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Abstract. Theorems and explicit examples are used to show how transformations between

self-similar sets (general sense) may be continuous almost everywhere with respect to station-

ary measures on the sets and may be used to carry well known flows and spectral analysis
over from familiar settings to new ones. The focus of this work is on a number of surprising

applications including (i) what we call fractal Fourier analysis, in which the graphs of the basis

functions are Cantor sets, being discontinuous at a countable dense set of points, yet have very
good approximation properties; (ii) Lebesgue measure-preserving flows, on polygonal laminas,

whose wave-fronts are fractals. The key idea is to exploit fractal transformations to provide
unitary transformations between Hilbert spaces defined on attractors of iterated function sys-

tems. Some of the examples relate to work of Oxtoby and Ulam concerning ergodic flows on

regions bounded by polygons.

1. Introduction

In this paper we provide results and explicit examples to show how transformations between
some fractals, and other self-referential sets, may both be continuous almost everywhere and
map well-known flows and spectral analysis from familiar settings to new ones. Our focus is
on a number of surprising applications including: (i) what we call ”fractal Fourier analysis”, in
which the basis functions are discontinuous at a countable dense set of points of a real interval,
yet have good approximation properties; (ii) Lebesgue measure-preserving flows on tori whose
wave-fronts are fractal curves.

The key idea is to exploit fractal transformations to provide unitary transformations between
Hilbert spaces defined on attractors of iterated function systems. Some of our examples relate
to the work of Oxtoby and Ulam [22], concerning ergodic flows on real geometrical domains.

Let AF and AG be non-overlapping attractors of two contractive iterated function systems
(IFSs), F and G respectively. We give conditions under which the fractal transformation TFG :
AF → AG (defined in Section 2) is measureable and continuous almost everywhere with respect
to any stationary measure µF (defined in Section 2). We show that TFG yields an isometry
UFG : L2(AF , µF ) → L2(AG, µG)), where µF and µG are a corresponding pair of stationary
measures. If LF : DF ⊂ L2(AF , µF )→ L2(AF , µF ) is a linear operator with dense domain DF ,
then

LG := UFGLFUGF

is a linear operator on L2(AG, µG) with dense domain TFG(DF ). If LF is self-adjoint, then so
is LG. In some cases µF is Lebesgue measure on a subset of Rn such as line segment, a filled
triangle, or a cube; and in other cases it a uniform measure on a fractal such as a Sierpinski
triangle. In these cases, familiar differential and integral equations, including those associated
with Laplacians on post critically finite (p.c.f.) fractals [19, 28], can be transformed to yield
interesting counterparts on other (not necessarily p.c.f.) fractals.

By way of examples (i) we introduce what we call ”fractal Fourier analysis”, in which the
basis functions are discontinuous at a countable dense set of points, yet have good approximation
properties including overcoming the edge-effect problem that besets standard Fourier approxi-
mation; and (ii) we introduce and exemplify certain flows on self-similar sets, we provide rough
versions of flows on tori, and we exhibit the solution of a heat equation on a rough filled triangle,
with Dirichlet boundary conditions.
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2. Fractal transformations and invariant measures

This section introduces some essential concepts that run throughout the paper, including the
invariant measure of an IFS with probabilities, called a p-measure, and fractal transformations
from the attractor of one IFS to the attractor of another. The main result of this section are
Theorem 2.1 which states that if an attractor is not equal to its dynamical boundary, then all
p-measures of the critical set, the dynamical boundary, and the forward orbit of overlap set
under the IFS (which we call the inner boundary), are zero; and Theorem 2.3 which states
that a fractal transformation between non-overlapping attractors is measurable and continuous
almost everywhere with respect to every p-measure, and that a such a fractal transformation is
p-measure preserving.

2.1. Non-Overlapping Attractors and Fractal Transformations. The purpose of this sub-
section is to define the central notions of non-overlapping attractor and fractal transformation
from one attractor to another.

Let N = {1, 2, 3, ...} and N0 = {0, 1, 2, ...}. Throughout this paper we restrict attention to
iterated function systems (IFSs) of the form

F = {X; f1, f2, ..., fN}

where N ∈ N is fixed, X is a complete metric space, and fi : X → X is a contraction for all
i ∈ I := {1, 2, ..., N}. By contraction we mean there is λ ∈ [0, 1), such that dX(fi(x), fi(y)) ≤
λdX(x, y) for all x, y ∈ X, for all i ∈ I.

Define F−1 : 2A → 2A and F : 2A → 2A by

F−1(U) = ∪Ni=1f
−1
i (U) and F (U) = ∪Ni=1fi(U),

for all U ⊂ A, where f−1i (U) = {x ∈ A : fi(x) ∈ U}, and fi(U) = {fi(x) ∈ A : x ∈ U}. Let
F−k mean F−1 composed with itself k times, let F k mean F composed with itself k times, for
all k ∈ N, and let F 0 = F−0 = I.

If H(X) denotes the collection of nonempty compact subsets of X, then the classical Hutchin-
son operator F : H(X)→ H(X) is just the operator F above restricted to H(X). According to
the basic theory of contractive IFSs as developed in [17], there is unique attractor A ⊂ X of
F . That is, A is the unique nonempty compact subset of X such that

A = F (A).

The attractor A has the property

A = lim
k→∞

F k(S),

where convergence is with respect to the Hausdorff metric and is independent of S ∈ H(X).
Since, in this paper, we are only interested in A itself, henceforth let X = A. Moreover,

throughout this paper the following assumptions are made:

• F = {A; f1, f2, ..., fN} is an IFS with attractor A and such that each of its functions is
a contraction and is a homeomorphism onto its image.

(Note that, under these assumptions, f−1i (S) := {a ∈ A : fi(a) ∈ S} = f−1i ( fi(A) ∩ S) for
all i, for all S ⊂ A.)

Let I = {1, 2, . . . , N}, and let I∞, referred to as the code space, be the set of all infinite
sequences θ = θ1θ2θ3 · · · with elements from I. The shift operator S : I∞ → I∞ is defined
by S(θ1θ2θ3 · · · ) = θ2θ3θ4 · · · . Define a metric d on I∞ = {1, 2, ..., N}∞ so that, for θ, σ ∈ I∞
with θ 6= σ, the distance d(θ, σ) = 2−k, where k is the least integer such that σk 6= θk. The pair
(I∞, d) is a compact metric space.

Definition 2.1. The coding map, π : I∞ → A is defined by

π(σ) = lim
k→∞

fσ1
◦ fσ2

◦ ... ◦ fσk
(a),

for any fixed a ∈ A, for all σ = σ1σ2... ∈ I∞.

Under the assumption that the IFS is contractive, it is well known that the limit is a single
point, independent of a ∈ A, convergence is uniform over I∞, and π is continuous and onto.
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Example 2.1 (The code space IFS). The IFS Z = {I∞; s1, s2, . . . , sN}, where si : I∞ → I∞ is
defined by si(σ) = i σ, satisfies all the conditions. In particular, the contraction constant for all
i is λ = 1

2 . In this case π is the identity map on I∞.

Definition 2.2. Define the critical set of A (w.r.t. F ) to be

C =
⋃
i 6=j

fi(A) ∩ fj(A).

Let U be the closure of U ⊂ A.

Definition 2.3. Define the dynamical boundary of A (w.r.t. F ) to be

∂A =

∞⋃
k=1

F−k(C).

The notion of the dynamical boundary was introduced by Morán [20], in the context of
similitudes on Rn. In general, ∂A is not equal to the topological boundary of A (see Example 2.2).

Definition 2.4. For the IFS F , we define the inner boundary of the attractor A (w.r.t. F )
to be

Ĉ =
⋃
k∈N0

F k(C).

The inner boundary of A is the set of points with more than one address: a proof of the
following proposition appears in [18].

Proposition 2.1. Ĉ = {x : |π−1(x)| 6= 1}.

Definition 2.5. Define AF to be non-overlapping (w.r.t. F ) when

A 6= ∂A.

Example 2.2. Let F = {[0, 1]; f1, f2}, where the metric on the unit interval [0, 1] is the Eu-
clidean metric. Note that the topological boundary of [0, 1] is empty; every point in [0, 1] lies
in its interior. If f1(x) = 1

2 x, f2(x) = 1
2 x + 1

2 , then the dynamical boundary of the attractor
A = [0, 1] is ∂A = {0, 1}. In this case, by definition, A is non-overlapping. On the other hand, if
f1(x) = 2

3 x, f2(x) = 2
3 x+ 1

3 , then again A = [0, 1], but ∂A = [0, 1]. In this case A is overlapping.

We are going to need the following topological lemma, which generalizes a result in [13]. A
point ω ∈ I∞ is called disjunctive if

{
Skω : k ∈ N

}
is dense in I∞.

Lemma 2.1. Let F = {A; f1, f2, ..., fN} be an IFS with attractor A, and let ω ∈ I∞ be disjunc-
tive. We have π(ω) ∈ A\∂A if and only if A\∂A 6= ∅.

Proof. We begin with two observations. (i)The set ∂A is closed and F−1(∂A) ⊂ ∂A. Hence,
if θ ∈ I∞ obeys π(θ) ∈ ∂A, then π(Sθ) ∈ ∂A, whence π(Skθ) ∈ ∂A for all k ∈ N0, whence

{π(Skθ)}∞k=0 ⊂ ∂A. (ii) If ω ∈ I∞ is disjunctive, then, using the continuity of π, {π(Skω)}∞k=0 =
A.

Let ω ∈ I∞ be disjunctive.
(⇒)Suppose that π(ω) ∈ A\∂A. Then A\∂A 6= ∅.
(⇐)Suppose that A\∂A 6= ∅. If π(ω) ∈ ∂A, it follows that Skω ∈ ∂A for all k, so by (i) and

(ii), A = {π(Skω)}∞k=0 ⊂ ∂A; but ∂A ⊂ A, so A = ∂A; hence A\∂A = ∅, which is not possible,
so π(ω) ∈ A\∂A. �

The code space I∞ is equipped with the lexicographical ordering, so that θ > σ means θ 6= σ
and θk > σk where k is the least index such that θk 6= σk. Here 1 > 2 > 3 · · · > N − 1 > N .

Definition 2.6. A section of the coding map π : I∞ → A is a map τ : A→ I∞ such that π ◦ τ
is the identity. In other words τ is a map that assigns to each point in A an address in the code
space. The top section of π : I∞ → A is the map τ : A→ I∞ given by

τ(x) = maxπ−1(x)

for all x ∈ A, where the maximum is with respect to the lexicographic ordering. The value τ(x)
is well-defined because π−1(x) is a closed subset of I∞.
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The top section is forward shift invariant in the sense that S(τ(A)) = τ(A). See [9] for
a classification, in terms of masks, of all shift invariant sections, namely sections such that
S(τ(A)) ⊂ τ(A).

Definition 2.7. Let AF and AG be the attractors, respectively, of IFSs F = {AF ; f1, f2, ..., fN}
and G = {AG; g1, g2, ..., gN} with the same number of functions. The fractal transformations
TFG : AF → AG and TGF : AG → AF are defined (see for example [4, 8]) to be

TFG = πG ◦ τF and TGF = πF ◦ τG,
where τ is the top section. If TFG is a homeomorphism, then it is called a fractal homeomor-
phism, and in this case TGF = (TFG)−1.

A more general notion of fractal transformation is similarly defined by taking τ to be any
shift invariant section; see [9]. The following simple proposition is useful. It is well-known, see
for example [6, Theorem 1] and [8], for references and subtler results.

Proposition 2.2. Let IFS F be a non-overlapping with attractor A, and let PF = {π−1(x) :
x ∈ A}, which is a partition of the code space I∞. For two non-overlapping IFSs F and G, and
fractal transformation TFG, if PF = PG, then TFG is a homeomorphism.

2.2. Invariant Measures on the Attractor of an IFS. In this subsection we recall the
definition of the invariant measures on an IFS with probabilities, also called p-measures, and
determine that the dynamical boundary of the attractor A and a certain subset of A associated
with the critical set of A, that we call the inner boundary, have measure zero.

Definition 2.8. Let p = (p1, p2, ..., pN ) satisfy p1+p2+...+pN = 1 and pi > 0 for i = 1, 2, ..., N .
Such a positive N -tuple P will be referred to as a probability vector. It is well known that
there is a unique normalized positive Borel measures µ supported on A and invariant under F
in the sense that

(2.1) µ(B) =

N∑
i=1

pi µ(f−1i (B))

for all Borel subsets B of X. We call µ the invariant measure of F corresponding to the
probability vector p and refer to it as the p-measure (w.r.t. F ). To emphasize the dependence
on p, we may write µp in place of µ.

Example 2.3. This is a continuation of Example 2.1, where Z = {I∞; s1, s2, . . . , sN}. For a
probability vector p = (p1, p2, ..., pN ), the corresponding p-measure is the Bernoulli measure νp
where

νp ([σ1 σ2 · · ·σn]) =

n∏
i=1

pσi ,

where [σ1 σ2 · · ·σn] := {ω ∈ I∞ : ωi = σi for i = 1, 2, .., N} denotes a cylinder set, the collection
of which generate the sigma algebra of Borel sets of I∞.

The following known result, see for example [15, statement and proof of Theorem 9.3], is
relevent to the present work.

Proposition 2.3. If F consists of similitudes with scaling ratio of fi equal to ci < 1, and obeys
the open set condition, and if the probabilities are chosen such that pi = cDi , where D is the
Hausdorff dimension of A, then µp is equal to the Hausdorff measure on A.

The Hausdorff measure prescribed in Proposition 2.3 is sometimes referred to as the uniform
measure on the attractor.

The following result is proved in [17].

Lemma 2.2. If F is an IFS with probability vector p, corresponding invariant measure µp, and
Z is the IFS of Example 2.1 with the same probability vector p and corresponding invariant
measure νp, then

µp(B) = νp(π
−1
F (B)

for all Borel sets B.
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The following theorem relates the topological concept of non-overlapping to the p-measures
of the dynamical boundary and the inner boundary. It can be viewed as an extension of a result
of Bandt and Graf [2], who show that the Hausdorff measure of the critical set of the attractor
of an IFS of similitudes in Rn, that obeys the OSC, is zero.

Theorem 2.1. Let F = {A; f1, f2, ..., fN} be an IFS (with probabilities p) with attractor A,

invariant measure µp, dynamical boundary ∂A, and inner boundary Ĉ. Let µp be an invariant
measure for F . If A is non-overlapping then, for all probability vectors p,

(i) µp(A\∂A) = 1;

(ii) µp(Ĉ) = 0.

Proof. To simplify notation let p be any probability vector, let µ = µp, and let v = vp, the
p-measure on I∞ introduced in Examples 2.1 and 2.3.

Proof of (i): Let D ⊂ I∞ be the set of disjunctive points. If A is non-overlapping then, by
Lemma 2.1, π(D) ⊂ A\∂A.

Hence
1 ≥ µ(A\∂A) ≥ µ(π(D)) = v(D) = 1,

where we have used Lemma 2.2 and the fact that v(D) = 1 (for all vectors p), see [25].
Proof of (ii): Let C be the critical set of A. It follows from (1) that µ(F−1(C)) = 0 and

therefore µ(f−1i (C)) = 0 for all i. By the invariance property

µ(C) =

N∑
i=1

piµ(f−1i (C)) = 0.

Now, for each j,

µ(fj(C)) =

N∑
i=1

piµ(f−1i (fj(C))) = pjµ(C) +
∑
i 6=j

pjµ(f−1i (fj(C)))

=
∑
i 6=j

pjµ(f−1i (fj(C))) ≤
∑
i6=j

pjµ(f−1i (C)) = 0,

the inequality for the following reason: since f−1i (S) = f−1i (fi(A) ∩ S), for all S ⊂ A, we have

that f−1i (fj(C)) ⊂ f−1i (fi(A) ∩ fj(A)) ⊂ f−1i (C), and the last equality because µ(f−1i (C) = 0.
Since this is true for all i, we have µ(F (C)) = 0. Induction can now be used, similarly, to show
that µ(F k(C)) = 0 for all k ∈ N0. This suffices to prove (2) in the statement of the theorem. �

Remark 2.1. By Theorem 2.1, the definition of non-overlapping, i.e., ∂A 6= A, is independent
of the probability vector p. Also, if an IFS is non-overlapping, then whether or not µp(C) = 0
is independent of p. Also, if

(2.2)

∞⋃
k=1

F−k(C) =

∞⋃
k=1

F−k(C),

which occurs for example if A is p.c.f., then the converse to Theorem 2.1 holds, namely, if
µp(C) = 0 for any probability vector p, then A is non-overlapping. In particular if Equation 2.2
holds, then whether or not µp(C) = 0 is independent of the probability vector p.

The proof of the following theorem appears in [21, Theorem 2.1], which also states that, under
the assumption of the open set condition (OSC), whether or not µp(C) = 0, is independent of
p; but that theorem applies only to an IFS consisting of similitudes.

Theorem 2.2. Let F be a contractive IFS of similitudes on Rn, that obeys set condition. If C
is the critical set, then µp(C) = 0 for all p-measures µp (w.r.t. F ).

2.3. Continuity and Measure Preserving Properties of Fractal Transformations. The
main results of this subsection are that fractal transformations between non-overlapping attrac-
tors are measurable, continuous almost everywhere, and map p-measures to p-measures.

Theorem 2.3. Let F = {A; f1, f2, ..., fN} be an IFS with non-overlapping attractor A and
invariant measure µ. The top section of τ : A → I∞ is measureable and continuous almost
everywhere w.r.t. µ, for all p.
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Proof. We first prove that τ : A → I∞ is measureable by showing that τF is the uniform limit
of a sequence of simple functions whose maximal sets upon which τ has constant value are Borel
sets. Define the sequence of simple functions τ (k) : A→ I∞ for k ∈ N by

τ (k)(x) = τ(x)|k1

for all x ∈ A, where 1 := 111 · · · and σ|k := σ1 · · ·σk. The sequence {τ (k)}k∈N converges
uniformly to τ because d(τ (k)(x), τ(x)) ≤ 2−k; in fact τ(x) = sup{τ (k)(x) : k ∈ N}. To show
that τ is measurable, it now suffices to show that the maximal subsets of A on which τ (k)(x) is
constant, namely

Dσ1...σk
:= {x ∈ A : τ (k)(x) = σ1...σk1},

are Borel sets. This is established by showing, by induction, that

Dσ1...σk
:= fσ1

◦ fσ2
◦ · · · ◦ fσk

(A)\{fθ1 ◦ fθ2 ◦ · · · ◦ fθk(A) : θ1...θk < σ1...σk}.

That is, the largest set on which τ (k)(x) is constant is exactly Dπ(x)|k. Each of the sets fθ1 ◦
fθ2 ◦ · · · ◦ fθk(A) is a Borel set, so Dσ1...σk

is too.

To prove continuity, let D = A\Ĉ, which is, by Proposition 2.1 is the set of points with exactly
one address. Let x ∈ D and assume, by way of contradiction, that there is a sequence of points
{xn} such that xn → x, but τ(xn) 9 τ(x). Using the notation σ := τ(x) and ωn := τ(xn), we
have xn → x, but ωn 9 σ. Since code space is compact, by going to a subsequence if needed,
we may assume that ωn → ω 6= σ. Now

π(σ) = π ◦ τ(x) = x = lim
n→∞

xn = lim
n→∞

π ◦ τ(xn) = lim
n→∞

π(ωn) = π(ω),

the last equality following from the continuity of the coding map π. This implies that ω 6= σ are
both addresses of x, which is a contradiction because x ∈ D has exactly one address. �

For an IFS F , let

ΓF = π−1F (ĈF ).

Consider two non-overlapping IFSs F and G with the same probability vector. With notation
as in the Definition 2.7 of fractal transformation, let

Γ{F,G} = ΓF ∪ ΓG

Λ{F,G} = I∞ \ Γ{F,G}

A0
F = πF (Λ{F,G}) and A0

G = πG(Λ{F,G})

A1
F = AF \A0

F and A1
G = AG \A0

G

Note that A0
F depends also on G and that A0

G depends also on F ; similar for A1
F and A1

G.

Lemma 2.3. With notation as above

(1) µF (A1
F ) = µG(A1

G) = 1,
(2) The fractal transformation TFG maps A1

F bijectively onto A1
G, and maps A0

F into A0
G.

(3) Restricted to A1
F we have (TFG)−1 = TGF ; hence (TFG)−1 = TGF almost everywhere.

Proof. Using Lemma 2.2 and Theorem 2.1 we have µ(ΓF ) = µ(π−1F ĈF ) = µF (ĈF ) = 0. This
implies that µ(Γ{F,G}) = 0 or µ(Λ{F,G}) = 1. Again using Lemma 2.2 we have µF (A1

F ) =

µF (πF (Λ{F,G})) = µ(π−1F πF (Λ{F,G})) ≥ µ(Λ{F,G}) = 1. This proves statement (1).

Concerning statement (2), by Proposition 2.1, we know that π−1F = τF is single-valued on
AFG. Now τF takes A1

F bijectively onto Λ{F,G}) and πG takes Λ{F,G} bijectively onto A1
G.

Similarly, τF takes A0
F into Γ{F,G}) and πG takes Γ{F,G} into A0

G.
Concerning statement (3), restricted to AGF we have TFG ◦ TGF = πG ◦ (τF ◦ πF ) ◦ τG =

πG ◦ τG = I, the identity. �

Theorem 2.4. Assume that both AF and AG are non-overlapping, and let µF and µG be in-
variant measures associated with the same probability vector. Then

(1) TFG : AF → AG is measurable and continuous a.e. with respect to µF ;
(2) µF ◦ TGF = µG and µG ◦ TFG = µF .
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Proof. Since TFG = πG ◦ τF , statement (1) follows from the continuity of πG : I∞ → AG and
Theorem 2.3.

Concerning statement (2), let B be a Borel set in AG, and let B0 = B ∩ A0
G, B

1 = B ∩ A1
G.

By Lemma 2.2 and Lemma 2.3

µG(B) = µ(π−1G B) = µ(π−1G (B0 ∪B1)) = µ(π−1G B0) + µ(π−1G B1). = µ(τGB
1),

the last equality because π−1G (B0) = τG(B0), which has measure zero.
By similar arguments

µF (TGF B) = µF (TGF (B0∪B1)) = µF (TGF B
0)+µF (TGF B

1) = µ(π−1F ◦πF ◦τG(B1)) = µ(τGB1),

the second to last equality because TGF (B0) ⊂ A0
F , which has measure zero. �

3. Examples of Fractal Transformations

Example 3.1. (Koch curve)

Let

F = {R; f1 =
1

2
− x

2
, f2 = 1− x

2
},

G = {R2; g1 = (
x

2
+

y

2
√

3
− 1,

x

2
√

3
− y

2
), g2 = (

x

2
− y

2
√

3
+ 1,− x

2
√

3
− y

2
)}.

Then AF = [0, 1] while AG is a segment of a Koch snowflake curve. In this case both TFG and
TGF are homeomorphisms, because

{π−1F (x) : x ∈ AF } = {π−1F (x) : x ∈ AF }.

Also

TFG = T−1GF .

If p1 = p2 = 0.5, then µF is uniform Lebesgue measure on [0, 1]. The pushfoward of µF to
AG under TFG is the uniform measure µG on AG that uniquely obeys µG(B) = (µG(g−11 (B)) +
µG(g−12 (B)))/2 for all Borel subsets B of AG. (We remark that the measure of any Borel subset
B of AG may be computed by, and thought of in terms of, the chaos game algorithm on G
with equal probabilities, [14].) The Hausdorff dimensions of AF and AG are 1 and 2 ln 2/ ln 3,
respectively: thus, a fractal transformation may change the dimension of a set upon which it
acts.

Example 3.2 (Length preserving fractal transformation of the unit interval). Let F = {([0, 1]; f1, f2}
and G = {([0, 1]; g1, g2}, where

f1(x) = r x, f2(x) = (1− r)x+ r

g1(x) = r x+ (1− r), g2(x) = (1− r)x,

and 0 < r < 1. The probability vector is p = (r, 1 − r), so that the invariant measure for both
F and G is Lebesque measure. By Theorem 2.4, the fractal transformation TFG : [0, 1]→ [0, 1]
preserves length. This example can be generalized from 2 to N functions as long as the scaling
factors of fi and gi are the same, say ri, for all i, and the probability vector p = (p1, p2, . . . , pN )
satisfies pi = ri for all i.

Example 3.3 (Self mappings of the interval). If

F =

{
R; f1 =

x

2
, f2 =

x

2
+

1

2

}
,

G1 =

{
R; g1 = −x

2
+

1

2
, g2 =

x

2
+

1

2

}
,

G2 =

{
R; g1 = −x

2
+

1

2
, g2 = −x

2
+ 1

}
,

G3 =
{
R; g1 =

x

2
, g2 = −x

2
+ 1
}
,
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Figure 1. Graph of the fractal transformation TFG1
discussed in Example 3.3.

This provides a Lebesgue measure-preserving transformation on [0,1] that is
continuous a.e. but has a dense countable set of discontinuities. This trans-
formation, and others like it, provide unitary transformations on L2[0, 1] and
”fractal Fourier series”, see Section 4. The viewing window is slightly larger
than [0,1]×[0,1].

then AF = AGi
= [0, 1] for i = 1, 2, 3. All three fractral transformations TFGi

, i = 1, 2, 3, are

continuous at all points of A1
F = [0, 1]\Ĉ where Ĉ is the diadic set

Ĉ =

{
k

2n
: k = 0, 1, ..., 2n;n ∈ N

}
.

Indeed, TFGi
, i = 1, 2, 3, is a homeomorphism when restricted to [0, 1]\Ĉ. Moreover, TFGi

, i =
1, 2, 3, are continuous from the left at all points in (0, 1]. If we choose p1 = p2 = 0.5, then the
measures µF = µGi , i = 1, 2, 3, are all the Lebesgue measure on [0, 1]. The graph of the function
TFG1

appears in Figure 1, and the graph of TFG2
appears in Figure 2.

It can be shown by a symmetry argument that TFG2
is its own inverse, i.e., TFG2

◦TFG2
= id,

the identity, a.e. This is not obvious from the definition of TFG2
which can be stated by expressing

x ∈ [0, 1] in binary representation: if

x =

∞∑
n=1

dn/2
n, dn ∈ {0, 1},

then

TFG2
(x) =

∞∑
n=1

(−1)n−1(dn + 1)/2n.

Example 3.4 (Hilbert’s space filling curve). Space filling curves, from the point of view of IFS
theory, have been considered in [24]. In [6] it is shown how, as follows, functions such as the
Hilbert mapping h : [0, 1]→ [0, 1]2 (see Figure 3) are examples of fractal transformations.

Let A = A1 = (0, 0), B = B4 = (1, 0), C = C3 = (1, 1), D = D2 = (0, 1), B1 = A2 = (0, 0.5),
C1 = B2 = A3 = D4 = (0.5, 0.5), D1 = C4 = (0.5, 0), C2 = D3 = (0.5, 1), and B3 = A4 =
(1, 0.5). Let

F =

{
R; fi =

x+ i− 1

4
, i = 1, 2, 3, 4

}
,

G =
{
R2; gi, i = 1, 2, 3, 4

}
where gi : R2 → R2 is the unique affine transformation such that gi(ABCD) = AiBiCiDi, by
which we mean gi(A) = Ai, gi(B) = Bi, gi(C) = Ci, gi(D) = Di for i = 1, 2, 3, 4. (Similar
notation will be used elsewhere in this paper.) The Hilbert mapping is h = TFG : [0, 1]→ [0, 1]2,
The functions in G were chosen to conform to the orientations of Figure 3, which comes from
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Figure 2. Graph of the fractal transformation TFG2
discussed in Section 3.3.

Unlike TFG1 in Figure 1, TFG2 is its own inverse.

Figure 3. Hilbert’s original design for a continuous map from [0,1] to [0,1]×[0,1].

Hilbert’s paper [16] concerning Peano curves. One way to prove that TFG is continuous is by
using the standard theory of fractal transformations; see for example [6, Theorem 1].

If p1 = p2 = p3 = p4 = 0.25, then the associated invariant measure µF is the Lebesgue
measure on [0, 1], and µG is Lebesgue measure on [0, 1]2. The inverse of T−1FG is the fractal
transformation TGF : [0, 1]2 → [0, 1], which is continuous almost everywhere with respect to two
dimensional Lebesgue measure. More precisely, TGF ◦ h(x) = x for almost all x ∈ [0, 1] (with
respect to Lebegue measure), and h ◦TGF (x) = x for all x ∈ [0, 1]2. By Theorem 2.4, the fractal
transformation h is Lebesque measure preserving in that the 2-dimensional Lebesque measure
of the image h(B) of B equals the 1-dimensional Lebesque measure of B, for any Borel set B.

Example 3.5 (Fractal transformations between the unit interval and a filled triangle). Let
A,B,C be non-colinear points in R2 and let D be the mid-point of the line segment CA. Let

F =

{
R; f1(x) =

1

2
x, f2(x) =

1

2
x+

1

2

}
,

G =
{
R2; g1, g2

}
,

where g1 and g2 are the unique affine maps on R2 such that g1(ABC) = ADB and g2(ABC) =
BDC, respectively. The unique attractor of F is AF = [0, 1] ⊂ R, and the unique attractor
of G is and AG = 4, the filled triangle with vertices at ABC. If p1 = p2 = 0.5 then µF
is Lebesgue measure on [0, 1], and µF is Lebesgue measure on 4, It readily follows from [6,
Theorem 1] that TFG : [0, 1] → 4 is continuous and TFG([0, 1]) = 4. It is also readily shown
that TGF : 4→ [0, 1] is continuous almost everywhere with respect to two-dimensional Lebesgue
measure, with discontinuities located on a countable set of boundaries of triangles. We have that
TFG ◦ TGF (x) = x for all x ∈ 4, and TGF ◦ TFG(x) = x for almost all x ∈ [0, 1], with respect to

one-dimensional Lebesgue measure. We also have TGF (4) 6= [0, 1] but TGF (4) = [0, 1].

Example 3.6 (A family of fractal homeomorphisms on a triangular laminar). Let 4 denote a
filled equilateral triangle as illustrated in Figure 4. The IFS Fr, 0 < r ≤ 1

2 , on 4 consists of
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Figure 4. See Example 3.6.

the four affine functions as illustrated in the figure on the left, where 4 is mapped to the four
smaller triangles so that points A,B,C are mapped are mapped, respectively, to points a, b, c.
A probability vector is associated with F such that the probability is proportional to the area of
the corresponding triangle. The IFS Gλ is defined in exactly the same way, but according to the
figure on the right. The attractor of each IFS is 4. (It is quite a subtle point, that there exists
a metric, equivalent to the Euclidean metric on R2, such that both IFSs are contractive, see [?].)
It is proved in [11] that the corresponding invariant measures µF and µG are both 2-dimensional
Lebesque measure. By Theorem 2.4 and [6, Theorem 1], or by [11], the fractal transformation
T rFG is an area-preserving homeomorphism of 4 for all 0 < r ≤ 1

2 . See [11] for related examples
of volume-preserving fractal homeomorphisms between tetrahedra.

4. Isometries between Hilbert Spaces

Given an IFS F with attractor AF and an invariant measure µF , the Hilbert space L2
F =

L2(AF , µF ) of complex-valued functions on AF that are square integrable w.r.t. µF are endowed
with the inner product < ·, · >F defined by

〈ψF , ϕF 〉F =

∫
AF

ψFϕF dµF ,

for all ψF , ϕF ∈ L2
F . Functions that are equivalent, i.e., equal almost everywhere, will be

considered the same function in L2
F .

Definition 4.1. Given two IFSs F and G with the same number of functions, with the same
probabilities, with attractors AF and AG and invariant measures µF and µG, respectively, let
TFG and TGF be the fractal transformations. The induced isometries UFG : L2

F → L2
G and

UGF : L2
G → L2

F are given by

(UFGϕF )(y) = ϕF (TGF (y))

(UGFϕG)(x) = ϕG(TFG(x))

for all x ∈ AF and all y ∈ AG. That these linear operators are isometries is proved as part of
Theorem 4.1 below.

Theorem 4.1. Under the conditions of Definition 4.1,

(1) UFG : L2
F → L2

G and UGF : L2
G → L2

F are isometries;
(2) UFG ◦ UGF = idF and UGF ◦ UFG = idG, the identity maps on L2

F and L2
G respectively;

(3) 〈ψG, UFGϕF r〉G = 〈UGFψG, ϕF 〉F for all ψG ∈ L2
G, ϕF ∈ L2

F .
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Figure 5. Fractal sine series approximations to a constant function on the
interval [0, 1]. The number of terms used here are 10 (red), 50 (green) and 100
(black). Compare with Figure 6; the r.m.s. errors are the same as for the
approximation to the same constant function using a sine series with the same
number of terms. Notice that the edge effect has been shifted from 0 to 1/3.

Proof. (1) To show that the linear operators are isometries:

‖UFGϕF ‖2G =

∫
AG

|UFGϕF |2dµG

=

∫
AG

|ϕF ◦ TGF |2dµG

=

∫
AF

|ϕF |2d(µG ◦ TFG)

=

∫
AF

|ϕF |2dµF = ‖ϕF ‖2F ,

the third equality from the change of variable formula and Lemma 2.3; the fourth equality from
statement (2) of Theorem 2.4.

(2) From the definition of the induced isometries

(UGF UFG(ϕF ))(x) = ϕF (TGF TFG(x)).

But by Lemma 2.3, the fractal transformations TGF and TFG are inverses of each other almost
everywhere. Therefore the functions UGF UFG(ϕF ) and ϕF are equal for almost all x ∈ AF .

(3) This is an exercise in change of variables, similar to the proof of (1). �

Example 4.1 (The Cantor function). Consider the two IFS’s F = {C; 1
3x,

1
3x + 2

3} and G =

{[0, 1]; 1
2x,

1
2x+ 1

2}, the first with attractor equal to the standard Cantor set C, the second with
attractor equal to the unit interval. In this case the fractal transformation TFG : C → [0, 1] is
essentially the Cantor function. The Cantor function is usually defined as a function f : [0, 1]→
[0, 1] so that if x is expressed in ternary notation as x = i1 i2 · · · where ik ∈ {0, 1, 2} for all k,
then f(x) = i′1 i

′
2 · · · expressed in binary, where i′ = 0 if i ∈ {0, 1} and i′ = 1 if i = 2. The

function TF,G : C → [0, 1] is essentially the same except the domain is C rather than [0, 1].

Let F and G be IFSs with the same probability vectors and corresponding invariant measures
µF and µG. If {en} is an orthonormal basis for L2

F , then by Theorem 4.1, the set {ên} =
{UFG en} is an orthonormal basis for L2

G. In the following example, the two IFSs F and G have
the same attractor AF = AG = [0, 1], and the invariant measures are both Lebesque measure.
For example, the Fourier orthonormal basis {e2πinx}∞n=−∞ of L2([0, 1]) is transformed under
UFG to a “fractalized” orthonormal basis of L2([0, 1]). Therefore, to any function in L2([0, 1])
there is a Fourier series and also corresponding (via TFG) a fractal Fourier series. (ii) To prove
that UFGUGF = IF we remove from AF all point that have more than one address w.r.t. F , i.e.
those point x ∈ AF for which π−1F (x) is not a singleton and we also remove those points of AF
for which π−1G (TFG(x)) is not a singleton; this is the set AGF defined earlier; it has full measure,
and TGFTFG|AG

F
is the identity on AGF .
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Figure 6. For comparison with Figure 5, this shows the Fourier sine series
approximations to a constant function on [0, 1] using k = 10 (red), 50 (green)
and 100 (black) significant terms. Note the well-known end effects at the edges
of the interval.

Figure 7. See text. The first three eigenfunctions of the elementary fractal
transformed Laplacian on [0,1]; equivalently, the functions f-sin(n,x) for n=1
(black), 2 (red), 3 (green). The viewing window is [0,1]×[-1,1].

Figure 8. This illustrates the sine functions sin(nπx) for n=1,2,3 for compar-
ison with the fractal sine function shown in Figure 7.

4.1. Fractal Fourier sine series. Consider the IFSs F,G1, G2 of Example 3.3 with probabil-
ities p1 = p2 = 0.5. In this case µF , µG1 and µG2 are all Lebesque measure on [0, 1]. Consider

the orthonormal Fourier sine basis {
√

2 en}∞n=1 for L2[0, 1], where en = sin(nπx).
For the fractal transformation TFG1

, the fractally transformed orthonormal basis for L2[0, 1] is

{
√

2 ên}∞n=1, where

ên(x) = sin(nπTG1F (x)),

for all n ∈ N. Figure 7 illustrates êi, i = 1, 2, 3, in colors black, red, and green, respectively. For
comparison, Figure 8 illustrates the corresponding sine functions sin(nπx) for n = 1, 2, 3.

Example 4.2 (Constant function). Figure 5 illustrates three fractal Fourier sine series approx-
imations to a constant function on the interval [0, 1], while Figure 6 illustrates the standard sine
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Figure 9. Sum of the first 100 (green) and 500 (black) terms in the Fourier
sine series for a step function. The viewing window is [0,1]×[-0.1,1.5]. Compare
with Figures 10 and 11.

series Fourier approximation using the same numbers of terms. The respective Fourier series are
∞∑
n=1

ê2n−1(x)

2n− 1
and

∞∑
n=1

e2n−1 (x)

2n− 1
.

The calculation, in the first case, of the Fourier coefficients, uses the change of variables for-
mula, the fact from Example 3.3 that µF and µG!

are Lebesque measure, and statement 2 of
Theorem 2.4. The mean square errors are the same when using the same number of terms.

Example 4.3 (Step function). Next consider Fourier approximants to a step function. The
fractal transformation TFG2

has fractal sine functions defined by

ẽn := sin(nπTG2F (x))

for all n ∈ N. Figures 9, 10, and 11 illustrate the Fourier approximations for 100 (green) and
500 (black) terms, where the orthogonal bases functions are en, ên and ẽn, respectively. The
respective Fourier series are

2

π

∞∑
n=1

1− cos(nπ/2)

n
fn(x),

where fn is en, ên and ẽn, respectively. The point to notice is that the jump in the step function
at x = 0.5 is cleanly approximated in both the fractal series, in contrast to the well-known
edge effect (Gibbs phenomenon) in the classical case. The price that is paid is that the fractal
approximants have greater pointwise errors at some other values of x in [0, 1]. The analysis of
where this occurs and proof that the mean square error is the same for all three schemes, is
omitted here.

Example 4.4 (Tent function). In Figure 12 partial sums of the Fourier sine series and their
fractal counterparts are compared, for the tent function f(x) = min{x, 1−x} on the unit interval.
The Fourier series with orthogonal functions en is compared with the Fourier series with fractal
orthogonal functions ẽn, using 3 (red), 5 (green), 7 (blue), 20 (black) terms. The Fourier series
are (up to a normalization constant)

k∑
n=1

2 sin(πn/2)− sin(πn)

n2
en(x) and

k∑
n=1

2 sin(πn/2)− sin(πn)

n2
ẽn(x).

Example 4.5 (Function with a dense set of discontinuities). Consider the following approxi-
mation of a function with a dense set of discontinuities. For i = 1, 2, let ψ ∈ L2[0, 1] be defined
by ψ(x) = x for all x ∈ [0, 1]. Then φi = UFGiψ, i = 1, 2, is given by φi(x) = (UFGiψ)(x) =
ψ(TGiF (x)) = TGiF (x), which has a dense set of discontinuities. It follows, by a short calcu-
laltion using statement 2 of Theorem 2.4, that the coefficients in the ên and ẽn Fourier series
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Figure 10. Sum of the first 100 (green) and 500 (black) terms in a fractal
Fourier sine series (using f-sin(n,x) functions) for a step function. Compare
with Figures 9 and 11.

Figure 11. Sum of the first 100 (green) and 500 (black) terms in a fractal
Fourier sine series (using f2-sin(n,x) functions) for a step function. Compare
with Figures 9 and 10.

Figure 12. See Example 4.4. Fourier sine series approximants to a tent func-
tion and fractal counterparts.



FLOWS ON FRACTALS 15

Figure 13. See Example 4.5. Compare with Figure 1. The approximants
converge to TG1F (x) in L2[0, 1] as the number of terms in series sum approaches
infinity.

Figure 14. See Example 4.5. This illustrates the sum of the first thousand
terms of a fractal sine series for TFG2

(x) on [0, 1]. Compare with Figure 2.

expansion of φi are the same as the coefficients in the en expansion for ψ. Therefore the fractal
version Fourier series expansions for φi, i = 1, 2, are

2

π

∞∑
n=1

− cos(πn)

n
ên(x), and

2

π

k∑
n=1

− cos(πn)

n
ẽn(x),

respectively. Sums with 10, 30, and 100 terms are shown in red, green, and blue, respectively, in
Figure 13 for φ1, and for φ2 in Figure 14 using the first 1000 terms of the series.

4.2. Legendre polynomials. The Legendre polynomials are the result of applying Gram-
Schmidt orthogonalization {1, x, x2, . . . }, with respect to Lebesgue measure on [−1, 1]. Denote
the Legendre polynomials shifted to the interval [0, 1] by {Pn(x)}∞n=0. They form a complete
orthogonal basis for L2[0, 1], where the inner product is

〈ψ,ϕ〉 =

1∫
0

ψ(x)ϕ(x)dx.

In this case each of the unitary transformations UFG associated with Example 3.3 maps
L2[0, 1] to itself, and we obtain the “fractal Legendre polynomials”

PFGn (x) = Pn(TGF (x)).



16 C. BANDT, M. F. BARNSLEY, M. HEGLAND, AND A. VINCE

Figure 15. Legendre polynomials and their fractal counterparts corresponding
to TFG1 . Both sets of functions form orthogonal basis sets with respect to
Lebesgue measure on the interval [−1, 1]. See also Figure ??.

Figure 16. Legendre polynomials and their fractal counterparts corresponding
to TFG2 . See also Figure 15.

With F,G1, G2 as previously defined in Example 3.3, Figures 15 and 16 illustrate the Legendre
polynomials and their fractal counterparts. Figure 15 shows the fractal Legendre polynomials
PFG1
n (x) and Figures 16 shows the fractal Legendre polynomials PFG2

n (x).

4.3. The action of the unitary operator on Haar wavelets. With F,G2 and T = TFG2
:

[0, 1] → [0, 1] as previously defined, let U = UFG2
: L2[0, 1] → L2[0, 1] be the associated (self-

adjoint) unitary transformation. Let I∅ = [0, 1] and H∅ : R → R be the Haar mother wavelet
defined by

H∅(x) =

 +1 if x ∈ [0, 0.5),
−1 if x ∈ [0.5, 1),

0 otherwise.

For σ ∈ {0, 1}k, k ∈ N, write σ = σ1σ2...σk and |σ| = k. If |σ| = 0 then σ = ∅, the empty string.
Also let Iσ = hσ1

◦ hσ2
◦ ... ◦ hσk

(I∅), where h0 = f1 and h1 = f2, and let Aσ : R→ R be the
unique affine map such that Aσ(I∅) = Iσ. With this notation, the standard Haar basis, a
complete orthonormal basis for L2[0, 1], is

{Hσ : σ ∈ {0, 1}k, k ∈ N} ∪ {H∅(x)} ∪ {1},

where 1 is the characteristic function of [0, 1) and Hσ : [0, 1)→ R is defined by

Hσ(x) = 2|σ|/2H∅(A−1σ (x)).
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Figure 17. See Section 4.4.

There is an interesting action of U = UFG2
on Haar wavelets. The operator U permutes pairs

of Haar wavelets at each level and flips signs of those at odd levels, as follows. By calculation,
for σ ∈ ∪k∈N{0, 1}k,

UHσ = (−1)|σ|Hσ′

where |σ| = |σ′| and σ′l = (−1)l+1σl + (1 + (−1)k)/2 for all l = 1, 2, ..., |σ′|, UH∅ = H∅, and
U1 = 1. It follows that if f ∈ L2[0, 1] is of the special form

f = a∅H∅ +
∑

σ∈∪k∈N{0,1}2k
cσ(Hσ +Hσ′),

then Uf = f and f ◦ T = f . Such signals are invariant under U . It also follows that if P is the
projection operator that maps L2[0, 1] onto the span of all Haar wavelets down to a fixed depth,
then U−1PU = P .

4.4. Unitary transformations from the Hilbert mapping and its inverse. This continues
Example 3.4, where the fractal transformations h := TFG and h−1 := TGF are the Hilbert
mapping and its inverse, both of which both preserve Lebesgue measure and are mappings
between one and two dimensions. The unitary transformations UFG : L2([0, 1]) → L2([0, 1]2)
and UGF : L2([0, 1]2)→ L2([0, 1]) are given by

UFG(f) = f ◦ h−1, UGF (f) = f ◦ h.

A picture can be considered as a function f : [0, 1]2 → R3, where the image of a point x in R3

gives the RGB colours. The top image of Figure 17 is a picture of the graph of such a function
f : [0, 1]2 → R3. The bottom image is the function (picture) UGF f = f ◦ h transformed by the
unitary operator.

The Hilbert map h : [0, 1] → [0, 1]2 is continuous, one consequence of which is that, if f :
[0, 1]2 → R3 is continuous, then so is the pull-back UGF (f) = f ◦ h : [0, 1] → R3. To illustrate,
any orthonormal basis w.r.t. Lebesgue measure on [0, 1] is mapped, via the unitary operator
UFG, to an orthonormal basis w.r.t. Lebesgue measure on [0, 1]2, and conversely. Because the
Hilbert mapping is continuous, an orthonormal basis of continuous functions {ψn : [0, 1]2 → R}
is transformed by UGF to an orthonormal basis of continuous functions {ψn ◦ h : [0, 1] → R}.
In the other direction, the image of an orthonormal basis consisting of continuous functions on
[0.1] may not comprise continuous functions on [0, 1]2. Figures 18 and 19 illustrate this.

In Figure 20, the right image represents the graph of f : [0, 1]2 → [−1, 1] defined by f(x, y) =
sin(πx) sin(πy). The left image represents the graph of g : [0, 1]2 → [−1, 1] defined by the
continuous function g(x, y) = UGF (f) = f ◦ h(x) where h : [0, 1] → [0, 1]2 is the Hilbert func-
tion. The set of functions in the orthogonal basis {sin(nπx) sin(mπy) : n,m ∈ N} for L2([0, 1]2)
(w.r.t.Lebesque two-dimensional measure) is fractally transformed via the Hilbert mapping to
an othogonal basis for L2[0, 1] (w.r.t.Lebesgue one-dimensional measure). In contrast to the
situation in Section 4.1, these ”fractal sine functions” are continuous.
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Figure 18. The bottom band shows the graph of sin(πx) with function values
represented by shades of grey. The top band shows the graph of h(sin(πx)),
where h is the Hilbert function.

Figure 19. The top image illustrates the graph of f(x, y) = sin(πx) for x, y ∈
[0, 1]2. The band at the bottom illustrates the graph of the pull-back f ◦ h :
[0, 1]→ [−1, 1], which is continuous, in contrast to the situations in Figures 17.

Figure 20. The right image represents the graph of f : [0, 1]2 → [−1, 1] defined
by f(x, y) = sin(πx) sin(πy). The left image represents the graph of g : [0, 1]2 →
[−1, 1] defined by the continuous function g(x, y) = UGF (f) = f ◦ h(x) where
h : [0, 1]→ [0, 1]2 is the Hilbert function.
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5. Fractal Transformation of a Linear Operator

Let F and G be IFSs with the same number of functions. Using the same notation as in the
previous section, if WF : L2

F → L2
F is a linear operator, then the fractally transformed linear

operator WG : L2
G → L2

G defined by

WG = UFG ◦WF ◦ UGF
is also a linear operator. If WF is a bounded, self-adjoint linear ooperator with spectral repre-
sentation

WF =

∫ +∞

−∞
λdPFλ ,

where PFλ is an increasing family of projections on L2
F , then

WG =

∫ +∞

−∞
λdPGλ

where PGλ = UFG ◦ PFλ ◦ UGF . In particular, WF and WG have the same spectrum.

5.1. Differentiable functions.

Definition 5.1. Let F and G be IFSs with F and G non-overlapping, and TFG the fractal
transformation from AF to AG. Assume that the attractor AF of F is the interval [0, 1], and
denote the k times continuously differentiable functions f : AF = [0, 1]→ R by CkF . The set

CkG = {UFGf : f ∈ CkF }

will be called k times continuously differentiable fractal functions. If the kth derivative
of f ∈ CkF is denoted Dk

F f , where Dk
F is the differential operator, then

Dk
G g := (UFG ◦Dk

F ◦ UGF ) g

will be referred to as the kth fractal derivative of g ∈ CkG.

Note that analogous definitions can be made when AF is a subset of Rn with nonempty
connected interior, for example a square or filled triangle in the plane. In that case, we have
partial derivatives.

To obtain an intuitive interpretation of the fractal derivative, consider the case where the
attractor of F (with probability vector p) is [0, 1] as above and F has the property that πF is an
increasing function from the code space to [0, 1] with respect to the lexicographic order on the
code space. Assume, similarly, that G (with the same probability vector p) has the property that
there is a linear order � on AG such that π is increasing with respect to this order on AG and the
lexicographic order on the code space. Assume further that TFG is a fractal homeomorphism.
Note that all the above assumptions hold in Examples 4.1 of the Cantor set and Example 3.3 of
the Koch curve.

For y1, y2 ∈ AG we use the following notation for the interval: [y1, y2] = {y : y1 � y � y2}.
Under these assumptions, and with Lebesque measure µ as the invariant measure of F and µG
the invariant measure of G, define the fractal difference betwen a pair of points in AG by

y1 − y2 =

{
µG([y2, y1]) if y1 ≥ y2,
−µG([y1, y2]) if y1 < y2.

Theorem 5.1. With notation as above, if g : AG → R is a differentiable fractal function, then

DG g (y0) = lim
y→y0

g(y)− g(y0)

y − y0
.

Proof. If g : AG → R is a differentiable fractal function, then there is an f : [0, 1]→ R such that
g = UFG f . Now

DG g(y0) = (UFG ◦
d

dx
◦ UGF g) (y0) = ((UFG ◦

d

dx
◦ UGF ) (UFG f)) (y0)

= ((UFG ◦
d

dx
) f)(y0) = (UFG ◦ f ′) (y) = f ′(TGF y0) = lim

x→TGF y0

f(x)− f(TGF y0)

x− TGF y0
.
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Given x ∈ [0, 1], there is a unique yx ∈ AG such that TGF yx = x. Moreover, since TGF is
continuous, as y → y0 we have TGF y → TGF y0, i.e., x→ TGF y0. Therefore

DG g(y0) = lim
y→y0

f(TGF y)− f(TGF y0)

TGF y − TGF y0
= lim
y→y0

g(y)− g(y0)

TGF y − TGF y0
.

By Lemma 2.2, if ν is the invariant measure on code space with probability vector p, then
(assume y � y0 without loss of generality)

µ([TGF y0, TGF y]) = ν(π−1F ([TGF y0, TGF y]) = ν([π−1F TGF y0, π
−1
F TGF y])

= ν([τG y0, τG y]) = ν([π−1G y0, π
−1
G y]) = ν(π−1G ([y0, y]))

= µG([y0, y]) = y − y0.

Therefore

DG g (y0) = lim
y→y0

g(y)− g(y0)

y − y0
.

�

Example 5.1 (Derivative of the Cantor function). Consider the two IFS’s F = {[0, 1]; 1
2x,

1
2x+

1
2} and G = {C; 1

3x,
1
3x+ 2

3} of Example 4.1. Let TFG : [0, 1]→ C be the fractal transformation
from the unit interval to the Cantor set. If f : [0, 1]→ R is the function f(x) = x, for example,
then g := UFG f = TGF is exactly the Cantor function described in Example 4.1. The fractal
derivative of this Cantor function g is

(DG g)(y) = (UFG◦DF ◦UGF g)(y) = (UFG◦DF ◦UGF ◦UFG f)(y) = (UFG◦1F )(y) = 1G(y) = 1

for all y ∈ C, where 1F and 1G are the constant 1 functions on [0, 1] and C, respectively. Therefore
the Cantor function has constant a.e. fractal derivative 1.

Since the fractal transformation TFG induces transformations on the set of points of AF , on
the set L2(F ) of functions on AF , and on the set of linear operators on L2(F ), any differential
equation on AF can be transformed into a differential equation on AG.

Example 5.2 (Differential equation on the Koch curve). Consider the fractal transformation
of Example 3.3, from the unit interval to the Koch curve. The simple initial value ODE

dy

dx
= y, y(0) = 1

on the interval [0, 1] with solution y = ex transforms to the fractal ODE

(UFG ◦
d

dx
◦ UGF ) ŷ = ŷ, ŷ(TFG0) = 1

on the Koch curve. The fractal solution to this ODE is the function g := UFG(exp), i.e.,
g(x) = eTGF (x).

6. Fractal Flows

Let (X,µ) be a metric space with Borel measure µ, and let f : X → X be invertible almost
everywhere, i.e. if there is a function f−1 : X → X such that f ◦ f−1(x) = f−1 ◦ f(x) − x for
all x in a set of measure 1. Let M(X) be the set of Borel measures on X. Slightly abusing
notation, we use the same symbol f# for the following induced actions on L2(X) and M(X),
respectively:

f#(φ) = φ ◦ f−1 for φ ∈ L2(X)

f#(µ) = µ ◦ f−1 for µ ∈M(X).

Let F be an IFS on the space X, G an IFS on the space Y , and TFG : X → Y a fractal
transformation. Let µF and µG be the corresponding invariant measures with respect to the
same probability vector. If f : X → X is invertible a.e., then define induced actions on Y, L2(Y ),
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and M(Y ) as follows. Again we use the same notation f̂# for the induced actions, where
y ∈ Y, φ ∈ L2(Y ), and µ ∈M(Y ):

g(y) :=f̂#(y) = TFG ◦ f ◦ TGF (y)

f̂#(φ) = g#(φ) = UFG ◦ f# ◦ UGF (φ)

f̂#(µ) = g#(µ).

Note that, if f is measure preserving on X, then by Theorem 2.4 the induced function g is
measure preserving on Y .

By a flow on a space X is meant a mapping f : X ×R→ X, with notation ft(x) often used
instead of f(x, t), such that

f0(x) = x

fs(ft(x)) = fs+t(x)

for all x ∈ X and all s, t ∈ R. Applying the induced actions defined above to each function
ft, t ∈ R, motivates the following notion of fractal flows. Note that there are fractal flows on the
metric space Y , and the space of square integrable functions L2(Y ) and on the space of measures
M(Y ).

Definition 6.1. A flow ft on X induces flows (ft)
# on L2(X) and M(X), and, given a fractal

transformation TFG, the flow ft induces fractal flows (f̂t)
# on Y,L2(Y ), andM(Y ). Since, for

a flow, f−1t = f−t, the explicit formulas for the flows are

gt(y) :=f̂#t (y) = TFG ◦ ft ◦ TGF (y)

f̂#t (φ) = g#t (φ) = UFG ◦ fty# ◦ UGF (φ)

f̂#t (µ) = g#t (µ).

If ft is a continuous, measure preserving flow on (X,µ), then it is readily checked that the

flow f#t : L2(X) → L2(X) is unitary, and hence provides a strongly continuous one parameter
unitary group. By Stone’s theorem [27] there is a unique self-adjoint operator L such that

f#t = eitL,

where iL is referred to as the infinitesimal generator. Moreover, f̂#t = UFG◦f#t ◦UGF : L2(Y )→
L2(Y ) is a fractal flow with infinitesimal generator iL̂ = UFG ◦ L ◦ UGF .

Example 6.1 (Vector field flow). Let V : R2 → R2 be a 2-dimensional vector field given by
V (x, y) = (−y, x). Define a flow f : R2 × R→ R2, in the usual way by solving the autonomous
system

d

dt
f(a, t) = V (f(a, t)), f(a, 0) = a.

The solution is, with notation ft(a) = f(a, t) and a = (a, b),

ft(a, b) = (a cos t+ b sin t, a sin t− b cos t).

With a, b fixed, as a function of t, the flow curves are circles centered at the origin, so the domain
of the flow ft(a) can be restricted to D × R, where D is the closed unit disk.

Now consider the area preserving fractal homeomorphism of Example 3.6. Let D be the
largest inscribed disk in the equilateral triangle 4. Without loss of generality, assume that D
has radius 1 and consider the flow ft(x) as in the paragraph above. The fractally transformed
flow, as in Definition 6.1, is

gt(y) = TFG ◦ ft ◦ TGF (y),

which as a function of y, is area preserving. If the fractally transformed vector field is denoted

V̂ = TFG ◦ V ◦ TGF , then gt is the fractal flow of the vector field V̂ . See Figure 21.

Example 6.2 (Fractal flows on the unit interval and the circle). Consider the Lebesgue measure
preserving flow on a line segment [0, 1] or the circle S1 defined by ft : [0, 1]→ [0, 1], t ∈ (−∞,∞),
defined by

x 7→ (x+ t) mod 1.
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Figure 21. This image relates to Example 21.

Consider any measure ρ supported on [0, 1] that is absolutely continuous with respect to
Lebesque measure µ. We may treat ρ as a model for the brightness and colours of a one-
dimensional picture: the rate at which light of a set of frequencies is emitted, or reflected, in
unit time under steady illumination by the Borel set B is ρ0(B); see [5]. A vector of measures

(ρR, ρG, ρB) represents the red, green, and blue components. With notation as above, f#t :
M → M is a flow on M. The orbit of a particular measure ρ0 models the picture being
transported/translated at constant velocity along the line segment (what comes out at one end
of the line segment immediately reenters the other end) or around the circle S1.

Given an initial measure ρ0, absolutely continuous with respect to Lebesque measure, consider

its orbit ρt = f#t (ρ0), i.e. ρt(B) = ρ0(f−tB). Interpreted in the model, ρt is the translated
picture/measure. By the Radon Nikodym theorem there is a measurable function %0 such that

ρ0(B) =

∫
B

%0(x) dµ = 〈χB , %0〉

for all Borel sets B, where χB is the indicator function for B. It follows that

ρt(B) =

∫
B

%t(x) dµ = 〈χB , %t〉 = 〈f#t χB , %0〉,

where %t(x) = f#−t(%0)(x) = %0((x + t) mod 1), and the last equality by a change of variable.

Letting Vt := f#t : L2(S1)→ L2(S1) , by the comments prior to this example, f#t = eitL, where
L is a self-adjoint operator. It is well-known that, for this choice of the flow ft, the operatort L
is an extension of the differential operator −i ddx acting on infinitely differentiable functions on

S1. Therefore, on an appropriate domain,

Vt = eitL = et
d
dx .

Let TFG : [0, 1] → [0, 1] be a uniform Lebesgue measure-preserving fractal transformation,
as considered in Section 4.1, and let UFG : L2([0, 1]) → L2([0, 1]) be the corresponding unitary
transformation. Then the fractal flow

V̂t := f̂#t = UFG Vt UGF

is again a strongly continuous one parameter unitary group generated by the self-adjoint operator

L̃ := UFGLUGF .
Figure 22 illustrates a fractal flow on [0, 1] for the case of TFG1 in Example 3.3 and Section 4.1.

The bottom strip shows an initial function ϕ on the interval [0, 1]. In its orbit Vt(ϕ), t ≥ 0, this
picture slides to the right, colours going off the right-hand end and coming on at the left end,
cyclically (not in the figure). From the top of the figure reading downwards, the successive strips

show the same orbit under the fractal flow V̂t at times t = 0, 1, 2, ..., 7. Then there is a white
gap, followed by the flow at time t = 100.
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Figure 22. See text. Illustration of a fractal flow.

A surprising property of the flow orbit ρt is that it is a continuous function of t, although
UFG may map continuous functions to discontinuous ones. The proof is a consequence of the

fact [26, Proposition 2.5] that ‖f#t %− %‖L1 → 0 as t→ 0.
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