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Range additivity, shorted operator and the

Sherman-Morrison-Woodbury formula

M. Laura Arias, Gustavo Corach and Alejandra Maestripieri

Abstract

We say that two operatotd, B have the range additivity property (A + B) = R(A) + R(B).
In this article we study the relationship between rangetadkyi shorted operator and certain Hilbert
space decomposition known as compatibility. As an apptinatve extend to infinite dimensional Hilbert
space operators a formula by Fill and Fishkind related toatal-known Sherman-Morrison-Woodbury

formula.

. INTRODUCTION

In this paper we explore some results implied by range adfyitof operators in a Hilbert
spaceH. Let L(H) be the algebra of bounded linear operators?orand L(#)" the cone of

positive operators off{. Consider the set
R:={(A,B): A,Be€ L(H)and R(A+ B) = R(A) + R(B)},

where R(T") denotes the range df. If (A, B) € R we say thatd, B satisfy therange additivity
property. On the other side, we say that a positive operatas L(#)" and a closed subspace
S C H are compatibleif S + (AS)+ = H; in [10] it is shown that4,S are compatible if
and only if there exists an idempotent operatore L(H) such thatR(E) = S and E is A-
selfadjoint, in the sense that'z, y) , = (x, By) , for x,y € H, where(z,y) , = (Ax,y) . Notice
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that ||z||4 = <x,x>i{2 is a seminorm, and thdf behaves, with respect to this seminorm, as an

orthogonal projection. S04 andS are compatible if there is an-orthogonal projection onts.
One of the main results of the paper is thatS are compatible if and only ifA, I — Ps) € R,
where Ps denotes the classical orthogonal projection afitdndeed, this is a corollary of the
following theorem: forA, B € L(H)* such thatR(B) is closed, ther(4, B) € R if and only

if AandN(B) are compatible (Theorem IV.4). In order to prove this agsertand some other
general facts on range additivity and compatibility, we lergp some features of the shorted

operator[S]A. This operator has been defined by M. G. Krein [21] as
[S]JA :=max{X € L(H)" : X < Aand R(X) C S}.

He proved that the maximum for théWwner ordering (i.e.C < D if (C¢, &) < (D¢, &) for every

¢ € 'H) exists and he applied this construction for a parametoraif the selfadjoint extensions
of semi-bounded operators. W. N. Anderson and G. E. Trappddgfined and studied this
operator, which can be used in the mathematical study ofradacnetworks. Here, we use the
properties of the shorted operator in order to prove thatAfoB € L(#H)" such thatR(B) is
closed, it holds thatA, B) € R if and only if A, N(B) are compatible wheré/(B) denotes the
nullspace ofB. In particular, forB = I — Ps we get the assertion above. However, this is not
the first manifestation of a relationship between compléiitnf A, S and properties ofS]A. In
fact, Anderson and Trapp [1] prove tH&] A is the infimum, for the Gwner ordering , of the set
{EAE*: E € L(H),E* = E,N(E) = S*}. In [10, Prop. 4.2], [11, Prop. 3.4] it is proven that
the infimum is attained if and only i, S are compatible. Moreover, it is proven thatife L(H)

is an idempotent operator such théfl = £*A and R(F) = S, then[S+]A = A(I — E). Here,
we explore more carefully the properties[Sf A which are relevant for the compatibility of, S.
Another result which may be relevant for updating theoryhis éxtension of the well-known
theorem by J. A. Fill and D. E. Fishkind [17] which says that, & x n complex matricesA, B
such thatrk(A + B) = rk(A) + rk(B) it holds that(A + B)! = (I — S)AT(I — T) + SB'T,
where ' denotes the Moore-Penrose inverSe= (Pyz): Pya))t and T = (Pr(an Pypeye ).
Here, rk(X) denotes the rank of the matriX and P, is the orthogonal projection onto the
subspaceM. This is a generalization of a famous formula by J. ShermanJVWMorrison
and M. A. Woodbury. For a history of this formula see [20]. Gfucse, for Hilbert space
operators the rank hypothesis must be replaced by a differea Since it is well-known that
rk(A+ B) = rk(A)+rk(B) if and only if R(A)NR(B) = {0} and R(A*) N R(B*) = {0}, we
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prove that Fill-Fishkind formula holds foA, B € L(H) such thatR(A) and R(B) are closed,
R(A)N R(B) = R(A*) N R(B*) = {0} and (A, B), (A*, B*) € R.

We end this section introducing some notation. The direst batween two closed subspaces
S and 7 will be denoted byS + 7. If H =S + T thenQs,,7 denotes the oblique projection

with rangeS and kernelT .

[I. RANGE ADDITIVITY

Let H, K be Hilbert spaces. We say thdt B € L(H, K) have therange additivity property
if R(A+ B)= R(A)+ R(B). We denote byR the set of all these pairs4, B), i.e.,

R:={(A,B): A, B e L(H,K) and R(A+ B) = R(A) + R(B)}.

We collect first some trivial or well-known facts abdRt

Proposition II.1. Let A, B € L(#H,K). Then
1) (A,B) e R ifand only if (B, A) € R.
2) If R(A) =K and A= C + D for someC, D € L(H,K) then(C, D) € R.
3) If H = K is finite dimensional andl, B € L(H)* then (A, B) € R.
4) IfH=K, A, Be L(H)" and R(A+ B) or R(A) + R(B) is closed, ther{A4, B) € R; in
particular, if A, B € L(H)", R(A) is closed andlim R(B) < oo then (A, B) € R.

Proof: Items 1 and 2 are trivial. ltem 4 has been proven by Fillmore flliams [18,
Corollary 3] under the additional hypothesis thatA) and R(B) are closed. In [6, Theorem
3.3] there is a proof without these hypothesis. Items 3 vadldrom item 4. [ |

Proposition 11.2. For A, B € L(H,K) consider the following conditions:
1) R(A*)+ R(B*) is closed.
2) N(A)+N(B)=H
3) (A, B) e R.
Then, the next implications hold:< 2 = 3. The convers& = 2 holds if R(A)N R(B) = {0}.

Proof: See [7, Prop. 5.8]. For more general results Corollary Ih8 @heorem 11.10. m

11 10
Examples 11.3. 1) ConsiderA = ( ) and B = ( ) . Clearly, (A, B) € R but
11 1 0
(A*, B*) ¢ R.
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2) There existC, D € L(H)* such thatR(C), R(D) are dense andC, D) ¢ R. For this,
considerC, D € L(H)* with dense ranges such th&C) N R(D) = {0} (see [18]).
Hence, asV(C) + N (D) = {0} # H then, by Proposition 11.2(C, D) ¢ R.

We collect now some useful characterizationgofNotice that the proof holds also for vector

spaces and modules over a ring.

Proposition 11.4. Given A, B € L(H), the following conditions are equivalent:
1) (A,B) € R,
2) R(A) C R(A+ B),
3) R(B) C R(A+ B),
4) R(A—B) C R(A+ B).

Proof: 1 = 2,3. If R(A+ B) = R(A) + R(B), then, a fortiori, R(A) C R(A + B) and
R(B) € R(A+ B).
2= 3. Foreveryxr € H, Bx = (A+ B)x — Ax € R(A+ B).
3= 4. For everyr € H, (A— B)x = (A+ B)xr —2Bx € R(A + B).
4= 1. Foreveryr € H, 2Ax = (A— B)x+ (A+ B)x € R(A+ B) and2Bzr = —(A —
B)x + (A+ B)x € R(A+ B), and we getR(A) + R(B) C R(A+ B).

The next result of R.G. Douglas [15] will be frequently usedhe paper.

Theorem 11.5. Let A € L(#H,K) and B € L(F,K). The following conditions are equivalent:
1) R(B) C R(A).
2) There is a positive numbeY such thatBB* < A\AA*.
3) There exists” € L(F,#H) such thatAC = B.
If one of these conditions holds then there is a unique operate L(F,#) such thatAD = B
and R(D) C N(A)*. We shall callD the reduced solution of AX = B.

Corollary 11.6. For A, B € L(H) the following conditions are equivalent:

1) the equationAX = B has a solution inL(H).
2) (A—B,B)eR.

Corollary 11.7. For A, B € L(#H)* it holds:
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) (A+ B)Y/2X = AY/2 has a solution.

) (A+ B)Y2X = B'/? has a solution.

(A1 J(A+B)Y? - AV e R,

4) (B2 (A+ B)Y/? - BY?) e R.

Proof: In fact, it holdsA + B > A, A+ B > B and Douglas’ theorem applies. [ |

The next corollary complements Proposition 11.2. For a preee [5, Prop. 4.13].

Corollary 11.8. For A, B € L(H,K) the following conditions are equivalent:
1) R(A*)+ R(B*) is closed;
2) equation(A + B)X = A admits a solution which is an oblique (i.e., not necessarily

orthogonal) projection inL(H).

Recall thatA, B € L(H)™* are said to b&hompson equivalerfin symbols,A ~; B) if there
exist positive numbers s such that A < B < sA (whereC < D means thatCz, z) < (Dz, z)
for all + € H). By Douglas’ theoremA ~ B if and only if R(A'/?) = R(B'/?). For a fixed
A € L(H)" the Thompson component of is the convex cond B € L(H)" : A ~r B}.
The following identity is due to Crimmins (see [18] for a pfpof A, B € L(#H,K) then
R(A) + R(B) = R((AA* + BB*)'/?). Using Crimmins’ identity the following result is clear:

Proposition 11.9. If A, B € L(H)* then(A, B) € R if and only if (A + B)? ~r A% + B2

The next characterization & is less elementary than that of Proposition 11.2. Noticeyéwer,
that its proof is algebraic, so it also holds in the contexveftor spaces, modules over a ring,

and so on.

Theorem 11.10. Let A, B € L(H). ThenR(A+B) = R(A)+R(B) ifand only if R(A)NR(B) C
R(A+ B) and H = A" (R(B)) + B~'(R(A)). In particular, if R(A) N R(B) = {0} then
(A,B) e Rifand only if N(A) + N(B) = H.

Proof: Let 7' = A+ B, W = R(A) N R(B) and suppose thak(T') = R(A) + R(B).
Then R(A) C R(T) and R(B) C R(T) so thatww C R(T). On the other hand, using again
thatR( ) and R( ) are subsets oR(T) it holds H = T-*(R(T)) = T"'(R(A) + R(B)) =
“YR(A)) + T7Y(R(B)). But it is easy to see thaf—(R(A4)) = B~ (R(A)). Hence,H =
“HR(A) + T7H(R(B)) = A7 (R(B)) + B~ (R(A)).
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Conversely, suppose thav C R(T) andH = B~'(R(A)) + A~'(R(B)). We shall prove
that R(B) = T(A™'(R(B))). In fact, sinceB~'(R(A)) = B~*(W) andA~*(R(B)) = A~}(W)
then

R(B) = B(H) = B(B~'(W) + A7 (W)) = W+ B(A™'(W)),
becauseV C R(B). Moreover,R(B) = W+ B(A7'(W)) = W+T(A71(W)) = T(A~L(W)).
In fact, for the second equality considee W + B(A~'(W)) theny = w + Bx wherew € W
andz € A~Y(W), so thaty = w — Az + Tx wherew — Az € W and Tz € T(A~1(W)); the

other inclusion is clear. Then the second equality holds.
To see thatV + T(A~'(W)) = T(A~*(W)) it is sufficient to note thatV C T(A~1(W)). In

fact, T-1(W) = A=Y(W)n B~1(W) C A~Y(W) then applyingl" to both sides of the inclusion
W =TT"YW)CT(AY(W)) becauseV C R(T).

Hence,R(B) = T(A™*(W)) = T(A~'(R(B)) C R(T). Applying Proposition 11.4,(A, B) €
R.

[ |
One of the obstructions for range additivity for operatardHilbert spaces is thak(A) is,
in general, non closed. Therefore, the identityA + B) = R(A) + (B) is not equivalent to
N(A* + B*) = N(A*) N N(B*), which is easier to check. On these matters, see the papers
by P.Semrl [27,§2] and G. lesnjak and PSemrl [22], where they discuss different kinds of
topological range additivity properties. See also the pdgyeJ. Baksalary, PSemrl and G. P.
H. Styan [9].

[Il. SHORTED OPERATORS AND RANGE ADDITIVITY

In his paper on selfadjoint extensions of certain unbourggesgtators [21], M. G. Krein defined
for the first time a shorted operator (this is modern ternagg). More precisely, ifA € L(H)™"

and S is a closed subspace &f, Krein proved that the set
{CeLH)":C<Aand R(C) C S}
admits a maximal elemen&]A. Moreover, Krein proved that
[S]A = AYV2Py A2,

if M = A~'/2(S). Krein constructed the shorted operators to find selfadjoasitive extensions

of certain unbounded operators. For a modern expositionreints ideas on these matters, see

[8].
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Later, W. N. Anderson and G. E. Trapp [1] rediscovered theratpe [S]A, proved many
useful properties and showed its relevance in the theoryngiedance matrices of networks.
The papers by E. L. Pekarev [23], Pekarev and Smul’jan [24Afdo [3] and S. L. Eriksson
and H. Leutwiler [16] contain many useful theorems aboutitKrehorted operators. A nice
exposition for shorted operators in finite dimensional sgas that of T. Ando [3]. It is worth
mentioning that there is a binary operation between pe@stperators, thearallel sum which
is also relevant in electrical network theory and which iktexd to shorted operators. K, B
are the impedance matrices of tweport resistive networks thed : B := A(A + B)'B is the
impedance matrix of their parallel connection. For positoperatorsd, B on a Hilbert space
‘H, Fillmore and Williams [18] defined

A:B=A"C"DB'?,

if C' (resp.D) is the reduced solution afA + B)'/2X = A2 (resp.(A + B)'/2X = B'/?),

A A
Anderson and Trapp [1] proved that : B is the (1,1) entry of [S] , if
A A+B

A A
S = H & {0} and the matrix is considered as an element b{H @ H)*.

A A+ B
Thus, the parallel addition is a particular form of the sbdrbperation. Any extension to non

necessarily positive operators of the parallel sum opmratequires that A, B) and (A*, B¥)
belong toR, at least if one wants to keep the desirable commutatidity B = B : A [26,
10.1.6]. Indeed, Rao and Mitra say thé&tB areparallel summabléf A(A+ B)~ B is invariant
for any generalized inverse gf+ B. It turns out that this happens if and only(if, B) € R and
(A*, B*) € R. This means that there is an strong relationship among Kieinted operators,
Douglas range inclusion and range additivity.

We collect in the next proposition some facts on the Kreinrtgtboperators, mainly extracted
from the paper [1] by Anderson and Trapp.

A warning about notation. The original notation by Krein As;. Anderson and Trapp [1]
usedS(A). Ando [4] proposedS]A. This is coherent with a relevant constructigB] A for
A,B € L(H)" that he defined and studied in [2], by generalizing a theorémralerson
and Trapp that{[S]A)z = lim, ,.(A : nPs)z for everyxz € H. Ando defined the existence
of ([B]A)z = lim, (A : nB)z for everyz € H and proved many relevant results on this
construction. In particular, it holds thaS]A = [B]A if S = R(B). Erikson and Leutwiler
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[16] usedQpA for Ando’s [B]A. In [3], Ando has usedA s for the shorted operator and
As = A— As. Corach, Maestripieri and Stojanoff used(Ps, A) in [10] and A /s in [11] to

denote what we are denoting nd&] A.

Proposition 11l.1. Given A, B € L(H)" and closed subspaces 7 of H the following prop-
erties hold:
1) R(A)NS C R([S]A) C R(([S]A)Y/?) = R(AY?) N S; in particular, R([S]A) is closed if
R(A) is closed or, more generally, R(A) NS = R(AY?) N S.
2) N([S]A) = N(P,_1/25AY?) = A~1/2A12(§1) D N(A) + S*; equality holds if and only
if AV/2(SL)nR(AY?) = AV2(Sh).
3) [S](A+B) > [S]A+[S]B; equality holds if and only iR ((A—[S]A+B—[S]B)Y*)NS =
{0}.
4) R((A—[S]A)/?)nS = {0}. In particular, R([S]A) N R(A — [S]A) = {0}.

Proof:

1) See [1, Corollary 4 of Theorem 1 and Corollary of Theorem 3]
2) See [11, Corollary 2.3]

3) See [1, Theorem 4].

4) See [1, Theorem 2].

Corollary 111.2. Let A, B € L(H)*. Then:

1) If S = R(B) then[S|B = B and [S](A + B) = [S]A + B.
2) If S= R(B) is closed them?([S](A + B)) = S and N([S](4A + B)) = S*.

Proof:

1) The identity[S]B = B can be checked through the definition[8fB; the identity[S](A+
B) = [S]A + B follows from items 3 and 4 in Proposition IlIl.1.

2) For everyC € L(H)" it holds R(([S]C)Y/?) C S, thereforeS O R(([S](A + B))'/?) =
R(([S]JA+B)'?) = R(([S]A)/?)+S D S, where the second equality holds by Crimmins’

identity.The kernel condition follows by taking orthogdémamplement.
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Proposition I11.3. Let A € L(H)* and letS be a closed subspace &f The following conditions
are equivalent:

1) ([S]A, A —[S]A) € R;

2) R(A) = R(A— [S]A) + R([S]A);

3) R([S]A) € R(A);

4) R(AY%) = M N R(AY?) @ M+ N R(AY?), if M = A7V2(S).

Proof: Notice thatN([S]A) = A~Y/2(AY/2(S1)) and N(A — [S]A) = A~(S).

1< 2 < 3. 1t follows by Proposition 1.4 and Proposition Ill.1.

3 < 4. Assume thatR([S]A) C R(A) and lety = AY2x € R(AY?). Hence, A%z =
Py AV 4 (I— Py ) AY22. Applying AY2 in both sides, we get thate = AY2(1— Py ) A2z +
[S]Ax. Thus, sinceR([S]A) C R(A) we obtain thatA/2(I — Py A2z € R(A). Therefore,
AY2(I— Py ) A2z = Az for somez € H. From this,(I — Py ) A2z — AY?2 € N(A)NR(A) =
{0}, i.e., (I — Py)AY?2z = AY2z € R(AY?) N M*. Therefore, A2z = Py AY?x + (I —
Py)AY?2z € M N R(AY?) @ M+ N R(AY?) and item 3 is proved.

Conversely, assume thdt(A'?) = M N R(AY?) & M* N R(AY?). Hence, R([S]A) =
R(AV2Py AY?) C AV2(M N R(AY2)) C R(A).

V. COMPATIBILITY AND RANGE ADDITIVITY

Definition IV.1. Given A € L(H)* and S a closed subspace 6{, we say that the paitd, S
is compatible if H =S + (AS)*.

As shown in [10] the compatibility of a paid, S means that there exists a (bounded linear)
projection with imageS which is Hermitian with respect to the semi-inner prodgict) , defined
by (¢,m), = (A&, n) . It is worth mentioning that compatibility gives a kind of wesersion of
invariant subspaces. In fact, f is a selfadjoint operator oK andS is a closed subspace, then
S is an invariant subspace fot if AS C S, which means thaPsAPs = PsA. On the other
side, A, S are compatible if and only iR( PsAPs) = R(PsA); for a proof of this fact see [10,
Proposition 3.3]. In the recent paper [7, Proposition 2t9% iproven thatA, S are compatible
if and only if (PsA, I — Ps) € R. In this section we shall complete this result by proving that
A, S are compatible if and only ifA, I — Ps) € R.
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Proposition 1V.2. [11, Theorem 3.8] LetA € L(H)" and S a closed subspace df. The
following conditions are equivalent:

1) (A,S) is compatible.

2) R([S1]A) C R(A) and N([S1]A) = N(A) + S.

Proposition IV.3. Let A, B € L(H)* with closed ranges. The next conditions are equivalent:
1) A, N(B) are compatible.
2) N(A)+ N(B) is closed.
3) B,N(A) are compatible.
4) R(A)+ R(B) is closed.
5) (A,B) € R.

Proof: 1 < 2. [10, Theorem 6.2].
2 < 3. ldem.
2 < 4. It follows from the general fact that, for closed subspaSe$ thenS + 7 is closed
if and only if St + 7+ is closed. See [14, Theorem 13].
4 = 5. See [18, Corollary 3].
5= 4. R(A+ B) = R(A) + R(B) = R(AY?) + R(BY?) = R((A + B)*?) by Crimmins’
identity. ThenR(A + B) is closed and sa@z(A) + R(B) is closed . u

Theorem IV.4. Let A, B € L(H)" and suppose thaB has a closed range. The following
conditions are equivalent:

1) A, N(B) are compatible.

2) (A,B) € R.

3) R(B)+ AN(B) is closed.

Proof: 1 & 2. Let S = N(B). First observe thatl, S are compatible if and only il + B, S
are compatible. Indeed§ + ((A + B)S)* = S + (AS)*. Hence, by Proposition IV.24, S are
compatible if and only ifR([S*](A+B)) C R(A+B) andN([S*](A+B)) = S+ N(A+B) or,
equivalently, by Corollary 111.2S+ C R(A+ B) (notice thatN(A+ B) = N(A)NN(B) C S).
Summarizing,4, S are compatible if and only if2(B) = S* C R(A + B), i.e., R(A+ B) =
R(A) + R(B).

1 < 3. It follows applying [14, Theorem 13]. [ |
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Corollary IV.5. Let A € L(H)" and S a closed subspace df.. The next conditions are
equivalent:

1) A, S are compatible;

2) (A,I—Ps)eR.

3) St 4 AS is closed.

Proposition IV.6. Let A, B € L(H)" such thatR(A) N R(B) = {0}. Then,(A, B) € R if and
only if A, N(B) are compatible.

Proof: Since,R(A)NR(B) = {0} thenR(A+B) R(A)+R(B)ifandonly if H = N(A)+
)

N(B). Now, N(A)+N(B) = A" ({0})+N(B) = A"Y(R(B))+N(B) = A"Y(N(B)")+N(B).
Therefore,R(A + B) = R(A) + R(B) if and only if X = A"'(N(B)*) + N(B), i.e., if and
only if A, N(B) are compatible. |

The next example shows that the compatibility of the phitV(B) does not imply, in general,
that (A4, B) € R.

0 0
Example 1V.7. ConsideringC' and D as in Example 11.3.2, we defind = ( ) and
0 C

0 0
B = ( ) . Clearly, (A, B) ¢ R. However, A, N(B) are compatible.
0 D

Corollary IV.8. Let A € L(H)* and S a closed subspace 6. The following conditions are
equivalent:

1) R(A) = R(A— [S]A) + R([S]A);

2) A—[S]A,N([S]A) are compatible;

3) A, N([S]A) are compatible.

Proof: 1 < 2. It follows from Proposition I1l.1 and Proposition IV.6.

2 & 3. It follows from the fact thatd = [S]A + A — [S]A. u

V. THE FILL-FISHKIND FORMULA

This last section is devoted to the Fill-Fishkind formula.drder to identify certain Moore-
Penrose inverses of products of orthogonal projectiores néxt theorem (due to Penrose and

Greville) will be helpful.
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Theorem V.1. If Q € L(#H) is an oblique projection the®’ = Py gy Pr()- Conversely, if
M and N are closed subspaces #f such thatP,, Py has closed range, thefP,, Py)" is the

unique oblique projection with rang&( Py Py;) and nullspaceN (Py Py ).

Proof: For matrices, the proof appears in the paper by Penrose §&biria 2.3] and Greville
[19, Theorem 1]. For general Hilbert spaces, see [12, Tinecr4]. [ |
We prove now the extension of the theorem by Fill and Fishkird Theorem 3] mentioned

in the introduction.

Theorem V.2. Let A, B € L(#,K) such thatR(A), R(B) are closed,R(A)NR(B) = R(A*)N
R(B*) ={0} and (A, B) € R and (A*, B*) € R. Hence,

(A+B)' = (I - S)A"(I - T)+ SB'T, 1)
where
S = (Papy Pra)' = Qpyvmyt)in(s)
and

T = (Pyan Py )t = Qrsyy/reays reayt nrs) -

Proof: We show first that all Moore-Penrose inverses which appeét)imre bounded. In
fact, by Proposition I.2R(A) + R(B) and R(A*) + R(B*) are closed and s&(A + B) is also
closed. Therefore, in additiory 5y Py(a)y @and Py(a-) Py g+ have closed ranges because of
[14, Theo. 22]. In order to prove thaf is the Moore-Penrose inverse dfis suffices to prove
that AX = Pray, XA = Pra~y and XAX = X. In our case, we shall prove:

i) (A+ B)((I —S)ANI —T)+ SB'T) = Pras+n)
i) ((1—S)AI(I —T)+ SBIT)(A+ B) = Paae ).
iy (I-SYAT(I-T)+SB'T)(A+B)((I-S)AT(I-T)+SB'T) = (I-S)AT(I-T)+SBIT.
By Theorem V.1, we have that = QPN(A)(N(B)L)//N(B) and T = Qr(B)//R(A)+RA) L NR(B)" -
Therefore,
i) After computations, we obtain thatA + B)((I — S)AT(I —T)+ SB'T) = Q, + T where
Q1 = Qr(a)//rR(B)+R(A) - nR(B). - Therefore:
a) SinceQ,T =T, =0 then@®, + T is a projection.
b) Clearly, R(Q, +T) C R(A+ B). On the other side, a&), + T)(A+ B) = A+ B
we get the other inclusion, and $§Q, + 7)) = R(A + B).
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c) Finally, asR(A + B)* = R(A)* N R(B)* C N(Q, + T) we obtain that), + T =
Pra4p) as desired.

i) After computations, we obtain that{/ —S)A"(I —T)+SB'T)(A+B) = I—(I—S)Py(a).

a) Notice thal/ —Py4))({ —S) = I—Py(ay, then(I —S)Pyay = Pnay({ —=5)Pya) =
(I = S)Pnay(I —S) and so( — (I — S)Pyay)> =1 — (I — S)Pna).

b) Clearly, N(A)NN(B) € N(A+B) C N(I — (I —S)Pya)). For the other inclusion,
if v € NI — (I —95)Pnw)) and since(! — S)Pyy = (I — S)Pyay(I — S) we
have thatr = (I — S)Pyuyr € N(B) andz = Pya(I — S)Pnayr € N(A),
i.e., x € N(A) N N(B). Therefore,N(I — (I — S)Py(a)) = N(A) N N(B) =
(R(A*) + R(B*))* = R(A* + B*)™*.

c) Finally, asI — (I — S)Pn(A* + B*) = A* + B* we get thatR(A* + B*) C
R(I—(I—S)Pxy4)) and so, by the previous items, we conclude ffét-S)Af (I —
T)+ SB'T)(A+ B) =1 — (I — S)Pn(ay = Pra-+5+) as desired.

iii) As ((I-S)AY(I-T)+SB'T)(A+B) = I—EPx ) WhereE = Qn(s)//py ., (v(5)L)- Then,
(I-S)AT(I-T)+SB'T)(A+B)((I-S)AN(I-T)+SB'T) = (I-EPy4))((I-S)A(I—
T)+SB'T) = (I-S)AT(I—T)+SB'T becauses Py ((I - S)AT(I-T)+SB'T) =0
since EPy4)S = 0 = EPya)Al.

u

Remark V.3. Fill and Fishkind proved their formula under the hypothedicA + B) = rk(A)+
rk(B) where A, B are n x n—complex matrices anak denotes the rank. It is well known
that this rank additivity is equivalent t&®(A) N R(B) = R(A*) N R(B*) = {0}. Moreover,
by Proposition 11.2,R(A) N R(B) = R(A*) N R(B*) = {0} is equivalent (for matrices) to
(A, B), (A*, B*) € R. Thus, there is no loss in this generalization. For a quiteediht set of
hypothesis for Fill-Fishkind formula in Hilbert spacesedhe paper by Deng [13].
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