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Range additivity, shorted operator and the

Sherman-Morrison-Woodbury formula

M. Laura Arias, Gustavo Corach and Alejandra Maestripieri

Abstract

We say that two operatorsA,B have the range additivity property ifR(A+B) = R(A) +R(B).

In this article we study the relationship between range additivity, shorted operator and certain Hilbert

space decomposition known as compatibility. As an application, we extend to infinite dimensional Hilbert

space operators a formula by Fill and Fishkind related to thewell-known Sherman-Morrison-Woodbury

formula.

I. INTRODUCTION

In this paper we explore some results implied by range additivity of operators in a Hilbert

spaceH. Let L(H) be the algebra of bounded linear operators onH andL(H)+ the cone of

positive operators onH. Consider the set

R := {(A,B) : A,B ∈ L(H) and R(A+B) = R(A) +R(B)},

whereR(T ) denotes the range ofT . If (A,B) ∈ R we say thatA,B satisfy therange additivity

property. On the other side, we say that a positive operatorA ∈ L(H)+ and a closed subspace

S ⊆ H are compatibleif S + (AS)⊥ = H; in [10] it is shown thatA,S are compatible if

and only if there exists an idempotent operatorE ∈ L(H) such thatR(E) = S andE is A-

selfadjoint, in the sense that〈Ex, y〉A = 〈x, Ey〉A for x, y ∈ H, where〈x, y〉A = 〈Ax, y〉 . Notice
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that ||x||A = 〈x, x〉
1/2
A is a seminorm, and thatE behaves, with respect to this seminorm, as an

orthogonal projection. So,A andS are compatible if there is anA-orthogonal projection ontoS.

One of the main results of the paper is thatA,S are compatible if and only if(A, I −PS) ∈ R,

wherePS denotes the classical orthogonal projection ontoS. Indeed, this is a corollary of the

following theorem: forA,B ∈ L(H)+ such thatR(B) is closed, then(A,B) ∈ R if and only

if A andN(B) are compatible (Theorem IV.4). In order to prove this assertion, and some other

general facts on range additivity and compatibility, we explore some features of the shorted

operator[S]A. This operator has been defined by M. G. Krein [21] as

[S]A := max{X ∈ L(H)+ : X ≤ A and R(X) ⊆ S}.

He proved that the maximum for the Löwner ordering (i.e.,C ≤ D if 〈Cξ, ξ〉 ≤ 〈Dξ, ξ〉 for every

ξ ∈ H) exists and he applied this construction for a parametrization of the selfadjoint extensions

of semi-bounded operators. W. N. Anderson and G. E. Trapp [1]redefined and studied this

operator, which can be used in the mathematical study of electrical networks. Here, we use the

properties of the shorted operator in order to prove that, for A,B ∈ L(H)+ such thatR(B) is

closed, it holds that(A,B) ∈ R if and only if A,N(B) are compatible whereN(B) denotes the

nullspace ofB. In particular, forB = I − PS we get the assertion above. However, this is not

the first manifestation of a relationship between compatibility of A,S and properties of[S]A. In

fact, Anderson and Trapp [1] prove that[S]A is the infimum, for the L̈owner ordering , of the set

{EAE∗ : E ∈ L(H), E2 = E,N(E) = S⊥}. In [10, Prop. 4.2], [11, Prop. 3.4] it is proven that

the infimum is attained if and only ifA,S are compatible. Moreover, it is proven that ifE ∈ L(H)

is an idempotent operator such thatAE = E∗A andR(E) = S, then[S⊥]A = A(I −E). Here,

we explore more carefully the properties of[S]A which are relevant for the compatibility ofA,S.

Another result which may be relevant for updating theory is the extension of the well-known

theorem by J. A. Fill and D. E. Fishkind [17] which says that, for n×n complex matricesA,B

such thatrk(A + B) = rk(A) + rk(B) it holds that(A + B)† = (I − S)A†(I − T ) + SB†T,

where † denotes the Moore-Penrose inverse,S = (PN(B)⊥PN(A))
† andT = (PN(A∗)PN(B∗)⊥)

†.

Here, rk(X) denotes the rank of the matrixX andPM is the orthogonal projection onto the

subspaceM. This is a generalization of a famous formula by J. Sherman, W.J. Morrison

and M. A. Woodbury. For a history of this formula see [20]. Of course, for Hilbert space

operators the rank hypothesis must be replaced by a different one. Since it is well-known that

rk(A+B) = rk(A)+ rk(B) if and only if R(A)∩R(B) = {0} andR(A∗)∩R(B∗) = {0}, we
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prove that Fill-Fishkind formula holds forA,B ∈ L(H) such thatR(A) andR(B) are closed,

R(A) ∩ R(B) = R(A∗) ∩R(B∗) = {0} and (A,B), (A∗, B∗) ∈ R.

We end this section introducing some notation. The direct sum between two closed subspaces

S andT will be denoted byS
.
+ T . If H = S

.
+ T thenQS//T denotes the oblique projection

with rangeS and kernelT .

II. RANGE ADDITIVITY

Let H,K be Hilbert spaces. We say thatA,B ∈ L(H,K) have therange additivity property

if R(A+B) = R(A) +R(B). We denote byR the set of all these pairs(A,B), i.e.,

R := {(A,B) : A,B ∈ L(H,K) and R(A+B) = R(A) +R(B)}.

We collect first some trivial or well-known facts aboutR.

Proposition II.1. Let A,B ∈ L(H,K). Then

1) (A,B) ∈ R if and only if (B,A) ∈ R.

2) If R(A) = K andA = C +D for someC,D ∈ L(H,K) then (C,D) ∈ R.

3) If H = K is finite dimensional andA,B ∈ L(H)+ then (A,B) ∈ R.

4) If H = K, A, B ∈ L(H)+ andR(A+B) or R(A) +R(B) is closed, then(A,B) ∈ R; in

particular, if A,B ∈ L(H)+, R(A) is closed anddimR(B) < ∞ then (A,B) ∈ R.

Proof: Items 1 and 2 are trivial. Item 4 has been proven by Fillmore and Williams [18,

Corollary 3] under the additional hypothesis thatR(A) andR(B) are closed. In [6, Theorem

3.3] there is a proof without these hypothesis. Items 3 follows from item 4.

Proposition II.2. For A,B ∈ L(H,K) consider the following conditions:

1) R(A∗)
.
+R(B∗) is closed.

2) N(A) +N(B) = H

3) (A,B) ∈ R.

Then, the next implications hold:1 ⇔ 2 ⇒ 3. The converse3 ⇒ 2 holds ifR(A)∩R(B) = {0}.

Proof: See [7, Prop. 5.8]. For more general results Corollary II.8 and Theorem II.10.

Examples II.3. 1) ConsiderA =





1 1

1 1



 andB =





1 0

1 0



 . Clearly, (A,B) ∈ R but

(A∗, B∗) /∈ R.
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2) There existC,D ∈ L(H)+ such thatR(C), R(D) are dense and(C,D) /∈ R. For this,

considerC,D ∈ L(H)+ with dense ranges such thatR(C) ∩ R(D) = {0} (see [18]).

Hence, asN(C) +N(D) = {0} 6= H then, by Proposition II.2,(C,D) /∈ R.

We collect now some useful characterizations ofR. Notice that the proof holds also for vector

spaces and modules over a ring.

Proposition II.4. GivenA,B ∈ L(H), the following conditions are equivalent:

1) (A,B) ∈ R,

2) R(A) ⊆ R(A +B),

3) R(B) ⊆ R(A +B),

4) R(A−B) ⊆ R(A+B).

Proof: 1 ⇒ 2, 3. If R(A + B) = R(A) + R(B), then, a fortiori,R(A) ⊆ R(A + B) and

R(B) ⊆ R(A+B).

2 ⇒ 3. For everyx ∈ H, Bx = (A+B)x− Ax ∈ R(A+B).

3 ⇒ 4. For everyx ∈ H, (A− B)x = (A+B)x− 2Bx ∈ R(A +B).

4 ⇒ 1. For everyx ∈ H, 2Ax = (A − B)x + (A + B)x ∈ R(A + B) and 2Bx = −(A −

B)x+ (A+B)x ∈ R(A+B), and we getR(A) +R(B) ⊆ R(A+B).

The next result of R.G. Douglas [15] will be frequently used in the paper.

Theorem II.5. Let A ∈ L(H,K) andB ∈ L(F ,K). The following conditions are equivalent:

1) R(B) ⊆ R(A).

2) There is a positive numberλ such thatBB∗ ≤ λAA∗.

3) There existsC ∈ L(F ,H) such thatAC = B.

If one of these conditions holds then there is a unique operator D ∈ L(F ,H) such thatAD = B

andR(D) ⊆ N(A)⊥. We shall callD the reduced solution of AX = B.

Corollary II.6. For A,B ∈ L(H) the following conditions are equivalent:

1) the equationAX = B has a solution inL(H).

2) (A−B,B) ∈ R.

Corollary II.7. For A,B ∈ L(H)+ it holds:

April 26, 2022 DRAFT
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1) (A +B)1/2X = A1/2 has a solution.

2) (A +B)1/2X = B1/2 has a solution.

3) (A1/2, (A+B)1/2 −A1/2) ∈ R.

4) (B1/2, (A+B)1/2 −B1/2) ∈ R.

Proof: In fact, it holdsA+B ≥ A,A+B ≥ B and Douglas’ theorem applies.

The next corollary complements Proposition II.2. For a proof see [5, Prop. 4.13].

Corollary II.8. For A,B ∈ L(H,K) the following conditions are equivalent:

1) R(A∗)
.
+R(B∗) is closed;

2) equation (A + B)X = A admits a solution which is an oblique (i.e., not necessarily

orthogonal) projection inL(H).

Recall thatA,B ∈ L(H)+ are said to beThompson equivalent(in symbols,A ∼T B) if there

exist positive numbersr, s such thatrA ≤ B ≤ sA (whereC ≤ D means that〈Cx, x〉 ≤ 〈Dx, x〉

for all x ∈ H). By Douglas’ theorem,A ∼T B if and only if R(A1/2) = R(B1/2). For a fixed

A ∈ L(H)+ the Thompson component ofA is the convex cone{B ∈ L(H)+ : A ∼T B}.

The following identity is due to Crimmins (see [18] for a proof): if A,B ∈ L(H,K) then

R(A) +R(B) = R((AA∗ +BB∗)1/2). Using Crimmins’ identity the following result is clear:

Proposition II.9. If A,B ∈ L(H)+ then (A,B) ∈ R if and only if (A+B)2 ∼T A2 +B2.

The next characterization ofR is less elementary than that of Proposition II.2. Notice, however,

that its proof is algebraic, so it also holds in the context ofvector spaces, modules over a ring,

and so on.

Theorem II.10. LetA,B ∈ L(H). ThenR(A+B) = R(A)+R(B) if and only ifR(A)∩R(B) ⊆

R(A + B) and H = A−1(R(B)) + B−1(R(A)). In particular, if R(A) ∩ R(B) = {0} then

(A,B) ∈ R if and only ifN(A) +N(B) = H.

Proof: Let T = A + B, W = R(A) ∩ R(B) and suppose thatR(T ) = R(A) + R(B).

ThenR(A) ⊆ R(T ) andR(B) ⊆ R(T ) so thatW ⊆ R(T ). On the other hand, using again

that R(A) andR(B) are subsets ofR(T ) it holds H = T−1(R(T )) = T−1(R(A) + R(B)) =

T−1(R(A)) + T−1(R(B)). But it is easy to see thatT−1(R(A)) = B−1(R(A)). Hence,H =

T−1(R(A)) + T−1(R(B)) = A−1(R(B)) +B−1(R(A)).
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Conversely, suppose thatW ⊆ R(T ) and H = B−1(R(A)) + A−1(R(B)). We shall prove

thatR(B) = T (A−1(R(B))). In fact, sinceB−1(R(A)) = B−1(W) andA−1(R(B)) = A−1(W)

then

R(B) = B(H) = B(B−1(W) + A−1(W)) = W +B(A−1(W)),

becauseW ⊆ R(B). Moreover,R(B) = W +B(A−1(W)) = W +T (A−1(W)) = T (A−1(W)).

In fact, for the second equality considery ∈ W +B(A−1(W)) theny = w+Bx wherew ∈ W

andx ∈ A−1(W), so thaty = w − Ax + Tx wherew − Ax ∈ W andTx ∈ T (A−1(W)); the

other inclusion is clear. Then the second equality holds.

To see thatW +T (A−1(W)) = T (A−1(W)) it is sufficient to note thatW ⊆ T (A−1(W)). In

fact, T−1(W) = A−1(W) ∩B−1(W) ⊆ A−1(W) then applyingT to both sides of the inclusion

W = TT−1(W) ⊆ T (A−1(W)) becauseW ⊆ R(T ).

Hence,R(B) = T (A−1(W)) = T (A−1(R(B)) ⊆ R(T ). Applying Proposition II.4,(A,B) ∈

R.

One of the obstructions for range additivity for operators in Hilbert spaces is thatR(A) is,

in general, non closed. Therefore, the identityR(A + B) = R(A) + (B) is not equivalent to

N(A∗ + B∗) = N(A∗) ∩ N(B∗), which is easier to check. On these matters, see the papers

by P. Šemrl [27, §2] and G. Ľesnjak and P.̌Semrl [22], where they discuss different kinds of

topological range additivity properties. See also the paper by J. Baksalary, P.̌Semrl and G. P.

H. Styan [9].

III. SHORTED OPERATORS AND RANGE ADDITIVITY

In his paper on selfadjoint extensions of certain unboundedoperators [21], M. G. Krein defined

for the first time a shorted operator (this is modern terminology). More precisely, ifA ∈ L(H)+

andS is a closed subspace ofH, Krein proved that the set

{C ∈ L(H)+ : C ≤ A and R(C) ⊆ S}

admits a maximal element[S]A. Moreover, Krein proved that

[S]A = A1/2PMA1/2,

if M = A−1/2(S). Krein constructed the shorted operators to find selfadjointpositive extensions

of certain unbounded operators. For a modern exposition of Krein’s ideas on these matters, see

[8].
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Later, W. N. Anderson and G. E. Trapp [1] rediscovered the operator [S]A, proved many

useful properties and showed its relevance in the theory of impedance matrices of networks.

The papers by E. L. Pekarev [23], Pekarev and Smul’jan [24], T. Ando [3] and S. L. Eriksson

and H. Leutwiler [16] contain many useful theorems about Krein shorted operators. A nice

exposition for shorted operators in finite dimensional spaces is that of T. Ando [3]. It is worth

mentioning that there is a binary operation between positive operators, theparallel sum, which

is also relevant in electrical network theory and which is related to shorted operators. IfA,B

are the impedance matrices of twon-port resistive networks thenA : B := A(A +B)†B is the

impedance matrix of their parallel connection. For positive operatorsA,B on a Hilbert space

H, Fillmore and Williams [18] defined

A : B = A1/2C∗DB1/2,

if C (resp.D) is the reduced solution of(A+B)1/2X = A1/2 (resp.(A +B)1/2X = B1/2).

Anderson and Trapp [1] proved thatA : B is the (1, 1) entry of [S]





A A

A A+B



 , if

S = H ⊕ {0} and the matrix





A A

A A+B



 is considered as an element ofL(H ⊕ H)+.

Thus, the parallel addition is a particular form of the shorted operation. Any extension to non

necessarily positive operators of the parallel sum operation requires that(A,B) and (A∗, B∗)

belong toR, at least if one wants to keep the desirable commutativityA : B = B : A [26,

10.1.6]. Indeed, Rao and Mitra say thatA,B areparallel summableif A(A+B)−B is invariant

for any generalized inverse ofA+B. It turns out that this happens if and only if(A,B) ∈ R and

(A∗, B∗) ∈ R. This means that there is an strong relationship among Krein shorted operators,

Douglas range inclusion and range additivity.

We collect in the next proposition some facts on the Krein shorted operators, mainly extracted

from the paper [1] by Anderson and Trapp.

A warning about notation. The original notation by Krein isAS . Anderson and Trapp [1]

usedS(A). Ando [4] proposed[S]A. This is coherent with a relevant construction[B]A for

A,B ∈ L(H)+ that he defined and studied in [2], by generalizing a theorem of Anderson

and Trapp that([S]A)x = limn→∞(A : nPS)x for every x ∈ H. Ando defined the existence

of ([B]A)x = limn→∞(A : nB)x for every x ∈ H and proved many relevant results on this

construction. In particular, it holds that[S]A = [B]A if S = R(B). Erikson and Leutwiler
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[16] usedQBA for Ando’s [B]A. In [3], Ando has usedA/S for the shorted operator and

AS = A − A/S . Corach, Maestripieri and Stojanoff used
∑

(PS , A) in [10] andA/S in [11] to

denote what we are denoting now[S⊥]A.

Proposition III.1. GivenA,B ∈ L(H)+ and closed subspacesS, T of H the following prop-

erties hold:

1) R(A) ∩ S ⊆ R([S]A) ⊆ R(([S]A)1/2) = R(A1/2) ∩ S; in particular, R([S]A) is closed if

R(A) is closed or, more generally, ifR(A) ∩ S = R(A1/2) ∩ S.

2) N([S]A) = N(PA−1/2SA
1/2) = A−1/2A1/2(S⊥) ⊇ N(A) + S⊥; equality holds if and only

if A1/2(S⊥) ∩R(A1/2) = A1/2(S⊥).

3) [S](A+B) ≥ [S]A+[S]B; equality holds if and only ifR((A−[S]A+B−[S]B)1/2)∩S =

{0}.

4) R((A− [S]A)1/2) ∩ S = {0}. In particular, R([S]A) ∩ R(A− [S]A) = {0}.

Proof:

1) See [1, Corollary 4 of Theorem 1 and Corollary of Theorem 3]

2) See [11, Corollary 2.3]

3) See [1, Theorem 4].

4) See [1, Theorem 2].

Corollary III.2. Let A,B ∈ L(H)+. Then:

1) If S = R(B) then [S]B = B and [S](A +B) = [S]A +B.

2) If S = R(B) is closed thenR([S](A +B)) = S andN([S](A +B)) = S⊥.

Proof:

1) The identity[S]B = B can be checked through the definition of[S]B; the identity[S](A+

B) = [S]A +B follows from items 3 and 4 in Proposition III.1.

2) For everyC ∈ L(H)+ it holds R(([S]C)1/2) ⊆ S, thereforeS ⊇ R(([S](A + B))1/2) =

R(([S]A+B)1/2) = R(([S]A)1/2)+S ⊇ S, where the second equality holds by Crimmins’

identity.The kernel condition follows by taking orthogonal complement.
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Proposition III.3. LetA ∈ L(H)+ and letS be a closed subspace ofH. The following conditions

are equivalent:

1) ([S]A,A− [S]A) ∈ R;

2) R(A) = R(A− [S]A)
.
+R([S]A);

3) R([S]A) ⊆ R(A);

4) R(A1/2) = M∩ R(A1/2)⊕M⊥ ∩R(A1/2), if M = A−1/2(S).

Proof: Notice thatN([S]A) = A−1/2(A1/2(S⊥)) andN(A− [S]A) = A−1(S).

1 ⇔ 2 ⇔ 3. It follows by Proposition II.4 and Proposition III.1.

3 ⇔ 4. Assume thatR([S]A) ⊆ R(A) and let y = A1/2x ∈ R(A1/2). Hence,A1/2x =

PMA1/2x+(I−PM)A1/2x. ApplyingA1/2 in both sides, we get thatAx = A1/2(I−PM)A1/2x+

[S]Ax. Thus, sinceR([S]A) ⊆ R(A) we obtain thatA1/2(I − PM)A1/2x ∈ R(A). Therefore,

A1/2(I−PM)A1/2x = Az for somez ∈ H. From this,(I−PM)A1/2x−A1/2z ∈ N(A)∩R(A) =

{0}, i.e., (I − PM)A1/2x = A1/2z ∈ R(A1/2) ∩ M⊥. Therefore,A1/2x = PMA1/2x + (I −

PM)A1/2x ∈ M∩ R(A1/2)⊕M⊥ ∩ R(A1/2) and item 3 is proved.

Conversely, assume thatR(A1/2) = M ∩ R(A1/2) ⊕ M⊥ ∩ R(A1/2). Hence,R([S]A) =

R(A1/2PMA1/2) ⊆ A1/2(M∩R(A1/2)) ⊆ R(A).

IV. COMPATIBILITY AND RANGE ADDITIVITY

Definition IV.1. GivenA ∈ L(H)+ and S a closed subspace ofH, we say that the pairA,S

is compatible if H = S + (AS)⊥.

As shown in [10] the compatibility of a pairA,S means that there exists a (bounded linear)

projection with imageS which is Hermitian with respect to the semi-inner product〈·, ·〉A defined

by 〈ξ, η〉A = 〈Aξ, η〉 . It is worth mentioning that compatibility gives a kind of weak version of

invariant subspaces. In fact, ifA is a selfadjoint operator onH andS is a closed subspace, then

S is an invariant subspace forA if AS ⊆ S, which means thatPSAPS = PSA. On the other

side,A,S are compatible if and only ifR(PSAPS) = R(PSA); for a proof of this fact see [10,

Proposition 3.3]. In the recent paper [7, Proposition 2.9] it is proven thatA,S are compatible

if and only if (PSA, I − PS) ∈ R. In this section we shall complete this result by proving that

A,S are compatible if and only if(A, I − PS) ∈ R.

April 26, 2022 DRAFT
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Proposition IV.2. [11, Theorem 3.8] LetA ∈ L(H)+ and S a closed subspace ofH. The

following conditions are equivalent:

1) (A,S) is compatible.

2) R([S⊥]A) ⊆ R(A) andN([S⊥]A) = N(A) + S.

Proposition IV.3. Let A,B ∈ L(H)+ with closed ranges. The next conditions are equivalent:

1) A,N(B) are compatible.

2) N(A) +N(B) is closed.

3) B,N(A) are compatible.

4) R(A) +R(B) is closed.

5) (A,B) ∈ R.

Proof: 1 ⇔ 2. [10, Theorem 6.2].

2 ⇔ 3. Idem.

2 ⇔ 4. It follows from the general fact that, for closed subspacesS, T thenS + T is closed

if and only if S⊥ + T ⊥ is closed. See [14, Theorem 13].

4 ⇒ 5. See [18, Corollary 3].

5 ⇒ 4. R(A + B) = R(A) + R(B) = R(A1/2) + R(B1/2) = R((A + B)1/2) by Crimmins’

identity. ThenR(A +B) is closed and soR(A) +R(B) is closed .

Theorem IV.4. Let A,B ∈ L(H)+ and suppose thatB has a closed range. The following

conditions are equivalent:

1) A,N(B) are compatible.

2) (A,B) ∈ R.

3) R(B)
.
+ AN(B) is closed.

Proof: 1 ⇔ 2. Let S = N(B). First observe thatA,S are compatible if and only ifA+B,S

are compatible. Indeed,S + ((A+B)S)⊥ = S + (AS)⊥. Hence, by Proposition IV.2,A,S are

compatible if and only ifR([S⊥](A+B)) ⊆ R(A+B) andN([S⊥](A+B)) = S+N(A+B) or,

equivalently, by Corollary III.2,S⊥ ⊆ R(A+B) (notice thatN(A+B) = N(A)∩N(B) ⊆ S).

Summarizing,A,S are compatible if and only ifR(B) = S⊥ ⊆ R(A + B), i.e., R(A + B) =

R(A) +R(B).

1 ⇔ 3. It follows applying [14, Theorem 13].
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Corollary IV.5. Let A ∈ L(H)+ and S a closed subspace ofH. The next conditions are

equivalent:

1) A,S are compatible;

2) (A, I − PS) ∈ R.

3) S⊥
.
+ AS is closed.

Proposition IV.6. Let A,B ∈ L(H)+ such thatR(A) ∩ R(B) = {0}. Then,(A,B) ∈ R if and

only if A,N(B) are compatible.

Proof: Since,R(A)∩R(B) = {0} thenR(A+B) = R(A)+R(B) if and only ifH = N(A)+

N(B). Now,N(A)+N(B) = A−1({0})+N(B) = A−1(R(B))+N(B) = A−1(N(B)⊥)+N(B).

Therefore,R(A + B) = R(A) + R(B) if and only if H = A−1(N(B)⊥) + N(B), i.e., if and

only if A,N(B) are compatible.

The next example shows that the compatibility of the pairA,N(B) does not imply, in general,

that (A,B) ∈ R.

Example IV.7. ConsideringC and D as in Example II.3.2, we defineA =





0 0

0 C



 and

B =





0 0

0 D



 . Clearly, (A,B) /∈ R. However,A,N(B) are compatible.

Corollary IV.8. Let A ∈ L(H)+ and S a closed subspace ofH. The following conditions are

equivalent:

1) R(A) = R(A− [S]A)
.
+R([S]A);

2) A− [S]A,N([S]A) are compatible;

3) A,N([S]A) are compatible.

Proof: 1 ⇔ 2. It follows from Proposition III.1 and Proposition IV.6.

2 ⇔ 3. It follows from the fact thatA = [S]A + A− [S]A.

V. THE FILL -FISHKIND FORMULA

This last section is devoted to the Fill-Fishkind formula. In order to identify certain Moore-

Penrose inverses of products of orthogonal projections, the next theorem (due to Penrose and

Greville) will be helpful.
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Theorem V.1. If Q ∈ L(H) is an oblique projection thenQ† = PN(Q)⊥PR(Q). Conversely, if

M and N are closed subspaces ofH such thatPMPN has closed range, then(PMPN)
† is the

unique oblique projection with rangeR(PNPM) and nullspaceN(PNPM).

Proof: For matrices, the proof appears in the paper by Penrose [25, Lemma 2.3] and Greville

[19, Theorem 1]. For general Hilbert spaces, see [12, Theorem 4.1].

We prove now the extension of the theorem by Fill and Fishkind[17, Theorem 3] mentioned

in the introduction.

Theorem V.2. Let A,B ∈ L(H,K) such thatR(A), R(B) are closed,R(A)∩R(B) = R(A∗)∩

R(B∗) = {0} and (A,B) ∈ R and (A∗, B∗) ∈ R. Hence,

(A+B)† = (I − S)A†(I − T ) + SB†T, (1)

where

S = (PN(B)⊥PN(A))
† = QPN(A)(N(B)⊥)//N(B)

and

T = (PN(A∗)PN(B∗)⊥)
† = QR(B)//R(A)+R(A)⊥∩R(B)⊥ .

Proof: We show first that all Moore-Penrose inverses which appear in(1) are bounded. In

fact, by Proposition II.2,R(A)
.
+R(B) andR(A∗)

.
+R(B∗) are closed and soR(A+B) is also

closed. Therefore, in addition,PN(B)⊥PN(A) andPN(A∗)PN(B∗)⊥ have closed ranges because of

[14, Theo. 22]. In order to prove thatX is the Moore-Penrose inverse ofA is suffices to prove

thatAX = PR(A), XA = PR(A∗) andXAX = X. In our case, we shall prove:

i) (A +B)((I − S)A†(I − T ) + SB†T ) = PR(A+B)

ii) ((I − S)A†(I − T ) + SB†T )(A+B) = PR(A∗+B∗).

iii) ((I−S)A†(I−T )+SB†T )(A+B)((I−S)A†(I−T )+SB†T ) = (I−S)A†(I−T )+SB†T.

By Theorem V.1, we have thatS = QPN(A)(N(B)⊥)//N(B) and T = QR(B)//R(A)+R(A)⊥∩R(B)⊥ .

Therefore,

i) After computations, we obtain that:(A+B)((I −S)A†(I−T )+SB†T ) = Q1+T where

Q1 = QR(A)//R(B)+R(A)⊥∩R(B)⊥ . Therefore:

a) SinceQ1T = TQ1 = 0 thenQ1 + T is a projection.

b) Clearly,R(Q1 + T ) ⊆ R(A+B). On the other side, as(Q1 + T )(A+B) = A+B

we get the other inclusion, and soR(Q1 + T ) = R(A+B).
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c) Finally, asR(A + B)⊥ = R(A)⊥ ∩ R(B)⊥ ⊆ N(Q1 + T ) we obtain thatQ1 + T =

PR(A+B) as desired.

ii) After computations, we obtain that:((I−S)A†(I−T )+SB†T )(A+B) = I−(I−S)PN(A).

a) Notice that(I−PN(A))(I−S) = I−PN(A), then(I−S)PN(A) = PN(A)(I−S)PN(A) =

(I − S)PN(A)(I − S) and so(I − (I − S)PN(A))
2 = I − (I − S)PN(A).

b) Clearly,N(A)∩N(B) ⊆ N(A+B) ⊆ N(I− (I−S)PN(A)). For the other inclusion,

if x ∈ N(I − (I − S)PN(A)) and since(I − S)PN(A) = (I − S)PN(A)(I − S) we

have thatx = (I − S)PN(A)x ∈ N(B) and x = PN(A)(I − S)PN(A)x ∈ N(A),

i.e., x ∈ N(A) ∩ N(B). Therefore,N(I − (I − S)PN(A)) = N(A) ∩ N(B) =

(R(A∗) +R(B∗))⊥ = R(A∗ +B∗)⊥.

c) Finally, asI − (I − S)PN(A)(A
∗ + B∗) = A∗ + B∗ we get thatR(A∗ + B∗) ⊆

R(I− (I−S)PN(A)) and so, by the previous items, we conclude that((I−S)A†(I−

T ) + SB†T )(A+B) = I − (I − S)PN(A) = PR(A∗+B∗) as desired.

iii) As ((I−S)A†(I−T )+SB†T )(A+B) = I−EPN(A) whereE = QN(B)//PN(A)(N(B)⊥). Then,

((I−S)A†(I−T )+SB†T )(A+B)((I−S)A†(I−T )+SB†T ) = (I−EPN(A))((I−S)A†(I−

T )+SB†T ) = (I−S)A†(I−T )+SB†T becauseEPN(A)((I−S)A†(I−T )+SB†T ) = 0

sinceEPN(A)S = 0 = EPN(A)A
†.

Remark V.3. Fill and Fishkind proved their formula under the hypothesisrk(A+B) = rk(A)+

rk(B) whereA,B are n × n−complex matrices andrk denotes the rank. It is well known

that this rank additivity is equivalent toR(A) ∩ R(B) = R(A∗) ∩ R(B∗) = {0}. Moreover,

by Proposition II.2,R(A) ∩ R(B) = R(A∗) ∩ R(B∗) = {0} is equivalent (for matrices) to

(A,B), (A∗, B∗) ∈ R. Thus, there is no loss in this generalization. For a quite different set of

hypothesis for Fill-Fishkind formula in Hilbert spaces, see the paper by Deng [13].
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