=

n
∑

i=1

g(Z, (∇̊Ai
R)(Ai, Z))− 3

4
‖R(Z, �)‖2g∗ ⊗g +

1

2
‖ g(Z,R(� , �))‖2∧2 g∗ .
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Similarly,
∑ν

s=1 g(R
∇(Vs, Z)Z −R∇̊(Vs, Z)Z, Vs) = 0. � �

5.3. Generalizations to equiregular submanifolds of steps greater than

two. Many of the results in Section 3 and Section 4 depend on the condition
ρ2 > 0. A necessary condition for this to hold is that our sub-Riemannian manifold
is bracket-generating of step 2. Let us note some of the difficulties in generalizing
the approach of this paper to sub-Riemannian manifolds (M,H,h) of higher steps.

As usual, we require H bracket-generating. Assume also, for the sake of simplic-
ity, that H is equiregular, i.e. there exists a flag of subbundles H = H1 ⊆ H2 ⊆
H3 ⊆ · · · ⊆ Hr such that

Hk+1
x = span

{

Z|x, [A,Z]|x : Z ∈ Γ(Hk), A ∈ Γ(H)
}

, x ∈ M.

Choose a metric tensor v on V and let g = pr∗H h + pr∗V v be the corresponding
Riemannian metric. Let Vk be the orthogonal complement of Hk in Hk+1. Let
prVk

be the projection to Vk relative to the splitting H ⊕ V1 ⊕ · · · ⊕ Vr−1. Define
vk = v|Vk

and let v∗
k be the corresponding co-metric. We could attempt to con-

struct a curvature-dimension inequality with Γh
∗

(f), Γv
∗

1 (f), . . . , Γv
∗

r−1(f). How-

ever, a condition similar to (B) could never hold in this case, i.e. Γh
∗

(f, Γv
∗

k(f)) =
Γv

∗

k(f, Γh
∗

(f)) cannot hold for any k ≤ r − 2.
To see this let α and β be forms that only are non-vanishing on respectively Vk

and Vk+1 for k ≤ r − 2. Then Γh
∗

(f, Γv
∗

k(f)) = Γv
∗

k(f, Γh
∗

(f)) holds if and only if

∇̊h∗ = 0 and ∇̊Av
∗
k = 0 for any A ∈ Γ(H). Hence we obtain

0 = (∇̊Av
∗
k)(α, β) = β([A, ♯v

∗

kα]).

However, this is a contradiction, since by our construction, Vk+1 must be spanned
by orthogonal projections of brackets on the form [A,Z], A ∈ Γ(H), Z ∈ Γ(Vk).

Appendix A. Graded analysis on forms

A.1. Graded analysis on forms. Let (M,H,h) be a sub-Riemannian manifold
with an integrable complement V , and let v be a chosen positive definite metric
tensor on V . Let g = pr∗H h+pr∗V v be the corresponding Riemannian metric. The
subbundle V gives us a foliation of M , and corresponding to this foliation we have
a grading on forms, see e.g. [2, 1]. Let Ω(M) be the algebra of differential forms
on M . Let Ann(H) and Ann(V) be the subbundles of T ∗M of elements vanishing
on respectively H and V . If either a or b is a negative integer, then η ∈ Ω(M)
is a homogeneous element of degree (a, b) if and only if η = 0. Otherwise, for
nonnegative integers a and b, η is a homogeneous element of degree (a, b), if it is a
sum of elements which can be written as

α ∧ β, α ∈ Γ(
∧a

Ann(V)), β ∈ Γ(
∧b

Ann(H)).

Relative to this grading, we can split the exterior differential d into graded com-
ponents

d = d1,0 + d0,1 + d2,−1.

The same is true for its formal dual

δ = δ−1,0 + δ0,−1 + δ−2,1,
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i.e. the dual with respect to the inner product on forms of compact support α, β,
defined by

(A.1) 〈α, β〉 =
∫

M

α ∧ ⋆β, α, β of compact support,

where ⋆ is the Hodge star operator defined relative to g. Note that δ−a,−b is the
formal dual of da,b from our assumptions that H and V are orthogonal. We will
give formulas for each graded component.

A.2. Metric-preserving complement and local representation. We will use
♭ : TM → T ∗M for the map v 7→ g(v, �) with inverse ♯. Let ∇̊ be defined as in (2.1)
relative to g and the splitting TM = H⊕V . If α is a one-form and A1, . . . , An and
V1, . . . , Vν are respective local orthonormal bases of H and V , then locally

dα =
n
∑

i=1

♭Ai ∧ ∇̊Ai
α+

ν
∑

s=1

♭Vs ∧ ∇̊Vs
α− α ◦ R,

and hence each of the three terms are local representations of respectively d1,0α,
d0,1α and d2,−1α. Local representations on forms of all orders follow.

Assume now that ∇̊g = 0, i.e. V is a metric-preserving compliment of (H,h)

with a metric tensor v satisfying ∇̊v∗ = 0. From the formula of d1,0η =
∑n

i=1 ♭Ai∧
∇̊Ai

η, we obtain δ−1,0η = −∑n
i=1 ιAi

∇̊Ai
η for any form η. Let ∆h be the sub-

Laplacian of V or equivalently vol. Let ∆ be the Laplacian of g. Then it is clear
that for any f ∈ C∞(M), we have

∆f = −δdf, ∆hf = −δ−1,0d1,0f.

Lemma A.1. For any form η ∈ Ω(M), we have

(A.2) δ−1,0d0,1α = −d0,1δ−1,0α, δ0,−1d1,0α = −d1,0δ0,−1α.

As a consequence, for any f ∈ C∞(M) we have ∆h∆f = ∆∆hf.

The following result is helpful for our computation in Part I, Lemma 3.3 (b) and
Corollary 3.11.

Lemma A.2. (a) For any horizontal A ∈ Γ(H), a vertical V ∈ Γ(V) and arbitrary

vector filed Z ∈ Γ(TM), we have

g(R∇̊(A, V )Z,A) = 0.

(b) If ∇̊g = 0, then for every point x0, there exist local orthonormal bases A1, . . . , An

and V1, . . . Vν , defined in a neighborhood of x0, such that for any Y ∈ Γ(TM),

∇̊ZAi|x0
=

1

2
♯g(Z,R(Ai, �))|x0

, ∇̊ZVs|x0
= 0.

of Lemma A.1. It is sufficient to show one of the identities in (A.2), since δ−1,0d0,1

is the formal dual of δ0,−1d1,0. From Lemma A.2 (a), any A ∈ Γ(H) and V ∈ Γ(V)
satisfy

ιA∇̊V ∇̊Aα = ιA∇̊A∇̊V α+ ιA∇̊[V,A]α.

From the definition of ∇̊, it follows that T ∇̊(A, V ) = 0, where T ∇̊ is the torsion of

∇̊. For a given point x0 ∈ M , let A1, . . . , An and V1, . . . , Vν be as in Lemma A.2 (b).
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All terms below are evaluated at the point x0, giving us

d0,1δ−1,0α = −
ν
∑

s=1

n
∑

i=1

♭Vs ∧ ∇̊Vs
ιAi

∇̊Ai
α

= −
ν
∑

s=1

n
∑

i=1

♭Vs ∧ ι
∇̊VsAi

∇̊Ai
α−

ν
∑

s=1

n
∑

i=1

♭Vs ∧ ιAi
∇̊Vs

∇̊Ai
α

= −1

2

ν
∑

s=1

n
∑

i,j=1

g(Vs,R(Ai, Aj))♭Vs ∧ ιAj
∇̊Ai

α

−
ν
∑

s=1

n
∑

i=1

♭Vs ∧ ιAi
∇̊Ai

∇̊Vs
α−

ν
∑

s=1

n
∑

i=1

♭Vs ∧ ιAi
∇̊

∇̊VsAi−∇̊Ai
Vs
α

=

ν
∑

s=1

n
∑

i,j=1

ιAi

(

♭Vs ∧ ∇̊Ai
∇̊Vs

)

α

=

ν
∑

s=1

n
∑

i,j=1

ιAi
∇̊Ai

(

♭Vs ∧ ∇̊Vs

)

α = −δ−1,0d1,0α.

Next, we prove the identity [∆h,∆]f = 0. If we consider the degree (1, 1)-part
of d2 = 0, we get

d0,1d1,0 + d1,0d0,1 = 0.

The same relation will then hold for their formal duals. Since ∆f = ∆hf−δ0,1d0,1f,
it is sufficient to show that ∆hδ

0,−1d0,1f = δ0,−1d0,1∆hf. This gives us the result

∆hδ
0,−1d0,1f = −δ−1,0d1,0δ0,−1d0,1f = −δ0,−1d0,1δ−1,0d1,0f = δ0,−1d0,1∆hf,

since we have to do an even number of permutations. � �

A.3. Spectral theory of the sub-Laplacian. Let L be a self-adjoint operator on
L2(M, vol) with domain Dom(L). Define ‖f‖2Dom(L) = ‖f‖2L2 + ‖Lf‖2L2. Write the

spectral decomposition of L as L =
∫∞

−∞
λdEλ with respect to the corresponding

projector valued spectral measure Eλ. For any Borel measurable function ϕ : R →
R, we write ϕ(L) for the operator ϕ(L) :=

∫∞

−∞
ϕ(λ)dEλ which is self adjoint on

its domain

Dom(ϕ(L)) =

{

f ∈ L2(M, vol) :

∫ ∞

−∞

ϕ(λ)2d〈Eλf, f〉
}

.

In particular, if ϕ is bounded, ϕ(L) is defined on the entire of L2(M, vol). See [15,
Ch VIII.3] for details.

Let (M,H,h) be a sub-Riemannian manifold with sub-Laplacian ∆h defined
relative to a volume form vol. Assume that H is bracket-generating and that
(M, dcc) is complete metric space, where dcc is the Carnot-Carathéodory metric
of (H,h). Then

∫

M

f∆hg dvol =

∫

M

g∆hf dvol and

∫

f∆hf dvol ≤ 0.

From [17, Section 12], we have that ∆h is a an essentially self adjoint operator on
C∞

c (M). We denote its unique self-adjoint extension by ∆h as well with domain
Dom(∆h) ⊆ L2(M, vol).
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Since ∆h is non-positive and the maps λ 7→ etλ/2 and λ 7→ λjetλ/2 are bounded
on (−∞, 0] for t > 0, j > 0, we have that f 7→ et/2∆hf is a map from L2(M, vol)

into ∩∞
j=1 Dom(∆j

h). Define Ptf as in Section 3.1 with respect to 1
2∆h-diffusions

for bounded measurable functions f . Then clearly ‖Ptf‖L∞ ≤ ‖f‖L∞. Since ∆h

is symmetric with respect to vol and Pt1 ≤ 1, we obtain ‖Ptf‖L1 ≤ ‖f‖L1 as well.
The Riesz-Thorin theorem then ensures that ‖Ptf‖Lp ≤ ‖f‖Lp for any 1 ≤ p ≤ ∞.
In particular, Ptf is in L2(M, vol) whenever f is in L2(M, vol). This implies that
Ptf = et/2∆hf for any bounded f ∈ L2(M, vol) by the following result.

Lemma A.3 ([14, Prop], [8, Prop 4.1]). Let L be equal to the Laplacian ∆ or

sub-Laplacian ∆h defined relative to a complete Riemannian or sub-Riemannian

metric, respectively. Let ut(x) be a solution in L2(M, vol) of the heat equation

(∂t − L)ut = 0, u0 = f,

for a function f ∈ L2(M, vol). Then ut(x) is the unique solution of this equation

in L2(M, vol).

Hence, we will from now on just write Pt = et/2∆h without much abuse of
notation.

A.3.1. Global bounds using spectral theory. We now introduce some additional as-
sumptions. Assume that g is a complete Riemannian metric with volume form vol,
such that g |H = h,H⊥ = V and g |V = v. Let ∆ be the Laplace-Beltrami operator
of g and write ∆f = ∆hf +∆vf where ∆vf = div ♯v

∗

df . Since g is complete, ∆
is also essentially self-adjoint on C∞

c (M) by [16] and we will also denote its unique
self-adjoint extension by the same symbol.

Assume that ∇̊g = 0 where ∇̊ is defined as in (2.1). Recall that ∆h and ∆
commute on C∞

c (M) by Lemma A.1.

Lemma A.4.

(a) The operators ∆h and ∆ spectrally commute, i.e. for any bounded Borel func-

tion ϕ : R → R and f ∈ L2(M, vol),

ϕ(∆h)ϕ(∆)f = ϕ(∆)ϕ(∆h)f.

Also Dom(∆) ⊆ Dom(∆h).

(b) Assume that ∆h satisfies the assumptions of Theorem 2.2 with mR > 0. Then

there exist a constant C = C(ρ1, ρ2) such that for any f ∈ C∞(M)∩Dom(∆2
h),

C‖f‖2Dom(∆2
h
) = C

(

‖f‖2L2 + ‖∆2
hf‖2L2

)

,

is an upper bound for
∫

M

Γh
∗

(f) dvol,

∫

M

Γh
∗

2 (f) dvol,

∫

M

Γv
∗

(f) dvol and

∫

M

Γv
∗

2 (f) dvol .

Proof. (a) Note first that for any f ∈ C∞
c (M), using Lemma A.1 and the inner

product (A.1)
∫

M

∆vf∆hf dvol = 〈δ0,−1d0,1f, δ−1,0d1,0f〉 = 〈d0,1f, d0,1δ−1,0d1,0f〉

= −〈d0,1f, δ−1,0d0,1d1,0f〉 = 〈d1,0d0,1f, d1,0d0,1f〉 ≥ 0.
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Hence
∫

M

(∆hf)
2 dvol ≤

∫

M

((∆h +∆v)f)
2 dvol =

∫

M

(∆f)2 dvol,

and hence ‖∆hf‖L2 ≤ ‖∆f‖L2 is true for any f ∈ Dom(∆). We conclude
that Dom(∆) ⊆ Dom(∆h). Define Qt = et/2∆. It follows that, for any f ∈
Dom(∆h), ut = ∆hQtf is an L2(M, vol) solution of

(

∂

∂t
− 1

2
∆

)

ut = 0, u0 = ∆hf.

In conclusion, by Lemma A.3 we obtain ∆hQtf = Qt∆hf .
For any s > 0 and f ∈ L2(M, vol), we know that Qsf ∈ Dom(∆) ⊆

Dom(∆h), and since

(∂t −
1

2
∆h)QsPtf = 0,

it again follows from Lemma A.3 that PtQsf = QsPtf for any s, t ≥ 0 and
f ∈ L2(M, vol). It follows that the operators spectrally commute, see [15,
Chapter VIII.5].

(b) From Theorem 2.2, we know that ∆h satisfies (CD) with ρ2 > 0 and an appro-
priately chosen value of c. The proof is otherwise identical to [8, Lemma 3.4 &
Prop 3.6] and is therefore omitted. �

�

A.3.2. Proof of Theorem 3.4. We are going to prove that (A) holds without using
stochastic analysis. We therefore need the following lemma.

Lemma A.5 ([8, Prop 4.2]). Assume that (M,g) is a complete Riemannian man-

ifold. For any T > 0, let u, v ∈ C∞(M × [0, T ]), (x, t) 7→ ut(x), (x, t) 7→ vt(x) be

smooth functions satisfying the following conditions:

(i) For any t ∈ [0, T ], ut ∈ L2(M, vol) and
∫ T

0
‖ut‖L2dt < ∞.

(ii) For some 1 ≤ p ≤ ∞,
∫ T

0
‖Γh∗

(ut)
1/2‖Lp dvol < ∞.

(iii) For any t ∈ [0, T ], vt ∈ Lq(M, vol) and
∫ T

0 ‖vt‖Lqdt < ∞ for some 1 ≤ q ≤ ∞.

Then, if (L+ ∂
∂t )u ≥ v holds on M × [0, T ], we have

PTuT ≥ u0 +

∫ t

0

Ptvtdt.

Let Pt = et/2∆h . For given compactly supported f ∈ C∞
c (M) and T > 0, define

function

(A.3) zt,ε =
(

Γv
∗

(PT−tf) + ε2
)1/2

− ε,

with ε > 0, t ∈ [0, T ]. Since Ptf ∈ Dom(∆2
h), Lemma A.4 (b) tells us that,

‖zt,ε‖L2 ≤
∫

M

Γv
∗

(PT−t) vol ≤ C‖PT−tf‖Dom(∆2
h
) < ∞,

so that zt,ε ∈ L2(M, vol). By Proposition 2.3,

(A.4) Γh
∗

(zt,ε) ≤
Γh

∗

(Γv
∗

(PT−tf))

4zt,ε + ε
≤ Γv

∗

2 (PT−tf).
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From Lemma A.4 (b) it follows that both (i) and (ii) of Lemma A.5 is satisfied.
Hence, using that from Proposition 2.3

(

∂t −
1

2
∆h

)

zt,ε(A.5)

=
1

2(zt,ε + ε)3

(

Γv
∗

(PT−tf)Γ
v∗

2 (PT−tf)−
1

4
Γh

∗

(Γv
∗

(PT−tf))

)

≥ 0,

we get PT zT,ε = PT (Γ
v∗

(f) + ε2)1/2 − PT ε ≥ z0,ε = (Γv
∗

(PT f) + ε2)1/2 − ε. By
letting ε tend to 0, we obtain

(A.6)
√

Γv∗(PT f) ≤ PT

√

Γv∗(f).

Next, let yt,ε =
(

Γh
∗

(PT−tf) + ε2
)1/2 − ε, choose any α > max{−ρH,M 2

HV} ≥ 0
and define

ut,ε = e−α/2(T−t)
(

yt,ε + ℓΓv
∗

(PT−t(f))
)

.

Note first that
(

∂

∂t
+

1

2
∆h

)

ut,ε

=
e−α/2(T−t)

2yt,ε + 2ε

(

Γh
∗

2 (PT−tf) + ℓyt,εΓ
v∗

2 (PT−tf)−
1

4y2t,ε
Γh

∗

(Γh
∗

(PT−tf))

)

+
αe−α/2(T−t)

2yt,ε + 2ε

(

Γh
∗

(PT−tf) + ε+ ℓyt,sΓ
v∗

(PT−tf)
)

.

We use Proposition 2.3 with ℓ replaced by ℓyt,ε to get

1

4y2t,ε
Γh

∗

(Γh
∗

(PT−tf)) ≤ Γh
∗

2 (f)− (ρH − c−1 − ℓ−1y−1
t,ε )Γ

h∗

(f)

+ ℓyt,εΓ
v∗

2 (f)− cM 2
HVΓ

v∗

(f).

As a result, for any c > 0,
(

∂
∂t +

1
2∆h

)

ut,ε has lower bound

e−α/2(T−t)

2yt,ε + 2ε

(

(ρH − c−1 − ℓ−1y−1
t,ε )Γ

h∗

(PT−tf)− cM 2
HVΓ

v∗

(PT−tf)
)

+
αe−α/2(T−t)

2yt,ε + 2ε

(

Γh
∗

(PT−tf) + ℓyt,εΓ
v∗

(PT−tf)
)

.

Since it is true for any value of c > 0, it remains true for c = ℓyt,ε, and hence
(

∂

∂t
+

1

2
∆h

)

ut,ε ≥− e−α/2(T−t)

ℓ
.

In a similar way as before, we can verify that the conditions of Lemma A.5 hold by
using Lemma A.4. We can hence conclude that

u0,ε = e−αT/2(y0,ε + ℓΓv
∗

(PT f))

≤ PTuT,ε +

∫ T

0

Pt
e−α(T−t)/2

ℓ
dt

≤ PT

(

yT,ε + ℓΓv
∗

(f)
)

+
2

αℓ

(

1− e−αT/2
)

.
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Multiplying with eαT/2 on both sides, letting ε → 0 and α → k := max{−ρH,MR},
we finally get that for any ℓ > 0,

√

Γh∗(PT f) + ℓΓv
∗

(PT f) ≤ ekT/2PT

(

√

Γh∗(f) + ℓΓv
∗

(f)

)

+ ℓ−1Fk(T ),(A.7)

where

Fk(t) =

{

2
k (e

kt/2 − 1) if k > 0,

t if k = 0.

Since this estimate holds pointwise, it holds for ℓ =
(

PTΓ
v∗

(f)− Γv
∗

(PT f)
)−1/2

or

ℓ = ∞ at points where PTΓ
v∗

(f)− Γv
∗

(PT f) = 0. The resulting inequality is
√

Γh∗(PT f) ≤ ekT/2PT

√

Γh∗(f) + (ekT/2 + Fk(T ))
√

PT Γv
∗(f)− Γv∗(Ptf).(A.8)

We will now show how this inequality implies (A). Since g is complete, there
exist a sequence of compactly supported functions gn ∈ C∞(M) satisfying gn ↑ 1
pointwise and ‖Γh∗+v∗

(gn)‖L∞ → 0. It follows from equation (A.6) and (A.8) that

lim
n→∞

‖Γh∗+v∗

(Ptgn)‖L∞ → 0

as well. Hence, since Ptgn → Pt1 and ‖dPtgn‖g∗ approach 0 uniformly, we have

that Γg
∗

(Pt1) = 0. It follows that Pt1 = 1.
To finish the proof, consider a smooth function f ∈ C∞(M) with ‖f‖L∞ <

∞ and ‖Γh∗+v∗

(f)‖L∞ < ∞. Define fn = gnf ∈ C∞(M). Then PT fn → PT f
pointwise. It follows that

(A.9)

∫ b

a

dPT f(γ̇(t)) dt = lim
n→∞

∫ b

a

dPT fn (γ̇(t)) dt

for any smooth curve γ : [a, b] → M . We want to use the dominated convergence
theorem to show that the integral sign and limit on the right side of (A.9) can be
interchanged.

Without loss of generality, we may assume that ‖Γh∗

(gn)‖L∞ < 1 for any n. We
then note that

∥

∥

∥

∥

√

Γh∗+v∗(fn)

∥

∥

∥

∥

L∞

≤ ‖f‖L∞ +

∥

∥

∥

∥

√

Γh∗(f)

∥

∥

∥

∥

L∞

=: K < ∞.

This relation, combined with (A.6) and (A.8), gives us

‖
√

Γh∗+v∗(PT fn)‖L∞ ≤
(

2ekT/2 + Fk(T ) + 1
)

K.

Furthermore, the dominated convergence theorem tells us that both PT Γ
v∗

(fm−fn)

and limn→∞ PTΓ
h∗

(fn − fm) approach 0 pointwise as n,m → ∞. By inserting
fn − fm into (A.6) and (A.8), we see that Γh

∗+v∗

(PT fn) at any fixed point is a
Cauchy sequence and hence convergent. We conclude that

∫ b

a

dPT f(γ̇(t))dt =

∫ b

a

(

lim
n→∞

dPT fn

)

(γ̇(t))dt.

It follows that dPtf − limn→∞ dPtf vanishes outside a set of measure zero along
any curve, so

‖Γh∗+v∗

(PT f)‖L∞ = lim
n→∞

‖Γh∗+v∗

(PT fn)‖L∞ < ∞.
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In conclusion, we have proven that condition (A) holds. Without any loss of gen-
erality we can put ℓ = 1, since we can obtain all the other inequalities by replacing
f with ℓf . �

Remark A.6. If we know that any 1
2∆h-diffusion starting at a point has infinite

lifetime then using Lemma A.4, we can actually make a probabilistic proof. We
outline the proof here. We will only prove the inequality (A.6) as the proof of (A.7)
is similar.

We will again use zt,ε as in (A.3). Let X = X(x) be an 1
2∆h-diffusion with

X0(x) = x ∈ M . We define Zε by Zε
t = zt,ε ◦Xt. Then Zε is a local submartingale

by (A.5). By using the Burkholder-Davis-Gundy inequality, there exist a constant
B such that

E

[

sup
0≤s≤t

Zε
s

]

≤ BE

[

√

〈Zε〉t
]

+ z0,ε(x) + E

[∫ t

0

(∂s −
1

2
∆h)zs,ε ◦Xs ds

]

where 〈Zε〉t =
∫ t

0
Γh

∗

(zs,ε)◦Xs ds is the quadratic variation of Zε. By the Cauchy-
Schwartz inequality and the bound (A.4), we get the conclusion

E

[

√

〈Zε〉t
]

≤ p2t(x, x)

√

∫ t

0

‖Γv∗

2 (PT−sf)‖L1 dt < ∞

which means that E
[

sup0≤s≤t∧τ Z
ε
s

]

< ∞. Hence, Zε is a true submartingale,
giving us (A.6).

A.4. Interpretation of RicHV . Let V be any integrable subbundle. Choose a
subbundle H such that TM = H⊕V . Any such choice of H correspond uniquely to
a constant rank endomorphism pr = prV : TM → V ⊆ TM . This can be considered

as a splitting of the short exact sequence V → TM
F→ TM/V .

Let Ω(M) be the the exterior algebra of M with Z×Z-grading of Section A.1.
Choose nondegenerate metric tensors

v ∈ Γ(Sym2 V∗) and qg ∈ Γ(Sym2(TM/V)∗)
on V and TM/V . Since∧ν V∗⊕∧n

(TM/V)∗ is canonically isomorphic to
∧n+ν

T ∗M ,
the choices of v and qg gives us a volume form vol on M .

We also have an energy functional defined on projections to V . Relative to pr,
define a Riemannian metric gpr = F ∗qg + pr∗ v. We introduce a functional E on
the space of projections pr by

E(pr) =

∫

M

‖Rpr‖2∧2 g∗
pr ⊗gpr

dvol

where Rpr is the curvature of H = kerpr. We can only be sure that the integral
is finite if M is compact, so we will assume this, and consider our calculations as
purely formal when this is not the case.

Let ∇ = ∇pr be the restriction of the Levi-Civita connection of gpr to V . Intro-
duce a exterior covariant derivative of d∇ on V-valued forms in the usual way, i.e.

for any section V ∈ Γ(V), we have d∇V = ∇
�

V and if α is a V-valued k-form, while
µ is a form in the usual sense, then

d∇(α ∧ µ) = (d∇α) ∧ µ+ (−1)kα ∧ dµ.

We can split this operator into graded components d∇ = d1,0∇ + d0,1∇ + d2,−1
∇ and do

the same with its formal dual δ∇ = δ−1,0
∇ + δ0,−1

∇ + δ2,−1
∇ .
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Proposition A.7. The endomorphism pr is a critical value of E if and only if

δ−1,0
∇ R = 0. In particular, if g satisfies

(A.10) trV(LA g)(×,×) = 0, for any A ∈ Γ(H),

then pr is a critical value if and only if RicHV = 0.

Recall from Part I, Section 2.4 that condition (A.10) is equivalent to the leafs
of the foliation of F being minimal submanifolds. If V is the vertical bundle of a
submersion π : M → B, then we can identify TM/V with π∗TB. In this case, a
critical value of E can be considered as an optimal way of choosing an Ehresmann
connection on π.

Proof. We write id := idTM for the identity on TM . Let pr be a projection to V
and α : TM → V be any V-values one-from with V ⊆ kerα. Define a curve in the
space projections prt = pr+tα. Then

gt(v, v) := gprt
(v, v) = gpr(v, v) + 2tv(αv, pr v) + t2v(αv, αv).

Let Rt be the curvature of prt. Then

Rt(A,Z) = R(A,Z) + tα[(id− pr)A, (id− pr)Z]

− t (pr[αA, (id− pr)Z] + pr[(id− pr)A,αZ]) +O(t2).

If ∇t = ∇prt , then

∇t
AV = ∇AV +

1

2
td∇α(A, V )− 1

2
t♯v

∗

g(d∇α(A, �), V ), and

d∇t prt = d∇ pr+
1

2
t(d∇α)1,1 −

1

2
t(d∇α)⊤1,1 + td∇α+O(t2),

where (d∇α)1,1 is the (1,1)-graded component of d∇α and

v((d∇α)⊤1,1(A, V1), V2) = v((d∇α)1,1(A, V1), V2).

Since Rt = −d2,−1
∇ prt, we get

d

dt
E(prt)

∣

∣

∣

∣

t=0

=

∫

M

(∧2 g∗
pr ⊗ gpr)(d

2,−1
∇ pr, d1,0∇ α) dvol

= −
∫

M

(h∗ ⊗ v)(δ−1,0
∇ R, α) dvol .

Hence, pr is a critical value if and only if δ−1,0
∇ R = 0.

We give a local expression for this identity. Let A1, . . . , An be a local orthonormal
basis of H. Then

δ−1,0
∇ R = −

n
∑

k=1

(̊̊∇Ak
R)(Ak, �) +R(N, �)

where N is defined by gpr(A,N) = − 1
2 trV(Lpr

H
A g)(×,×) and˚̊∇ is the (0,0)-degree

component of the Levi-Civita connection, i.e.

˚̊∇AZ = prH∇A prH Z + prV ∇A prV Z.

This coincides with RicHV when (A.10) holds. � �
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A.5. If V is not integrable. Let (M,g) be a complete Riemannian manifold and
let H be a bracket-generating subbundle of TM with orthogonal complement V .
Define ∇̊ as in (2.1) with respect to g and the splitting TM = H⊕ V and assume

that ∇̊g = 0. Let ∆h be the sub-Laplacian defined relative to V or equivalently to
the volume form of g. Then it may happen that (CD) holds for ∆h even without
assuming that V is integrable. More precisely, we will need the condition

(A.11) trR(v,R(v, �)) = 0, v ∈ TM,

R(A,Z) = prV [prH A, prH Z], R(A,Z) = prH[prV A, prV Z], A, Z ∈ Γ(TM).

We refer to R and R as respectively the curvature and the co-curvature of H.
In Part I, Section 3.8, we showed that Theorem 2.2 and Proposition 2.3 hold

with the same definitions and with V not integrable, as long as (A.11) also holds.
The same is true for Theorem 3.4. We give some brief details regarding this.

First of all, in Section A.1, the exterior derivative d now also has a part of degree
(−1, 2), determined by

d−1,2f = 0, d−1,2α = −α ◦ R, f ∈ C∞(M), α ∈ Γ(T ∗M),

and hence, the co-differential has a degree (1,−2)-part. However, these do not
have any significance for our calculations. More troubling is the fact that both
Lemma A.2 (a) and the formula for ∇̊ZVs|x0

in Lemma A.2 (b) are false when V is
not integrable. However, (A.11) ensures that

n
∑

i=1

g(R∇̊(Ai, V )Z,Ai) = 0

for any orthonormal basis A1, . . . , An of H and vertical vector field V , which is all
we need for the proof of Lemma A.1. Furthermore the same proof is still holds even
if now ∇̊ZVs|x0

= 1
2 ♯R(Z, �)|x0

in Lemma A.2 (b), as the extra terms cancel out.
Once Lemma A.1 holds, there is no problem with the rest of the proof of Theo-

rem 3.4. See Part I, Section 4.6 for an example where this theorem holds.
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