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Abstract

The best degree-based upper bound for the spectral radius is due to Liu and Weng.
This paper begins by demonstrating that a (forgotten) upper bound for the spectral
radius dating from 1983 is equivalent to their much more recent bound. This bound is
then used to compare lower bounds for the clique number. A series of line graph based
upper bounds for the Q-index is then proposed and compared experimentally with a
graph based bound. Finally a new lower bound for generalised r—partite graphs is
proved, by extending a result due to Erdos.

1 Introduction

Let G be a simple and undirected graph with n vertices, m edges, and degrees A =
di > do > ... >d, =9. Let d denote the average vertex degree, w the clique number
and y the chromatic number. Finally let ©(G) denote the spectral radius of G, ¢(G)
denote the spectral radius of the signless Laplacian of G and G denote the line graph
of G.

In 1983, Edwards and Elphick [6] proved in their Theorem 8 (and its corollary) that
u <y —1, where y is defined by the equality:

ly]
yly—1)=> di+ (y— yl)dpy- (1)

k=1

Edwards and Elphick [6] show that 1 <y < n and that y is a single-valued function
of G.
This bound is exact for regular graphs because, we then have that:

1 ly)
d=p<y-1=- (ZdJr(y—LyJ)d) =d.
Y \k=1
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The bound is also exact for various bidegreed graphs. For example, let G be the
Star graph on n vertices, which has u = v/n — 1. It is easy to show that [v/n — 1] <
y < [v/n —1]. It then follows that y is the solution to the equation:

yly—D=@n-)+ V-1 -1+ @y~ [Vn—1])=n—-2+y,

which has the solutiony=14++vn—1,sou<y—1=+n—1.

Similarly let G be the Wheel graph on n vertices, which has p = 1+ y/n. It is
straightforward to show that y = 2 + \/n is the solution to () so again the bound is
exact.

2 An upper bound for the spectral radius

The calculation of y can involve a two step process.
1. Restrict y to integers, so (Il) simplifies to:

v
yly—1) = ds.
k=1

Since d < u, we can begin with y = |d 4+ 1], and then increase y by unity until
y(y —1) > >°7_, di. This determines that either y = a or a < y < a+ 1, where a is an
integer.

2. Then, if necessary, solve the following quadratic equation:

a
yy—1) = di+ (y — a)das1 (2)
k=1
For convenience let ¢ = Y"ji_; di. Equation (2)) then becomes:

y? — y(1 + des1) — (¢ — adgy1) = 0.

Therefore

_ da—l—l +1+ \/(da+1 + 1)2 + 4(0 - ada—l—l)
N 2

SO

1 dot1 — 1+ /(dat1 + 1)2 +4(c — adgy1)
n=y 5 :

This two step process can be combined as follows, by letting a + 1 = k:

di — 1+ /(d + 1)2 + 455 (ds — dy)
2
In 2012, Liu and Weng [12] proved (3] using a different approach. They also proved
there is equality if and only if G is regular or there exists 2 < ¢ < k such that dy =
di—1 =n—1and d; = d,,. Note that if £k = 1 this reduces to u < A.
If we set k =n in (3] then:

_ 2 _
uéé 1+\/(5+21) 4nd + 8m
which was proved by Nikiforov [13] in 2002.

, where 1 <k <n. (3)

p<

2



3 Lower bounds for the clique number

Turan’s Theorem, proved in 1941, is a seminal result in extremal graph theory. In its
concise form it states that:

p— < w(Q).

Edwards and Elphick [6] used y to prove the following lower bound for the clique
number:

n 1
_ —. 4
n_y+1<w(G)+3 (4)
In 1986, Wilf [16] proved that:
n
<
p— w(G)
Note, however, that:
n
_ G
— 1 £4(0),

since for example -

% = 2.13 for K79 and n—Ly-i-l = 3.1 for K334.
Nikiforov [I3] proved a conjecture due to Edwards and Elphick [6] that:

2757% < w(@). (5)

Experimentally, bound (&) performs better than bound (4)) for most graphs.

4 Upper bounds for the Q-index

Let ¢(G) denote the spectral radius of the signless Laplacian of G. In this section
we investigate graph and line graph based bounds for ¢(G) and then compare them
experimentally.

4.1 Graph bound

Nikiforov [I4] has recently strengthened various upper bounds for ¢(G) with the fol-
lowing theorem.

Theorem 1. If G is a graph with n vertices, m edges, with mazimum degree A and
minimum degree §, then

q(G)§mz’n<2A,%<A+25—1—|—\/(A+25—1)2+16m—8(n—1+A)5)>.

Equality holds if and only if G is reqular or G has a component of order A+ 1 in
which every vertex is of degree § or A, and all other components are §-reqular.



4.2 Line graph bounds

The following well-known Lemma (see, for example, Lemma 2.1 in [2]) provides an
equality between the spectral radii of the signless Laplacian matrix and the adjacency
matrix of the line graph of a graph.

Lemma 2. If G denotes the line graph of G then:
9(G) = 2+ p(G"). (6)

Let Ajj = {d; +d; — 2 | i ~ j} be the degrees of vertices in GF and Ay > Ay >
... > A,, be a renumbering of them in non-increasing order. Cvetkovié¢ et al. proved
the following theorem using Lemma 21

Theorem 3. (Theorem 4.7 in [{])
q(G) <2+ 4
with equality if and only if G is regular or semi-reqular bipartite.

The following lemma is proved in varying ways in [15] [5] [12].

Lemma 4.

dy — 14+ +/(dy — 1)% + 4d;
H(E) < 1)
with equality if and only if G is reqular orn —1=d; > dy = d,.

Chen et al. combined Lemma 2] and Lemma [4] to prove the following result.

Theorem 5. (Theorem 3.4 in [3])

Ay —1 Ay —1)2 +4A
o(G) <2+ 2 +\/(22 )2 + 44,

with equality if and only if G is reqular, or semi-reqular bipartite, or the tree obtained
by joining an edge to the centers of two stars KL%_l with even n, orn —1=d; =
d2 > d3 = dn = 2.

Stating (3) as a Lemma we have:

Lemma 6. For1 <k <mn,

dj— 1+ \/(d + 1)2 + 455 (d; — dy)
2

w(G) < ¢ = (7)

with equality if and only if G is reqular or there exists 2 < t < k such that n — 1 =
dy =di_1 > dy = d,. Furthermore,

¢p =min{¢y | 1 <k <n}

where 3 < 0 < n is the smallest integer such that Y ¢_, d; < £({ —1).

4



Combining Lemma [2] and Lemma [0 provides the following series of upper bounds
for the signless Laplacian spectral radius.

Theorem 7. For 1 < k <m, we have

Ap+1 Ap+12 441 A - A
q(G) <=1+ B +\/( K )2+ i ( k) ®

with equality if and only if Ay = A, or there exists 2 <t < k such that m—1= Ay =
A1 > Ay = A, Furthermore,

Ye=min{yy | 1 <k <m}
where 3 < 0 < m is the smallest integer such that Y>5_y Ay < £(£ —1).

Proof. G is simple. Hence (§) is a direct result of (@) and (7). The sufficient and
necessary conditions are immediately those in Lemma [6l O

Remark 8. Note that Theorem [1 generalizes both Theorem Bl and Theorem [§ since
these bounds are precisely 11 and 9 in (8] respectively.

We list all the extremal graphs with equalities in (8) in the following. From Theo-
rem [3 the graphs with ¢(G) = v, i.e. Ay = A,,, are regular or semi-regular bipartite.

From Theorem [ the graphs with ¢(G) < ¥y and ¢(G) = 19, ie. m—1 = Ay >
Ay = A,,, are the tree obtained by joining an edge to the centers of two stars K 1,21
with even n,orn —1=d; =dy > ds =d, = 2.

The only graph with ¢(G) < min{¢;|i = 1,2} and ¢(G) = ¢3,i.e. m —1= A, =
Ay > Az = A, is the 4-vertex graph Kffg obtained by adding one edge to Kj 3.

Kiy

We now prove that no graph satisfies ¢(G) < min{v;|1 <i < k— 1} and ¢(G) = 9%
where m > k > 4. Let G be a counter-example such that m — 1 = A1 = Ap_1 > A =
A,,. Since A3 = m — 1 there are at least 3 edges incident to all other edges in G. If
these 3 edges form a 3-cycle then there is nowhere to place the fourth edge, which is
a contradiction. Hence they are incident to a common vertex, and G has to be a star
graph. However a star graph is semi-regular bipartite so ¢(G) = 11, which completes
the proof.

Remark 9. By analogy with (), if z is defined by the equality

L=]

2z =1) =Y Ap+(z— [2])An,
P}

then ¢ < z+ 1. This bound is exact for d—regular graphs, because we then have:
=]
1
2d=¢<z+1=2+(-1)=2+— (ZA+(z— LzJ)A) =2+ A =2d.
k=1



4.3 Experimental comparison

It is straightforward to compare the above bounds experimentally using the named
graphs and LineGraph function in Wolfram Mathematica. Theorem 1 is exact for
some graphs (eg Wheels) for which Theorems 5 and 7 are inexact and Theorems 5 and
7 are exact for some graphs (eg complete bipartite) for which Theorem 1 is inexact.
Tabulated below are the numbers of named irregular graphs on 10, 16, 25 and 28
vertices in Mathematica and the average values of ¢ and the bounds in Theorems 1, 5
and 7.

n irrregular graphs q(G) Theorem 1 Theorem 5 Theorem 7

10 59 9.3 10.0 10.3 9.8
16 48 10.3 11.2 11.5 11.0
25 25 11.5 13.4 13.1 12.6
28 21 11.2 12.6 12.7 12.2

It can be seen that Theorem 5 gives results that are broadly equal on average to
Theorem 1 and Theorem 7 gives results which are on average modestly better. This is
unsurprising since more data is involved in Theorem 7 than in the other two theorems.
For some graphs, ¢(G) is minimised in Theorem 7 with large values of k.

5 A lower bound for the Q-index

Elphick and Wocjan [7] defined a measure of graph irregularity, v, as follows:

ny d
Am?2 ’

where v > 1, with equality only for regular graphs.
It is well known that ¢ > 2 and Hofmeister [9] has proved that u? > 3" d?/n, so it
is immediate that:

dm/v

n

q=2p =

Liu and Liu [IT] improved this bound in the following theorem, for which we provide
a simpler proof using Lemma 2.

Theorem 10. Let G be a graph with irreqularity v and Q-index q(G). Then

q(G) > dmy |

n

This is exact for complete bipartite graphs.

Proof. Let G denote the line graph of G. From Lemma 2 we know that ¢(G) =
2+ u(GF) and it is well known that n(G*) = m and m(GF) = (3 d?/2) —m. Therefore:

2m(G*) 2 (S d? S d? dmy
= L > _— = —_ o :—Z =
g=2+pu(G*)>2+ n(GL) 2+ ( 5 m p_—




For the complete bipartite graph K :

Zi d? _ ZijeE(di + dj)
m m

q2

=d; +d; = s+t =mn, which is exact.

6 Generalised r—partite graphs

In a series of papers, Bojilov and others have generalised the concept of an r—partite
graph. They define the parameter ¢ to be the smallest integer r for which V' (G) has
an r—partition:

V(G) =V1UVaU...UV,, such that d(v) < n —n;, where n; = |V,

for all v € V; and for i = 1,2, ..., 7.
Bojilov et al [I] proved that ¢(G) < w(G) and Khadzhiivanov and Nenov [10]
proved that:

—— < 9(0).

Despite this bound, Elphick and Wocjan [7] demonstrated that:

n
n—p

£ 9(G).

However, it is proved below in Corollary 10 that:

n n
< <
n—p n—y+1

1
»(G) + 3
Definition
If H is any graph of order n with degree sequence dg (1) > dg(2) > ... > dg(n), and
if H* is any graph of order n with degree sequence dg~(1) > dg+(2) > ... > dg-(n),
such that dg (i) < dg-+(i) for all i, then H* is said to "dominate” H.
Erdos proved that if G is any graph of order n, then there exists a graph G* of order
n, where x(G*) = w(G) = r, such that G* dominates G and G* is complete r—partite.

Theorem 11. If G is any graph of order n, then there exists a graph G* of order n,
where w(G*) = ¢(G) = r, such that G* dominates G, and G* is complete r—partite.

Proof. Let G be a generalised r—partite graph with ¢(G) = r and n; = |Vj|, and let
G* be the complete r—partite graph K, n,. Let d(v) denote the degree of vertex v
in G and d*(v) denote the degree of vertex v in G*. Clearly x(G*) = w(G*) = r, and
by the definition of a generalised r—partite graph:

d*(v) =n—n; > d(v)

for all v € V; and for ¢ = 1,...,7r. Therefore G* dominates G.



Lemma 12. (Lemma 4 in [6])
Assume G* dominates G. Then y(G*) > y(G).

Theorem 13.

n 1

@1 9Ty

Proof. Let G* be any graph of order n, where w(G*) = ¢(G) such that G* dominates
G. (By Theorem 7 at least one such graph G* exists.) Then, using Lemma 8:

n n 1 1 1
< <w(G)+ 7 =0(G)+ 7z <w(@)+ <.
o re By rery s S GV B i I G
O
Corollary 14.
D < 0(G) + 5
n—p
Proof. Immediate since p <y — 1.
O

References

[1] A. Bojilov, Y. Caro, A. Hansberg and N. Nenov, Partitions of graphs into small
and large sets, Discrete Applied Math., 161(13), 2013, 1912 - 1924.

[2] Y. Chen, Properties of spectra of graphs and line graphs, Appl. Math. J. Ser. B 3
(2002) 371 - 376.

[3] Y.H. Chen, R. Pan, and X. Zhang, Two sharp upper bounds for the signless Lapla-
cian spectral radius of graphs, Discrete Mathematics, Algorithms and Appl. Vol.
3, No. 2 (2011) 185 - 191.

[4] D. Cvetkovié, P. Rowlinson and S. Simié, Signless Laplacian of finite graphs, Lin-
ear Algebra Appl. 423 (2007) 155 - 171.

[5] K. Das, Proof of conjecture involving the second largest signless Laplacian eigen-
value and the index of graphs, Linear Algebra Appl. 435 (2011) 2420 - 2424.

6] C.S. Edwards and C. H. Elphick, Lower bounds for the clique and the chromatic
numbers of a graph, Discrete. Appl. Math. 5 (1983), 51 - 64.

[7] C.Elphick and P. Wocjan, New measures of graph irreqularity, El. J. Graph Theory
Appl., 2(1), (2014), 52 - 65.

[8] P. Erdos, On the graph theorem of Turdn (in Hungarian), Mat. Lapok 21 (1970)
249 - 251. [For a proof in English see B. Bollobas, Chapter 6, Eztremal Graph
Theory, Academic Press, New York.]

[9] M. Hofmeister, Spectral radius and degree sequence, Math. Nachr. 139, (1988), 37
- 44.



[10] N. Khadzhiivanov and N. Nenov, Generalized r—partite graphs and Turdn’s The-
orem, Compt. Rend. Acad. Bulg. Sci. 57 (2004)

[11] M. Liu and B. Liu, New sharp upper bounds for the first Zagreb index, MATCH
Commun. Math. Comput. Chem., 62(3), (2009), 689 - 698.

[12] C.Liuand C. Weng, Spectral radius and degree sequence of a graph, Linear Algebra
and Appl., 438, (2013), 3511- 3515.

[13] V. Nikiforov, Some inequalities for the largest eigenvalue of a graph, Combin.
Probab. Comput. 11 (2002), 179 - 189.

[14] V. Nikiforov, Mazima of the Q-index: degenerate graphs, Elec. J. Linear Algebra
27 (2014), 250 - 257.

[15] Jinlong Shu and Yarong Wu, Sharp upper bounds on the spectral radius of graphs,
Linear Algebra Appl., 377 (2004) 241 - 248.

[16] H. Wilf, Spectral bounds for the clique and independence numbers of graphs, J.
Combin. Theory Ser. B 40 (1986), 113 - 117.



	1 Introduction
	2 An upper bound for the spectral radius
	3 Lower bounds for the clique number
	4 Upper bounds for the Q-index
	4.1 Graph bound
	4.2 Line graph bounds
	4.3 Experimental comparison

	5 A lower bound for the Q-index
	6 Generalised r-partite graphs

