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HEIGHTS AND THE SPECIALIZATION MAP FOR
FAMILIES OF ELLIPTIC CURVES OVER P"

WEI PIN WONG

ABSTRACT. Forn > 2, let K = Q(P") = Q(T4,...,Ty). Let E/K
be the elliptic curve defined by a minimal Weierstrass equation
y? = 2% + Az + B, with A, B € Q[T1,...,T,]. There’s a canonical
height iz on E(K) induced by the divisor (O), where O is the zero
element of F(K). On the other hand, for each smooth hypersurface
I in P” such that the reduction mod T of E, Er/Q(T) is an elliptic
curve with the zero element Or, there is also a canonical height h Er

on Epr(Q(T)) that is induced by (Or). We prove that for any P €
E(K), the equality hg.(Pr)/degl’ = hg(P) holds for almost all
hypersurfaces in P™. As a consequence, we show that for infinitely

many t € P*(Q), the specialization map o, : E(K) — E;(Q) is
injective.

1. INTRODUCTION

Forn > 2, let K = Q(Ty,...,T,) be the function field of the projec-
tive space P" over Q. Let F/K be the elliptic curve over K defined by
the Weierstrass equation

Y7 = X3+ AXZ*+ BZ?

with A, B € Q|[T1,...,T,] such that it is minimal with respect to all
but the infinity prime divisor in P", i.e.

0<ordp(A)<4 or 0<ordp(B)<6

for every prime divisor D that is not the infinity hyperplane. For any
hypersurface I' in P" such that the reduction mod I' of £ /K, Er is an
elliptic curve over Q(I"), we have a group homomorphism

E(K) — Er(Q(I'))
P+— Pp.
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Let O be the zero element of E(K) and hg be the canonical height on

E(K) corresponded to the divisor (O). Similarly, we denote Or to be
the zero element of Er(Q(T')) and kg, to be the canonical height on
Er(Q(T)) corresponded to the divisor (Or). As a partial generalization
of Silverman’s theorem ([8], Theorem B) in the case of elliptic curves,

we prove the following theorem that relates these heights:

Theorem A. Given any P € E(K), there ezists a set Bp consisting
of a finite number of codimension-two subvarieties in P, such that if
[' C P" us a smooth hypersurface that does not contain any subvariety
in Bp and Er/Q(I") is non-singular, then
iLEF (PF) 7
————= = hg(P).
deg I’ 5 (P)
One can view E/K as the generic fiber of an abelian scheme 7 :
& — U, for some Zariski open dense subset U C P". Then for all

t € U(Q), the specialization map
Ot © E(K) — Et(@)
P+— P

is a group homomorphism. In the setting of general abelian varieties
over K = k(P") for any number field &k, Néron ([6]) proved that there
are infinitely many ¢t € P"(k) such that o; is injective. Néron proved
this result by showing that the set of ¢ € P"(k) for which o, is not
injective is thin. Later, Masser ([5]) proved a stronger result in a more
general setting of abelian varieties A defined over K = k(V'), the func-
tion field of a projective variety V' defined over a number field k. Masser
proved that the specialization map o, is “almost always” injective by
showing that the set of t € V (k) with Weil height bounded by h and
such that oy is not injective lies on a hypersurface of degree bounded by
a constant power of h. Moreover, in the case where V' = (' is a smooth
curve, Silverman ([8], Theorem C) proved that the set of ¢ € C(k) for
which o; is not injective is a set of bounded height. For the special
case of elliptic curves over K = Q(PP"), we obtain a similar result by
combining Silverman’s theorem and Theorem A:

Theorem B. With notations as explained above and let d > 1 be a
fized integer, then there ewist infinitely many smooth curves C/Q of
degree d in P™ that do not lie in the complement of U and such that
the set

{te C(Q)NU) | oy is not injective }
is a set of bounded height. Furthermore, the union of all such curves
1s Zariski dense in P™.
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When K = Q(C) is the function field of a smooth curve C/Q, the
hypersurfaces in C' are Q-points ¢ on the curve C. There is a Weil
height he, (that depends on the closed embedding of ¢ : C' —— P™)
on C(Q) and we normalize it to he = hcy/deg¢. Silverman ([8],
Theorem B) proved that for 7 : A — C, a family of abelian varieties

over a smooth curve, we have

1m
tec@ hol(t)

hc(t)—o0

= iLAn (P77>7

where A, /Q(C) is the generic fiber of A. Our Theorem A is analogous
to the elliptic surface version of Silverman’s theorem despite the fact
that there’s no limit involved and we view degI' as the Weil height
of I'. The main reason for this difference is the type of global field
over which the reduction Er is defined: over a curve C, I' = {t} is a
point and FE; is an elliptic curve over a number field, whereas over P"
for n > 2, Er is an elliptic curve over a function field. Consequently,
the canonical height hp on E,(Q) is derived from a Weil height in
a number field and the canonical height kg, on Ep(Q(I)) is derived
from a Weil height in a function field. As we shall see in section B the
theory of Weil heights over the function field of a smooth hypersurface
is related to the intersection theory of divisors in the projective space,
i.e. Bézout’s theorem and this is where the degree of I" comes into play.

On the other hand, instead of looking at the fibers over smooth
hypersurfaces of P", the author ([13]) also tried to generalize Silver-
man’s theorem by looking at the fibers over points of P" of E/Q(P™).
As remarked in that paper, the limit of the quotient hg, (P,)/hpn(t)

doesn’t exist when hpn(t) tends to infinity for ¢ € P*(Q). Thus, the
author studied instead the average value of the quotient hg, (P,)/hpn (t)
over rational ¢ € P"(Q) with bounded height. As the bound tends to
infinity, the author showed that this average remains finite and uni-
formly bounded below by a nonzero constant for all non-torsion P in
E(Q(P™)). Even in this simple case of P with n > 2, it is still an open
question whether this average converges, let alone whether it converges
to hg(P).

In section 2 we remind the readers of the definition of the Weil
height and canonical height on an elliptic curve defined over k(V),
the function field of an arbitrary smooth projective variety V defined
over a number field k. From now onwards, we will use the convention
that varieties and subvarieties are always irreducible. Next, in section
B we will prove some lemmas that relate the Weil heights on E(K)
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and Er(Q(I")). In fact, the first few lemmas show that the equality in
Theorem A holds for Weil heights on Er, for a hypersurface I that does
not contain certain codimension-two subvarieties in P" that depend on
P. To pass from Weil heights to canonical heights, we will replace P
by [2™] P, divide the Weil heights by 3-2*™ and take the limit m — occ.
The rest of the lemmas are used to show that the dependence of I' on
infinitely many [2™]P can be reduced to just not containing a finite
number of codimension-two subvarieties. In the last section, we will
apply Theorem A to prove Theorem B.

2. HEIGHTS IN FuNncTION FIELDS

Let V be a smooth projective variety defined over a number field k.
We fix a closed embedding ¢ : V' < P" and thus the degree map deg,
is well-defined on Divz(V), i.e. for any prime divisor D € Divg(V),
degy(D) is the degree of the projective subvariety ¢(D) in P" and we

extend it linearly to all divisors. For any P = [fo :...: f.] in P"(k(V)),
the Weil height of P is given by

her iy (P) =Y max{— ordp(f;) } deg,(I),
I

where the summation is taken over all prime divisors in Div(V'). This
Weil height has the following geometrical interpretation:

Proposition 1. (Lang [4] Chapter 3, Proposition 3.2 ) Let V be a
projective variety in P", non-singular in codimension one, defined over
a number field k, and let P be a point in the projective space P", rational
over k(V). Let fp : V --» P be the rational map defined over k,
determined by P. Then

her iy (P) = deg f5' (L)

for any hyperplane L of P", such that f5'(L) is defined, the degree
being that in the given projective embedding of V' in P".

Let E/k(V') be an elliptic curve over the function field k(1) defined
by a Weierstrass equation and O be the zero element. Then this em-
bedding of E into PZ(V) is induced by the very ample divisor 3(O).
Let hg be the Weil height corresponds to this embedding, i.e. for any
P=lx:y:z € E(k(V)),

he(P) = hp2gvy([z 2y 2 2]).
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Since the divisor 3(0) is even, the canonical height hp induced by (O)
is defined by

; _ 1. he([n]P)

he(P) =g lim == 5
This canonical height is a quadratic function on E(k(V')) with some
nice properties. Readers are invited to consult Lang [4] for more details
on height functions (Chapter 3, 4) and canonical heights on abelian
varieties (Chapter 5).

3. LEMMAS

Let n > 2 and Sy, ..., S, be the homogeneous coordinate functions
of the projective space P" over Q. Let K = Q(P") be the function field
of P". If we denote T} := ‘;—é,...,Tn = g—g, then K = Q(11,...,Ty)
and the infinity hyperplane H., is the plane defined by Sy = 0 . Let
E/K be an elliptic curve defined by the Weierstrass equation

Y?Z = X°+ AXZ* + BZ? (1)

with A, B € Q[T1,...,T,] such that it is minimal with respect to all
prime divisors in P that are not H,, i.e.

0<ordp(A)<4 or 0<ordp(B)<6

for all prime divisors D # H,,. Such a Weierstrass equation can always
be obtained via change of variables. The discriminant

Ap = —16(4A° + 27B?)

is a non-zero element in Q[T1,...,T}].

For any smooth hypersurface (smooth irreducible codimension-one
subvariety) I' in P", the local ring at I' is a discrete valuation ring
Or with maximal ideal mp. We denote the reduction map Or —
Or/mp = Q(I') by f —— fr. Then for I' # H, the reduction of E
modulo I'; Er is the cubic curve (possibly singular) over Q(I") defined
by

Y27 = X34+ Ar X 7% + BrZ3,
as A, B € Or for all ' # H,,. Let
Er(Q(T))ns := { non-singular points of Ep(Q(T'))}

and

Eo(K) ={P € E(K) | Pr € Er(Q(I'))ns},

then we have a group homomorphism ([9] Chapter VII, Proposition
2.1. Note: the condition that K is complete in Proposition 2.1 is only
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needed to prove the surjectivity of the reduction map, which is not
needed here.)

Eo(K) — Er(Q(I'))ns
P=lz:y:zl— Pr=[zr:yr: 2,

where at least one of z,y, z € Or is not in mp. All the lemmas in this
section are based on the setting mentioned above.

As we have seen from the previous section, the Weil height hg(P) of
apoint P € E(k(V)) is directly related to the rational map induced by
P. So in order to study the relationship between hg(P) and hg.(Pr),
we look at the corresponding induced rational maps. In general, if we
have a rational map f : V --» W between projective varieties and V
is non-singular, the indeterminacy locus of f, which we denote as I,
has codimension at least 2 ([II] Chapter III, Proposition 3.5b) and so
we have the following isomorphism ([2] Chapter II, Proposition 6.5b)
of divisor class groups induced by the inclusion j : U := V\I; — V:

j* ¢ Pic(V) — Pic(U)
c—cnNU

with projective closure in V' as the inverse homomorphism. With this,
the pull-back f~! of divisor class is well-defined in the following sense:

Definition. Given a rational map f : V' --» W between projective
varieties and V' is non-singular. Denote I; to be the indeterminacy
locus of f and U := V\I;. Let j : U — V be the inclusion map
and f|y : U — W be the restriction of f on U, which is a morphism
between quasi-projective varieties. Then f|}; : Pic(W) — Pic(U) is
well-defined and we define f~! := (j*)"' o f|}; : Pic(W) — Pic(V),
i.e. f~!is defined such that the following diagram commutes:

Pic(U7) <1 Pic()

Pic(V)
The following lemma serves as the first step in relating the Weil
helghts hE(P) and h’EF(PF)

Lemma 2. Forn > 2, let f : P" --» P" be a rational map and

I < P" be a smooth hypersurface, where all the varieties are defined
over an algebraically closed field k. Suppose I' does not contain any
codimension-two component of the indeterminacy locus of f, then

(for)™He) =" (f(e)),
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for any divisor class ¢ € Pic(P").

Proof. Since f is a rational map between smooth projective varieties,
the indeterminacy locus Iy has codimension at least 2, i.e. each irre-
ducible component of /¢ has dimension at most n — 2.

Define the quasi-projective varieties U° := P*"\Iy and I'* := I'\I; NT
and we have the following commutative diagram

[oc T e flue Pr
A
jFO ) jU" ) / ;
r——p»
where all the ¢ and j are inclusion maps and f|yo is the restriction of
fon U°. Since I' does not contain any codimension-two component of
I, the codimension of Iy NI in I' is at least 2 also. Thus, we have the

following isomorphisms of divisor class groups induced by jro and jyo:

jio : Pic(P") = Pic(U°) jto : Pic(I') = Pic(I)
c—cnNU° D— DnNT?,
with projective closure in the corresponding varieties as the inverse

maps. With these isomorphisms and the above commutative diagram,
we obtain the following commutative diagram of divisor class groups:

Pic(T%) i Pic(U?) L2 Pic(Pr)

j;ng jgow
. o

Pic(T) +—— Pic(P")

1%

Pull-backs are functorial on the category of varieties ([I] Chapter
2, Section 2.2, [2] Appendix A, Theorem 1.1), so for any divisor class
¢ € Pic(P"), we have

tro (o () = (flve © tro)*(c).

Then by taking (jp.)~!, the projective closure in I' and tracing the
commutative diagram, we get

(7)) = (5te) ™ (tfe (flire ()
= (Jte) " (oo 0 tre)*(c))
= (fou) (o),

which is the statement of the lemma. O
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Lemma 3. Let fp : P* —-s P? be the rational map induced by P €

E(K) with indeterminacy locus If,. If T <5 P" s a smooth hy-
persurface such that Er is non-singular and I does not contain any
codimension-two component of Iy, then

h'EF (PF)

e o — (P e

Proof. Let gp. : ' --» P? be the rational map induced by Pr = [ar :
yr : zr]. Then gp. factors through

L -— P2
A
Lr‘[ , 7
/ fP
IP)TL
Let L € Pic(P?) be the divisor class of hyperplanes, then we have
hg.(Pr) = deg g;rl(L) (by Proposition [I])
= deg(fp ow) (L)
= deg ip(f5'(L)) (by Lemma ).

But the divisor class (:(fp'(L)) is the divisor class of the intersec-
tion of I' and fp*(L) ([I] Chapter 8, Example 8.1.7 or [2] Chapter II,
Exercises 6.2). Then by Bézout’s theorem, we get degii(fp' (L)) =
degT - deg f5' (L), which gives

hi(Pr) = degD - deg fp' (L) = deg T - hp(P)
by Proposition [] again. O

In order to obtain Theorem A from Lemma [3] we will replace P in
equation (2) by [2™]P, then divide the resulting equation by 3-2%™ and
take the limit m — oo. This leads us to study the indeterminacy locus
of fiomp when m goes to infinity.

Lemma 4. For t € P*(Q)\H,, such that the specialized point P, =
fp(t) = [z(t) : y(t) : z(t)] is a non-singular point on the specialized
(possibly singular) cubic curve E; defined by

YiZ =X} + A)XZ* + B(t)Z°, (3)
([21P)s = figp(t) is also well-defined and ([2]P); = [2]P;.

Proof. For E/K defined by the Weierstrass equation (1)) with P = [z :
y: z] € E(K) where x,y, z € Q[So, ..., Sy, the doubling formula ([11]
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Chapter IV, page 324) is
2]P =
2yz ((31’2 + A22)2 - 2zz(2y)2) ;
— (32 + Az2)3 + 2(2y)? (82® + 2Ax2* — B2® — y°2) -
8y*2’]. (4)

By substituting the relation 23 = y?2 — Az2? — B2z? into the first two
coordinates and then factor away the common factor 22, we also have

2P =

2y (:)sy2 — 3A2%2 — 9Bx2? + A2z3) :

49/ (7y2 — 6Axz — 9322) — (27(y2 — Azz — B2*)* + 27TAx* + 9A%2% 2% + A3z4) :
8y°z]. (5)

Since by assumption t € P*(Q)\Hy such that P, = fp(t) = [2(t) :
y(t) : z(t)] is defined and is a non-singular point on the cubic curve E,
so y(t) and z(t) cannot be both zero. It is clear that fgp is defined when
both y(¢) and z(t) are not zero. When y(¢) = 0, then 3z(t)? + A(t)z(t)?
is not zero or otherwise P, is a singular point on E;. So formula ()
gives ([2]P); = [0 : 1 : 0], which is not a surprise as P, = [x(t) : 0 : 2(t)]
is always a 2-torsion point with the given Weierstrass equation (3.
When z(t) = 0, then z(¢) = 0 and y(t) # 0, since P, is a point on
E,;. Formula (B) gives ([2]P); = [0 : y(t)* : 0] = [0 : 1 : 0]. Thus the
induced rational map figp is defined at such ¢. Lastly, formulae (4]
and (Bl are the same (with A, B replaced by A(t) and B(t)) doubling
formula on the cubic curve E, so ([2]P); = [2]P.. O

The next lemma allows us to reduce to the case where the points

t € P*(Q) for which P, is a singular point on F; are of codimension at

least 2 in P"(Q).

Lemma 5. With the minimality of the Weierstrass equation that de-
fines E/K, for any P € E(K), there exists a natural number N such

that ([N]P)r is not a singular point on Er(Q(T")) for all smooth hyper-
surfaces I' # H.

Proof. For any smooth hypersurface I', its local ring Or is a DVR
with fraction field K and residue field Q(I'), which is a perfect field.
With the minimality assumption on the Weierstrass equation, F/K
is defined by a Weierstrass equation with coefficients in Or and min-
imal with respect to the prime divisor I'.  Thus, the smooth part of
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the Weierstrass model gives the Néron model of F/K and the quo-
tient group E(K)/Ey(K) is finite ([II] Chapter IV, Corollary 9.2d).
So there exists np € N such that ([nr]P)r is not a singular point on
Er(Q(T)). Since Er/Q(I") is singular if and only if " is a component
of the discriminant locus and there are only finitely many such compo-
nents I'y,...,I. So N :=lem{nr,,...,nr,} will satisfy the lemma. O

So far, the lemmas above allow us to control the indeterminacy of
fizmp over P"(Q)\Hso. Since Hy is the pole of A and B, the reduction
mod H,, of E is not defined. To overcome this, we use the following
change of variables in K to obtain an elliptic curve E’ that is K-
isomorphic to E, defined by a Weierstrass equation whose coefficients
don’t have pole at H..:

Let k£ := max { [%-‘ , [%H and

g\ 4 G\ Ok
EJK:  Y2=Xx*+(Z22) Axz?+(Z22) BZ, (6)
Sl Sl
which is the elliptic curve obtained from E/K by the group isomor-
phism

E/K =5 F'/K

Pty =)= | (2) 0 (3) e

The choice of k is to make sure the Weierstrass equation () is still
minimal with respect to all prime divisors except at the hyperplane
H!_ defined by S; = 0. With this notation, the next lemma relates the
behavior of fp and fpr at t € Ho(Q)\H. (Q).

Lemma 6. Let t = [0,1: % : ... : %] € Ho(Q)\H' (Q) such that the
rational map fp is not defined at t. Then exactly one of the following
statements 1s true:

a) fpr is not defined at t, _
b) P/ is a singular point on E;(Q), B
c) P/ is a torsion point of order 2 on E;(Q).

Proof. If we write P = [z : y : 2] € E(K) where the homogeneous
polynomials z,y, z € Q[Sy, . .., S,] have no common irreducible factor,
then the induced rational map fp is not defined at ¢ € P*(Q) if and only
if x(t) = y(t) = 2(t) = 0, because fp maps from P" and so there’s no
way to alter it. The corresponding point P’ is [Sg¥Skz : S3ky : S5z
Since at least one of x,y,z has no S, as its factor, we consider all
possible cases:
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Case 1: z doesn’t have Sy as its factor. Then the only possible
irreducible common factor of the homogeneous polynomials S3*S¥Fx,
Seky, S3Fz is S; and even if we factor out this common factor, the
induced rational map fps is still not defined at ¢ = [0: 1 :%: ... %].

Case 2: y doesn’t have S as its factor. In this case, the only possible
common factor of the homogeneous polynomials SZFSFx, Sgky, S3F2 are

Sy and Sp. After removing the common factors, let P’ = [z : ¢" :
2"]. Since y(t) = 0 and the only possible factor we factor away from
y in S3Fy is Sy, thus ”(t) = 0. Also, t = [0 : 1 : % : ...: % €

H.(Q)\H'! (Q) by assumption. If P/ is well-defined, then it is a point

on the cubic curve E;(Q) with zero Y-coordinate, which implies P/ is
either a singular point or a torsion point of order 2 on E/(Q).

Case 3: z doesn’t have Sy as its factor. The highest power of
Sp that can be a common factor of the homogeneous polynomials
S2kSkx, S3ky, Sz is Sgk. After removing the common factors, let
P = [2" : y" . 2], then we see that y” always has S} as a factor.

Thus y”(t) = 0 and the argument follows as Case 2. O

4. PROOF OF THEOREM A

Now, we put ourselves in the setting described in Section Bl From
Lemma [3], if T' is a smooth hypersurface that does not contain any
codimension-two component of the indeterminacy locus of fiom)p for
infinitely many m, then equality (2)) holds for these [2™]P and thus
dividing equation () by 3 - 2?™ and then taking the limit m — oo
over all m such that equality (2) holds will give us the equality in
Theorem A. A priori, such I' might have to avoid containing infinitely
many codimension-two subvarieties in P" corresponding to the infin-
itely many rational maps fjomp, we will prove that this is not a prob-
lem. In fact, we will prove that besides finitely many codimension-two
subvarieties in P that might be common components of the indeter-
minacy locus of all fomp, m € N, other codimension-two components
of the indeterminacy locus of a particular fimp will never reappear as
components of the indeterminacy locus of fjyp for any £ > m.

Since the canonical height is a quadratic form, we may replace P
by [N]P in Theorem A. Given any P € E(K), we replace P by [N]|P
as in Lemma [B] to assure that Pr is not a singular point of Er for
all smooth hypersurfaces I' # H.,. So if we let Sp be the set of all
t € P*(Q)\H.(Q) such that the specialized point P, is a singular
point on the specialized fiber E;, then Sp is an algebraic set (since
singularity is an algebraic property) of codimension at least two in
P"\ Hy. In addition, we note that Sp is contained in the discriminant
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locus Ag = 0. Similarly, we may assume the same for the corresponding
point P’ on the isomorphic curve £’ defined by equation (@), i.e. Pl is
not a singular point of Ef. for all smooth hypersurfaces I' ## H’_ and
Spr has codimension at least 2 in P*(Q)\ H. (Q).

As before, let Iy, be the indeterminacy locus of the rational map fp
induced by P. Then for all t € P"(Q)\ H..(Q) that are not in Iy, U Sp,
fp(t) = P, is well-defined and is not a singular point on the cubic curve
E;. By lemma Ml and induction on m, fomp(t) = ([27]P), = [2™]|F; is
well-defined for all m € N. Thus,

- (P"(Q)\H(Q)) C Iy, U Sp, for all m € N.
The exact same argument works for P’ and so we also have
Ly 0 (P"(Q)\HL(Q)) C If,, U Sp for all m € N.
For
=102 151 5] € (L N Hoo(@) \HL(@),

if t & Iy, USp/, then lemma @l says that fiom)p:(t) = ([27]P"), is defined
and non-singular on Ej because ([2™]P'), = [2™]FP/. In particular,
lemma [6] implies that in fact [2™]P’ is a point of order 2 on Ej. Thus,
for ¢ > m, ([2]P"), = [2]P] = [2"™]([2™]P]) = Op, which implies
that ¢ is not in [ Fatyp by the contrapositive statement of lemma [6l

Notice that we are left with t € Ij,,., N He(Q) N H' (Q), which is

an algebraic set of codimension at least 2 in P*(Q). To summarize,
we have shown that given P € E(K), by replacing P by [N]P as in
Lemma [A] if necessary, so that Pr and P/ are not singular points of Er
and E} respectively for all smooth hypersurface I, for any m € N, if

telf and t¢ I;, Ulp, USpUSp U(Hs(Q)NHL(Q)),

2mp

then for any ¢ > m, t & [f[ﬂ]P. In particular, if we let

Bp = {Hoo N H._, dimension-(n — 2) components of I, U Iy, USpU Sp/} ,

then for any m € N, if C' is a dimension-(n — 2) component of [ Samyp
that is not in Bp, then C' is not a component of ]f[qu for all £ > m.
To complete the proof for Theorem A, we consider any smooth hy-
persurface I' C P” that is not a component of the discriminant locus,
so Er is an elliptic curve over Q(T'). Furthermore, if I' does not contain
any subvariety in Bp, then we have just shown that I' does not contain
any codimension-two component of Iy, , for all big enough m € N.
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So by lemma [B] we have
he (2"]Pr) _ b ((127]P)r)
degI’ degI’

for all big enough m € N. Dividing this equation by 3 - 22™ and then
taking the limit m — oo will give us Theorem A.

= hu([2"]P)

5. INJECTIVITY OF THE SPECIALIZATION MAP

We continue to use all the notation that we defined in sectionBl E/K
is the generic fiber of an abelian scheme 7 : £ — U, for some Zariski

open dense subset U C P". Then for all ¢t € U(Q), the specialization
map

[ E(K) — Et(@)
Pr— P,

is a group homomorphism ([7] Chapter 11, page 152). The following
theorem says that there are infinitely many smooth curves C' C P"
such that if we restrict our attention to those specialization maps o;

correspond to t € C(Q), then most of the o; are injective off of set of
bounded height:

Theorem B. Given any integer d > 1, there exist infinitely many
smooth curves C'/Q of degree d in P™ that do not lie in the complement
of U and such that the set

{te C(Q)NU) | oy is not injective }

15 a set of bounded height. Furthermore, the union of all such curves
18 Zariski dense in P™.

Proof. If the K/Q-trace of E ([4], Chapter 6) is non-zero, then by
the constraint of dimension, the K/Q-trace of E is a dimensional one
abelian variety, i.e. F is K-isomorphic to Ey Xz K for an elliptic curve
Ey/Q. So there is a Zariski dense open subset U° C P" such that for all
t € U°(Q), the fibers E; are isomorphic to Ey, thus the specialization
maps for o, : Ey xg K — E, are injective for all ¢ € U°(Q). So
in particular, any curve C' C P" of degree d that does not lie in the
complement of U° will satisfies Theorem B and their union is P".

We now suppose that the K/Q-trace of E is zero, which implies that
E(K) is finitely generated, a result due to Lang-Néron ([4], Chapter 6,
Theorem 2). For any non-zero P = [z : y : z] € E(K), the algebraic
set

{teU@ | [z(t) :y(t) : 2()] = 0x(P) = O =[0:1: 0}
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has dimension at most n — 1. Since the subgroup of torsion points
E(K)tors is finite, so we may shrink U by discarding finitely many
subvarieties of dimension at most n — 1 and assume that

E(K)tors — Et(@)

is injective for all ¢ € U(Q). On the other hand, We will use the
canonical height pairing to prove that the specialization map is injective
on the free part of E(K). The canonical height pairing on F(K) is

() E(K)x E(K) —R

(P.Q)p — 5 (he(P+ @) — hu(P) ~ hp(Q)).

Likewise, for any smooth hypersurface I' C P" such that Er is non-

singular, the canonical height pairing on Er(Q(I)) is

() - Er(Q()) x Ep(Q(T)) — R

(Pr,Qr)g. — % (iLEF(PF +Qr) — hp(Pr) — iLEJQF)) :

It is a standard result that these pairings are bilinear on the corre-
sponding abelian groups. However, it is more subtle when it comes to
positive definiteness on the free part of the abelian group. In general,
(,-)p is positive definite on the quotient of F(K) by the subgroup
generated by E(K )iors and K/Q-trace of E(K) (J4], Chapter 6, Theo-
rem 5.4). Since we assume that the K/Q-trace of E is zero, it follows
that (-,-)g is a positive definite bilinear form on E(K)/FE(K ). Let
Pl ..., P"beaset of generators for the free part of E(K). The positive
definiteness of the canonical height pairing on E(K)/E(K )iors implies
that
det (P, P]>E)1§i7j§r # 0.

Let Bg be the union of all Bp:’s as in Theorem A, then B is a finite set
of codimension-two subvarieties such that for any smooth hypersurface
I' # H, that does not contain any subvariety in Bg and is not a
component of the discriminant locus of F (so that Fr is non-singular),
then the equality in Theorem A holds for P!, ..., P". By multilinearity
of determinant, we have

det ((Pl—l\, PIL]‘>EF)1SZ'JS7‘ _ det %
(degI')" 1<i,j<r

= det ((P*, P?)p)
£ 0.

1<ij<r
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On the other hand, lemma [5] implies that there exist Ny, ..., NV, such
that the locus for which the specialization of any one of [Ny P, ..., [N,]P"
is a singular point is of dimension at most n —2. So this locus contains
only a finite number of subvarieties of dimension n — 2 and we let Sg
be the set of all these codimension-two subvarieties. If P*~! =~ " C P"
is a hyperplane such that Er is non-singular, we can view Er as as an
elliptic curve defined over Q(P"~1). Furthermore, if I' does not con-
tain any of the subvarieties in Sg, then lemma [ holds for P}, ..., Pk
without the assumption that the reduced Weierstrass equation of Er
is minimal.

To summarize, if I' # H, is a hyperplane not contained in the
complement of U, does not contain subvarieties in B U Sg and is not
a component of the discriminant locus of E, then

det (P}, P, ) oy ey 70 (7)

and lemma [ holds for P, ..., Pr. The set of such hyperplanes I' C P"
is Zariski dense in the dual variety P™* (the set of hyperplanes in P")
because the conditions of not containing a finite number of subvarieties
and not equaling any one of a certain finite number of hyperplanes are
open conditions. Thus, there are infinitely many hyperplanes I' that
allow us to reduce the dimension from P to P*~!. As mentioned before,
although we may not have the minimality of Weierstrass equation in the
P! case, but we do know that lemma [ holds for P, ..., P%, which
is enough for Theorem A to hold true for P}, ..., Pt on Ep(Q(T))
and allow us to apply inductively this reduction on the dimension of
the projective space and eventually reduce to the case P?, i.e. we may
assume FE is an elliptic curve defined over K = Q(P?) with P!,..., P’ €
E(K) such that det ((P', P/)g),; ;<. 7 0.

We continue to reduce the dimension to one as above but do not
restrict ourselves to just hyperplanes, i.e. we can choose any smooth
curve C C P? of degree d not contained in the complement of U,
not a component of the discriminant locus of £ and does not contain
subvarieties in Bgr. The union of all such curves is the Zariski open set
P2\ By, because given any point ¢ € P?(Q)\Bg, we can always find a
smooth curve C'/Q of degree d such that it contains ¢ but not points
in Bg and it is not a component of the discriminant locus of F and
P2\U. With this construction, over these infinitely many curves C' of
degree d, we have det (<Pé’Pé>EC)1§i,j§r # 0. By continuity of the
determinant function and Silverman’s theorem ([§], Theorem B), we
conclude that det ((PZ,, P&)Em)lgmgr # 0, for all t € C(Q) with large

enough hc(t). This means that the specialized points P2, ..., P5, are
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EQ(P")) —— E(Q)

Er((Q(T)))

Ot

red mod C

Ec(Q(C))

FIGURE 1.

Z-linearly independent. Since we always choose the hyperplanes (or
smooth curves in the last induction step) not being contained in the

complement of U, the specialization maps for ¢t € U(Q) commute with
reduction maps as shown in Figure 1. So for t € C(Q) N U(Q) with
he(t) large enough, we have injectivity of o, on both the free part and
the torsion points of F(K).

Lastly, we will prove by induction on n that the union of all such
curves in Theorem B is Zariski dense in P". We have just shown in
the previous paragraph that the case n = 2 is true. For E/Q(P") in
general with n > 2, we have shown that the set of hyperplanes I' C P"
such that condition (7)) holds on Er/Q(I' = P"~!) is Zariski dense in
P™*, thus the union of all such I" (call them good I') is Zariski dense in
P". By induction hypothesis, the union of curves satisfying Theorem
B for Er/Q(I' = P* 1) (call them good curves of degree d for I') is

Zariski dense in I'. So the union
U union of good curves of degree d for I'
good T’

is Zariski dense in P". O
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