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Non-existence of points rational over number fields
on Shimura curves

Keisuke Arai

Abstract

Jordan, Rotger and de Vera-Piquero proved that Shimura curves have no
points rational over imaginary quadratic fields under a certain assumption. In
this article, we expand their results to the case of number fields of higher de-
gree. We also give counterexamples to the Hasse principle on Shimura curves.

1 Introduction

Let B be an indefinite quaternion division algebra over Q, and d(B) its discriminant.
Fix a maximal order O of B. A QM-abelian surface by O over a field F is a pair
(A,i) where A is a 2-dimensional abelian variety over F', and ¢ : O — Endp(A) is
an injective ring homomorphism satisfying i(1) = id (cf. [2, p.591]). Here, Endp(A)
is the ring of endomorphisms of A defined over F. We assume that A has a left O-
action. Let M? be the Shimura curve over Q associated to B, which parameterizes
isomorphism classes of QM-abelian surfaces by O (cf. [3, p.93]). We know that
M?P is a proper smooth curve over Q. For an imaginary quadratic field k, we have
MB (k) = 0 under a certain assumption ([3, Theorem 6.3], [5, Theorem 1.1]). We
expand this result to the case of number fields of higher degree in this article. The
method of the proof is based on the strategy in [3], and the key is to control the field
of definition of the QM-abelian surface corresponding to a rational point on M?.
We also give counterexamples to the Hasse principle on M? over number fields. We
will discuss the relevance to the Manin obstruction in a forthcoming article.

For a prime number ¢, let B(q) be the set of isomorphism classes of indefinite
quaternion division algebras B over QQ such that

B ®q Q(v=q) # M2(Q(v=9)) if ¢ # 2,
B ®g Q(vV-1) # Mx(Q(v-1)) and B ®g Q(v=2) # Mx(Q(v-2)) ifg=2.

For positive integers N and e, let

C(N,e) ::{ae+6eEZ}aGCisarootofT2+sT+Nf0rsomeSEZ, s* <4N },

D(N,e) :={a,at N2,a+2N2,a> = 3N €R |a€C(N,e) }.
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Here, @ is the complex conjugate of a. If e is even, then D(N,e) C Z. For a subset
D CZ,let

P(D) := { prime divisors of some of the integers in D\ {0} } .
For a number field k£ and a prime q of k of residue characteristic g, let
e r(q): the residue field of q,
e N;: the cardinality of x(q),

e ¢,: the ramification index of q in k/Q,

fq: the degree of the extension x(q)/F,,

S(k,q): the set of isomorphism classes of indefinite quaternion division algebras
B over Q such that any prime divisor of d(B) belongs to

P(D(Ng,eq)) U{q} if B®qgk = Ms(k) and e, is even,
P(D(Ng, 2eq)) U{q} if B ®qk F Ma(k).
Note that S(k, q) is a finite set. The main result of this article is:

Theorem 1.1. Let k be a number field of even degree, and q a prime number such
that

e there is a unique prime q of k above q,
o fyis odd (and so eq is even), and
e BeBg)\S(k,a)
Then MB(k) = 0.
Remark 1.2. (1) By [7, Theorem 0], we have M?(R) = (.
(2) If k is of odd degree, then k has a real place, and so MB(k) = 0.

2 Canonical isogeny characters

In this section, we review canonical isogeny characters associated to QM-abelian
surfaces, which were introduced in [3, §4]. Let K be a number field, K an algebraic
closure of K, G = Gal(K/K) the absolute Galois group of K, Ok the ring of
integers of K, (A,i) a QM-abelian surface by O over K, and p a prime divisor of
d(B). Then the p-torsion subgroup A[p](K) of A has exactly one non-zero proper
left O-submodule, which we shall denote by C,. Then C), has order p?, and is stable
under the action of Gg. Let Po C O be the unique left ideal of reduced norm pZ.



In fact, Po is a two-sided ideal of O. Then C, is free of rank 1 over O/PBp. Fix an
isomorphism O/Peo = F,2. The action of G on C, yields a character

op: G — Auto(Cp) = F 5.

Here, Auto(C,) is the group of O-linear automorphisms of C,. The character g,
depends on the choice of the isomorphism O/PBo = F,2, but the pair {g,, (0,)"} is
independent of this choice. Either of the characters o,, (0,)? is called a canonical
1sogeny character at p. We have an induced character
where G2 is the Galois group of the maximal abelian extension K*"/K.
For a prime £ of K, let Ok ¢ be the completion of Ok at £, and
(L) O ¢ — IF;

the composition
Op, 2 ap 2w
Here wg is the Artin map.
Proposition 2.1 ([3, Proposition 4.7 (2)]). If £1 p, then r,(£)1? = 1.
Fix a prime B of K above p. Then we have an isomorphism x() = prm of
finite fields. Let ¢ty := ged(2, f) € {1, 2}.
Proposition 2.2 (3, Proposition 4.8]). (1) There is a unique element ey € Z/(p™ —
1)Z satisfying rp(P)(u) = Normﬁ(;43)/]Fptq8 ()= for any u € Oy Here, u €
K(P) is the reduction of u modulo *P.

(2) —= =epmod (p—1).

Corollary 2.3. For any prime number | # p, we have r,(B)(I71)?* = (**/* mod p.

Zepfp
Proof. r,(P)(I71)* = (Normyg)/r . (I71)~*)2 = Normg o /F ()2 = [

[*%/% mod p.

O

For a prime number [, the action of Gx on the [-adic Tate module T;A yields a
representation

Rl : GK — Auto(TlA) = OIX - BIX,

where Autn(7T;A) is the group of automorphisms of T)A commuting with the action
of O, and O = O ®z Z;, B = B ®g Q. Let Nrdp, /g, be the reduced norm on B5;.
Let 91 be a prime of K, and Fyy € Gk a Frobenius element at 91. For each e > 1,
there is an integer a([Fy,) € Z satisfying

Nrdp, (T — Ri(Fiy)) = T? — a(Eg)T + (Nop)* € Z[T]

for any [ prime to 9.



Proposition 2.4 (3, Proposition 5.3]). (1) We have a(Fg)? < 4(Ngp)¢ for any
positive integer e.

(2) Assume M1 p. Then
a(Fgy) = 0p(Fiy) + (Nox) 0, (Fy) ™" mod p
for any positive integer e.

Let agn, agn € C be the roots of T? — a(Fy)T + Ngyp. Then agy + agn = a(Fip)
and agnasn = Nagp. We see that the roots of T2 — a(Fg,)T + (Noy )¢ are agy, @ Then
sy +as; = a(F§;). We have the following corollary to Proposition 2.4(1) (for e = 1):

Corollary 2.5. We have a(Fy;) € C(No, e) for any positive integer e.
For a later use, we give the following lemma:

Lemma 2.6. Let m be the residue characteristic of M. The the following conditions
are equivalent:

(i) m | a(Fa).

(ii) m | a(Fg;) for a positive integer e.

(iii) m | a(Fyy) for any positive integer e.
Proof. For each e > 1, there is a polynomial P,.(S,T") € Z[S,T] such that (S+7)°¢ =
S+T+STP.(S+T,ST). Then a(Fm)¢ = a(Fg)+NoPe(a(Fa), Nog). Since m | Ny,

we have m | a(Foy) if and only if m | a(Fg;).
U

3 Proof of the main result

Now we prove Theorem [[.Il Suppose that the assumption of Theorem [L.1] holds.

Assume that there is a point x € MP(k). When B ®qg k % My(k), let Ky be a
quadratic extension of k satisfying B ®q Ky = My(Kj). Let

oo 4k i B@gk = My(k),
T Ko if B®g k2 My(k).

Note that the degree [K : Q] is even. Then x is represented by a QM-abelian surface
(A,i) by O over K (see [3, Theorem 1.1]). Since B ¢ S(k, q), there is a prime divisor
p of d(B) such that p # ¢ and p does not belong to

P(D(Nyeg))  if B®gk = My(k),
P(D(Ny, 2¢,)) if B ®gk % My(k).

Fix such p, and let
op: Gxg — F;

be a canonical isogeny character at p associated to (A, ).
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By Proposition 2.} the character g,” is unramified outside p. Then it is identified
with a character Jx(p) — F 5, where Jx(p) is the group of fractional ideals of K
prime to p. When B ®q k 2 Ma(k), we may assume that q is ramified in K/k by
replacing Kj if necessary. In any case, let 9 be the unique prime of K above q. Note
that Q is the unique prime of K above ¢, and so qOx = Q°, (Ng)®2 = (¢/2)%a =
¢"*Q_ Then by Corollary 23, we have

91172(FSD) = 91172(962) = Q}1)2(qOK) = Q]lyz(lv o 717q7 BN P )

1

— Qllf(q_ R ’q_l’ 17 I 17 . -) — H’[’p(fp>12(q_1> = Hq6eq3fq3 — q6[KQ} mod p
Blp Blp

Here, (1,---,1,q,---,q,---) (resp. (¢ *,---,¢" ', 1,---,1,---)) is the idele of K
whose components above p are 1 and the others ¢ (resp. whose components above
p are ¢~ and the others 1), and 3 runs through the primes of K above p. On the
other hand, we have

a(Fg*) = 0p(FgY) + (Na)@0,(Fg) ™! = 0,(F§) + ¢ Yo, (Fg?) ™" mod p

by Proposition [2.4(2). Let ¢ := g op(Fq?) € F),. Then

e?=1 and a(F)=(c+ 5_1)q[K£Q] mod p.

Therefore

[K:Q

a(F)=0,4q¢ 5 ,+2¢ 2

mod p or a(FSD)2 = 3¢Y mod p.
By Corollary 25, we have a(F5?) € C(Ng, eq). We also have

eq if B®gk = My(k),

a=" At cn {Qeq if Bwg k % Ms(k).

Then
a(Fg) a(F) £q 7 La(Fg) £2g 7 a(Fg)? = 3¢"% € D(Na, cq).
Since p & P(D(Ng, eq)), we have
(1) a(F§?) =0,%q = ,:t2q[K5Q], or
(2) a(F5?)* = 3¢%C.

[Case (1)]. In this case, we have ¢ | a(F§?). Then by Lemma 2.6] we have ¢ | a(Fy).

Since fo(= f;) is odd, we obtain B ®q Q(v/—¢) = M2(Q(y/—¢)) or (¢ = 2 and

B®gQ(v/—1) = My(Q(v/—1))) (see [3, Theorem 2.1, Propositions 2.3 and 5.1 (1)]).

This contradicts B € B(q).

[Case (2)]. In this case, ¢ = 3 and [K : Q)] is odd, which is a contradiction.
Therefore we conclude MZ(k) = ().



Table 1:

(N,e) | C(N,e) D(N,e) P(D(N,e))
(2,2) [0, =3, —4 |0, £1, £2, -3, £4, -5, —6, -7, -8, —12 | 2, 3,5, 7
(2,4) |1, £8 0,1,—3,+4,5, —7, £8,9, £12, £16, —47 | 2, 3, 5, 7, 47
0,1, -7, £8, 9, £16, 17, —24, 25, —32,
(2,6) | 0,9, —16 64 111, —102 2,3,5,7, 17, 37
0,1, —15, 16, —31, 32, —47, 43, —63, 64,
(2,8) | —31, 32 103, 256 2,3, 5,7, 31,47, 193
0, —7, 25, £32, 57, +64, 89, —96, 121,
(2,10) | 0, 57, —64 198, 177, 1024, 8072 2,3,5,7, 11, 19, 59, 89
0, 17, —47, £64, 81, —111, £128, —175, | 2, 3, 5, 7, 17, 37, 47,
(2,12) | —47, 128 +192, £256, 4096, —10079 10079
(2, 14) 0, —87, | 0,41, —87, £128, 169, —215, £256, —343, | 2, 3, 5, 7, 13, 29, 41, 43,
’ —256 —384, —512, 16384,—41583, —49152 83, 167
0, —63, 193, 256, 449, 512, 705, 768, 961, | 2, 3, b, 7, 31, 47, 193,
(2,16) | 449, 512 1024, 4993, 65536 449, 4993
—2, 3, —5,| 0,1, —2, £3, 4, —5, £6, —8, +9,
(3.2) | g —11, —12, —18, —23 2,3,5, 11,23
- o 14 |0 2,4, 5,7 %0, —11, 14, 16, £18,
(3.4) | x| —23 25, 427, 32,36, —47, 81, ~162, | 2,3,5,7, 11,23, 47, 97
—194
0, -8, 10, —17, 19, —27, 37, —44, 46, —54, | 2, 3, 5, 11, 17, 19, 23,
(3,6) | 10, 46, =54 64, —71, 73, —81, 100, —108, 729, —2087 | 37, 71, 73, 2087
0, —32, 34, —47, 49, £81, —113, 115,
(3,8) 3141’13 1;521’ —128, £162, —194, 196, £243, —275, 324, 3’73’15157’1;11’ 1325273’ 47,
’ 6561, —6914, —13122, —18527 PR T
ou3 75, | 0 4 —11,232, 230, £243, 475, 482, 2,3, 5, 11, 19, 23, 20,
(3.10) | T%o yga | 486, 718, —725, 729, 961, —968, ~972, | 31, 239, 241, 359, 2399,
’ 48478, 55177, 59049, —118098 24239
658, 1358, | O 7L 100, —629, 658, 729, —800, | 2,3, 5,7, 11,17, 19, 23,
(3.12) | |, " | —1358, 1387, 1458, —2087, 2116, 2187, | 37, 47, 71, 73, 97, 433,
—2816, 2916, 249841, 531441, —1161359 | 577, 1009, 1151, 2087
0187 0, 328, 835, —1352, —1859, £2187, | 2, 3, 5, 11, 13, 23, 41,
(3,14) 5515 3029 2515, 3022, +4374, 4702, 5209, | 43, 83, 167, 337, 503,
’ Caa | %6361, 6889, 7396, —8748, 4782960, | 673, 1511, 2351, 5200,
—5216423, —8023682, —9565938 24023
53, 0, —353, 1156, —5405, 6208, G561, | ) o) 7 oq oy
) —6014,  —11966, 12760, £13122, | 270 0 0T O
(3.16) | | 066 —13475, 18527, 10683, —25088, | 0 " oos oy gune
13192 26244, 14044993, 43046721, —86093442, | Yt ot )

—129015554




4 Counterexamples to the Hasse principle

We have computed the sets C(N,e), D(N,e), P(D(N,e)) in several cases as seen in
Table [II Then we obtain the following counterexamples to the Hasse principle on
M?® over number fields:

Proposition 4.1. (1) Letd(B) = 39, and let k = Q(v/2,vV/—13) or Q(v/=2,/—13).
Then B ®qk = My(k), MB(k) =0 and MB(k,) # 0 for any place v of k. Here,
k, is the completion of k at v.

(2) Let L be the subfield of Q({o) satisfying [L : Q] = 3, and let (d(B),k) =
(62, L(v/=39)) or (86, L(v/=15)). Then B ®qg k % My(k), MB(k) = 0 an
MB(k,) # 0 for any place v of k.

Proof. (1) The prime number 3 (resp. 13) is inert (resp. ramified) in Q(y/—13). Then
B ®g Q(v/—13) = M2(Q(v/—13)), and so B ®q k = My(k).

Applying Theorem [Tl to ¢ = 2, we obtain M?(k) = 0. In fact, (eq, fq) = (4,1)
where ¢ is the unique prime of k above ¢ = 2, and the prime divisor 13 of d(B) does
not belong to P(D(2,4)) U {2} (see Table ). Since 3 (resp. 13) splits in Q(v/—2)
(tesp. Q(v/=T)), we have B ©q Q(v=2) % My(Q(v/=2)) (resp. B @ Q(v/-T) 2
Ma(Q(v-1))).

By [3, p.94], we have MZ(Q(v/—13),,) # 0 for any place w of Q(v/—13) (cf. [4]).
Therefore MP(k,) # () for any place v of k.

(2) For a field F' of characteristic # 2 and two elements a,b € F*, let

b
(a};):F—FFe-i—Ff-i-Fef

be the quaternion algebra over F' defined by
e?=a, f2=0b, ef = —fe.

For a prime number p, let e,, f,, g, be the ramification index of p in k/Q, the degree
of the residue field extension above p in k/Q, and the number of primes of k£ above
p respectively.

Let (d(B), k) = (62, L(+/—39)) (resp. (86, L(v/—15))). First, we prove B ®q k %

My (k). We see B = (62(’@13) (resp. (8%5)) by [6, §3.6 g)]. We have (e, f2, g2) =

(1,3,2). Let v be place of k above 2. By the same argument as in the proof of [I]
Proposition 8.1], we have B ®q k, 2 Ma(k,). Therefore B ®q k 2 My(k).

Applying Theorem [Tl to ¢ = 3, we obtain M?(k) = 0. In fact, (e, fq) = (6,1)
where ¢ is the unique prime of k above ¢ = 3, and the prime divisor 31 (resp. 43)
of d(B) does not belong to P(D(3,12)) U {3}. Since 31 (resp. 43) splits in Q(v/—3),
we have B ®g Q(v/—3) % My(Q(v/-3)).

By [5, Table 1], we have MB(Q(v/=39),) # 0 (resp. MP(Q(v/—15),,) # 0) for
any place w of Q(v/—39) (resp. Q(v/—15)). Therefore M (k,) # () for any place v
of k.
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