
Analytical studies of a time-fractional porous medium
equation. Derivation, approximation and applications

Łukasz Płociniczak∗

Abstract

In this paper we investigate the porous medium equation with a fractional temporal deriva-
tive. We justify that the resulting equation emerges when we consider the waiting-time (or
trapping) phenomenon that can happen in the medium. Our deterministic derivation is dual to
the stochastic CTRW framework and can include nonlinear effects. With the use of the previ-
ously developed method we approximate the investigated equation along with a constant flux
boundary conditions and obtain a very accurate solution. Moreover, we generalize the approx-
imation method and provide explicit formulas which can be readily used in applications. The
subdiffusive anomalies in some porous media such as construction materials have been recently
verified by experiment. Our simple approximate solution of the time-fractional porous medium
equation fits accurately a sample data which comes from one of these experiments.

1 Introduction
Throughout the last decade the number of experimental reports of the anomalous diffusive phenomena
has grown. For example, some of these concern moisture dispersion in building materials (see for
ex. [1–5]) but also some other minerals like zeolite [6, 7]. When we consider an essentially one
dimensional (other dimensions can be neglected) porous medium with one boundary kept at constant
moisture, the concentration in subsequent time instant t and space point x is a function of x/

√
t.

This characteristic space-time scaling is not, however, present in every type of porous media. As
experiments showed, in certain materials the moisture propagates according to the x/tα/2 scaling,
where 0 < α < 2. When 0 < α < 1 the moisture concentration represents a subdiffusive character,
meaning that the fluid particles can be trapped in some regions for a significant amount of time.
In the superdiffusive case 1 < α < 2 there is a possibility that water can be transported for large
distances in a relatively short time (jump behavior). All of these features are certainly associated
with the geometrical aspects of the medium such as pore distribution or heterogeneous features such
as highly conductive channels and macropores [8]. Some Authors state that the anomalous behavior
can also be caused by chemical reactions that casue the diffusivity to change during the imbibition [9].

There have been many attempts to model the anomalous diffusion in porous media such as
building materials. For example in [5] a model based on a nonlinear Fickian Law has been proposed.
The most popular approach, however, was made by the use of the fractional derivatives [8, 10–
12]. These generalizations of the classical derivative operator are necessary nonlocal. This gives an
opportunity to model the history (nonlocality in time) or long-range influence in medium (nonlocality
in space). The theoretical foundation that the transport in porous media should include the nonlocal
phenomena was developed in [13–15], where Authors devised the nonlocal Darcy’s Law from the
Boltzmann transport equation and argumented that the nonlocality can be a consequence of the
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heterogeneous pore distribution. The fractional derivative approach has an advantage to offer a
theoretical framework in which all the anomalous behaviors can be governed by the derivative order.
The disadvantage, however, is that the fractional equations are always more difficult to solve explicitly
(either analytically or numerically) especially in the nonlinear case.

In this work we generalize our previous results concerning the time-fractional porous medium
equation, which is used to model anomalous moisture dispersion. The initial results were published
in [16] and further developed in [17]. In what follows we present a theoretical derivation of the
time-fractional anomalous diffusion equation and provide an analysis of its approximate solutions.
The boundary conditions, that we supplement, are of the two types: constant concentration or
constant flux at the interface. Both of these have a direct physical interpretation. We present
our approximation method and show some estimates on the error terms. All of our theoretical
considerations are illustrated by numerical analysis and fitting with real experimental data. Both
of these verify that our approximations are sensibly accurate when describing anomalous diffusion
in porous media. Moreover, a simple and closed form of the formulas we derive is an additional
advantage which can quicken the data fitting process in applications. The usual way of data fitting
is being done with a numerical solution of the nonlinear anomalous diffusion equation. Due to
the nonlocality of the fractional operator, the computational power needed for the nonlinear finite
difference method is very large. Simple (but approximate) solutions that we find can be a remedy
for these computational problems.

2 Model of the time-fractional anomalous diffusion

2.1 Formulation

Consider a porous medium in which the Darcy’s Law holds [18]

q = −ρk
µ
∇p, (1)

where q is the flux of the fluid with viscosity µ flowing under the pressure p through the medium
of permeability k. In any porous medium not all of its space can be filled with the flow. The
concentration u = u(x, t) is defined to be density of the water inside the Representative Elementary
Volume (REV) at position x and time instant t. The total fraction of space available for the fluid is
called the porosity of the medium. Under suitable assumptions [19] the pressure p can be expressed
as a monotone function of the concentration u, so we can write

q = −ρk
µ

dp

du
∇u =: −D(u)∇u, (2)

where D denotes the diffusivity, which can depend on the moisture concentration u. In applications
this is almost always the case [19] - the diffusivity can change even a several orders of magnitude
with the change of u. In any region of the porous medium the amount of fluid must be conserved
and thus the moisture must obey the continuity equation

ut +∇ · q = 0, (3)

where subscript denotes the derivative with respect to time variable t. Above equation along with
(2) gives us the governing nonlinear diffusion equation known in the hydrology as the Richards
equation [20]

ut = ∇ · (D(u)∇u) , (4)

If we included the gravity we would obtain an additional convective term. But in our model it is
sufficient to consider only the diffusive phenomena. For our purposes it is also sufficient to reduce the
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equation to one spatial dimension since the diffusion in the experiment we want to model progresses
mostly in one direction. In this work we will consider two different initial-boundary conditions for
(4), namely

u(0, t) = C, u(x, 0) = 0, x > 0, t > 0, (5)

which models a constant concentration at the face of an initially dry sample and

−D (u(0, t))ux(0, t) = Q, u(x, 0) = 0, x > 0, t > 0, (6)

which is a mathematical description of constant flux at the origin.
As recent investigations show, equation (4) is not sufficient to describe the moisture distribution

in some porous media, in particular construction materials. Namely, the characteristic space-time
scaling of some processes is very different from the solution of the classical diffusion equation. By a
quick calculation we can check that a solution of (4) with conditions (5) is a function of x/

√
t only.

In this case (4) reduces to an ordinary differential equation. The experiments from [1, 3] show that
the solution of the equation, which is supposed to describe the (anomalous) diffusion, scales as x/tα/2
for α ∈ (0, 2).

To model the anomalous behavior of the characteristic space-time scaling we use the fractional
partial differential equation [6, 10,16,17]

C∂αt u = (D(u)ux)x , 0 < α < 1, (7)

where C∂αt is the Caputo partial derivative operator defined on a suitably chosen function space by
( [21,23])

C∂αt u(x, t) =
1

Γ(n− α)

∫ t

0

(t− s)n−α−1∂
nu

∂tn
(x, s)ds, (8)

where n = [α]+1 is the first integer greater than α. This equation describes the subdiffusive character
of the porous medium. In that case the fluid particles can be trapped in some regions for a prolonged
periods of time. This in consequence leads to the memory effect of the process. At some particular
time, not only the fluid driven by the flow can cross the REV but also some of its portions that have
just been freed from a longer wait periods. This prolonged waiting times can be consequences of
many physical phenomena that can happen in the porous medium.

It is important to make the following remark. It is a well known fact that with vanishing initial
conditions, that is for ∂ku/∂tk(x, 0) = 0, k = 0, ..., [α], the Caputo fractional derivative (8) coincides
with the Riemann-Liouville version (see [21] and [22] for the self-similar case) defined by the formula

∂αt u(x, t) =
1

Γ(n− α)

∂n

∂tn

∫ t

0

(t− s)n−α−1u(x, s)ds. (9)

where n = [α] + 1 is the first integer greater than α. This operator requires less regularity on the
differentiated function and thus is more suited to be treated mathematically. The difference between
the Caputo and Riemann-Liouville fractional derivatives can be easily seen by defining the fractional
integral [21]

Iαt u(x, t) =
1

Γ(α)

∫ t

0

(t− s)α−1u(x, s)ds, α > 0. (10)

Then we have the representation ∂αt = ∂tI
1−α
t and C∂αt = I1−α

t ∂t, that is they differ by the order of
differentiation operator. It is also worth to mention the composition formula for the functions with
vanishing initial conditions

Iα∂αt u(x, t) = u(x, t) if
∂ku

∂tk
(x, 0) = 0, k = 0, ..., [α]. (11)
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With some subtleties, the fractional derivative operators enjoy many other identities that are similar
to the integer order derivatives. For a thorough and deep analysis of many topics concerning these
matters see [23].

The initial values of u in (5)-(6) are zero for our case 0 < α < 1. Therefore in our analysis we
will consider the following equation for the time-fractional nonlinear diffusion equation

∂αt u = (D(u)ux)x , x > 0, t > 0, 0 < α < 1, (12)

We choose the particular form of the diffusivity D to be proportional to the some power of the
concentration, that is D(u) = D0u

m. This is a well-known choice which accurately describes many
different porous media. In [6] Authors inverted (12) and derived a formula for diffusivity. After
calculations they obtained a profile similar to our power-type choice of diffusivity function. To
simplify the final form of the investigated equation we introduce the proper scales

x∗ =
x

L
, t∗ =

t

T
, u∗ =

u

C
, T =

(
L2

D0Cm

) 1
α

, (13)

in the case of (5) and

x∗ =
x

L
, t∗ =

t

T
, u∗ =

u

(LQ)1/(m+1)
, T =

(
L2

D0(LQ)m/(m+1)

) 1
α

, (14)

for (6). Then, the equation describing the time-fractional nonlinear diffusion takes the form

∂αt u = (umux)x , x > 0, t > 0, 0 < α < 1, (15)

where we dropped the asterisks for the clarity of presentation. The initial-boundary conditions are
now

u(0, t) = 1, u(x, 0) = 0, x > 0, t > 0, (16)

or
− u(0, t)mux(0, t) = 1, u(x, 0) = 0, x > 0, t > 0, (17)

Equation (15) can be called the time-fractional porous medium equation. For the mathematical
analysis of its space-fractional version the Reader is referred to [24,25].

2.2 Derivation

Equation (7) modeling subdiffusion, is almost always derived by stochastic analysis in a Continuous
Time Random Walk (CTRW) framework [26]. It is instructive to see how this equation can be
devised deterministically without any assumptions on the probability distributions of waiting times.

Once again consider a fluid in the porous medium which flow is governed by the continuity
equation (3). Assume that due to certain physical phenomena fluid particles can be trapped in some
regions for a period of time s. Due to this trapping, only a portion of the instantaneous flux at time
t should be taken into account when calculating the change of concentration. The rest consists of
the particles that have just been released. In that case the continuity equation can be written as a
delayed equation with weights some w0 and w1

ut = − (w0∇ · q(x, t) + w1∇ · q(x, t− s)) . (18)

At instant t only a fraction of the flux comes through the REV, the rest if trapped for s. If such
trapping can happen for a several periods s1, ..., sn we then have

ut = −
n∑
i=1

wi ∇ · q(x, t− si). (19)
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By introducing the weight density w = w(s) it is straightforward to generalize trapping phenomena
to a continuous distribution of periods. By definition we have wi = w(si)∆si, where ∆si = si − si−1

and thus

ut = −
n∑
i=1

w(si) ∇ · q(x, t− si)∆si −→ −
∫ t

0

w(s) ∇ · q(x, t− s)ds. (20)

By a change of the variable we arrive at a non-local integro-differential equation in which any past
value of the flux is taken into account

ut = −
∫ t

0

w(t− s) ∇ · q(x, s)ds. (21)

This accounts for the fluid particles that can be trapped for any period of time. The amount of flux
of the particles that wait for the time s is equal to w(s). In the sequel we will determine the form of
the (generalized) function w. To this end we make the following claims.

1. (Generalization) In the case of the classical diffusion, that is without the waiting times, (21)
should reduce to (3).

2. (Simplicity) The form of w should be as simple as possible.

Because we assume that the resulting equation should possess a self-similar solutions dependent
on α, let us denote this explicitly by writing wα instead of w. By the first claim we should have
wα → δ, when (say) α → 1. Here δ is the Dirac delta distribution. The limit should be understood
in the appropriate weak sense in the distribution topology. It is easy to see that when w = δ we
immediately retrieve the classical local equation (3). As α → 1 the particles are being trapped for
shorter and shorter instants eliminating the non-local memory effect. Since wα should be treated
as a distribution we will make a slight change of the kernel in (21) in order to treat only ordinary
functions. The simplest approximation of the δ distribution is the following

w1 = δ = lim
h→0

χ[0,h],

h
, (22)

where the limit is understood in the weak sense, that is

∇ · q(x, t) =

∫ t

0

w1(t− s)∇ · q(x, s)ds =

∫ t

0

δ(t− s)∇ · q(x, s)ds

= lim
h→0

∫ t

t−h
∇ · q(x, s)ds =

∂

∂t

∫ t

0

∇ · q(x, s)ds.
(23)

The above equation is just the elementary formula for differentiating an integral as a function of the
upper limit of integration. This motivates us to rewrite the equation (21) as

ut = − ∂

∂t

∫ t

0

kα(t− s) ∇ · q(x, s)ds, (24)

where kα is now a function with k1 ≡ 1. The limit of δ distribution is now hidden under the derivative
operator. It is easy to make a sensible educated guess on the form of kα: by the simplicity claim
we suppose that it should be a power function kα(s) = Cαs

α−1, where the constant Cα has to be
determined. We see that if we choose Cα = 1/Γ(α) we will get

ut = − 1

Γ(α)

∂

∂t

∫ t

0

(t− s)α−1 ∇ · q(x, s)ds = −∂α−1
t ∇ · q, (25)

where we identified the Riemann-Liouville fractional derivative of order 1−α. Different choice of Cα
would yield a constant multiple of the fractional derivative and would not modify the quantitative
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features of the equation. Thus our choice of Cα is the simplest. Now, by the composition identity
(11) we can operate with I1−α

t on both sides of (25) and get

C∂αt u = −∇ · q, (26)

which is the same as (7) with flux from the Darcy’s Law (2). This concludes the derivation. We see
that the emergence of the fractional derivative is very natural provided that the fluid particles can
be trapped in some regions in space for a period of time with a power-type weight.

3 Analytical results

3.1 Self-similar setting

In this paper we are mainly concerned with the self-similar solutions of (15)

u(x, t) = taU(η), η =
x

tb
, (27)

where a and b have to be determined. The fractional derivative transforms as

∂αt u(x, t) =
∂

∂t

(
I1−α
t

(
taU(xt−b)

))
=

1

Γ(1− α)

∂

∂t

∫ t

0

(t− z)−αzaU(xz−b)dz

=
1

Γ(1− α)

∂

∂t

(
ta−α+1

∫ 1

0

(1− s)−αsaU(ηs−b)ds

)
.

(28)

If we introduce the Erdélyi-Kober fractional integral operator (see [27])

Iβ,γδ U(η) =
1

Γ(γ)

∫ 1

0

(1− z)γ−1zβU(ηz
1
δ )dz, (29)

then equation (28) can be restated as

∂αt u(x, t) =
∂

∂t

(
ta−α+1Ia,1−α− 1

b

U(η)
)

= ta−α
[
(a− α + 1)− bη d

dη

]
Ia,1−α− 1

b

U(η), (30)

where we used the chain-rule for (27)

∂

∂t
=
∂η

∂t

d

dη
= −bηt−1 d

dη
. (31)

In our self-similar setting, the spatial derivative term in (15) changes into

(um(x, t)ux(x, t))x = ta(m+1)−2b d

dη

(
Um(η)

d

dη
U(η)

)
. (32)

Now, by equating (30) with (32) we eliminate the explicit time dependence if and only if

2b−ma = α. (33)

The second equation for the unknown constants a and b is to be determined from the conditions (16)
or (17). In the case of (16) we have 1 = u(0, t) = taU(0) and thus a = 0. From (33) we immediately
get b = α/2. The other condition now has the form 0 = u(x, 0) = U(∞). In the classical versions of
the problems we are considering its can be shown that the solution always possess a compact support.
That is, there exists η∗ such that U(η) = 0 for every η ≥ η∗ [28]. This feature is also very appealing
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from the physical point of view indicating the finite speed of propagation. The derivative at η∗ should
be treated in a weak sense. In what follows we will seek for solutions with compact support only.
Considering the (17) we have −1 = u(0, t)mux(0, t) = ta(m+1)−bU(0)mU ′(0) which forces b = a(m+ 1)
what along with (33) yields a = α/(m + 2) and b = α(m + 1)/(m + 2). Moreover, the condition
u(0, x) = 0 is satisfied automatically.

To sum up, our self-similar problem consists of the following equations

(UmU ′)
′
=

[
(a− α + 1)− bη d

dη

]
Ia,1−α− 1

b

U, 0 < α < 1, (34)

along with two sets of boundary conditions

U(0) = 1, U(η) = 0 for η ≥ η∗ > 0 and a = 0, b =
α

2
, (35)

or

− U(0)mU ′(0) = 1, U(η) = 0 for η ≥ η∗ > 0 and a =
α

m+ 2
, b =

m+ 1

m+ 2
α, (36)

for some η∗ which defines the compact support of and has to be determined as a part of the solution.
Notice also that for every α ∈ (0, 1] the formula (34) represents a second order integro-differential
equation. This along with the two conditions in each set (35)-(36) provides a well-posed nonlinear
problem. The solution of these equations can be obtained in the closed form only in the linear case,
i.e. if m = 0 [22]. For m > 0 even in the classical setting α = 1, only approximate solutions are
known [29,30]. In what follows we will convert (34) to an approximate differential equation and then
solve it.

3.2 Approximation

The structure of the equation (34) is very complex. It combines both local and nonlocal behaviors
of the function U which prevents it from being easily solved and analyzed analytically. In order
to obtain some information about the behavior of U we embrace a technique developed in [16] and
later improved in [17]. It has its foundation on asymptotic techniques such as perturbation theory
and Laplace method for asymptotic integrals. The strategy is to approximate the Erdélyi-Kober
fractional integral (29) by a derivative operator and then to tackle the resulting ordinary differential
equation, which resembles the one considered in the classical case. Since the classical theory for a
porous medium equation is now mostly developed we retranslate our problem into the similar one
which lies on the firm ground.

The main approximation technique that we will utilize is based on the following theorem proved
in [17]. These results state that for sufficiently decent functions the Erdélyi-Kober operator can be
restated as a series of derivatives. A more thorough and applicable research was conducted in [31,32],
where Authors elaborated on the accuracy of approximation and presented many applications.

Theorem 1. Let U be an analytic function and a > −1, b > 0, c > 0. Then the following represen-
tation holds

Iβ,γδ U(η) =
∞∑
k=0

λkU
(k)(η)

ηk

k!
, (37)

where

λk =
(−1)k

Γ(γ)

∫ 1

0

(1− s)γ−1sβ(1− s1/δ)kds =
k∑
j=0

(
k

j

)
(−1)k−j

Γ
(
β + j

δ
+ 1
)

Γ
(
β + γ + j

δ
+ 1
) . (38)

Moreover, we have the asymptotic relation when k →∞

λk ∼ (−1)k
Γ (δ(β + 1))

Γ(γ)

δ

kδ(β+1)
. (39)
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In order to approximate the E-K operator we can terminate the series (37) at some fixed N . This
is also useful if the function U is not analytic. The approximation should still be valid. The proof of
the Theorem 37 uses the argument similar to the proof of Watson’s lemma associated with Laplace
method for asymptotic integrals. Since the integrand (29) is singular near z = 1 we can expect
that the mass of whole integral is located near this point. Hence, it is reasonable to substitute U(η)
instead of U(ηz1/δ). Then, we would obtain the zero-order term in (37). The whole decomposition
comes from the expansion into Taylor series near z = 1.

We can obtain some qualitative estimates on the rate of convergence of (37). First, notice that
(−1)kλk are strictly decreasing. It follows from the positivity of the integral in (38) and the fact that
(1− z1/c)k is decreasing with k. By the formula (39) we see that λk converge to zero with a rate of
a power type (larger β and δ give faster convergence). Moreover, by some elementary calculation we
can deduce the following result.

Proposition 1. The following statement holds

λk
γ→0+−→

{
1, k = 0;
0, k > 0,

for β > −1, δ > 0. (40)

Proof. To see this, first consider the case k = 0. Using the definition of the Beta function and its
representation in terms of the Gamma functions we obtain

λ0 =
1

Γ(γ)
B(β + 1, γ) =

Γ(β + 1)Γ(γ)

Γ(γ)Γ(β + γ + 1)

γ→0+−→ 1. (41)

Now, to investigate the case of k > 0 we must consider different domains of β separately. For β > 0
by integrating by parts we obtain

λk =
(−1)k

Γ(γ)

([
−1

γ
(1− z)γzβ(1− z1/δ)k

]1

0

+
1

γ

∫ 1

0

(1− z)γ
d

dz

(
zβ(1− z1/δ)k

)
dz

)

=
(−1)k

Γ(γ + 1)

∫ 1

0

(1− z)γ
d

dz

(
zβ(1− z1/δ)k

)
dz

γ→0+−→ (−1)k
[
zβ(1− z1/δ)k

]1
0

= 0,

(42)

where we used the Dominated Convergence Theorem. If β = 0 then by a similar calculation we have

λk =
(−1)k

Γ(γ + 1)

(
1 +

∫ 1

0

(1− z)γ
d

dz

(
(1− z1/δ)k

)
dz

)
γ→0+−→ (−1)k

(
1 +

[
(1− z1/δ)k

]1
0

)
, (43)

which vanishes for k > 0. Finally, when −1 < β < 0 the integration by parts yields the following
result

λk = −(−1)k

Γ(γ)

∫ 1

0

(∫ z

0

(1− t)γ−1tβdt

)
d

dz

(
(1− z1/δ)k

)
dz. (44)

The inner integral is an incomplete Beta function B(z; β + 1, γ). To calculate the limit notice that

1

Γ(γ)
B(z; β + 1, γ) =

1

Γ(γ)

(
B(β + 1, γ)−

∫ 1

z

(1− t)γ−1tβdt

)
=

Γ(β + 1)

Γ(β + γ + 1)

+
1

Γ(γ + 1)
(1− z)γzβ − 1

Γ(γ + 1)

∫ 1

z

(1− t)γ d
dz

(
tβ
)
dt

γ→0+−→ 1− zβ −
[
tβ
]1
z

= 0.

(45)

This result show that when γ becomes closer to 0 only the λ0 survives. Recalling our main
equation (34) we see than in its case we have γ = 1 − α. Thus, with α going to 1 we reobtain the
classical diffusion equation. This shows that if we approximated the E-K operator in (34) by the λ0
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term, we would be utilizing a similar technique to the first-order perturbation theory with respect
to α. The closer α to the integer values the better the approximation.

Now we turn to the analysis of the approximation error. The difference between the E-K operator
and the approximating series (37) is

Iβ,γδ U(η)−
N−1∑
k=0

λkU
(k)(η)

ηk

k!
= λNU

(N)(η)
ηN

N !
+ · · · , (46)

which means that the convergence depends on the nature of U (and its derivatives). The series
should represent the E-K operator very well especially for small η and U (k) bounded for k ∈ N. By
using the asymptotic form of λk as in (39) we have

Iβ,γδ U(η)−
N−1∑
k=0

λkU
(k)(η)

ηk

k!
∼ (−1)Nδ

Γ (δ(β + 1))

Γ(γ)

U (N)(η)

N δ(β+1)

ηN

N !
as N →∞. (47)

Wee see that for fixed η this convergence is very fast: it goes as (N δ(β+1)N !)−1 for U (k) uniformly
bounded for k ∈ N. For example take U(η) = exp(−η), then

Iβ,γδ U(η)− e−η
N−1∑
k=0

(−1)kλk
ηk

k!
∼ δ

Γ (δ(β + 1))

Γ(γ)

e−η

N δ(β+1)

ηN

N !
as N →∞. (48)

Notice also that for any fixed N this error vanishes for η → 0 or η → ∞. As a side result, by the
definition of the E-K operator (29) we obtain a representation for the generating function for the λk
series

∞∑
k=0

λk
ηk

k!
=

e−η

Γ(γ)

∫ 1

0

(1− z)γ−1zβeηz
1/δ

dz. (49)

The numerical illustration of these approximations is presented on Fig. 1. For the function e−η we
plot the relative error of approximating the Iβ,γδ operator with the series (37), that is

Relative error(N) :=
Iβ,γδ U(η)−

∑N−1
k=0 λkU

(k)(η)η
k

k!

Iβ,γδ U(η)
. (50)

We can see that the error estimates (46) and (48) and the approximation are decently accurate even
for a small number of approximating terms. The error grows with η →∞ but on compact sets stays
bounded.

The rigorous results concerning functions with uniformly bounded derivatives is contained in the
proposition below.

Proposition 2. Let U be a CN function with uniformly bounded derivatives. Then we have the
following estimate ∣∣∣∣∣Iβ,γδ U(η)−

N−1∑
k=0

λkU
(k)(η)

ηk

k!

∣∣∣∣∣ ≤ C
|η|N

N δ(β+1)N !
, (51)

where λk is as in (38) and C depends on U , β, γ and δ.

Proof. We expand the function fη(y) := U(ηy) into the series at y = 1 with Nth remainder

fη(y) =
N−1∑
k=0

U (k)(η)
ηk

k!
(y − 1)k +

U (N)(ηζ)

N !
ηN(y − 1)N , (52)
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Figure 1: Relative errors of the approximation (46) of U(η) = e−η for N = 1 (on the left) and N = 3
(on the right) calculated for β = 1, γ = 0.1 and δ = 1. Solid line: the relative error (50); dashed
line: the first term on right-hand side of (46); dot-dashed line: asymptotic approximation (48).

where ζ is between 1 and y. By the substitution z = yδ we have

U
(
ηz1/δ

)
=

N−1∑
k=0

(−1)kU (k)(η)
ηk

k!

(
1− z1/δ

)k
+ (−1)N

U (N)(ηζ)

N !
ηN
(
1− z1/δ

)N
. (53)

Now, by the use of definition of E-K fractional operator (29) we obtain∣∣∣∣∣Iβ,γδ U(η)−
N−1∑
k=0

λkU
(k)(η)

|η|k

k!

∣∣∣∣∣ ≤ ηN

N !

1

Γ(γ)

∫ 1

0

(1− z)γ−1zβ
(
1− z1/δ

)N ∣∣U (N)(ηζ)
∣∣ dz. (54)

Since, by the assumption, the derivatives of U are uniformly bounded we have∣∣∣∣∣Iβ,γδ U(η)−
N−1∑
k=0

λkU
(k)(η)

ηk

k!

∣∣∣∣∣ ≤ ∥∥U (N)
∥∥
∞ |λN |

|η|N

N !
. (55)

Now, due to the asymptotic relation for λk (39) the sequence |λk| kδ(β+1) is bounded, thus∣∣∣∣∣Iβ,γδ U(η)−
N−1∑
k=0

λkU
(k)(η)

ηk

k!

∣∣∣∣∣ ≤ ∥∥U (N)
∥∥
∞ |λN | N

δ(β+1) |η|N

N δ(β+1)N !
≤ C

|η|N

N δ(β+1)N !
. (56)

This concludes the proof.

Notice that in the above proposition we did not assume that U is analytic. This means that we
can investigate the convergence of the series in a compact subset of the real line for functions which
have isolated points at which they do not possess a derivative. In what follows we will show that
the solution of (34) with (35)-(36) can be approximated by a function U(η) = (1− η/η∗)1/m, where
η∗ depends on α. This function is not analytic and even not differentiable at η = η∗. Specifically,
U (k)(η) = 1

m

(
1
m
− 1
)
...
(

1
m
− k + 1

)
(η∗)−k(1− η/η∗)1/m−k. Moreover

1

m

(
1

m
− 1

)
...

(
1

m
− k + 1

)
= (−1)k

Γ(k − 1
m

)

Γ(1− 1
m

)
∼ (−1)k

(k − 1)!

k
1
mΓ(1− 1

m
)

as k →∞. (57)

And thus we have an asymptotic relation

Iβ,γδ U(η)−
N−1∑
k=0

λkU
(k)(η)

ηk

k!
∼ δ

Γ (δ(β + 1))

Γ(γ)

1

N1+δ(β+1)+1/m

(
η

η∗

)N (
1− η

η∗

)1/m−N

as N →∞.

(58)
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For 0 ≤ η ≤M < η∗ the right-hand side of (58) is uniformly bounded with respect to η. We see that
the convergence is good, especially for η close to 0.

An important remark is in order. Notice that all of our preceding considerations assume δ > 0
while in the equation (34) δ = −1/b < 0. Despite the fact that in the case of negative δ we could have
not performed the integrations, the resulting λk would still have sense by the analytic continuation of
the Gamma function. This means that all the asymptotic formulas, such as (39), would still formally
make sense for δ < 0. But now the convergence would be slower as δ became more negative. Taking
more terms in the series (37) would not necessarily yield a greater accuracy. We note also that the
integral (29) defining the E-K operator has a meaning despite the negativity of δ. Because U has
a compact support, for sufficiently small z the expression ηz1/δ is larger than η∗ and thus U(ηz1/δ)
vanish. Therefore, the lower integration limit is separated from 0 (it is actually equal to (η/η∗)−δ)
In order to approximate the E-K operator, the sensible move would be to take the λ0 term only
since it not depends on δ. Moreover, as was noted before, this is also motivated by the integrand’s
mass concentration near a singular point. It is also easy to provide a quick estimate for the one-term
approximation, which does not require any differentiability.∣∣∣∣Iβ,γδ U(η)− Γ(β + 1)

Γ(β + γ + 1)
U(η)

∣∣∣∣ ≤ 1

Γ(b)

∫ 1

0

(1− z)γ−1zβ
∣∣U(ηz1/δ)− U(η)

∣∣ dz
≤ Γ(β + 1)

Γ(β + γ + 1)
sup
z∈[0,1]

∣∣U(ηz1/δ)− U(η)
∣∣ , (59)

where we have written down the expression for λ0 explicitly. We can see that this error strongly
depends on the nature of U . The numerical illustration of the approximation with the λ0 and λ1

terms only (that is N = 1 and N = 2 in (46)) is presented on Fig. 2. The function investigated here
is U(η) =

√
1− η which, as will turn out in the next section, is a particular case of the approximate

solution of the equation (34). We can see that because of the fact that U ′ has a singularity at η = 1,
only the λ0 term provides an accurate global approximation. Moreover, as can be seen, higher order
approximations are reasonable only for small values of the argument - they diverge for η approaching
the singularity of the derivative. The choice of parameters β, γ and δ in Iβ,γδ is chosen to be the
same as in (34) with (35) to anticipate further results.
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Figure 2: Comparison between the I0,1−α
−2/α U(η) for U(η) =

√
1− η and its approximations (37)

for α = 0.9. On the left: resulting function I0,1−α
−2/α U(η) (solid line) along with its approximations∑N−1

k=0 λkU
(k)(η) for N = 1 (dashed line), N = 2 (dot-dashed line) and N = 3 (dotted line). On the

right: absolute error
∣∣∣I0,1−α
−2/α U(η)−

∑N−1
k=0 λkU

(k)(η)η
k

k!

∣∣∣ for N = 1 (dashed line), N = 2 (dot-dashed
line) and N = 3 (dotted line).
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3.3 Solutions

Having all the previous remarks in mind we proceed to the analysis of the main equation. We can
see that for any case 0 < α ≤ 1 the equation (34) is of second-order. If we make the approximation
Iβ,γδ U ≈ λ0U then any case of the equation (34) can be written in the form

(UmU ′)′ ≈ AU −BηU ′, (60)

where the coefficients A,B,C depend on λ0, α and boundary conditions ((35) or (36)). Generally
A,B are functions of α and m, what is summarized in the Tab. 1. Equation (60) is well known in
the literature. Its mathematical theory was extensively developed in [28].

A B

Conditions (35) 1
Γ(1−α)

, α
2Γ(2−α)

;

Conditions (36)
Γ(1+ α

2+m)
Γ(1−α+ α

2+m)
, α m+1

m+2

Γ(1+ α
2+m)

Γ(2−α+ α
2+m)

;

Table 1: Coefficients of the equation (60).

The problem (34) with conditions (35) was solved in [17]. In this work we present a more general
analysis of this and the remaining problem (36). We are aiming to obtain only an approximate
solution of the equation (34) since it cannot be integrated (even numerically) in a straightforward
way. This is due to the fact that we do not know η∗, which defines the free-boundary in (35)-
(36). This difficulty can be circumvented by a particular transformation introduced in [29] (but
see also [30]) during an investigation of a similar equation describing the classical porous medium
equation (α = 1). It turns out that when we substitute

U(η) =
(
m(η∗)2y(z)

) 1
m , z = 1− η

η∗
, (61)

the free boundary problem can be transformed into an initial-value one.
We make the final (higher-order) simplification and make the substitution (61). We immediately

obtain
U ′ = −(η∗)

2
m
−1m

1
m
−1y

1
m
−1y′, (UmU ′)′ = (m(η∗)2)

1
m

(
1

m
y

1
m
−1y′ + y

1
my′′

)
. (62)

Hence the equation (60) can be transformed into

1

m
y′2 + yy′′ = Ay +

B

m
(1− z) y′, y(0) = 0, y′(0) = B, (63)

where the initial condition y(0) = 0 was determined from the requirement that U(η∗) = 0. It is also
interesting that the condition y′(0) = B is necessary : it emerges from the structure of the equation
(63) by setting z = 0. It is worthy to stress the fact that the problem (63) is the same for both sets
of conditions (35)-(36). The difference between those two cases will emerge when we calculate the
wetting front position eta∗.

Assuming the Taylor expansion

y(z) =
∞∑
k=1

akz
k, ak =

y(k)(0)

k!
, (64)
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equation (63) can be solved by a comparison of terms. Equivalently, but more computationally
convenient, is to take the nth derivative of the both sides of (63) and use the Leibniz rule for
derivative of the product. We then obtain

n∑
k=0

(
n

k

)(
1

m
y(k+1)(z)y(n−k+1)(z) + y(k)(z)y(n−k+2)(z)

)
= Ay(n)(z)+

B

m

n∑
k=0

(
n

k

)
y(n−k+1)(z)

dk

dzk
(1− z) .

(65)
Now, setting z = 0 we have the recurrence relation for an

n∑
k=0

(
n

k

)(
1

m
(k + 1)!(n− k + 1)! ak+1an−k+1 + k!(n− k + 2)! akan−k+2

)
= An! an +

B

m
((n+ 1)! an+1 − nn! an) ,

(66)

or, after simplification

a0 = 0, a1 = B, an+1 =
1

Bn(n+ 1)

[(
A− Bn

m
− 2n

m
a2

)
an

−
n∑
k=2

1

m
(k + 1)(n− k + 1)ak+1an−k+1 + (n− k + 1)(n− k + 2)akan−k+2

]
, n ≥ 1

(67)

which can be easily implemented in some scientific environment (here we used the convention that∑1
k=2 = 0). It is straightforward to calculate as much coefficients an as necessary, for example

a2 =
Am−B
2(1 +m)

, a3 =
(A+B)m(B − Am)

6B(1 +m)2(1 + 2m)
, a4 =

(A+B)m(B − Am)(B(3 +m)− Am(5 + 3m))

24B2(1 +m)3(1 +m(5 + 6m))
.

(68)
The Taylor series expansion (64) is often useful for m of order of unity. For larger values we can

apply the perturbation theory. Assuming that the solution y of the equation (63) can be expressed
in the form

y(z) = y0(z) +
1

m
y1(z) + · · · , (69)

we obtain the following equations for y0 and y1

y0y
′′
0 = Ay0, y0(0) = 0, y′0(0) = B,

y′20 + y0y
′′
1 + y1y

′′
0 = Ay1 +B(1− z)y′0, y1(0) = 0, y′1(0) = 0.

(70)

Immediately we obtain y0(z) = Az2/2 +Bz and therefore

y1(z) = −2(A+B)

[
z2

2
− B

A

((
z +

2B

A

)(
ln

(
1 +

A

2B
z

)
− 1

)
+

2B

A

)]
. (71)

The substitution (62) gives also a very convenient way of determining the wetting front position
η∗. Here we must distinguish between the cases (35) and (36). For the former we have 1 = U(0) =
(m(η∗)2y(1))1/m and thus

η∗ =
1√
my(1)

, (72)

For the case of (36) we −1 = Um(0)U ′(0) = −m−1/m(η∗)1−2/my1/m(1)y′(1), hence

η∗ =
(
m

1
my

1
m (1)y′(1)

)− m
m+2

. (73)
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Since in order to calculate η∗ we only need to know the values of y and y′ at z = 1, the series
representation (64) can give very accurate approximations. When m is large the perturbation ap-
proximation (69) yields better results. We note also that the formulas for the wetting front position
η∗ (72)-(73) are the only differences between two kinds of boundary conditions. The self-similar
solution U behaves in the same way for both of these setting. The difference appears only in the
scaling and choice of a and b in (27).

We can now go back to the substitution (61) and write

U(η) =

(
m(η∗)2

∞∑
k=0

ak

(
1− η

η∗

)k) 1
m

=

(
m(η∗)2

(
1− η

η∗

) ∞∑
k=0

ak+1

k∑
j=0

(
k

j

)
(−1)j

(
η

η∗

)j) 1
m

=

(
m(η∗)2

(
1− η

η∗

) ∞∑
j=0

(
j∑

k=0

(
k

j

)
ak+1

)(
− η

η∗

)j) 1
m

,

(74)

where ak can be calculated from the recurrence (67) and η∗ is obtained for each of the boundary
conditions (35)-(36) from (72)-(73) respectively. Although complicated, these formulas are readily
computable in any scientific environment. It is also worth to mention the form of the derivative at
η = 0

U ′(0) = −(η∗)
2
m
−1

(
m
∞∑
k=1

ak

) 1
m
−1 ∞∑

k=1

kak. (75)

Combining the above formula along with the value of U taken from (35) or (36) we obtain an initial-
value problem for U . That is, along with (75) we have

U(0) = 1 (for (35)) or U(0) =

(η∗)
2
m
−1

(
m
∞∑
k=1

ak

) 1
m
−1 ∞∑

k=1

kak

−
1
m

(for (36)) (76)

The numerical solution of this problem is much simpler than the one with the unknown free boundary
η∗. By truncating the series (64) we obtain the following approximations

U1(η) =

(
m(η∗1)2a1

(
1− η

η∗1

)) 1
m

, U2(η) =

(
m(η∗2)2

(
1− η

η∗2

)(
a1 + a2 − a2

η

η∗2

)) 1
m

,

U3(η) =

(
m(η∗3)2

(
1− η

η∗3

)(
a1 + a2 + a3 − (a2 + 2a3)

η

η∗3
+ a3

(
η

η∗3

)2
)) 1

m
(77)

where by the subscript we denoted how many terms to take in (64) and (72)-(73). These approxi-
mations can be used to determine the closed form of the cumulative moisture

I(t) :=

∫ ∞
0

u(x, t)dx =

∫ ∞
0

taU
(
xt−b

)
dx = ta+b

∫ η∗

0

U(η)dη, (78)

where a and b are chosen with respect to the considered boundary conditions (35)-(36). By the use
of (77) we have

I1(t) = ta+b mη
∗
1

1 +m

(
m(η∗1)2a1

) 1
m , I2(t) = ta+b mη

∗
2

1 +m

(
m(η∗2)2a1

) 1
m

2F1

(
1 +

1

m
,− 1

m
; 2 +

1

m
;−a2

a1

)
,

(79)
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and in general

I(t) = ta+bη∗
(
m(η∗)2

) 1
m

∫ 1

0

(
∞∑
k=0

aky
k

) 1
m

dy. (80)

Here 2F1 denotes the hypergeometric function (see [33]).
To illustrate the accuracy of our approximations we implement the finite difference numerical

scheme proposed in [17] to solve the time-fractional porous medium equation (15) with conditions
(17) (the case of (16) was investigated in the cited paper). This finite difference scheme is constructed
as a weighted explicit-implicit method, where nonlinearity is linearized by the method borrowed
from [34]. The simulated values of the diffusion front for (17) are depicted on Fig. 3.
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Figure 3: The solution of the anomalous diffusion equation (15) with conditions (17) for α = 0.95,
m = 2 and times t = 0.02, 0.04, 0.06, 0.08, 0.1 (curves from bottom to top). The dashed line
represents the approximate solution U3 from (77).

As a additional check of the accuracy of the approximation we compute the wetting front position
η∗ = η∗(t) and total infiltration (78). The comparison between the approximate and exact (numerical)
solution is presented of Fig. 4. We can see that the accuracy of approximation is decent, especially
for small η (what was suggested before).

Finally, let us focus on the real data obtained from the experiment [6]. In that paper Authors
reported a deviation from the standard Boltzmann scaling x/

√
t when investigated a moisture ingress

in porous zeolite. To model this phenomenon they used equation (12) but instead of solving it,
they approximated the diffusion coefficient D = D(u). Moreover, they indicated that the moisture
transport process in the porous medium is very dependent on the history. Hence, the idea of the
model with time-fractional derivative of order α which is a nonlocal-in-time operator. The fitting
results of the dimensional form (13) of the U3 function (77) with the boundary conditions (35) are
depicted on Fig. 5. The subdiffusive character of the medium is evident and the accuracy of our
approximation is decent.
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Figure 4: On the left: wetting front position η∗ = η∗(t); on the right: total cumulative infiltration
I = I(t) as in (78). Solid lines represent the calculated numerical values while dashed lines are
the approximations (73) (for a three-term approximation) and (79) (for a two-term approximation)
respectively. Here α = 0.95 and m = 2.
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Figure 5: Fitting the function U3 from (77) to the self-similar moisture profile of the porous zeolite
obtained from [6]. Here α = 0.36, m = 1 and D0 = 0.4568 [cm2/sec0.36]

4 Conclusion
We have analyzed the so-called time-fractional porous medium equation, which is a mathematical
description of the anomalous transport in some types of media (such as building materials). We
have shown that the emergence of the temporal fractional derivative is a natural consequence of the
trapping phenomena inside the medium, which lead to the subdiffusion. Our deterministic derivation
is dual to the one done in the stochastic CTRW framework and thus shows a deep relation between
these two approaches. In our setting, the nonlinear flux can be easily incorporated yielding the
time-fractional Richards equation. Due to serious complexity of the resulting equation we have used
the previously developed method of approximation and obtained decently accurate (approximate)
solutions. All of the approximations have been verified numerically along with fitting to the real
data representing wetting front position in the porous zeolite. Our results tentatively suggest that
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the time-fractional porous medium equation can be a sensible model for the anomalous diffusion in
some porous media. But nevertheless, the topic has to be thoroughly investigated in order to state
some concluding remarks. We hope that our research will help to provide a deeper understanding of
the anomalous diffusion.
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