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NUMERICAL APPROXIMATION OF THE SINGULARLY

PERTURBED HEAT EQUATION IN A CIRCLE

YOUNGJOON HONG

Abstract. In this article we study the two dimensional singularly perturbed heat
equation in a circular domain. The aim is to develop a numerical method with a
uniform mesh, avoiding mesh refinement at the boundary thanks to the use of a
relatively simple representation of the boundary layer. We provide the asymptotic
expansion of the solution at first order and derive the boundary layer element re-
sulting from the boundary layer analysis. We then perform the convergence analysis
introducing the boundary layer element in the finite element space thus obtaining
what is called an “enriched Galerkin space”. Finally we present and comment on
numerical simulations using a quasi-uniform grid and the modified finite element
method.

1. Introduction

In this article we consider the two-dimensional singularly perturbed heat equation
of the form

(1.1)















∂uǫ

∂t
− ǫ∆uǫ = f, in D × (0, T ),

uǫ(x, y, t) = 0, on ∂D × (0, T ),

uǫ(x, y, 0) = u0(x, y), on D,

where 0 < ǫ ≪ 1 is the heat conductivity and D is the unit disc centered at (0, 0).
The functions f = f(x, y, t) and u0 = u0(x, y) are assumed to be sufficiently regular.
We also assume the compatibility condition

(1.2) u0 = 0 on ∂D.

The numerical methods for singularly perturbed problems have been studied in
many articles. In [24], [25], [28] and [29] the authors proposed numerical methods
for stationary convection-diffusion equations using finite element methods. More
recently, one can find numerical results for parabolic type problems in [3], [9], [21], [22],
and [34]. In those articles the authors utilized mesh refinement near the boundary.
Furthermore, for the parabolic type cases, the authors mainly focused on the finite
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difference methods in a unit interval or rectangular domains and this did not address
the issue of the curved boundary in the context of time dependent problems. Our
object here is to address these issues. We do so and avoid the costly mesh refinements
at the boundary using some results from the boundary layer analysis.

In an earlier work [11], which gives the theoretical background of this article, one
can find the asymptotic expansion for the solution of (1.1) in a smooth domain and
the H1-estimates for the “error” (see below). In this article devoted to the numer-
ical analysis of (1.1) we first look for H2-estimates of the “error”, which play an
important role in the numerical analysis, thus completing the results in [11]; see e.g.
Remark 2.1 and Theorem 2.1. We then introduce the boundary layer element based
on the boundary layer analysis. Incorporating the boundary layer element in the
finite element space, we obtain the proposed “enriched” Galerkin space to be used in
the numerical simulations (together with a “uniform” mesh). Then we perform the
convergence analysis applying the Aubin-Nitsche trick (duality argument) as in [1],
[6], [15] and [23]. We then present the results of our numerical simulations using a
quasi-uniform grid and the enriched finite element space.
For the time-dependent problems, the mesh refinement is rather costly since we have
to consider large scale matrices at each time step. Moreover, if the domain is not
rectangular as is the case in our problem, the finite difference methods are not prac-
tical. This justifies the approaches used in this article which, we believe, should also
be applicable to many other types of time-dependent singularly perturbed problems
such as reaction-diffusion equations. In addition we intend, in the future, to extend
our numerical methods to the linearized Navier-Stokes equations when the viscosity
is small; see e.g. [10], [32], [33], and a forthcoming article [13].

The concept of enriched space and boundary layer element was first introduced in
[26]. Unaware of [26], the authors of [5] and [6] introduced independently a similar
concept for the one-dimensional equations. Especially, in [6], the authors studied the
numerical analysis of the one-dimensional time-dependent problem. In [16], [18], and
[19] the authors presented the numerical methods for the two-dimensional stationary
convection-diffusion equations using the finite element methods and finite volume
methods in a rectangular domain. Lately, in [12], [14] and [20], the time-independent
equations were considered in a circular domain.

This article is organized as follows. In Section 2, we look for L∞(0, T ;H2) estimates
of the error between the exact solution uǫ and its asymptotic expansion to a certain
order. In Section 3, we define the boundary layer element which we incorporate
in the finite element space, and provide the convergence analysis for the enriched
finite element approximation using the duality argument. In Section 4, we present
approximate boundary layer elements and perform numerical applications using these
elements.
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2. Asymptotic analysis

2.1. Boundary fitted coordinates. The weak formulation of (1.1)1 reads
To find uǫ : (0, T ) −→ H1

0 (Ω) such that

(∂tu
ǫ, v) + ǫ(∇uǫ,∇v) = (f, v), ∀v ∈ H1

0 (Ω),

uǫ(0) = u0.
(2.1)

The formal limit problem of (1.1), namely when ǫ→ 0, is easily seen to be

(2.2)







∂u0

∂t
= f, in D × (0, T ),

u0(x, y, 0) = u0(x, y) on D.

Hence, we easily find the explicit solution u0(x, y, t) = u0(x, y) +
∫ t

0
f(x, y, s)ds. To

investigate the boundary layer in the circular domain, we first introduce the boundary
fitted coordinates as in [14]

{

x = (1− ξ) cos η,

y = (1− ξ) sin η,

where ξ = 1 − r, r is the distance to the center, and η is the polar angle from Ox.
We then define the domains D∗ and D 1

2

as follows:

D∗ = {(η, ξ) ∈ (0, 2π)× (0, 1)},

D 1

2

= {(η, ξ) ∈ D∗ : ξ ≤ 1

2
}.

(2.3)

Using this change of variables, we obtain

(2.4)
∂

∂x
= − cos η

∂

∂ξ
− sin η

1− ξ

∂

∂η
,

∂

∂y
= − sin η

∂

∂ξ
+

cos η

1− ξ

∂

∂η
,

and then (1.1)1 becomes

(2.5) Lǫ(u
ǫ) =

∂uǫ

∂t
− ǫ∆uǫ =

∂uǫ

∂t
− ǫ

(1− ξ)2
∂2uǫ

∂η2
+

ǫ

1− ξ

∂uǫ

∂ξ
− ǫ

∂2uǫ

∂ξ2
= f.

2.2. Convergence analysis. We first look for the expansion of uǫ at first order:

(2.6) uǫ ≃ u0 + θ0,

where u0 is the solution of (2.2)1 and θ0 is the first corrector. Setting f = 0 in (2.5),
and using the stretched variable ξ = ǫαξ̄, (2.5) is transformed to

(2.7)
∂uǫ

∂t
− ǫ

(1− ǫαξ̄)2
∂2uǫ

∂η2
+

ǫ1−α

1− ǫαξ̄

∂uǫ

∂ξ̄
− ǫ1−2α∂

2uǫ

∂ξ̄2
= 0.
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The dominating terms in (2.7) are

(2.8)
∂uǫ

∂t
− ǫ1−2α ∂

2uǫ

∂ξ̄2
= 0,

and thus the reasonable thickness of the boundary layer is α = 1
2
so that ξ = ǫ

1

2 ξ̄,

with ξ̄ = O(1) in the boundary layer.
Then, we obtain the equations for the corrector θ0 = θ0(η, ξ, t):

(2.9)



























∂θ0

∂t
− ∂2θ0

∂ξ̄2
= 0, in D∗ × (0, T ),

θ0(η, 0, t) = −u0, at ξ̄ = 0,

θ0(η, ξ, 0) = 0,

θ0 −→ 0, as ξ̄ −→ ∞.

The explicit solution θ0 is

(2.10) θ0 = −
∫ t

0

I(ξ, t− s)
∂u0

∂t
(η, 0, s)ds,

where

I(ξ, t) = erfc
( ξ√

2ǫt

)

,

erfc(z) = 1− erf(z) =

√

2

π

∫ ∞

z

exp
(

− y2

2

)

dy,

erf(z) =

√

2

π

∫ z

0

exp
(

− y2

2

)

dy;

(2.11)

see e.g. [4]. To avoid the singularity of θ0 at the origin (at ξ = 1), we introduce the
approximation

(2.12) θ̄0(η, ξ, t) = θ0δ(ξ)

where δ(ξ) is a smooth cut-off function such that δ(ξ) = 1 for 0 ≤ ξ ≤ 1/4 and
δ(ξ) = 1 for 1/2 ≤ ξ ≤ 1.
We need an additional compatibility condition as in [17] to estimate the higher order
derivatives of θ0; namely

(2.13)
∂u0

∂t
(η, 0, 0) = 0.

Due to (2.2)1

(2.14)
∂u0

∂t

∣

∣

∣

t=0
= f

∣

∣

∣

t=0
, on ∂Ω,
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and hence we require the compatibility condition

(2.15) f(x, y, 0) = 0, on ∂Ω.

We now recall the following lemma from [11].

Lemma 2.1. For m = 0, 1 and k ≥ 0, the following pointwise estimates hold for
θ0 = θ0(η, ξ, t):

(2.16) |∂kη∂mξ θ0| ≤ κǫ−
m
2 exp

(

− ξ2

4ǫt

)

.

Moreover, for (η, ξ) ∈ D 1

2

, and for j = 0 and m ≥ 2, and for j ≥ 1 and m ≥ 0, we

find

(2.17) |∂jt ∂kη∂mξ θ0| ≤ κǫ−j−m+ 1

2

∫ t

0

(1 + s−2j−m+ 1

2 ) exp
(

− ξ2

4ǫs

)

ds.

Here and below κ is a positive constant which is independent of ǫ and may depend on
the data and which may be different at different occurrences.

Furthermore, we recall the definition of an e.s.t..

Definition 2.1. A function or a constant depending on ǫ, g̃ǫ, g̃
ǫ is called an exponen-

tially small term, and denoted e.s.t., if there exist β, β ′ > 0 such that for any k ≥ 0,
there exists a constant cβ,β′,k > 0 independent of ǫ such that

(2.18) ‖g̃ǫ‖Hk ≤ cβ,β′,k exp(−β/ǫβ
′

).

Of course ‖g̃ǫ‖Hk = |g̃ǫ| if g̃ǫ is a constant.

Lemma 2.2. For j, k,m ≥ 0, we find that

(2.19)
∥

∥∂jt ∂
k
η∂

m
ξ (θ0 − θ̄0)

∥

∥

L2(D 1
2

)
is an e.s.t.,

for t ∈ [0, T ].

Proof. For m = 0, 1, by (2.16), we deduce that

∥

∥∂kη∂
m
ξ (θ0 − θ̄0)

∥

∥

2

L2(D 1
2

)
=

∫ 2π

0

∫ 1

2

1

4

|∂kη∂mξ [θ0(1− δ)]|2dξdη

≤
∫ 2π

0

∫ 1

2

1

4

∣

∣

∣
κǫ−

m
2 exp

(

− ξ2

4ǫt

)
∣

∣

∣

2

dξdη.

(2.20)

Noting that
∫ 1

2

1

4

∣

∣

∣
exp

(

− ξ2

4ǫt

)
∣

∣

∣

2

dξ ≤ κ

(

exp
(

− (1/4)2

4ǫt

)

)2

,

we obtain

(2.21)
∥

∥∂kη∂
m
ξ (θ0 − θ̄0)

∥

∥

L2(D 1
2

)
is an e.s.t..
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For j = 0, m ≥ 2, or j ≥ 1, m ≥ 0, thanks to the pointwise estimate in (2.17), we
find
(2.22)
∥

∥∂jt ∂
k
η∂

m
ξ (θ0−θ̄0)

∥

∥

2

L2(D 1
2

)
≤ κ

∫ 2π

0

∫ 1

2

1

4

(

ǫ−j−m+ 1

2

∫ t

0

(1+s−2j−m+ 1

2 ) exp
(

− ξ2

4ǫs

)

ds
)2

dξdη.

We then focus on the problematic part in (2.22):

(2.23)

∫ 2π

0

∫ 1

2

1

4

(

∫ t

0

s−l exp
(

− ξ2

4ǫs

)

ds
)2

dξdη,

where l = 2j+m− 1
2
. Since xr exp(−x2) ≤ κ exp(−x2/2) for r > 0, where κ depends

only on r, we find
∫ t

0

s−l exp
(

− ξ2

4ǫs

)

ds

=

∫ t

0

s−l exp
(

− ξ2

4ǫs

)( ξ√
4ǫs

)2l( ξ√
4ǫs

)−2l

ds

≤ κ

∫ t

0

s−l exp
(

− ξ2

8ǫs

)( ξ√
4ǫs

)−2l

ds.

(2.24)

Hence, we obtain
∫ 2π

0

∫ 1

2

1

4

(

∫ t

0

s−l exp
(

− ξ2

4ǫs

)

ds
)2

dξdη

≤ (by (2.24))

≤ κ

∫ 2π

0

∫ 1

2

1

4

(

∫ t

0

s−l exp
(

− ξ2

8ǫs

)( ξ√
4ǫs

)−2l

ds
)2

dξdη

≤ κ

∫ 2π

0

∫ 1

2

1

4

exp
(

− ξ2

4ǫt

)( ξ√
4ǫ

)−4l

dξdη

≤ κ exp
(

− (1/4)2

4ǫt

)

≤ e.s.t. (for t ∈ [0, T ]).

(2.25)

Then, the lemma follows. �

For the error analysis we borrow the following lemma from [17].

Lemma 2.3. Assume that the compatibility conditions (1.2) and (2.15) hold. For
0 ≤ m ≤ 4 and k ≥ 0, there exists a positive constant κ independent of ǫ such that

(2.26)
∥

∥

∥

∂m+kθ0

∂ξm∂ηk

∥

∥

∥

L2(D 1
2

)
≤ κǫ−

m
2
+ 1

4 , for a.e. t ∈ [0, T ].
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We now define “the error” w0
ǫ = w0

ǫ (η, ξ, t) = uǫ − u0 − θ̄0; then from (1.1), (2.2),
we deduce that

(2.27)















∂w0
ǫ

∂t
− ǫ∆w0

ǫ = ǫ∆u0 − Lǫ(θ̄
0),

w0
ǫ (η, ξ = 0, t) = 0,

w0
ǫ (η, ξ, t = 0) = 0,

where Lǫ is as in (2.5). We multiply (2.27)1 by w0
ǫ and integrate over D; then we

obtain

1

2

d

dt
‖w0

ǫ‖2L2(D) + ǫ‖∇w0
ǫ‖L2(D)

≤ ǫ‖w0
ǫ‖L2(D)‖∆u0‖L2(D) + ‖w0

ǫ‖L2(D)‖Lǫ(θ̄
0)‖L2(D)

≤ ‖w0
ǫ‖2L2(D) +

ǫ2

2
‖∆u0‖2L2(D) +

1

2
‖Lǫ(θ̄

0)‖2L2(D).

(2.28)

We note that

‖Lǫ(θ̄
0)‖2L2(D) = ‖Lǫ(θ̄

0)‖2L2(D∗) = ‖Lǫ(θ̄
0)‖2L2(D 1

2

)

≤ ‖Lǫ(θ̄
0 − θ0)‖2L2(D 1

2

) + ‖Lǫ(θ
0)‖2L2(D 1

2

)

≤ e.s.t. + ‖Lǫ(θ
0)‖2L2(D 1

2

),

(2.29)

and we rewrite Lǫ(θ
0), using (2.9)1, as

Lǫ(θ
0) = − ǫ

(1− ξ)2
∂2θ0

∂η2
+

ǫ

1− ξ

∂θ0

∂ξ
.

Then, from Lemma 2.3, we find

(2.30) ‖Lǫ(θ
0)‖L2(D 1

2

) ≤ κǫ
5

4 + κǫ
3

4 ≤ κǫ
3

4 .

From (2.29) and (2.30), and using the regularity |∆u0|2
L2(D) ≤ κ, (2.28) becomes

(2.31)
1

2

d

dt
‖w0

ǫ‖2L2(D) + ǫ‖∇w0
ǫ‖L2(D) ≤ ‖w0

ǫ‖2L2(D) + κǫ
3

2 .

Using the Gronwall inequality, we find

(2.32) ‖w0
ǫ‖L∞(0,T ;L2(D)) ≤ κǫ

3

4 .

Integrating (2.31) over [0, T ], we obtain

(2.33)

∫ T

0

‖∇w0
ǫ‖2L2(D)dt ≤

1

ǫ

∫ T

0

(‖w0
ǫ‖2L2(D) + κǫ

3

2 )dt.
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Hence, we find

(2.34) ‖w0
ǫ‖L2(0,T ;H1(D)) ≤ κǫ

1

4 .

Remark 2.1. In [11], one can also find the same convergence results for ‖w0
ǫ‖L∞(0,T ;L2(Ω))

and ‖w0
ǫ‖L2(0,T ;H1(Ω)) where Ω is a general smooth domain. Hence, (2.32) and (2.34)

are special cases of the results in [11]. However to develop the convergence analy-
sis for the finite elements space, we need an estimate on ‖w0

ǫ‖L∞(0,T ;H1(D)) and on
‖w0

ǫ‖L∞(0,T ;H2(D)) which do not appear in [11]; see below.

We now look for estimates of ‖w0
ǫ‖L∞(0,T ;H1(D)) and ‖w0

ǫ‖L∞(0,T ;H2(D)) which play
an important role in Section 3. We take the scalar product of (2.27)1 in the space
L2(D) with −∆w0

ǫ , and we obtain

1

2

d

dt
‖∇w0

ǫ‖2L2(D) + ǫ‖∆w0
ǫ‖2L2(D)

≤ ǫ‖∆u0‖L2(D)‖∆w0
ǫ‖L2(D) + ‖Lǫ(θ̄

0)‖L2(D)‖∆w0
ǫ‖L2(D)

≤ ǫ

4
‖∆w0

ǫ‖2L2(D) + ǫ‖∆u0‖2L2(D) +
ǫ

4
‖∆w0

ǫ‖2L2(D) +
1

ǫ
‖Lǫ(θ̄

0)‖2L2(D).

(2.35)

Using (2.29), (2.30) and (2.35), we find

(2.36)
1

2

d

dt
‖∇w0

ǫ‖2L2(D) + ǫ‖∆w0
ǫ‖2L2(D) ≤

ǫ

2
‖∆w0

ǫ‖2L2(D) + κǫ
1

2 .

Hence, by the Gronwall inequality, we obtain

(2.37) ‖w0
ǫ‖L∞(0,T ;H1(D)) ≤ κǫ

1

4 .

Furthermore, integrating (2.36) over [0, T ], we also find

(2.38) ‖w0
ǫ‖L2(0,T ;H2(D)) ≤ κǫ−

1

4 .

To find the estimate on ‖w0
ǫ‖L∞(0,T ;H2(D)), we first take the time derivative of (2.27)

and write

(2.39)



























∂2w0
ǫ

∂t2
− ǫ∆

(∂w0
ǫ

∂t

)

= ǫ∆
(∂u0

∂t

)

− Lǫ

(∂θ̄0

∂t

)

,

∂w0
ǫ

∂t
(η, ξ = 0, t) = 0,

∂w0
ǫ

∂t
(η, ξ, t = 0) = ǫ∆u0.

Remark 2.2. We derive the initial condition (2.39)3 using (2.9) and (2.27). We
consider (2.27)1 at t = 0, we then obtain

(2.40)
∂w0

ǫ

∂t

∣

∣

∣

t=0
=

(

ǫ∆w0
ǫ + ǫ∆u0 − Lǫ(θ̄

0)
)
∣

∣

∣

t=0
.

According to (2.27)3, w
0
ǫ vanishes identically at t = 0 so that

(2.41) ∆w0
ǫ = 0, at t = 0.
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Using (2.5) the term Lǫ(θ̄
0) in (2.40) becomes:

(2.42) Lǫ(θ̄
0) =

∂θ̄0

∂t
− ǫ

(1− ξ)2
∂2θ̄0

∂η2
+

ǫ

1− ξ

∂θ̄0

∂ξ
− ǫ

∂2θ̄0

∂ξ2
.

According to (2.9)3 and (2.12) the spatial derivatives of θ0 at t = 0 vanish, that is,

(2.43)
∂2θ̄0

∂η2
= 0,

∂θ̄0

∂ξ
= 0, and

∂2θ̄0

∂ξ2
= 0, at t = 0.

We deduce, from (2.9)1 and (2.12), that

(2.44)
∂θ̄0

∂t
= δ(ξ)

∂θ0

∂t
= δ(ξ)ǫ

∂2θ0

∂ξ2
= 0, at t = 0.

From (2.42), (2.43), and (2.44) we obtain

(2.45) Lǫ(θ̄
0) = 0, at t = 0.

Hence we arrive at:

(2.46)
∂w0

ǫ

∂t
= ǫ∆u0, at t = 0.

We take the scalar product of (2.39)1 in the space L2(D) with ∂w0
ǫ

∂t
:

1

2

d

dt

∥

∥

∥

∂w0
ǫ

∂t

∥

∥

∥

2

L2(D)
+ ǫ

∥

∥

∥
∇
(∂w0

ǫ

∂t

)
∥

∥

∥

2

L2(D)

= ǫ
(

∆
(∂u0

∂t

)

,
∂w0

ǫ

∂t

)

−
(

Lǫ

(∂θ̄0

∂t

)

,
∂w0

ǫ

∂t

)

≤ κǫ2 +
1

4

∥

∥

∥

∂w0
ǫ

∂t

∥

∥

∥

2

L2(D)
+
∥

∥

∥
Lǫ

(∂θ̄0

∂t

)
∥

∥

∥

2

L2(D)
+

1

4

∥

∥

∥

∂w0
ǫ

∂t

∥

∥

∥

2

L2(D)
.

(2.47)

Using the similar argument as in (2.29)

∥

∥

∥
Lǫ

(∂θ̄0

∂t

)
∥

∥

∥

2

L2(D)
≤

∥

∥

∥
Lǫ

(∂θ̄0

∂t
− ∂θ0

∂t

)
∥

∥

∥

2

L2(D 1
2

)
+
∥

∥

∥
Lǫ

(∂θ0

∂t

)
∥

∥

∥

2

L2(D 1
2

)

≤ (by Lemma 2.2)

≤ e.s.t. ++
∥

∥

∥
Lǫ

(∂θ0

∂t

)
∥

∥

∥

2

L2(D 1
2

)
.

(2.48)
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Noting that
∥

∥

∥
Lǫ

(∂θ0

∂t

)
∥

∥

∥

2

L2(D 1
2

)
≤ κ

∥

∥

∥
ǫ
∂3θ0

∂tη2

∥

∥

∥

2

L2(D 1
2

)
+ κ

∥

∥

∥
ǫ
∂2θ0

∂tξ

∥

∥

∥

2

L2(D 1
2

)

≤ κ
∥

∥

∥
ǫ2
∂4θ0

∂ξ2η2

∥

∥

∥

2

L2(D 1
2

)
+ κ

∥

∥

∥
ǫ2
∂3θ0

∂ξ3

∥

∥

∥

2

L2(D 1
2

)

≤ (by Lemma 2.3)

≤ κǫ
3

2 ,

(2.49)

then (2.47) becomes

(2.50)
1

2

d

dt

∥

∥

∥

∂w0
ǫ

∂t

∥

∥

∥

2

L2(D)
+ ǫ

∥

∥

∥
∇
(∂w0

ǫ

∂t

)
∥

∥

∥

2

L2(D)
≤ κǫ

3

2 +
1

2

∥

∥

∥

∂w0
ǫ

∂t

∥

∥

∥

2

L2(D)
.

Thanks to the Gronwall inequality, we obtain

(2.51)
∥

∥

∥

∂w0
ǫ

∂t

∥

∥

∥

L2(D)
≤ κǫ

3

4 .

From (2.27)1, we deduce that

‖w0
ǫ‖L∞(0,T ;H2(D)) ≤

1

ǫ

∥

∥

∥

∂w0
ǫ

∂t

∥

∥

∥

L∞(0,T ;L2(D))
+ ‖∆u0‖L∞(0,T ;L2(D)) +

1

ǫ
‖Lǫ(θ̄

0)‖L∞(0,T ;L2(D))

≤ (by (2.51))

≤ κǫ−
1

4 + κ +
κ

ǫ
‖Lǫ(θ̄

0 − θ0)‖L∞(0,T ;L2(D)) +
κ

ǫ
‖Lǫ(θ

0)‖L∞(0,T ;L2(D))

≤ (by (2.30))

≤ κǫ−
1

4 .

(2.52)

Hence, we finally obtain

(2.53) ‖w0
ǫ‖L∞(0,T ;H2(D)) ≤ κǫ−

1

4 .

We then arrive at the following conclusion.

Theorem 2.1. Let uǫ be the solution of (1.1) and u0 be the solution of (2.2). Then,
the following estimates hold:

‖uǫ − u0 − θ̄0‖L∞(0,T ;L2(D)) ≤ κǫ
3

4 ,

‖uǫ − u0 − θ̄0‖L∞(0,T ;H1(D)) ≤ κǫ
1

4 ,

‖uǫ − u0 − θ̄0‖L∞(0,T ;H2(D)) ≤ κǫ−
1

4 ,

(2.54)

where θ̄0 is the corrector in (2.12) and κ is a constant independent of ǫ.
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3. Approximation via finite elements

In this section, we show how to approximate (1.1) using P1 finite elements with or
without an enriched space. We first introduce the classical finite elements spaces VN
and then define the new finite element spaces

(

V̄Nt

)

t∈[0,T ]
enriched with the boundary

layer elements and the corresponding approximations. Then, we develop the conver-
gence analysis for the new scheme.

3.1. Finite element spaces. We define the standard finite element spaces VN such
that

(3.1) VN :=
{

N
∑

i=1

ciϕi(x, y)
}

⊂ H1
0 (Ω),

where the ϕi(x, y) is the classical P1 functions equal to 1 at some node Mi and to 0
at all other nodes with 1 ≤ i ≤ N . We then introduce the new finite element space
supplemented with the boundary layer elements:

(3.2)
(

V̄Nt

)

t∈[0,T ]
:=

{

N
∑

i=1

ci(t)ϕi(x, y) +
M
∑

j=1

dj(t)ϕ0(ξ, t)ψj(η)
}

,

where the ψj(η) are the classical P1 elements in 1D space, i.e. the hat functions, for
1 ≤ j ≤M . Here ϕ0 = ϕ0(ξ, t) is the boundary layer element, that is,

(3.3) ϕ0(ξ, t) =
(

1−
∫ t

0

I(ξ, t− s)ds
)

δ(ξ),

where I = I(ξ, t) is the function in (2.11)1 and δ = δ(ξ) is a smooth cut-off function
as in Section 2.
We aim to study the classical and new approximation solutions uǫN ∈ VN and ūǫN ∈
(

V̄Nt

)

t∈[0,T ]
, respectively, such that

uǫN : [0, T ] −→ VN ,

(∂tu
ǫ
N , v) + (∇uǫN ,∇v) = (f, v), ∀v ∈ VN , t ∈ (0, T ],

(uǫN(0), v) = (u0, v), ∀v ∈ VN ,

(3.4)

and

ūǫN : [0, T ] −→
(

V̄Nt

)

t∈[0,T ]
,

(∂tū
ǫ
N , v) + (∇ūǫN ,∇v) = (f, v), ∀v ∈

(

V̄Nt

)

t∈[0,T ]
, t ∈ (0, T ],

(ūǫN(0), v) = (u0, v), ∀v ∈
(

V̄Nt

)

t=0
.

(3.5)
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3.2. Convergence analysis. In this section, we study the convergence analysis for
the finite element approximation using the results in Section 2. Thanks to (2.54)5
and the regularity assumption

(3.6) ‖u0‖L∞(0,T ;H2(D)) ≤ κ,

where u0 = u0(η, 0, t), we obtain

(3.7) ‖uǫ − θ̄0‖L∞(0,T ;H2(D)) ≤ κǫ−
1

4 .

Setting g(η, t) = u0(η, 0, t) and I = I(ξ, t− s), we then have:

‖uǫ − gϕ0‖L∞(0,T ;H2(D))

= ‖uǫ − θ̄0 + θ̄0 − gϕ0‖L∞(0,T ;H2(D))

≤ ‖uǫ − θ̄0‖L∞(0,T ;H2(D)) + ‖θ̄0 − gϕ0‖L∞(0,T ;H2(D))

≤ κǫ−
1

4 +
∥

∥

∥
−

(

∫ t

0

I
∂u0

∂t
(η, 0, s)ds

)

δ − g
(

1−
∫ t

0

Ids
)

δ
∥

∥

∥

L∞(0,T ;H2(D 1
2

))

≤ κǫ−
1

4 +
∥

∥

∥

∫ t

0

I
(

g − ∂u0

∂t
(η, 0, s)

)

ds
∥

∥

∥

L∞(0,T ;H2(D 1
2

))
+ κ‖gδ‖L∞(0,T ;H2(D 1

2

))

≤ κǫ−
1

4 +R,

(3.8)

where

R =
∥

∥

∥

∫ t

0

I
(

g − ∂u0

∂t
(η, 0, s)

)

ds
∥

∥

∥

L∞(0,T ;H2(D 1
2

))
.

To estimate the term R, we consider only the dominating term which is the second
derivative in ξ, i.e. ∂2

∂ξ2
. We note that

(3.9)

∫ t

0

I
(

g − ∂u0

∂t
(η, 0, s)

)

ds = g

∫ t

0

Ids+ θ0;

hence we deduce that

R ≤ ‖θ0‖L∞(0,T ;H2

ξ
(D 1

2

)) +
∥

∥

∥
g

∫ t

0

Ids
∥

∥

∥

L∞(0,T ;H2

ξ
(D 1

2

))

≤ κǫ−
3

4 + κ
∥

∥

∥

∫ t

0

Ids
∥

∥

∥

L∞(0,T ;H2

ξ
(D 1

2

))
.

(3.10)

We apply Lemma 2.1 in [17], which is the generalized version of Lemman 2.3 in this
article, we then obtain

(3.11)
∥

∥

∥

∫ t

0

Ids
∥

∥

∥

L∞(0,T ;H2

ξ
(D 1

2

))
≤ κǫ−

3

4 .
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Hence, we obtain

(3.12) R ≤ κǫ−
3

4 .

Hence, from (3.7), (3.8), and (3.12), we find

(3.13) ‖uǫ − gϕ0‖L∞(0,T ;H2(D)) ≤ κǫ−
3

4 .

For further analysis, we now prove the following interpolation lemmas.

Lemma 3.1. Let h be the one-dimensional mesh size.

(1) Assume that γ ∈ H l(0, 2π) for l = 1, 2. Then, there exist ci ∈ R, i = 1, ..., N1,
such that for m = 0 if l = 1 and m = 0, 1 if l = 2

(3.14)
∥

∥

∥
γ −

N1
∑

i=1

ciψi

∥

∥

∥

Hm(0,2π)
≤ κhl−m‖γ‖Hl(0,2π).

(2) Assume that γ ∈ C([0, T ];H l). Then, there exist ci = ci(t) ∈ C([0, T ]),
i = 1, ..., N1, such that for m = 0 if l = 1 and m = 0, 1 if l = 2

(3.15)
∥

∥

∥
γ(t)−

N1
∑

i=1

ci(t)ψi

∥

∥

∥

Hm(0,2π)
≤ κhl−m sup

t∈[0,T ]

‖γ(t)‖Hl(0,2π).

Proof.

(1) The result is classical and the proof can be found, e.g., in [8].
(2) Now the ci depend on t, ci = ci(t) and we need to analyze the dependence in

t of the ci. A perusal of the proof in [8] shows that the result hinges on the
regularity in time of the interpolation mappings ΠK :

(3.16) γ = γ(·, t) −→ (ΠKγ)
( i

N1

, t
)

= γ
( i

N1

, t
)

, i = 0, ..., N1,

which map H1([0, 2π]) into C([0, 2π]) and Hr+1([0, 2π]) into Cr([0, 2π]) for
r ≥ 0. Hence the continuity in time of the interpolants in Hr follows when
γ ∈ C([0, T ];Hr([0, 2π])).

�

Lemma 3.2. Let h be the two-dimensional mesh size, that is the maximum diameter
of the triangular elements.

(1) Assume that w ∈ H2(D). Then, there exist cj ∈ R, j = 1, ..., N2, such that

(3.17)
∥

∥

∥
w −

N2
∑

j=1

cjϕj

∥

∥

∥

Hm(D)
≤ κh2−m

∥

∥w
∥

∥

H2(D)
.



14 YOUNGJOON HONG

(2) Assume that w ∈ C([0, T ];H2(D)). Then, there exist cj = cj(t) ∈ C([0, T ]),
j = 1, ..., N2, such that

(3.18)
∥

∥

∥
w(t)−

N2
∑

j=1

cj(t)ϕj

∥

∥

∥

Hm(D)
≤ κh2−m sup

t∈[0,T ]

∥

∥w(t)
∥

∥

H2(D)
.

Proof.

(1) The result is classical and the proof can be found, e.g., in [8].
(2) We use the same method as in Lemma 3.1. Considering the regularity of the

interpolation mapping ΠK , we write

(3.19) w = w(·, t) −→ (ΠKw)(Aj, t) = w(Aj, t),

which map H2(D) into C(D), where the Aj are the nodal points of the P1
elements. Hence the continuity in time of the interpolants in H2(D) follows
when w ∈ C([0, T ];H2(D)).

�

Remark 3.1. The interpolation results in (1) of Lemma 3.1 and 3.2 are standard and
the proofs have been presented in many other places; see e.g. [2] and [27]. However,
in the case (2) of Lemmas 3.1 and 3.2, we could not find the specific proofs in any
earlier works although the results has been referred to in the literatures. Hence the
proofs in Lemmas 3.1 and 3.2 are useful in this article and for the future works.

Lemma 3.3. There exist ci = ci(t) ∈ C([0, T ]) and dj = dj(t) ∈ C([0, T ]), i =
1, ..., N , j = 1, ...,M , such that

∥

∥

∥
uǫ −

N
∑

i=1

ciϕi −
M
∑

j=1

djϕ0ψj

∥

∥

∥

L∞(0,T ;L2(D))
≤ κh2ǫ−

3

4 ,

∥

∥

∥
uǫ −

N
∑

i=1

ciϕi −
M
∑

j=1

djϕ0ψj

∥

∥

∥

L∞(0,T ;H1(D))
≤ κhǫ−

3

4 .

(3.20)

Proof. Using (3.13) and Lemma 3.2, for m = 0, 1, we deduce

∥

∥

∥
uǫ − gϕ0 −

N
∑

i=1

ciϕi

∥

∥

∥

L∞(0,T ;Hm(D))
≤ κh2−m‖uǫ − gϕ0‖L∞(0,T ;H2(D))

≤ κh2−mǫ−
3

4 .

(3.21)
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Moreover, by Lemmas 2.3 and 3.1, we also find

∥

∥

∥
gϕ0 −

M
∑

j=1

djϕ0ψj

∥

∥

∥

L∞(0,T ;Hm(D))
=

∥

∥

∥
ϕ0(g −

M
∑

j=1

djψj)
∥

∥

∥

L∞(0,T ;Hm(D 1
2

))

≤ κh2−m‖ϕ0‖L∞(0,T ;H2

ξ
(0, 1

2
))

≤ κh2−mǫ−
3

4 .

(3.22)

Then, Lemma 3.3 follows. �

We now prove the main convergence theorem of Section 3 concerning the new
scheme. See Remark 3.2 below comparing to the result for the classical scheme.

Theorem 3.1. Let uǫ and ūǫN be the solutions of (2.1) and (3.5), respectively, then

(3.23) ‖uǫ − ūǫN‖L∞(0,T ;L2(D)) ≤ κh2ǫ−
3

4

(

1 + log
T

h2

)

+ κhǫ−
1

4 .

Proof. For the proof, we apply the Aubin-Nitsche trick as in [1], [6], [15] and [23]. We
first set

(3.24) ûǫN =
N
∑

i=1

ciϕi +
M
∑

j=1

djϕ0ψj .

Then, by Lemma 3.3, we deduce that

‖uǫ − ūǫN‖L∞(0,T ;L2(D)) ≤ ‖uǫ − ûǫN‖L∞(0,T ;L2(D)) + ‖ûǫN − ūǫN‖L∞(0,T ;L2(D))

≤ κǫ−
3

4h2 + ‖ûǫN − ūǫN‖L∞(0,T ;L2(D)).
(3.25)

We now consider a duality argument to estimate eǫN (t) := ûǫN−ūǫN in L∞(0, T ;L2(D)).
For t ∈ (0, T ), let Φǫ

N : (0, t) −→
(

V̄Nt

)

t∈[0,T ]
satisfy

(3.26)

{

−(∂sΦ
ǫ
N(s), v) + aǫ(Φ

ǫ
N(s), v) = 0, 0 < s < t, v ∈

(

V̄Nt

)

t∈[0,T ]
,

Φǫ
N (t) = eǫN (t),

where aǫ(u, v) = ǫ(∇u,∇v). Taking v = eǫN(s) in (3.26)1, we find

‖eǫN(t)‖2L2(D) =

∫ t

0

{

− (∂sΦ
ǫ
N (s), e

ǫ
N(s)) + aǫ(Φ

ǫ
N(s), e

ǫ
N(s))

}

ds+ (Φǫ
N (t), e

ǫ
N(t))

= (by integration by parts)

=

∫ t

0

{

(∂se
ǫ
N (s),Φ

ǫ
N(s)) + aǫ(e

ǫ
N(s),Φ

ǫ
N(s))

}

ds+ (Φǫ
N (0), e

ǫ
N(0)).

(3.27)
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From (2.1) and (3.5), we find

(3.28)

{

(∂t(u
ǫ − ūǫN), v) + aǫ(u

ǫ − ūǫN , v) = 0,

(uǫ(0)− ūǫN(0), v) = 0.

Let us set Θǫ
N(s) = uǫ(s)− ûǫN(s), then from (3.27) and (3.28) we obtain

‖eǫN(t)‖2L2(D) =

∫ t

0

{

(∂sΘ
ǫ
N ,Φ

ǫ
N ) + aǫ(Θ

ǫ
N ,Φ

ǫ
N)

}

ds+ (Θǫ
N(0),Φ

ǫ
N(0))

= (by integration by parts)

=

∫ t

0

{

− (Θǫ
N , ∂sΦ

ǫ
N) + aǫ(Θ

ǫ
N ,Φ

ǫ
N )

}

ds+ (Θǫ
N(t),Φ

ǫ
N(t)).

(3.29)

To finish the proof, we look for estimates on the R.H.S. of (3.29). Note that (3.26) is
equivalent to the following ODE system

(3.30)

{

−w′ + ǫAhw = 0, s ∈ (0, t)

w(t) = w0,

where w′ = d
ds
w and Ah is the discrete laplacian with respect to the spatial variables.

We first take the scalar product of (3.30) with w; we see that

(3.31) − 1

2

d

ds
|w|2 + ǫ|A

1

2

hw|2 = 0.

Integrating (3.31) over (s, t), we then find

(3.32) |w(s)| ≤ |w(t)|, ∀s ∈ (0, t);

hence we obtain

(3.33) ‖Φǫ
N‖L∞(0,t;L2(D)) ≤ κ‖eǫN(t)‖L2(D).

Moreover, integrating (3.31) over (0, t), we have

(3.34) ǫ

∫ t

0

|A
1

2

hw|2 ≤ |w(t)|2.

To find further estimates, it is convenient to consider the change of variable τ = t−s.
We then define w̃(τ) = w(t− s) and rewrite (3.30) as

(3.35)

{

w̃′ + ǫAhw̃ = 0,

w̃(τ = 0) = w̃0 = w(t).

Multiplying (3.35) by τw̃′, we obtain

(3.36) τ |w̃′|2 + ǫ

2

d

dτ
(τ |A

1

2

h w̃|2)−
ǫ

2
|A

1

2

h w̃|2 = 0.
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Integrating (3.36) over (0, τ) and using (3.34), we deduce

(3.37) τ |A
1

2

h w̃(τ)|2 ≤
∫ τ

0

|A
1

2

h w̃|2 ≤
∫ t

0

|A
1

2

hw|2 ≤
κ

ǫ
|w(t)|2.

Hence,

(3.38) |A
1

2

hw(τ)| ≤
κ

√

ǫ(t− s)
|w(t)|, ∀τ ∈ (0, t).

Moreover, integrating (3.36) over (0, t) and using (3.34), we find

(3.39)

∫ t

0

(
√
τ |w̃′|)2ds+ ǫt

2
|A

1

2

h w̃(t)|2 ≤
ǫ

2

∫ t

0

|A
1

2

h w̃|2ds

implying that

(3.40) ‖
√
τw̃′‖2L2(0,t) ≤ κ|w(t)|2.

Hence, we obtain

(3.41) ‖
√
τ w̃′‖L2(0,t) ≤ κ|w(t)|.

We now consider the time derivative of (3.35)

(3.42) w̃′′ + ǫAhw̃
′ = 0,

and multiply (3.42) by τ 2w̃′

(3.43)
1

2

d

dτ
|τw̃′|2 − τ |w̃′|2 + ǫ|τA

1

2

h w̃
′|2 = 0.

Integrating (3.43) over (0, τ) and using (3.41), we find

(3.44) τ 2|w̃′(τ)|2 ≤ κ

∫ t

0

τ̃ |w̃′|2dτ̃ ≤ κ|w(t)|2.

Hence,

(3.45) |w̃′(τ)| ≤ κτ−1|w(t)|, ∀τ ∈ (0, t).
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Moreover, we also deduce
∫ t

0

|w̃′|dτ =

∫ h2

0

|w̃′|dτ +
∫ t

h2

|w̃′|dτ

≤ (by (3.35) and (3.45))

≤
∫ h2

0

ǫ|Ahw̃|dτ + κ

∫ t

h2

1

τ
|w(t)|dτ

≤ (by the standard inverse Poincaré inequality |Ahw| ≤ κh−2|w|)

≤
∫ h2

0

ǫh−2|w(t)|dτ + κ|w(t)| log T
h2

≤ κ|w(t)|(ǫ+ log
T

h2
).

(3.46)

Back to (3.29), we finally obtain

‖eǫN(t)‖2L2(D) ≤
∫ t

0

−(Θǫ
N , ∂sΦ

ǫ
N ) + aǫ(Θ

ǫ
N ,Φ

ǫ
N)ds+ (Θǫ

N(t),Φ
ǫ
N(t))

≤ ‖Θǫ
N‖L∞(0,t;L2(D))‖∂sΦǫ

N‖L1(0,t;L2(D)) + ǫ‖Θǫ
N‖L∞(0,t;H1(D))‖Φǫ

N‖L1(0,t;H1(D))

+ ‖Θǫ
N(t)‖L2(D)‖eǫN(t)‖L2(D)

≤ (by (3.20), (3.33), (3.37), (3.38), and (3.46))

≤ κh2ǫ−
3

4

(

ǫ+ log
T

h2

)

‖eǫN(t)‖L2(D) + κhǫ−
1

4‖eǫN(t)‖L2(D)

+ κh2ǫ−
3

4‖eǫN (t)‖L2(D).

(3.47)

Hence, from (3.25) and (3.47), we obtain

(3.48) ‖uǫ − ūǫN‖L∞(0,T ;L2(D)) ≤ κh2ǫ−
3

4

(

1 + log
T

h2

)

+ κhǫ−
1

4 .

This completes the proof of Theorem 3.1. �

Remark 3.2. We recall the corrector θ̄0:

θ̄0 = −δ(ξ)
∫ t

0

I(ξ, t− s)
∂u

∂t
(η, 0, s)ds,

which cannot be expressed by the separation of variables in space and time. Hence
we could not fully take advantage of (2.54)5 when we find the upper bound in (3.13).
Hence the upper bound of ‖uǫ − uǫN‖, the convergence of the standard FEM, is the
same as in Theorem 3.1. However, in view of numerical simulations, we easily see
that the new scheme with the boundary layer elements is much more accurate than
the standard one; see e.g. Figures 5-8.
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4. Numerical simulations

In this section, we present the results of numerical simulations of (1.1) using the
standard finite element method (SFEM) and the new finite element method (NFEM),
which correspond to (3.4) and (3.5), respectively.

4.1. Modified boundary layer element. In the simulations, we do not use the
boundary layer element ϕ0 in (3.3) directly since the term I(ξ, t−s) is not convenient
for the integrations over a triangle. Instead, we consider the modified boundary layer
element ϕ̃0 = ϕ̃0(ξ, t):

(4.1) ϕ̃0(ξ, t) =
[

1− exp
(

− ξ2

4ǫt

)]

δ(ξ).

The approximation ϕ̃0 is much easier to implement numerically in coding than the
corrector ϕ0. More precisely, the approximation ϕ̃0 produces less errors in the numer-
ical integrations than the boundary layer element ϕ0 of (3.3); One drawback of both
boundary layer elements ϕ0 and ϕ̃0 is that we calculate the element matrices for each
time step since the boundary layer element in (4.1) depends on time. To improve
computational efficiency, we introduce the time-independent boundary layer element
ϕ̃−1 such that

(4.2) ϕ̃−1(ξ) =
[

1− exp
(

− ξ2

4ǫ

)]

δ(ξ).

As long as the final time is not very large, or ǫ is small enough (for instance Tǫ ∼ 10−4),
then the time-independent approximation of the boundary layer element is acceptable
in the sense of numerical simulations as shown by the following results; see Figures 1
and 2.
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Figure 1. The comparison of ϕ0, ϕ̃0 and ϕ̃−1 for ǫ = 10−5 at t = 1
and t = 50.
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Figure 2. The comparison of ϕ0, ϕ̃0 and ϕ̃−1 for ǫ = 10−5 at t = 10
and t = 1000.

Remark 4.1. In addition, we use, in the numerical simulations, ϕ̃lin
−1 which is the

linearized form of the boundary layer element ϕ̃−1 such that

(4.3) ϕ̃lin
−1(ξ) =

[

1− exp
(

− ξ2

4ǫ

)

−
(

1− exp
(

− σ2

4ǫ

)) ξ

σ

]

χ[0,σ](ξ),

where σ ≥ 0 is chosen in numerical examples below; see e.g. Figure 3. Compared
with (4.2), we replace the cut-off function δ(ξ) in (4.2) with the linear term in (4.3).
Introducing the linearized boundary layer element ϕ̃lin

−1, the numerical integrations are
simpler than with ϕ̃−1. For more details, see [12] and [14].
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Figure 3. The left figure is the modified corrector ϕ̃−1, and the right
one is the linearized (modified) corrector ϕ̃lin

−1 for ǫ = 10−5.

We compute the solution of our problem using a quasi-uniform mesh in place of
the adaptive mesh refinement near the boundary layer as in common in the literature
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[9], [24], [28] and [29]; see e.g. the triangulation in Figure 4. For the numerical
integrations, we employ the Gauss-Legendre quadrature. Moreover, in the following
numerical examples, we apply the implicit Euler method for the time discretizations.

Figure 4. Example of a quasi-uniform grid in a circle.

4.2. Simulation 1: One-dimensional example. We first present a simple one-
dimensional example. Indeed, in the previous sections, we mainly focused on the two-
dimensional problem, but we can simply reduce our problem to the one-dimensional
case. To compare the numerical solutions with the exact solutions, we consider the
following equations:

(4.4)











uǫt − ǫuǫxx = f(x, t), in (0, 1)× (0, T ),

uǫ(0, t) = uǫ(1, t) = 0, t ∈ (0, T ),

uǫ(x, 0) = u0(x), x ∈ (0, 1).

We choose the exact solution uǫ(x, t) of (4.4) as

(4.5) uǫ = t
(

1− exp
(

− x√
ǫ

)

cos
( x√

ǫ

))(

1− cos
((1− x)√

ǫ

)

exp
(

− (1− x)√
ǫ

))

.

Hence, f is computed from (4.4)1. In Figure 5, we observe that the SFEM method
(the solid line) produce oscillations near the boundary, however, with the NFEM
method (the dotted line), the boundary layer elements capture the sharp transition
near the boundary.
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Figure 6 shows the rate of convergence of the relative L2 errors for the SFEM method
and the NFEM method in log-log scales. We define the relative L2 error

(4.6)
‖uEX − uN‖L2

‖uEX‖L2

,

where uEX is the exact solution as in (4.5) and uN is the numerical solution. According
to Figures 5 and 6, we observe that the errors from the NFEM method is much smaller
than that from the SFEM method.
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 classical scheme
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Figure 5. Solution at T = 1 of (4.4) where uǫ is as in (4.5) and
ǫ = 10−5; the solid line: the classical scheme uǫN , the dotted line: the
new scheme ūǫN . The number of elements is N = 50 and the size of the
time step is ∆t = 0.01.

4.3. Simulation 2: Two-dimensional example. For the two-dimensional exam-
ple, we approximate the following exact solution uǫ of (1.1)

(4.7) uǫ = exp(t)

(

1−
I0(

r√
ǫ
)

I0(
1√
ǫ
)

)

,

where I0(x) is the modified Bessel function of the first kind; see e.g. [12]. Then, we
can find the corresponding f = exp(t). Figure 7 shows the approximate solutions for
different schemes. We find that the numerical solution with the NFEM method (B)
is smooth. On the other hand, the solution with the SFEM method (A) displays wild
oscillations near the boundary.
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Figure 6. The convergence of the relative L2-errors at time T = 1 for
the solution of (4.5) for two different schemes (the SFEM method and
the NFEM method) in log-log scales where ǫ = 10−5 and the size of the
time step ∆t = 0.01.

In Figure 8, we observe the rate of convergence of the relative L2 errors for the SFEM
method and the NFEM method in log-log scales. As we expect, the NFEM method
is more accurate than the SFEM method.

5. Conclusion

The numerical evidence in Section 4 shows that we found an accurate approximate
solution for the heat equation with small thermal conductivity. One of the novelties
of this article is to compute a non oscillatory numerical solution using a quasi-uniform
mesh in a curved domain.

In the future we intend to study singularly perturbed convection-diffusion equations
introducing the convective terms. However, there are two new major difficulties.
Firstly, due to the convective terms, the numerical errors propagate into the interior
of the domain. Secondly, one should take into account the compatibility conditions
near the characteristic points; for more details, see e.g. [20] and a forthcoming article
[13]. One can also extend our results to the Stokes equations (linearized Navier-Stokes
equations) as in [10]. However, one should propose a new numerical approach to treat
the pressure and the divergence free condition (such as the projection method in [30],
[31], and [7]), keeping in mind that the pressure is a global (nonlocal) function of the
velocity.
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Figure 7. Solution at T = 1 of (1.1) where uǫ is as in (4.7) and
ǫ = 10−8. (A): solution uǫN with the SFEM method and (B): solution
ūǫN with the NFEM method. The number of elements is N = 1, 008,
and the number of boundary nodes is M = 52. The size of the time
step is ∆t = 0.01.
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