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INFINITESIMAL CR AUTOMORPHISMS AND STABILITY
GROUPS OF INFINITE TYPE MODELS IN C?

ATSUSHI HAYASHIMOTO AND NINH VAN THU

ABSTRACT. The purpose of this paper is to give explicit descriptions for stabil-
ity groups of real rigid hypersurfaces of infinite type in C2. The decompositions
of infinitesimal CR automorphisms are also given.

1. INTRODUCTION

Let M be a C°°-smooth real hypersurface in C* and p € M. We denote by
Aut(M) the CR automorphism group of M, by Aut(M,p) the stability group of
M, that is, those germs at p of biholomorphisms mapping M into itself and fixing
p, and by aut(M, p) the set of germs of holomorphic vector fields in C" at p whose
real part is tangent to M. We call this set the Lie algebra of infinitesimal CR
automorphisms. We also denote by auto(M, p) := {H € aut(M,p): H(p) = 0}.

For a real hypersurface in C™, the stability group and the Lie algebra of infinites-
imal CR automorphisms are not easy to describe explicitly; besides, it is unknown
in most cases. But, the study of Aut(M, p) and aut(M, p) of special types of hyper-
surfaces is given in [Kol05, [Kol06), [Kol10,
[Sta96, [Sta95]. For instance, explicit forms of the stability groups of models (see de-
tailed definition in [Kol05, [KMZT4]) have been obtained in [Kol06,
[KMZ14]. However, these results are known for Levi nondegenerate hypersurfaces
or more generally for Levi degenerate hypersurfaces of finite type in the sense of
D’Angelo (cf. [D’A82]).

In this article, we give explicit descriptions for the Lie algebra of infinitesimal
CR automorphisms and for the stability group of an infinite type model (Mp,0) in
C? which is defined by

Mp :={(z1,22) € C*: Re 2, + P(z) = 0},

where P is a nonzero germ of a real-valued C*°-smooth function at 0 vanishing to
infinite order at zo = 0.

To state these results more precisely, we establish some notation. Denote by
G2(Mp,0) the set of all CR automorphisms of Mp defined by

(21, 22) = (21, 92(22)),

for some holomorphic function go with ¢g2(0) = 0 and |g2’(0)] = 1 defined on a
neighborhood of the origin in C satisfying that P(g2(22)) = P(22). Also denote
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by A, a disc with center at the origin and radius ¢y and by Af a punctured disc

Ae, \ {0}

Let P : A., = R be a C*-smooth function. Let us denote by S (P) = {z €
A, : v2(P) = 400}, where v, (P) is the vanishing order of P(z+()— P(z) at { =0,
and by P, (Mp) the set of all points of infinite type in Mp.

Remark 1. Tt is not hard to see that Py, (Mp) = {(it — P(22),22): t € R,29 €
Soo(P)}-

Remark 2. In the case that P # 0, Go(Mp, 0) contains only CR automorphisms of
Mp defined by

(21, 22) F (21, 92(22)),
where g5 is a conformal map with g2(0) = 0 satisfying P(g2(22)) = P(22) and either

g2'(0) = e2™®/4 (p,q € Z) and g2 = id or go'(0) = €™ for some 6 € R\ Q (see cf.
Lemma[Blin § 2 and Lemmas Bl and [l in § 3).

The first aim of this paper is to prove the following two theorems, which give a
decomposition of the infinitesimal CR automorphisms and an explicit description
for stability groups of infinite type models. In what follows, all functions, mappings,
hypersurfaces, etc are understood to be germs at the reference points and we will
not refer it if there is no confusions.

Theorem 1. Let (Mp,0) be a real C*-smooth hypersurface defined by the equation
p(z) := p(z1,22) = Re z1 + P(z2) = 0, where P is a C*-smooth function on a
neighborhood of the origin in C satisfying the conditions:

(i) P(z2) # 0 on a neighborhood of z2 = 0, and
(ii) The connected component of 0 in Seo(P) is {0}.

Then the following assertions hold:
(a) The Lie algebra g = aut(Mp,0) admits the decomposition

g=g-1®autg(Mp,0),

where g_1 = {if0,,: B € R}.
(b) If autg(Mp,0) is trivial, then

Aut(Mp,O) = GQ(MP,O).

Remark 3. The condition (ii) simply tells us that Mp is of infinite type. Moreover,
the connected component of 0 in P, (Mp) is the set {(it,0): ¢ € R}, which plays a
key role in the proof of this theorem.

In the case that the connected component of 0 in So (P) is not {0} such as Mp
is tubular, we have the following theorem.

Theorem 2. Let P be a C™-smooth function defined on a neighborhood of 0 in C
satisfying:

(i) P(x) # 0 on a neighborhood of x =0 in R, and

(ii) The connected component of 0 in Soo(P) is {0}.
Denote by P a function defined by setting P(z3) := P(Re z3). Then the following
assertions hold:
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(a) autg(Mp,0) =0 and the Lie algebra g = aut(Mp,0) admits the decomposi-

tion
g =9-19go,

where g_1 = {if0,, : f € R} and go = {if0.,: B € R}.

(b) Aut(Mp,0) = {id}.

(¢) If Soo(P) = {0}, then Aut(Mp) = T'(Mp) ® T2(Mp) = {(z1, 22) — (21 +
it,zo+1is): t,s € R}, where TY(Mp) = {(21,22) = (21 +it,22): t € R} and
TQ(MP) = {(2’1,2’2) — (2’1,22 + it): te R}

These theorems shows that the special conditions of defining functions determine
the forms of holomorphic vector fields. Conversely, the second aim of this paper
is to show that holomorphic vector fields determine the form of defining functions.
This is, in some sense, the converse of Example 2 in § 6 holds generally. Namely,
we prove the following.

Theorem 3. Let (Mp,0) be a C*-smooth hypersurface defined by the equation
p(z) == p(z1,22) = Re z1 + P(z2) = 0, satisfying the conditions:

(i) The connected component of zo =0 in the zero set of P is {0};

(ii) P wanishes to infinite order at zo = 0.
Then any holomorphic vector field vanishing at the origin tangent to (Mp,0) is
either identically zero, or, after a change of variable in za, of the form iz20.,

for some non-zero real number 3, in which case Mp is rotationally symmetric, i.e.
P(2z2) = P(|z2]).

The organization of this article is the following. In § 2, we prove three lemmas
which we use in the proof of theorems. In § 3, we give a description of stability
groups and proofs of Theorems[I]and 2lare given in § 4. In § 5, we prove Theorem [3]
and lemmas needed to prove it. In § 6, we introduce some examples. Finally, two
theorems are presented in Appendix A.

2. PRELIMINARIES

In this section, we shall recall some definitions and introduce three lemmas which
are used to prove Theorems [Tl and

Definition 1. Let g1, g2 be two conformal maps with ¢1(0) = ¢g2(0) = 0. We say
that g1 and g» are holomorphically locally conjugated if there exists a biholomor-
phism ¢ with ¢(0) = 0 such that

GL=¢ togop.
Definition 2. Let g be a conformal map with g(0) = 0. Then
(i) if ¢’(0) = 1, we say that g is tangent to the identity;
(ii) if ¢’(0) = e2™®/4, p,q € 7, we say that g is parabolic;
(iii) if ¢'(0) = ¥ for some 6 € R\ Q, we say that g is elliptic.
The following lemma is a slight generalization of [Nil3a, Lemma 2].

Lemma 1. Let P be a C*°-smooth function on A, (eg > 0) satisfying vo(P) = +00
and P(z) #Z 0. Suppose that there exists a conformal map g on A., with g(0) =0
such that

P(g(2)) = (B+0(1))P(2), z € A,
for some 8 € R*. Then |¢'(0)| = 1.
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Proof. Suppose that there exists a conformal map ¢g with g(0) = 0 and a 8 € R*
such that P(g(z)) = (8 + o(1)) P(z) holds for z € A,,. Then, we have

P(g(z)) = (B +7(2)) P(2), 2 € A,
where 7 is a function defined on A., with y(z) — 0 as z — 0, which implies that
there exists 0o > 0 such that |y(z)| < |8]/2 for any z € As,. We consider the
following cases.
Case 1. 0 < |¢/(0)] < 1. In this case, we can choose dp and a with 0 < Jy < €
and |g'(0)| < a < 1 such that |g(2)] < afz| for all z in As,. Fix a point zop € A}
with P(zg) # 0. Then, for each positive integer n, we get

[P(g" (20))] = [(B+ (9" (20)) [I1P(g"*(20))] = - -
= |(B+v(g" " (20)] -+ (B +(20)) | P(20)
> (181 = (g™ (2o)) -+ - (18] = [7(20) )| P(20)]
> (161/2)"1P(=0)],
where ¢g" denotes the composition of g with itself n times. Moreover, since 0 <

a < 1, there exists a positive integer mg such that |a™°| < |3]/2. Notice that
0 < |g"(20)| < a™|z0| for any n € N. Then it follows from () that

[P(g"(20))| - [P((20)] (Iﬂl/Q)"
g7 (z0)[™0 " |zo[™e '

This yields that |P(g"(20))|/|g"(20)|™® — +00 as n — oo, which contradicts the
fact that P vanishes to infinite order at 0.
Case 2. 1 < |¢'(0)|. Since P(g(z)) = (84 0(1))P(z) for all z € A, it follows that
P(g7Y(2)) = (1/B8 + 0o(1))P(2) for all z € A,, which is impossible because of Case
1.

Altogether, |¢'(0)| = 1, and the proof is thus complete. O

(1)

amo

Lemma 2. Let f : [-r,7] = R (r > 0) be a continuous function satisfying f(0) =0
and fZ£0. If B is a real number such that

ft+Bf(1) = f()
for every t € [—r,r] with t + 8f(t) € [-r,r], then 5 =0.
Proof. Suppose, to derive a contradiction, that there exists a 5 # 0 such that
ft+Bf(t)) = f(t) for every t € [—r,r] with ¢ + Bf(t) € [—r,r]. Then we have
FO) = ft+BF(1) = F(t+BF() + BF(t+ BF (1))
= f(t+28f() =--- = f(t+mBf(1))
for every m € N and for every t € [—r,r] with t + mpBf(t) € [-r,r].

Let to € [—r,7] be such that f(to) # 0. Then since f is uniformly continous on
[—7, 7], for every ¢ > 0 there exists ¢ > 0 such that for every t1,t2 € [—r, 7] with
[t1 —t2| < &, we have that |f(t1) — f(t2)| < €/2. On the other hand, since f(t) — 0
as t — 0 and since f # 0, one can find ¢ € [—§/2,/2] such that |5f(¢)] < § and
0 < |f(t)] < €/2. Therefore, there exists an integer m such that [t+mpf(t)—to| < 0,
and thus by (2) one has
[f (o)l < |f(E+mBfE) = fto)l + |f(E+mBfH)] < e/2+[f(D)] <e/2+€/2=e€

This implies that f(t9) = 0, which is a contradiction. Hence, the proof is complete.
O

(2)
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Lemma 3. Let P be a nonzero C*>-smooth function with P(0) = 0 and let g be a
conformal map satisfying g(0) = 0, |¢’(0)] = 1, and g # id. If there exists a real
number 6 € R* such that P(g(z)) = 6P(z), then 6 = 1. Moreover, we have either
g'(0) = e?™®/4 (p q € Z) and g7 = id or ¢'(0) = €2>™ for some 6 € R\ Q.

Proof. Replacing g by its inverse if necessary, one can assume that |§| > 1. Now
we divide the proof into three cases as follows:

Case 1. ¢’(0) = 1. As a consequence of the Leau-Fatou flower theorem (cf.
Theorem Mlin Appendix A.1), there exists a point z in a small neighborhood of the
origin with P(z) # 0 such that ¢"(z) — 0 as n — oo. Since P(g"(z)) = ()" P(2)
and lim,, o P(¢g"(z)) = P(0) =0, we have 0 < |§] < 1, which is a contradiction.
Case 2. ) := ¢/(0) = €2>™P/9 (p,q € 7). Suppose that g¢ = id, then by [AbIO,
Prop. 3.2], there exists z in a small neighborhood of 0 satisfying P(z) # 0 such
that the orbit {g"(z)} is contained a relativity compact subset of some punctured
neighborhood. Therefore, by assumption P(g(z)) = § P(z), the sequence {6™} must
be convergent. This means that § = 1. In the case of g7 # id, we have g%(z) = z+- - -
and P(g?(z)) = 07P(z). This is absurd because of Case 1 with g being replaced by
g%

Case 3. )\ := ¢'(0) = > (9 ¢ Q). By [AbI0, Proposition 4.4], we may assume
that there exists z in a small neighborhood of 0 satisfying P(z) # 0 such that the
orbit {¢g™ (%)} is contained a relativity compact subset of some punctured neighbor-
hood. Therefore, the same argument as in Case 2 shows that § = 1. Altogether,
the proof is complete. O

3. EXPLICIT DESCRIPTION FOR Ga(Mp,0)

In this section, we are going to give an explicit description for the subgroup
G2(Mp,0) of the stability group of Mp. By virtue of LemmalBl G2 (Mp,0) contains
only CR automorphisms of Mp defined by

(21, 2’2) — (217 92(22))7

where gs is either parabolic or elliptic. Conversely, given either a parabolic g with
g? = id for some positive integer ¢ or an elliptic g, we shall show that there exist
some infinite type models (Mp,0) such that the mapping (z1,22) — (z1,9(22))
belongs to Ga(Mp,0).

First of all, we need the following lemma.

Lemma 4. If P(e2"2) = P(2) for some § € R\ Q, then P(z) = P(|z|), i.e., P is
rotational.

Proof. We note that P(e*™z) = P(z) for any n € N and {€2™2: n € N} =S,
where S, := {z € C: |z| = r} for r > 0. Therefore, because of the continuity of P,
we conclude that P(z) = P(|z]). O

3.1. The Parabolic Case.

Lemma 5. Let g(z) = e2™P/1y 4 ... be a conformal map with X = e*™P/1 being a
primitive root of the unity. If g? =id, then there exists an infinite type model Mp
such that (21, z2) = (21,97 (22)) belongs to Go(Mp,0) for every j =1,2,...,q— 1.

Proof. Suppose that g(z) = e?™®/9z 4 - .. is a conformal map such that \ = e>7/4
is a primitive root of the unity satisfying g¢ = id. It is known that g is holomor-
phically locally conjugated to h(z) = Az (cf. [Ab10, Proposition 3.2]). Let P be a



6 ATSUSHI HAYASHIMOTO AND NINH VAN THU

C>-smooth function with vy(P) = +00. Define a C*-smooth function by setting
P(z) = P(2) + P(g(2) + - + P97 (2)-

Then it is easy to see that P(g(z)) = P(z). Thus f;(z1,22) = (21,97(22)) €
G2(Mp,0),5=1,...,q— 1, are biholomorphic. O

Remark 4. In the case of g¢ # id. We have g%(z) = z + - - -, and therefore P(z +

) = P(g%(2)) = P(z). It follows from Lemma [3 that there is no infinite type
model Mp satisfying P # 0 on some petal such that (21, 2z2) — (21, g(22)) belongs
to GQ (Mp, 0)

3.2. The Elliptic Cases.

Lemma 6. Let g(z) = €™z 4. be a conformal map with ¢ Q. Then there ex-
ists an infinite type model Mp such that (z1,z2) — (21, g(22)) belongs to Ga(Mp,0).
Moreover, Mp is biholomorphically equivalent to a rotationally symmetric model
Mp.

Proof. Suppose that g(z) = €™z 4 ... is a conformal map with § ¢ Q. Then
it is known that g is formally locally conjugated to Rg(z) = e*™z (cf. [ADIO,
Proposition 4.4]), i.e., there exists a formally conformal map ¢ at 0 with ¢(0) =0
such that

g=¢ 'oRgop.
Let P be a rotational C*°-smooth function with vy(P) = 4-co. Define a C*°-smooth
function by setting

P(z) = P(p(2)) = P(le(2)])-
Then P(g(2)) = P(p 0 g(2)) = P(Ry 0 9(2)) = PRy 0 9(2)]) = P(lo(2)]) = P(2).
This means that (21, 22) — (21, g(22)) belongs to Go(Mp,0). Moreover fi(z1, 22) :=
(21,71 0 Rt 0 ¢(22)) is a mapping in Go(Mp,0) for all t € R. In addition, it is
easy to see that Mp is biholomorphically equivalent to M, which is rotationally
symmetric. O

4. PROOFS OF THEOREMS [I] AND

This section is devoted to the proofs of Theorems[Iland2l For the sake of smooth
exposition, we shall present these proofs in two subsections.

4.1. Proof of Theorem [1l

Proof of Theorem [l (a) Let H(z1,22) = h1(21,22)0:, + ha(21,22)0., € aut(Mp,0)
be arbitrary and {¢:}ter C Aut(Mp) the one-parameter subgroup generated by H.
Since ¢, is biholomorphic for every ¢ € R, the set {¢,(0): ¢ € R} is contained in
P (Mp). We remark that the connected component of 0 in P (Mp) is {(is,0): s €
R}. Therefore, we have ¢.(0,0) C {(is,0): s € R}. Consequently, we obtain
Re h1(0,0) = 0 and h2(0,0) = 0. Hence, the holomorphic vector field H — i39,,,
where 8 :=Im hq(0,0), belongs to auty(Mp, 0, which ends the proof.

(b) In the light of (a), we see that aut(Mp,0) = g_q, i.e., it is generated by i0,, .
Denote by {T}}icr the one-parameter subgroup generated by id,,, i.e., it is given
by

Tt(Zl, 22) = (2’1 + it 2’2), teR.

Let f = (f1,f2) € Aut(Mp,0) be arbitrary. We define {F;};cr the family of
automorphisms by setting Fy := foT_; o f~1. Then it follows that {F}};cr is a
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one-parameter subgroup of Aut (M p). Since aut(Mp,0) = g_1, it follows that the
holomorphic vector field generated by {F;}:cr belongs to g_;. This means that
there exists a real number § such that F; = Ty, for all ¢ € R, which yields that

f:TgtofoTt,tER. (3)

We note that if 6 = 0, then f = f o T} and thus 7} = id for any ¢t € R, which is a
contradiction. Hence, we may assume that ¢ # 0.
We shall prove that 6 = —1. Indeed, the equation (8] is equivalent to
f1 (21, 22) = f1 (21 + it, 22) + ’L(St,
f2(21,22) = fa(z1 + it, 20)
for all t € R. This implies that B%Ifl (21,22) = —d and %fg(zl,@) = 0. Thus,
the holomorphic functions f; and fa can be re-written as follows:
f1(21,22) = =021 + g1(22),
f2(21, 22) = g2(22),

(4)

where g1, g2 are holomorphic functions on a neighborhood of z5 = 0.
Since Mp is invariant under f, one has

Re fl(it—P(Zg),Zg) +P(f2(it—P(Zg),Zg)) =0 (5)
for all (z2,t) € A, X (—0dg, do) for some €g, dg > 0.
It follows from (Bl with ¢ = 0 and (@) that
dP(z2) + Re g1(22) + P(gg(zg)) =0

for all zo € A,,. Since vy(P) = 400, we have vy(g1) = +00, and hence g1 = 0.
This tells us that

P(gg(zg)) = —0P(22)

for all z; € A¢,. Therefore, Lemmas [Il and B tell us that |¢’(0)] = 1 and § = 1.
Hence, f € Ga(Mp,0), which finishes the proof. O

We note that if P vanishes to infinite order at only the origin, then we have the
following corollary.

Corollary 1. let (Mp,0) be as in Theorem[Dl Assume that
(i) P(z2) # 0 on a neighborhood of z2 = 0, and
(i) Soo(P) = {0}
If auty(Mp,0) is trivial, then
Aut(Mp) = GQ(MP, O) (5] T1 (MP, 0),

where TY(Mp,0) denotes the set of all translations T}, t € R, defined by T} (21, 22) =
(21 + it 2’2).

Proof. Let f € Aut(Mp) be arbitrary. Since the origin is of infinite type, so is
£(0,0). Because of the assumption (ii), we have Poo(Mp) = {(it,0): t € R}. This
tells us that f(0,0) = (ito,0) for some to € R. Then T, o f € Aut(Mp,0). Thus,
the proof easily follows from Theorem [I (|
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In the case that P is positive on a punctured disk A? , auto(Mp, 0) is at most one-
dimensional (see [NCM14]). Moreover, if P is rotational, i.e. P(z2) = P(|z2|), then
in [NiI3D] we proved that Aut(Mp,0) = Go(Mp,0) = {(21, 22) > (21,e"22): t €
R}. Therefore, we only consider the case that P is not rotationally symmetricable,
i.e., there is no conformal map ¢ with ©(0) = 0 such that P o ¢(z2) = P o ¢(]22]),
in which case we showed that auto(Mp,0) = {0} provided that the connected
component of 0 in the zero set of P is {0} (cf. Theorem B]). In addition, this
assertion still holds if P, defined on a neighborhood U of 0 in C, satisfies the
condition (I) (cf. [Nil3a]), that is,

/!
(I.1) limsup |Re(bzkp (2)
U32z—0 , P(Z)
(I1.2) lim sup|1D ()
U32—0 P(Z)
for all k =1,2,... and for all b € C*, where U := {z € U : P(z) # 0}. Therefore,
as an application of Theorem [l we obtain the following corollaries.

)| = +00;

| = +o0

Corollary 2. Let (Mp,0) be as in Theorem [l Assume that
(i) P is not rotationally symmetricable,
(ii) The connected component of 0 in the zero set of P is {0}, and
(iii) The connected component of 0 in Soo(P) is {0},
then
Aut(Mp,0) = Go(Mp, 0).

Corollary 3. Let (Mp,0) be as in Theorem [l Assume that
(i) P(z2) # 0 on a neighborhood of z2 = 0,
(ii) P satisfies the condition (I), and
(iii) The connected component of 0 in Soo(P) is {0},
then
Aut(Mp, O) = GQ(MP, O)

4.2. Proof of Theorem 2l (a) As a consequence of Theorem [Blin Appendix A.2,
we see that autg(Mp,0) = 0. Therefore, we shall prove that aut(Mp,0) = g_1 @ go.
Indeed, let H(z1, 22) = hi(z1,22)0,, + ha(z1,22)0., € aut(Mp,0) be arbitrary and
{¢t}rer C Aut(Mp) be the one-parameter subgroup generated by H. Since ¢, is
biholomorphic for every t € R, the set {¢:(0): ¢ € R} is contained in Py, (Mp). We
remark that the connected component of 0 in Py (Mp) is {(it1,it2): t1,t2 € R}.
Therefore, we have ¢,(0,0) C {(it1,it2): t1,t2 € R}. Consequently, we obtain
Re h1(0,0) = 0 and Re h2(0,0) = 0. Hence, the holomorphic vector field H —
110, — i20,,, where §; :=Im h;(0,0) for j = 1,2 belongs to auty(Mp,0), which
ends the proof of (a).

(b) By (a), we see that aut(Mp,0) = g_1 @ go, i.e., it is generated by i0,, and i0,,.
Denote by {th}teR the one-parameter subgroups generated by i0,, for j = 1,2, i.e.,
Ttl(Zl, 22) = (Zl + it, ZQ), Tt2(217 ZQ) = (21, 2o + Zt), t e R.

For any f = (f1, f2) € Aut(Mp,0), we define families { F/ },cr of automorphisms by
setting F} := foT? ,of ! (j = 1,2). Then it follows that { F/ };cr, j = 1,2, are one-
parameter subgroups of Aut(Mp). Since aut(Mp,0) = g_1 @ go, the holomorphic
vector fields H7, j = 1,2, generated by {F/ }4cr (j = 1,2) belong to g_1 @ go. This
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means that there exist real numbers 87,483, 7 = 1,2, such that HY = i6]9., +i650,,
for 7 = 1,2, which yield that
F) (21, 20) = (21 + i0]t, 22 + i6%t) = T;{t o ngt, j=1,2, teR.
This implies that _
f:T;{toT(%tofng,
which is equivalent to

fi(z1,22) = fi(z1 +it, z2) + idit,
fa(z1,22) = fa(z1 +it, 22) + iéét, (6)
fi(z1,22) = fi(z1, 20 + it) + 63t
fa(z1,22) = fa(z1, 29 + it) + iS5t

It follows from (@) that

6—Zlf1(2172'2) = —5%7

0
6—Zlf2(2172'2) = —5%7

0
8_,22f1(21’22) = 07,

9]
8—22]”2(21722) = —63,
which tells us that
f(Zl, 22) = (—5%21 — 5%22, —5%21 - 5%22)

Since M p is invariant under f, one has
Ref1 (Zt - P(ZQ), 22) + P(f2 (’Lt — P(ZQ), ZQ))
= Re( = 0} (it = P(22)) = 632 ) + P( = (it — P(22)) — 8322 (7)
— 61 P(20) — 82Re(zn) + P((s;p(z2) - 5§z2) —0

for all (z2,t) € A, X (=00, do) for some €y, dp > 0 small enough.
Since vp(P) = +00, we have 67 = 0. Therefore, putting 2o =t € (—¢g, €0) in (),
we obtain the following equation

P( — 82+ 5;P(t)) = —51P(t) (8)

for all t € (—€p, €9). By the mean value theorem, for each ¢t € (—e¢g, €9) there exists
a number v(t) € [0,1] such that

P( — 2+ 551)@)) — P(—82t) + P'( — 82+ v(t)ééP(t))ééP(t). 9)
Because of the fact that the function P’( — 03t + ”y(t)5%P(t)) vanishes to infinite
order at t = 0, by (8) and (@), one has
P(—63t) = (=61 +o(1))P(t), t € (—eo, €).

Then it follows from the proof of Lemma [Il that it is not hard to see that —df =
-6 =1.
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Now the equation () becomes
P(t + 55P(t)) - P(t)

for all t € (—€g,€0). By Lemma[2 this equation implies that §1 = 0. Therefore, we
conclude that f = id, which finishes the proof of (b).

(c) Denote by T} and T? the shifts to imaginary directions of the first and second
components

THz1, 22) = (21 +it, 22), TP (21,22) = (21,22 +it), t € R.
Now let f € Aut(Mp) be arbitrary. Then f(0,0) is of infinite type. It follows
from S (P) = {0} that we have P,,(Mp) = {(it,is): t,s € R}. Therefore we get
£(0,0) = (ito, iso) for some to, s € R and we obtain T, oT?_ o f € Aut(Mp,0) =
{id} by (b). The proof of (c) follows. O

5. ANALYSIS OF HOLOMORPHIC TANGENT VECTOR FIELDS

In this section, we study the determination of the defining function from holo-
morphic vector fields. Assume that an infinite type hypersurface Mp defined by
p(z) = Re z1 + P(z2) satisfying the conditions (i) and (ii) posed in Theorem
Theorem [3] says that if there are non trivial holomorphic vector fields vanishing
at the origin tangent to Mp, then the hypersurface Mp is rotationally symmetric.
The typical example of rotationally symmetric hypersurface is

Mp = {(21,22) € C*: Re 2 —l—exp(—i) =0},

| 22|

where a > 0, as in Example[2in § 6.
To prove Theorem [3] we need some lemmas.

Lemma 7. Let P : A., — R be a C®-smooth function satisfying that the connected
component of z =0 in the zero set of P is {0} and that P vanishes to infinite order
at z = 0. If a,b are complex numbers and if go, g1,92 are C*-smooth functions
defined on A., satisfying:

(A1) go(2) = O(|2]), g1(2) = O(|z[*), and ga(2) = o(|2[™), and

(A2) Re [(azm + 92(2)) P"T(2) + b2" (14 go(2)) P2 (2) + g1(2) P(2) | = 0 for every

z € Ag,

for any nonnegative integers £, m and n except for the following two cases

(E1) £=1 and Reb =0, and

(E2) m=0 and Rea=0
then ab = 0.

The proof of Lemma [7 for the case that P is positive on A? is given in [KN12,
Lemma 3] (see also [NCM14l Lemma 1]). Furthermore, Lemma [ follows easily
from [KN12, Lemma 3] and the following lemma.

Lemma 8. Let P, go,61,92,a,b be as in Lemma [} Suppose that v : [to,tec) —
Ay (to € R), where either to, € R or tog = +00, is a solution of the initial-value
problem

dzl_it) = bVé(t)(l + go(7(t))), Y(to) = 20,

where zg € A with P(z0) # 0, such that limy, v(t) = 0. Then P(y(t)) # 0 for
every t € (to, too).
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Proof. To obtain a contradiction, we suppose that P has a zero on . Then since
the connected component of z = 0 in the zero set of P is {0}, without loss of
generality we may assume that there exists a t1 € (o, %) such that P(y(t)) # 0
for all ¢ € (to,t1) and P(y(t1)) = 0. Denote u(t) := 3 log|P((t))| for to < t < t1.
It follows from (A2) that

W (t) = =P (7(1) (Re(ar™ (8) + o|1()™)) ) + O (DI")

for all tp < t < t1. This means that u'(¢) is bounded on (¢o,¢1). Therefore, u(t)
is also bounded on (¢g,t1), which contradicts the fact that u(t) — —oo as t 1 1.
Hence, our lemma is proved. (Il

Following the proof of Lemma [7 (see also [NCMI4l Lemma 1]), we have the
following corollary.

Corollary 4. Let P : A, — R be a C*>-smooth function satisfying that the con-
nected component of z = 0 in the zero set of P is {0} and that P vanishes to infinite
order at z = 0. If b is a complex number and if g is a C>-smooth function defined
on A, satisfying:

(B1) g(z) = O(l2|**"), and
(B2) Re[(bzk + g(z))Pz(z)} =0 for every z € A,
for some nonnegative integer k, except the case k =1 and Re(b) =0, then b = 0.

Now we are ready to prove Theorem [3l

Proof of Theorem[3. The CR hypersurface germ (Mp,0) at the origin in C? under
consideration is defined by the equation

p(z1,22) := Re z1 + P(22) =0,

where P is C*°-smooth functions satisfying the two conditions of this theorem.
Recall that P vanishes to infinite order at zo = 0 in particular.

Then we consider a holomorphic vector field H = hy(z1, 22)0,, + ha(z1, 22)0.,
defined on a neighborhood of the origin. We only consider H that is tangent to
Mp. This means that they satisfy the identity

(Re H)p(z) =0, Yz € Mp. (10)
Expand h; and ho into the Taylor series at the origin

1(21, 22) E a]kzlz2 = E a;(zo Zl,hg 21, 22) E bjkzlz2 = E b;(z2 zl,

J,k=0 7,k=0

where a;,b;r € C and aj, bj are holomorphic functions for every 57 € N. We note
that apop = boo = (0 since hl (O, 0) = hg(o, 0) =0.
By a simple computation, we have
1
30 Paa(21,22) = Poy(22),

and the equation (I0) can thus be re-written as

Pz (21722) =

Re hl(Zl,Zg) +Pz2 (Zz)hg(zl,ZQ)} =0 (11)
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for all (z1,22) € Mp. Since the point (it — P(22), z2) is in Mp with ¢ small enough,
the above equation again admits a new form

Re [% j;o agp,(it — P(z2))’ 25 + P., (22) mzn;O by (it — P(ZQ))ng} =0 (12)

for all zo € C and for all t € R with |22| < €y and [t| < &9, where €y > 0 and J¢ > 0
are small enough. The goal is to show that H = 0. Striving for a contradiction, we
suppose that H # 0. Since P,,(z2) vanishes to infinite order at 0, we notice that if
hs =0, then () shows that h; = 0. So, we must have hs Z 0.
We now divide the argument into two cases as follows.

Case 1. hy #Z 0. In this case let us denote by jo the smallest integer such that
ajor 7 0 for some integer k. Then let ko be the smallest integer such that a;j,, # 0.
Similarly, let mo be the smallest integer such that b,,,, # 0 for some integer n.
Then denote by ng the smallest integer such that by, n, # 0. We see that jo > 1
if ko = 0, and mgo > 1 if ng = 0. Since P(z2) = o(|22)?) for any j € N, inserting
t = aP(z2) into ([I2), where o € R will be chosen later, one has

Re[Sajuko (i = 110 (P(22))™ (24" + o(|22]"))

(13)
o b (10 = 1) (5 + (| 22]™)) (P(22))™ Poy ()| = 0

for all 2z, € A.,. We note that in the case kg = 0 and Re(a;,0) = 0, « is chosen in
such a way that Re((ia — 1)%aj,0) # 0. Then (I3) yields that jo > mo by virtue
of the fact that P,,(z2) and P(z2) vanish to infinite order at zo = 0.

We now consider two subcases as follows:

Subcase 1.1. mg > 1. If ng = 1, then the number a can also be chosen such that
Re (bpg1 (i — 1)™0) £ 0. Therefore, ([3) contradicts Lemma [[l Hence, we must
have my = 0.

Subcase 1.2. mg = 0. In addition to this condition, if ng > 1, or if ng = 1
and Re(bp1) # 0, then ([I3]) contradicts Lemma [fl Therefore, we may assume that
ng = 1 and Re(bp1) = 0. By a change of variable in z5 as in [KN12] Lemma 1], we
may assume that bg(z2) = izo.

Next, we shall prove that b,, = 0 for every m € N*. Indeed, suppose otherwise.
Then let my > 0 be the smallest integer such that b,,, # 0. Thus it can be written
as follows:

bm, (22) = bmlnlzgl + 0(2’;1)
where n1 = vy(by, ) and by, n, € C*. Take a derivative by ¢ at t = aP(z2) of both
sides of the equation ([2)) and notice that vo(P) = +0c0. One obtains that

Re [iml (i — 1)mﬁ1 (P(Zz))mﬁl (brminy 25" + 0(|22]™)) Pey (22)

(g 2+ ollz2f) (0 = 1) (P)) ] = 0

for all z9 € A, where ji,n1 € N and aj,x, € C.

Following the argument as above, by Lemma [ and Corollary dl we conclude
that m; =n; = 1 and by(22) = —6122(1 +O(22)) for some 87 € R*. We claim that
b1(z2) = —B122. Otherwise, the equation (Id]) implies that

Re(iz2P.,(22)) = Re [azf (1+0(|22|)) P, (2’2)} + O(P(22)) (15)

(14)
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on A, for some a € C* and £ > 2. On the other hand, since vo(P) = +o00, inserting
t =0 into ([I2)) one has

Re[iza (1= 161 (1 4+ O(122])) P(22) ) Poy(2) + (w10 + 0(1) P(2)] =0 (16)
on A.,. Therefore, subtracting (5] from (I6) yields
Re [zazz(l + O(|22])) Px, (22) + (a10 + o(1)) P(z )} =0 (17)

on A.,, which is impossible by Lemma[7l Hence, b1(z2) = —
Using the same argument as above, we obtain that b,,(z2) =
m € N* where §,, € R* for every m € N*.
Putting ¢ = aP(z2) in ([I2)), one has

Re [i22(1 +iBy (i — 1)P(22) + - - + ™ B (i — 1)™P™ (29) + - - -)PZZ (22)

B1za
Bmi™ 12, for every

(18)

+ (az0 + 0(1))13(22)} =0
on A.,. On the other hand, taking a derivative both sides of (I2]) by t at t = aP(22)
, one also has

Re [m (fﬁl + 3285 (ic — 1)P(22) + - - - + i 2mBy, (i — 1)™ 1 P™(25) + - - - )Pz2 (22)

Iem= . . 1
+§j:zlkzzojajk(za—ly ' pi 1(22),%C =0,

or equivalently

BQ ﬂm . m—1 pm
Re[zzz(1+z26—(za—1)P( o)+ -+ mE( i—1)" P (22)+"')PZ2(22)

Z Zjajk (ia — 1)’ Pj_l(zz)zﬂ =0

]Ik:O

on A,
Now it follows from (I8) and (I9) that
262/B1 = B1,3B3/P1 = Bay - ., mPm/ 1 = Br—1,- - -,
for otherwise, subtracting (I8)) from (I9) one gets an equation depending on «

which contradicts Lemma [7l for some o € R. Therefore, 3,, = (ﬂ 1) for all m € N*,
and hence

h2(21,22)—122(1+zﬂ121+22&zf+~--+z ﬂ—lzl +) = 29171

for all z3 € A,,. Moreover, the equation (I2) becomes

oo

Re [% Z ajk (it — P(ZQ))jZ§ + 122 P, (22) exp (zﬂl (it — P(ZQ))):| =0 (20)

4,k=0
for all (z2,t) € A¢, X (=00, 00)-
Denote f(z2,t) := Re[zjk o aji (it — P(ZQ))jZ§:| for (z2,t) € A¢, x (=00, 00)-
Then (20) tells us that

f(Zg,t) = —2Re [iZQPZQ (2’2) exp (261 (it — P(Zz)))}, v (Zz,t) S Aeo X (—50,60).
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This implies that f(z2,t) vanishes to infinite order at zo = 0 for every ¢ since P,, (22)
vanishes to infinite order at zo = 0 and fi(22,t) = —f1f(22,t). Consequently, one
must have a;;, = 0 for every kK € N* and j € N, and thus

fz21) = Re[ S ajo(it — P(z2)"].
=0
Furthermore, the equation fi(z2,0) = —f1 f(22,0) yields

Re(ia10) + 2Re(iaso)(— P(22)) + o(P(2)) = — B (Re(alo)(—P(ZQ)) + o(p(@))),

which implies that Re(ia19) = 0,2Re(iazg) = —1Re(a10) = —B1a10. Similarly, it
follows from the equation fy;(22,0) = —B1fi(22,0) = 32 f(22,0) that

2Re(i2az0) + 31Re(i%azo) (— P(22)) + o P(22)) = 83 (Re(a10) (— P(22)) + o(P(2)) ),

which again implies that Re(i%az0) = 0, 3!Re(i2a30) = BiRe(a10) = B?aip. Con-
. m—1
tinuing this process, we conclude that a,,g = %

hence

ayg for every m € N*, and

eiﬁlzl -1
hi(z1, 22) = a1o——5——

it
This implies a9 # 0 as hy does not vanish identically.
Without loss of generality, we may assume that a19 < 0. The case that a;9 > 0
will follow by a similar argument.
Now the equation (20)) with ¢ = 0 is equivalent to

sin(B1 P(22))

2Re [izszZ (22) exp ( — ’L.Blp(ZQ))} = aio )

(21)

for all zo € A,.

Since P is continuous at zo = 0, we may assume that |P(z2)| < ﬁ for every
|z2| < €o. Moreover, because of the property (i) of P there exists a real number
7 € (0, ¢€) such that 0 < [P(r)| < 77 and rem/laol < ¢

Fix r and let 7 : (=00, 4+00) = A be a flow of the following equation

DO _ ity exp (— i8PGE)). 4(0) =r

Denote u(t) := P(y(t)) for —oo <t < +o00. Then [2I)) is equivalent to

() = g 201,
pr
A short computation shows that this differential equation has the solution
2
P(y(t)) = u(t) = 3 arctan { tan(ﬁlP(r)/2)e“1°t}, —00 < t < 4o00. (22)
1

Therefore, we have for —oco < t < +00
t
~v(t) = rexp {/ ieiiﬁlpﬁ(s))ds}
0

= rexp {/Otiexp ( — 24 arctan { tan(ﬁlP(r)/2)e“1°S})ds},
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and thus

|v(t)] = rexp [/Ot sin (2 arctan { tan(ﬂlP(r)/Q)e“wS}) ds] .

By employing some trigonometric identities, we obtain the following

rt o= t_l)ir_noo [v(t)] = rexp [/0—00 sin (2 arctan { tan(ﬂlP(r)/Q)e“wS})ds}

= rexp :/07 sin (w—2arctan{m})ds}
=rexp _/0 sin (2 arctan { m }) ds]

_ +oo ea108
=Texp | _/0 sin (2 arctan{m})ds}

2108

i “+o00 €€
N Y ... Y
1+ (4can<ﬁlp<r>/2>)
2108
2 /+°° d(itan(ﬁlP(r)/Z)) }
aio 0 1+ €108 2
tan(B1P(r)/2)

2 1
T exXp -(l_lo arctan (W)}

™
S rexp(m) < €.

T exXp

Therefore, there exists a sequence {t,} C R such that ¢,, — —oo and y(t,) — r*ei%
as n — oo for some 6y € [0,27). Moreover, |P(rtei)| < |3-|. However, since
a1p < 0 and since P is continuous on A, it follows from ([22]) that

[P e )] = |P(Jim 3(t)] = | lim PO(t))] =] |

=15
1
which is impossible.
Therefore, altogether we must have h; = 0.
Case 2. hy = 0.
We shall follow the proof of [Nil3al Lemma 12]. In this case, (I2]) is equivalent

to
oo

Re [PZQ (22) 3 (it - P(ZQ))mbm(zg)} ~0 (23)
m=0
for all (z2,t) € A, X (=00, d0), where €9 > 0 and Jdp > 0 are small enough.
Since hy # 0, there is the smallest mg such that b,,, # 0 and thus it can be
written as follows:
bmo (22) = bmonozgo + 0(2’;0),

where ng = vy(bp,) and by, € C*. Moreover, since P(z2) = o(|z2|") it follows
from (23]) with ¢t = aP(z2) (o € R will be chosen later) that

Re [(m — 1) (bigno 24 + 0(|22]")) P, (zz)} =0
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for every 2o € A7 . Notice that if mg > 0, then we can choose a so that

Re [bmgny (i = 1) ™| #0.

Therefore, it follows from Corollary M that mo = 0,n9 = 1, and Re(bpmyn,) =
Re(bp1) = 0. By a change of variable in 2z (cf. [Nil3a, Lemma 1]), we can assume
that bg(z2) = i22.

Next, we shall prove that b,, = 0 for every m € N*. Indeed, suppose otherwise.

Then using the same argument as in the Subcace 1.1, b,,(22) = im“%zz for
every m € N*. Therefore, ho(z2) = izgetPrz
Now the equation (23]) with ¢t = 0 is equivalent to
2Re {izszZ (22) exp ( - iﬁlP(ZQ))} =0 (24)

for all zo € A,.
Let v : (=00, 4+00) = A} be a flow of the following equation

dz—(tt) = ivy(t) exp ( - iﬁlP(w(t))>, 7(0) =,

where 0 < r < g with P(r) # 0. Denote u(t) := P(y(t)) for —oo < t < +00. Then
24) is equivalent to

u'(t) =0, —oo < t < +00.

This tells us that u(t) = u(0), and therefore P(y(t)) = P(r) for all t € R. Hence,
we have

~v(t) =rexp (ie_wlp(”t>
for all ¢t € R, and thus
|v(t)| = rexp (sin (ﬁlP(r))t). (25)

Without loss of generality, we may assume that 51 P(r) < 0. Then (20) implies
that v(t) — 0 as t = +00, hence

P(r) = P(+(1)) = lim_P(3(1)) = P(0) = 0.

This is a contradiction. Therefore, ha(z2) = izs.
Consequently, the equation (23)) is now equivalent to

Re [iZQPI(ZQ)} =0
for all zo € A, and thus it follows from [KNI12| Lemma 4] that P is rotational.
This ends the proof. O
6. EXAMPLES
Example 1. For o, C > 0, let P be a function given by
C .
pey) = {0 (~ i) 1 ReCea) 0.
0 if Re(z2) = 0.

We note that the function P satisfies the condition (I) (see [Nil3al, Example 1]).
Moreover, since the function P, defined by P(ZQ) = exp ( L) if zo # 0 and

T Tzl
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P(0) = 0, vanishes to infinite order only at the origin, it follows from Theorem
that autg(Mp,0) =0 and

aut(Mp,0) = g—1 @ go = {if10:, + i(20.,: b1, 52 € R}.

In addition, one obtains that Aut(Mp,0) = {id} and Auwt(Mp) = {(z1,22) —
(21 +it, 22 +is): t, s € R}.

Example 2. Denote by Mp the following hypersurface
Mp = {(2’1,22) S (C2S Re z1 + P(ZQ) = 0}
Let Py, P> be functions given by

- L if 0
Py(z2) = exp( |22] ) 1 2 #
0 if z0 =0,

_ 1 Re(sm ) " 0
PQ(ZQ) = eXp( [za|o + 6(22 ) 1I 2o 7é
where o > 0 and m € N*.
It is easy to check that Seo(P1) = Seo(F2) = {0}. Moreover, Pp, P, are positive

on C*, Pj is rotational, and P is not rotational. Therefore, by Theorems [l Bl and
Bl [Ni13b, Theorem B], and Corollaries [l and [2, we obtain the followings:

auty(Mp,,0) = {iB220.,: B € R},
aut(Mp,,0) = g_1 @ autg(Mp,,0)
= {if10:, + 152220, b1, P2 € R},
auty(Mp,,0) =0,
aut(Mp,,0) = g_1 = {i80,,: B € R},
and
Aut(Mp,,0) = {(21, 22) = (21,€"22): t € R},
Aut(Mp,) = Aut(Mp,,0) & T (Mp,)
= {(21,22) — (21 + is,e"23): 5,t € R},
Aut(Mp,,0) = {(21,22) — (21,2 ™2): k=0,...,m —1},
Aut(Mp,) = Aut(Mp,,0) & T (Mp,)
= {(21,22) = (21 + it, 2™/ ™) t e R E=0,...,m — 1}.

APPENDIX A

A.1. Leau-Fatou flower theorem. The Leau-Fatou flower theorem states that
it is possible to find invariant simple connected domains containing 0 on the bound-
aries such that, on each domain, a conformal map which tangent to the identity is
conjugated to a parabolic automorphism of the domain and each point in the do-
main is either attracted to or repelled from 0. For more details we refer the reader
to [Ab10, Br04]. These domains are called petals and their existence is predicted
by the Leau-Fatou flower theorem. To give a simple statement of such a result,
we note that if g(z) = 2z + a,2" + O(z" ') with r > 1 and a, # 0, it is possible
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to perform a holomorphic change of variables in such a way that g becomes conju-
gated to g(2) = z + 2" + O(2"™1). The number 7 is the order of g at 0. With these
preliminary considerations at hand we have

Theorem 4 (Leau-Fatou flower theorem). Let g(2) = z+ 2"+ O(2" 1) with r > 1.
Then there exist 2(r — 1) domains called petals, Pji, symmetric with respect to the
(r — 1) directions argz = 2mq/(r —1),q =0,...,r — 2 such that Pj‘Ir NPH =0 and
P NP = 0 forj #k,0€ 6Pji, each petal is biholomorphic to the right-half plane
H, and g*(z) — 0 as k — Foo for all z € Pji, where gF = (g71)7F for k < 0.
Moreover for all j, the map g |Pji is holomorphically conjugated to the parabolic

automorphism z — z 41 on H.

A.2. Holomorphic tangent vector fields on the tubular model. In the case
that an infinite type model is tubular, we have the following theorem.

Theorem 5. Let P be a C™-smooth function defined on a neighborhood of 0 in C
satisfying

(i) P(x) # 0 on a neighborhood of x =0 in R, and

(ii) P wvanishes to infinite order at zo = 0.
Denote by P a C®-smooth function defined by setting P(z) := P(Re z). Then
autg(Mp,0) = 0.

Proof. Suppose that H = hq(z1, 22)0,, + ha(21, 22)0., is a holomorphic vector field
defined on a neighborhood of the origin satisfying H(0) = 0. We only consider H
that is tangent to Mp, which means that it satisfies the identity

(Re H)p(z) =0, z € Mp. (26)

Expand h; and ho into the Taylor series at the origin

hi(z1,22) = E a]kzlz2, ha(z1, 22) E b kzlz2,
7,k=0 7,k=0

where aji, bjr € C. We note that agy = bgp = 0 since h1(0,0) = h2(0,0) = 0.
By a simple computation, we have

1 1
3 Pz (21, 22) = Puy(22) = gpl(x)a

where x = Re(z2), and the equation (26]) can thus be re-written as

Pz (21722) =

Re{%hl (217 22) + Pzg (Z’Q)hg(,zl7 22):| =0 (27)

for all (z1,22) € Mp. Since the point (it — P(22), z2) is in Mp with ¢ small enough,
the above equation again admits a new form

Re [% j;o agp.(it — P(z2))’ 25 + P., (22) WXR;O by (it — P(zz))ng} =0 (28

for all zo € C and for all ¢ € R with |z3| < ¢y and |¢| < dp, where g > 0 and §y > 0
are small enough. The goal is to show that H = 0. Striving for a contradiction, we
suppose that H # 0. Since P,,(z2) vanishes to infinite order at 0, we notice that if
hs = 0 then 27) shows that hy = 0. So, we must have hy Z 0.

We now divide the argument into two cases as follows.
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Case 1. hy #Z 0. In this case let us denote by jo the smallest integer such that
ajok # 0 for some integer k. Then let ko be the smallest integer such that a;yx, # 0.
Similarly, let mo be the smallest integer such that b,,,, # 0 for some integer n.
Then denote by ng the smallest integer such that by, n, # 0. We see that jo > 1
if ko = 0, and mg > 1 if ng = 0. Since P(22) = o(|22)’) for any j € N, inserting
t = aP(z2) into ([28)), where oo € R will be chosen later, one has

Re[5ajoh, (i — 192 (P(22) (4 + o(] /"))
2 (29)
o b (i = 1) (55 + o{|22]™)) (P(2))™ Poy (22)| = 0

for all zo € A.,. We note that in the case kg = 0 and Re(a;,0) = 0, « is chosen in
such a way that Re((ia — 1)%aj,0) # 0. Then ([29) yields that jo > mo by virtue
of the fact that P,,(z2) and P(z3) vanish to infinite order at zo = 0. Moreover, we
remark that P,,(z2) = 2 P'(x), where z := Re(z3). Therefore, it follows from (29)
that

P'(z) Re [ajoko(ia —1)do (250 +o(|22|k0))}
(P@)" ™ Re[bmgny(ic = 1) (257 + of|25]™)) |
for all zo = x + iy € A, satisfying

P() # 0, Rebgn (i — 1) (4 + o(|25]™))] #0.

(30)

However, [30) is a contradiction since its right-hand side depends also on y, and
hence one must have hy = 0.

Case 2. hy = 0. Let mg,ng be as in the Case 1. Since P(z2) = o(|z2|™), putting
t = aP(z2) in (2]), where o € R will be chosen later, one obtains that

1
EP'(:E)Re {(ia = 1) by, (25° + o(|22|"°))} =0
for all zo = x4+ iy € A,,. Since P'(z) # 0, one has
Re[(m )by (250 + o(|zz|n0))] —0 (31)

for all z9 € A,,. Note that if ng = 0, then a can be chosen in such a way that
Re((ia — 1)™0bp0) # 0. Hence, BI) is absurd.
Altogether, the proof of our theorem is complete. O

REFERENCES

[Ab10] M. Abate, Discrete holomorphic local dynamical systems. Holomorphic dynamical systems,
155, Lecture Notes in Math., no. 1998, Springer, Berlin, 2010.

[Br04] F. Bracci, Local dynamics of holomorphic diffeomorphisms, Boll. Unione Mat. Ital. Sez.
B Artic. Ric. Mat. (8) 7 (2004), no. 3, 609-636.

[CM74] S. S. Chern and J. K. Moser, Real hypersurfaces in complex manifolds, Acta Math. 133
(1974), 219-271.

[D’A82] J. P. D’Angelo, Real hypersurfaces, orders of contact, and applications, Ann. Math. 115
(1982), 615-637.

[EKS09] V. Ezhov, M. Koldf and G. Schmalz, Degenerate hypersurfaces with a two-parametric
family of automorphisms, Complex Var. Elliptic Equ. 54 (3-4) (2009), 283-291.

[EKS13] V. Ezhov, M. Kolaf and G. Schmalz, Normal forms and symmetries of real hypersurfaces
of finite type in C2, Indiana Univ. Math. J. 62 (2013), no. 1, 1-32.



20 ATSUSHI HAYASHIMOTO AND NINH VAN THU

[KN12] K.-T. Kim and V. T. Ninh, On the tangential holomorphic vector fields vanishing at an
infinite type point, arXiv: 1206.4132, to appear in Trans. Amer. Math. Soc.,
http://www.ams.org/journals/tran/0000-000-00/S0002-9947-2014-05917-5/S0002-9947-2014-05917-5.pdf|

[Kol05] M. Kolé#, Normal forms for hypersurfaces of finite type in C2, Math. Res. Lett. 12 (5-6)
(2005), 897-910.

[Kol06] M. Koléf, Local symmetries of finite type hypersurfaces in C2, Sci. China Ser. A 49 (11)
(2006), 1633-1641.

[Kol10] M. Koléf, Local equivalence of symmetric hypersurfaces in C2, Trans. Amer. Math. Soc.
362 (6) (2010), 2833-2843.

[KM11] M. Kolaf and F. Meylan, Infinitesimal CR automorphisms of hypersurfaces of finite type
in C2, Arch. Math. (Brno) 47 (5) (2011), 367-375.

[KMZ14] M. Koléf, F. Meylan and D. Zaitsev, Chern-Moser operators and polynomial models in
CR geometry, Adv. Math. 263 (2014), 321-356.

[Nil3a] V. T. Ninh, On the existence of tangential holomorphic vector fields vanishing at an
infinite type point, arXiv: 1303.6156.

[Ni13b] V. T. Ninh, On the CR automorphism group of a certain hypersurface of infinite type in
C2, arXiv: 1311.3050.

[INCM14] V. T. Ninh, V. T. Chu and A. D. Mai, On the real-analytic infinitesimal CR automor-
phism of hypersurfaces of infinite type, arXiv: 1404.4914.

[Sta95] N. Stanton, Infinitesimal CR automorphisms of rigid hypersurfaces, Amer. J. Math. 117
(1) (1995), 141-167.

[Sta96] N. Stanton, Infinitesimal CR automorphisms of real hypersurfaces, Amer. J. Math. 118
(1) (1996), 209-233.

NAGANO NATIONAL COLLEGE OF TECHNOLOGY, 716 TOKUMA, NAGANO 318-8550
E-mail address: atsushi@nagano-nct.ac.jp

(PERMANENT ADDRESS) DEPARTMENT OF MATHEMATICS, VIETNAM NATIONAL UNIVERSITY AT
HaNoI1, 334 NGUYEN TRAI STR., HANOI, VIETNAM
E-mail address: thunv@vnu.edu.vn

(CURRENT ADDRESS) CENTER FOR GEOMETRY AND ITS APPLICATIONS, POHANG UNIVERSITY
OF SCIENCE AND TECHNOLOGY, POHANG 790-784, THE REPUBLIC OF KOREA
E-mail address: thunv@postech.ac.kr


http://www.ams.org/journals/tran/0000-000-00/S0002-9947-2014-05917-5/S0002-9947-2014-05917-5.pdf

	1. Introduction
	2. Preliminaries
	3. Explicit description for G2(MP,0)
	3.1. The Parabolic Case
	3.2. The Elliptic Cases

	4. Proofs of Theorems ?? and ??
	4.1. Proof of Theorem ??
	4.2. Proof of Theorem ??

	5. Analysis of holomorphic tangent vector fields
	6. Examples
	Appendix A
	A.1. Leau-Fatou flower theorem
	A.2. Holomorphic tangent vector fields on the tubular model

	References

