Non-existence of points rational over number fields on Shimura curves

Keisuke Arai

Abstract

Jordan, Rotger and de Vera-Piquero proved that Shimura curves have no points rational over imaginary quadratic fields under a certain assumption. In this article, we expand their results to the case of number fields of higher degree. We also give counterexamples to the Hasse principle on Shimura curves.

1 Introduction

Let B be an indefinite quaternion division algebra over \mathbb{Q} , and d(B) its discriminant. Fix a maximal order \mathcal{O} of B. A QM-abelian surface by \mathcal{O} over a field F is a pair (A, i) where A is a 2-dimensional abelian variety over F, and $i: \mathcal{O} \hookrightarrow \operatorname{End}_F(A)$ is an injective ring homomorphism satisfying i(1) = id (cf. [2, p.591]). Here, $\operatorname{End}_F(A)$ is the ring of endomorphisms of A defined over F. We assume that A has a left \mathcal{O} action. Let M^B be the Shimura curve over \mathbb{Q} associated to B, which parameterizes isomorphism classes of QM-abelian surfaces by \mathcal{O} (cf. [3, p.93]). We know that M^B is a proper smooth curve over \mathbb{Q} . For an imaginary quadratic field k, we have $M^B(k) = \emptyset$ under a certain assumption ([3, Theorem 6.3], [5, Theorem 1.1]). We expand this result to the case of number fields of higher degree in this article. The method of the proof is based on the strategy in [3], and the key is to control the field of definition of the QM-abelian surface corresponding to a rational point on M^B . We also give counterexamples to the Hasse principle on M^B over number fields. We will discuss the relevance to the Manin obstruction in a forthcoming article.

For a prime number q, let $\mathcal{B}(q)$ be the set of isomorphism classes of indefinite quaternion division algebras B over \mathbb{Q} such that

$$\begin{cases} B \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-q}) \not\cong \mathrm{M}_2(\mathbb{Q}(\sqrt{-q})) & \text{if } q \neq 2, \\ B \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-1}) \not\cong \mathrm{M}_2(\mathbb{Q}(\sqrt{-1})) & \text{and } B \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-2}) \not\cong \mathrm{M}_2(\mathbb{Q}(\sqrt{-2})) & \text{if } q = 2. \end{cases}$$

For positive integers N and e, let

 $\mathcal{C}(N,e) := \left\{ \alpha^e + \overline{\alpha}^e \in \mathbb{Z} \mid \alpha \in \mathbb{C} \text{ is a root of } T^2 + sT + N \text{ for some } s \in \mathbb{Z}, \ s^2 \le 4N \right\},$ $\mathcal{D}(N,e) := \left\{ a, a \pm N^{\frac{e}{2}}, a \pm 2N^{\frac{e}{2}}, a^2 - 3N^e \in \mathbb{R} \mid a \in \mathcal{C}(N,e) \right\}.$

Here, $\overline{\alpha}$ is the complex conjugate of α . If e is even, then $\mathcal{D}(N, e) \subseteq \mathbb{Z}$. For a subset $\mathcal{D} \subseteq \mathbb{Z}$, let

 $\mathcal{P}(\mathcal{D}) := \{ \text{ prime divisors of some of the integers in } \mathcal{D} \setminus \{0\} \}.$

For a number field k and a prime q of k of residue characteristic q, let

- $\kappa(\mathbf{q})$: the residue field of \mathbf{q} ,
- $N_{\mathfrak{q}}$: the cardinality of $\kappa(\mathfrak{q})$,
- $e_{\mathfrak{q}}$: the ramification index of \mathfrak{q} in k/\mathbb{Q} ,
- $f_{\mathfrak{q}}$: the degree of the extension $\kappa(\mathfrak{q})/\mathbb{F}_q$,
- S(k, q): the set of isomorphism classes of indefinite quaternion division algebras
 B over Q such that any prime divisor of d(B) belongs to

$$\begin{cases} \mathcal{P}(\mathcal{D}(N_{\mathfrak{q}}, e_{\mathfrak{q}})) \cup \{q\} & \text{if } B \otimes_{\mathbb{Q}} k \cong M_2(k) \text{ and } e_{\mathfrak{q}} \text{ is even,} \\ \mathcal{P}(\mathcal{D}(N_{\mathfrak{q}}, 2e_{\mathfrak{q}})) \cup \{q\} & \text{if } B \otimes_{\mathbb{Q}} k \not\cong M_2(k). \end{cases}$$

Note that $\mathcal{S}(k, \mathfrak{q})$ is a finite set. The main result of this article is:

Theorem 1.1. Let k be a number field of even degree, and q a prime number such that

- there is a unique prime **q** of k above q,
- $f_{\mathfrak{q}}$ is odd (and so $e_{\mathfrak{q}}$ is even), and
- $B \in \mathcal{B}(q) \setminus \mathcal{S}(k, \mathfrak{q}).$

Then $M^B(k) = \emptyset$.

Remark 1.2. (1) By [7, Theorem 0], we have $M^B(\mathbb{R}) = \emptyset$.

(2) If k is of odd degree, then k has a real place, and so $M^B(k) = \emptyset$.

2 Canonical isogeny characters

In this section, we review canonical isogeny characters associated to QM-abelian surfaces, which were introduced in [3, §4]. Let K be a number field, \overline{K} an algebraic closure of K, $G_K = \operatorname{Gal}(\overline{K}/K)$ the absolute Galois group of K, \mathcal{O}_K the ring of integers of K, (A, i) a QM-abelian surface by \mathcal{O} over K, and p a prime divisor of d(B). Then the p-torsion subgroup $A[p](\overline{K})$ of A has exactly one non-zero proper left \mathcal{O} -submodule, which we shall denote by C_p . Then C_p has order p^2 , and is stable under the action of G_K . Let $\mathfrak{P}_{\mathcal{O}} \subseteq \mathcal{O}$ be the unique left ideal of reduced norm $p\mathbb{Z}$. In fact, $\mathfrak{P}_{\mathcal{O}}$ is a two-sided ideal of \mathcal{O} . Then C_p is free of rank 1 over $\mathcal{O}/\mathfrak{P}_{\mathcal{O}}$. Fix an isomorphism $\mathcal{O}/\mathfrak{P}_{\mathcal{O}} \cong \mathbb{F}_{p^2}$. The action of G_K on C_p yields a character

$$\varrho_p: \mathcal{G}_K \longrightarrow \operatorname{Aut}_{\mathcal{O}}(C_p) \cong \mathbb{F}_{p^2}^{\times}.$$

Here, $\operatorname{Aut}_{\mathcal{O}}(C_p)$ is the group of \mathcal{O} -linear automorphisms of C_p . The character ϱ_p depends on the choice of the isomorphism $\mathcal{O}/\mathfrak{P}_{\mathcal{O}} \cong \mathbb{F}_{p^2}$, but the pair $\{\varrho_p, (\varrho_p)^p\}$ is independent of this choice. Either of the characters $\varrho_p, (\varrho_p)^p$ is called a *canonical* isogeny character at p. We have an induced character

$$\varrho_p^{\mathrm{ab}}: \mathbf{G}_K^{\mathrm{ab}} \longrightarrow \mathbb{F}_{p^2}^{\times},$$

where G_K^{ab} is the Galois group of the maximal abelian extension K^{ab}/K .

For a prime \mathfrak{L} of K, let $\mathcal{O}_{K,\mathfrak{L}}$ be the completion of \mathcal{O}_K at \mathfrak{L} , and

$$r_p(\mathfrak{L}): \mathcal{O}_{K,\mathfrak{L}}^{\times} \longrightarrow \mathbb{F}_{p^2}^{\times}$$

the composition

$$\mathcal{O}_{K,\mathfrak{L}}^{\times} \xrightarrow{\omega_{\mathfrak{L}}} \mathbf{G}_{K}^{\mathrm{ab}} \xrightarrow{\varrho_{p}^{\mathrm{ab}}} \mathbb{F}_{p^{2}}^{\times}.$$

Here $\omega_{\mathfrak{L}}$ is the Artin map.

Proposition 2.1 ([3, Proposition 4.7 (2)]). If $\mathfrak{L} \nmid p$, then $r_p(\mathfrak{L})^{12} = 1$.

Fix a prime \mathfrak{P} of K above p. Then we have an isomorphism $\kappa(\mathfrak{P}) \cong \mathbb{F}_{p^{f_{\mathfrak{P}}}}$ of finite fields. Let $t_{\mathfrak{P}} := \gcd(2, f_{\mathfrak{P}}) \in \{1, 2\}.$

Proposition 2.2 ([3, Proposition 4.8]). (1) There is a unique element $c_{\mathfrak{P}} \in \mathbb{Z}/(p^{t_{\mathfrak{P}}}-1)\mathbb{Z}$ satisfying $r_p(\mathfrak{P})(u) = \operatorname{Norm}_{\kappa(\mathfrak{P})/\mathbb{F}_{p^{t_{\mathfrak{P}}}}}(\widetilde{u})^{-c_{\mathfrak{P}}}$ for any $u \in \mathcal{O}_{K,\mathfrak{P}}^{\times}$. Here, $\widetilde{u} \in \kappa(\mathfrak{P})$ is the reduction of u modulo \mathfrak{P} .

(2)
$$\frac{2c_{\mathfrak{P}}}{t_{\mathfrak{P}}} \equiv e_{\mathfrak{P}} \mod (p-1).$$

Corollary 2.3. For any prime number $l \neq p$, we have $r_p(\mathfrak{P})(l^{-1})^2 = l^{e_{\mathfrak{P}}f_{\mathfrak{P}}} \mod p$.

Proof.
$$r_p(\mathfrak{P})(l^{-1})^2 = (\operatorname{Norm}_{\kappa(\mathfrak{P})/\mathbb{F}_p^{t_{\mathfrak{P}}}}(l^{-1})^{-c_{\mathfrak{P}}})^2 = \operatorname{Norm}_{\mathbb{F}_p^{f_{\mathfrak{P}}}/\mathbb{F}_p^{t_{\mathfrak{P}}}}(l)^{2c_{\mathfrak{P}}} = l^{\frac{2c_{\mathfrak{P}}f_{\mathfrak{P}}}{t_{\mathfrak{P}}}} = l^{e_{\mathfrak{P}}f_{\mathfrak{P}}} \mod p.$$

For a prime number l, the action of G_K on the l-adic Tate module $T_l A$ yields a representation

$$R_l: \mathbf{G}_K \longrightarrow \operatorname{Aut}_{\mathcal{O}}(T_l A) \cong \mathcal{O}_l^{\times} \subseteq B_l^{\times},$$

where $\operatorname{Aut}_{\mathcal{O}}(T_lA)$ is the group of automorphisms of T_lA commuting with the action of \mathcal{O} , and $\mathcal{O}_l = \mathcal{O} \otimes_{\mathbb{Z}} \mathbb{Z}_l$, $B_l = B \otimes_{\mathbb{Q}} \mathbb{Q}_l$. Let $\operatorname{Nrd}_{B_l/\mathbb{Q}_l}$ be the reduced norm on B_l . Let \mathfrak{M} be a prime of K, and $F_{\mathfrak{M}} \in \mathcal{G}_K$ a Frobenius element at \mathfrak{M} . For each $e \geq 1$, there is an integer $a(F_{\mathfrak{M}}^e) \in \mathbb{Z}$ satisfying

$$\operatorname{Nrd}_{B_l/\mathbb{Q}_l}(T - R_l(F^e_{\mathfrak{M}})) = T^2 - a(F^e_{\mathfrak{M}})T + (N_{\mathfrak{M}})^e \in \mathbb{Z}[T]$$

for any l prime to \mathfrak{M} .

- **Proposition 2.4** ([3, Proposition 5.3]). (1) We have $a(F_{\mathfrak{M}}^e)^2 \leq 4(N_{\mathfrak{M}})^e$ for any positive integer e.
- (2) Assume $\mathfrak{M} \nmid p$. Then

$$a(F_{\mathfrak{M}}^{e}) \equiv \varrho_{p}(F_{\mathfrak{M}}^{e}) + (\mathcal{N}_{\mathfrak{M}})^{e} \varrho_{p}(F_{\mathfrak{M}}^{e})^{-1} \mod p$$

for any positive integer e.

Let $\alpha_{\mathfrak{M}}, \overline{\alpha}_{\mathfrak{M}} \in \mathbb{C}$ be the roots of $T^2 - a(F_{\mathfrak{M}})T + N_{\mathfrak{M}}$. Then $\alpha_{\mathfrak{M}} + \overline{\alpha}_{\mathfrak{M}} = a(F_{\mathfrak{M}})$ and $\alpha_{\mathfrak{M}}\overline{\alpha}_{\mathfrak{M}} = N_{\mathfrak{M}}$. We see that the roots of $T^2 - a(F_{\mathfrak{M}}^e)T + (N_{\mathfrak{M}})^e$ are $\alpha_{\mathfrak{M}}^e, \overline{\alpha}_{\mathfrak{M}}^e$. Then $\alpha_{\mathfrak{M}}^e + \overline{\alpha}_{\mathfrak{M}}^e = a(F_{\mathfrak{M}}^e)$. We have the following corollary to Proposition 2.4(1) (for e = 1):

Corollary 2.5. We have $a(F_{\mathfrak{M}}^e) \in \mathcal{C}(N_{\mathfrak{M}}, e)$ for any positive integer e.

For a later use, we give the following lemma:

Lemma 2.6. Let m be the residue characteristic of \mathfrak{M} . The the following conditions are equivalent:

- (i) $m \mid a(F_{\mathfrak{M}})$.
- (ii) $m \mid a(F_{\mathfrak{M}}^e)$ for a positive integer e.
- (iii) $m \mid a(F_{\mathfrak{M}}^{e})$ for any positive integer e.

Proof. For each $e \ge 1$, there is a polynomial $P_e(S,T) \in \mathbb{Z}[S,T]$ such that $(S+T)^e = S^e + T^e + STP_e(S+T,ST)$. Then $a(F_{\mathfrak{M}})^e = a(F_{\mathfrak{M}}^e) + N_{\mathfrak{M}}P_e(a(F_{\mathfrak{M}}),N_{\mathfrak{M}})$. Since $m \mid N_{\mathfrak{M}}$, we have $m \mid a(F_{\mathfrak{M}})$ if and only if $m \mid a(F_{\mathfrak{M}}^e)$.

3 Proof of the main result

Now we prove Theorem 1.1. Suppose that the assumption of Theorem 1.1 holds. Assume that there is a point $x \in M^B(k)$. When $B \otimes_{\mathbb{Q}} k \not\cong M_2(k)$, let K_0 be a quadratic extension of k satisfying $B \otimes_{\mathbb{Q}} K_0 \cong M_2(K_0)$. Let

$$K := \begin{cases} k & \text{if } B \otimes_{\mathbb{Q}} k \cong M_2(k), \\ K_0 & \text{if } B \otimes_{\mathbb{Q}} k \not\cong M_2(k). \end{cases}$$

Note that the degree $[K : \mathbb{Q}]$ is even. Then x is represented by a QM-abelian surface (A, i) by \mathcal{O} over K (see [3, Theorem 1.1]). Since $B \notin \mathcal{S}(k, \mathfrak{q})$, there is a prime divisor p of d(B) such that $p \neq q$ and p does not belong to

$$\begin{cases} \mathcal{P}(\mathcal{D}(\mathcal{N}_{\mathfrak{q}}, e_{\mathfrak{q}})) & \text{if } B \otimes_{\mathbb{Q}} k \cong \mathcal{M}_{2}(k), \\ \mathcal{P}(\mathcal{D}(\mathcal{N}_{\mathfrak{q}}, 2e_{\mathfrak{q}})) & \text{if } B \otimes_{\mathbb{Q}} k \ncong \mathcal{M}_{2}(k). \end{cases}$$

Fix such p, and let

$$\varrho_p: \mathbf{G}_K \longrightarrow \mathbb{F}_{p^2}^{\times}$$

be a canonical isogeny character at p associated to (A, i).

By Proposition 2.1, the character ϱ_p^{12} is unramified outside p. Then it is identified with a character $\mathfrak{I}_K(p) \longrightarrow \mathbb{F}_{p^2}^{\times}$, where $\mathfrak{I}_K(p)$ is the group of fractional ideals of Kprime to p. When $B \otimes_{\mathbb{Q}} k \not\cong M_2(k)$, we may assume that \mathfrak{q} is ramified in K/k by replacing K_0 if necessary. In any case, let \mathfrak{Q} be the unique prime of K above \mathfrak{q} . Note that \mathfrak{Q} is the unique prime of K above q, and so $q\mathcal{O}_K = \mathfrak{Q}^{e_{\mathfrak{Q}}}$, $(N_{\mathfrak{Q}})^{e_{\mathfrak{Q}}} = (q^{f_{\mathfrak{Q}}})^{e_{\mathfrak{Q}}} = q^{[K:\mathbb{Q}]}$. Then by Corollary 2.3, we have

$$\varrho_p^{12}(F_{\mathfrak{Q}}^{e_{\mathfrak{Q}}}) = \varrho_p^{12}(\mathfrak{Q}^{e_{\mathfrak{Q}}}) = \varrho_p^{12}(q\mathcal{O}_K) = \varrho_p^{12}(1, \cdots, 1, q, \cdots, q, \cdots)$$
$$= \varrho_p^{12}(q^{-1}, \cdots, q^{-1}, 1, \cdots, 1, \cdots) = \prod_{\mathfrak{P}|p} r_p(\mathfrak{P})^{12}(q^{-1}) \equiv \prod_{\mathfrak{P}|p} q^{6e_{\mathfrak{P}}f_{\mathfrak{P}}} = q^{6[K:\mathbb{Q}]} \mod p.$$

Here, $(1, \dots, 1, q, \dots, q, \dots)$ (resp. $(q^{-1}, \dots, q^{-1}, 1, \dots, 1, \dots)$) is the idèle of K whose components above p are 1 and the others q (resp. whose components above p are q^{-1} and the others 1), and \mathfrak{P} runs through the primes of K above p. On the other hand, we have

$$a(F_{\mathfrak{Q}}^{e_{\mathfrak{Q}}}) \equiv \varrho_p(F_{\mathfrak{Q}}^{e_{\mathfrak{Q}}}) + (\mathcal{N}_{\mathfrak{Q}})^{e_{\mathfrak{Q}}} \varrho_p(F_{\mathfrak{Q}}^{e_{\mathfrak{Q}}})^{-1} = \varrho_p(F_{\mathfrak{Q}}^{e_{\mathfrak{Q}}}) + q^{[K:\mathbb{Q}]} \varrho_p(F_{\mathfrak{Q}}^{e_{\mathfrak{Q}}})^{-1} \mod p$$

by Proposition 2.4(2). Let $\varepsilon := q^{-\frac{[K:\mathbb{Q}]}{2}} \varrho_p(F_{\mathfrak{Q}}^{e_{\mathfrak{Q}}}) \in \mathbb{F}_{p^2}^{\times}$. Then

$$\varepsilon^{12} = 1$$
 and $a(F_{\mathfrak{Q}}^{e_{\mathfrak{Q}}}) \equiv (\varepsilon + \varepsilon^{-1})q^{\frac{[K:\mathbb{Q}]}{2}} \mod p.$

Therefore

$$a(F_{\mathfrak{Q}}^{e_{\mathfrak{Q}}}) \equiv 0, \pm q^{\frac{[K:\mathbb{Q}]}{2}}, \pm 2q^{\frac{[K:\mathbb{Q}]}{2}} \mod p \quad \text{or} \quad a(F_{\mathfrak{Q}}^{e_{\mathfrak{Q}}})^2 \equiv 3q^{[K:\mathbb{Q}]} \mod p.$$

By Corollary 2.5, we have $a(F_{\mathfrak{Q}}^{e_{\mathfrak{Q}}}) \in \mathcal{C}(\mathcal{N}_{\mathfrak{Q}}, e_{\mathfrak{Q}})$. We also have

$$N_{\mathfrak{Q}} = N_{\mathfrak{q}} \quad \text{and} \quad e_{\mathfrak{Q}} = \begin{cases} e_{\mathfrak{q}} & \text{if } B \otimes_{\mathbb{Q}} k \cong M_2(k), \\ 2e_{\mathfrak{q}} & \text{if } B \otimes_{\mathbb{Q}} k \not\cong M_2(k). \end{cases}$$

Then

$$a(F_{\mathfrak{Q}}^{e_{\mathfrak{Q}}}), a(F_{\mathfrak{Q}}^{e_{\mathfrak{Q}}}) \pm q^{\frac{[K:\mathbb{Q}]}{2}}, a(F_{\mathfrak{Q}}^{e_{\mathfrak{Q}}}) \pm 2q^{\frac{[K:\mathbb{Q}]}{2}}, a(F_{\mathfrak{Q}}^{e_{\mathfrak{Q}}})^2 - 3q^{[K:\mathbb{Q}]} \in \mathcal{D}(\mathcal{N}_{\mathfrak{Q}}, e_{\mathfrak{Q}}).$$

Since $p \notin \mathcal{P}(\mathcal{D}(N_{\mathfrak{q}}, e_{\mathfrak{Q}}))$, we have

(1)
$$a(F_{\mathfrak{Q}}^{e_{\mathfrak{Q}}}) = 0, \pm q^{\frac{[K:\mathbb{Q}]}{2}}, \pm 2q^{\frac{[K:\mathbb{Q}]}{2}}, \text{ or}$$

(2) $a(F_{\mathfrak{Q}}^{e_{\mathfrak{Q}}})^2 = 3q^{[K:\mathbb{Q}]}.$

[Case (1)]. In this case, we have $q \mid a(F_{\mathfrak{Q}}^{e_{\mathfrak{Q}}})$. Then by Lemma 2.6, we have $q \mid a(F_{\mathfrak{Q}})$. Since $f_{\mathfrak{Q}}(=f_{\mathfrak{q}})$ is odd, we obtain $B \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-q}) \cong M_2(\mathbb{Q}(\sqrt{-q}))$ or (q = 2 and $B \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-1}) \cong M_2(\mathbb{Q}(\sqrt{-1}))$ (see [3, Theorem 2.1, Propositions 2.3 and 5.1 (1)]). This contradicts $B \in \mathcal{B}(q)$.

[Case (2)]. In this case, q = 3 and $[K : \mathbb{Q}]$ is odd, which is a contradiction. Therefore we conclude $M^B(k) = \emptyset$.

Table 1:

(N, e)	$\mathcal{C}(N,e)$	$\mathcal{D}(N,e)$	$\mathcal{P}(\mathcal{D}(N,e))$
(2,2)	0, -3, -4	$0, \pm 1, \pm 2, -3, \pm 4, -5, -6, -7, -8, -12$	2, 3, 5, 7
(2,4)	$1, \pm 8$	$0, 1, -3, \pm 4, 5, -7, \pm 8, 9, \pm 12, \pm 16, -47$	2, 3, 5, 7, 47
(2,6)	0, 9, -16	$\begin{array}{c} 0, \ 1, \ -7, \ \pm 8, \ 9, \ \pm 16, \ 17, \ -24, \ 25, \ -32, \\ 64, \ -111, \ -192 \end{array}$	2, 3, 5, 7, 17, 37
(2, 8)	-31, 32	$\begin{array}{c} 0, \ 1, \ -15, \ 16, \ -31, \ 32, \ -47, \ 48, \ -63, \ 64, \\ 193, \ 256 \end{array}$	2, 3, 5, 7, 31, 47, 193
(2, 10)	0, 57, -64	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2, 3, 5, 7, 11, 19, 59, 89
(2, 12)	$-47, \pm 128$	$\begin{array}{c} 0, \ 17, \ -47, \ \pm 64, \ 81, \ -111, \ \pm 128, \ -175, \\ \pm 192, \ \pm 256, \ 4096, \ -10079 \end{array}$	$2, 3, 5, 7, 17, 37, 47, \\10079$
(2, 14)	$ \begin{array}{ccc} 0, & -87, \\ -256 \end{array} $	$\begin{array}{c} 0,41,-87,\pm128,169,-215,\pm256,-343,\\ -384,-512,16384,-41583,-49152 \end{array}$	$2, 3, 5, 7, 13, 29, 41, 43, \\83, 167$
(2, 16)	449, 512	$\begin{array}{c} 0, \ -63, \ 193, \ 256, \ 449, \ 512, \ 705, \ 768, \ 961, \\ 1024, \ 4993, \ 65536 \end{array}$	$\begin{array}{c} 2, \ 3, \ 5, \ 7, \ 31, \ 47, \ 193, \\ 449, \ 4993 \end{array}$
(3, 2)	$ \begin{array}{cccc} -2, & 3, & -5, \\ -6 & & \\ \end{array} $	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	2, 3, 5, 11, 23
(3, 4)	$7, -9, -14, \\18$	$\begin{array}{c} 0, \ -2, \ 4, \ -5, \ 7, \ \pm 9, \ -11, \ -14, \ 16, \ \pm 18, \\ -23, \ 25, \ \pm 27, \ -32, \ 36, \ -47, \ 81, \ -162, \\ -194 \end{array}$	2, 3, 5, 7, 11, 23, 47, 97
(3, 6)	10, 46, -54	$\begin{array}{c} 0, -8, 10, -17, 19, -27, 37, -44, 46, -54, \\ 64, -71, 73, -81, 100, -108, 729, -2087 \end{array}$	2, 3, 5, 11, 17, 19, 23, 37, 71, 73, 2087
(3, 8)	34, -81, -113, 162	$\begin{array}{llllllllllllllllllllllllllllllllllll$	2, 3, 5, 7, 11, 17, 23, 47, 97, 113, 191, 3457
(3, 10)	243, 475, -482, -486	$\begin{array}{l} 0,\ 4,\ -11,\ 232,\ -239,\ \pm 243,\ 475,\ -482,\\ \pm 486,\ 718,\ -725,\ \pm 729,\ 961,\ -968,\ -972,\\ 48478,\ 55177,\ 59049,\ -118098 \end{array}$	$\begin{array}{c} 2,\ 3,\ 5,\ 11,\ 19,\ 23,\ 29,\\ 31,\ 239,\ 241,\ 359,\ 2399,\\ 24239\end{array}$
(3, 12)	$ \begin{array}{c} 658, -1358, \\ 1458 \end{array} $	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	2, 3, 5, 7, 11, 17, 19, 23, 37, 47, 71, 73, 97, 433, 577, 1009, 1151, 2087
(3,14)	$2187, \\ 2515, 3022, \\ -4374$	$\begin{array}{c} 0,\ 328,\ 835,\ -1352,\ -1859,\ \pm 2187,\\ 2515,\ 3022,\ \ \pm 4374,\ 4702,\ 5209,\\ \pm 6561,\ 6889,\ 7396,\ -8748,\ 4782969,\\ -5216423,\ -8023682,\ -9565938 \end{array}$	$\begin{array}{c} 2, \ 3, \ 5, \ 11, \ 13, \ 23, \ 41, \\ 43, \ 83, \ 167, \ 337, \ 503, \\ 673, \ 1511, \ 2351, \ 5209, \\ 24023 \end{array}$
(3,16)	-353, -6561, -11966, 13122	$\begin{array}{rrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrrr$	$\begin{array}{c}2,3,5,7,11,17,23,31,\\47,97,113,191,193,\\353,383,2113,3457,\\30529,36671\end{array}$

4 Counterexamples to the Hasse principle

We have computed the sets $\mathcal{C}(N, e)$, $\mathcal{D}(N, e)$, $\mathcal{P}(\mathcal{D}(N, e))$ in several cases as seen in Table 1. Then we obtain the following counterexamples to the Hasse principle on M^B over number fields:

Proposition 4.1. (1) Let d(B) = 39, and let $k = \mathbb{Q}(\sqrt{2}, \sqrt{-13})$ or $\mathbb{Q}(\sqrt{-2}, \sqrt{-13})$. Then $B \otimes_{\mathbb{Q}} k \cong M_2(k)$, $M^B(k) = \emptyset$ and $M^B(k_v) \neq \emptyset$ for any place v of k. Here, k_v is the completion of k at v.

(2) Let L be the subfield of $\mathbb{Q}(\zeta_9)$ satisfying $[L : \mathbb{Q}] = 3$, and let $(d(B), k) = (62, L(\sqrt{-39}))$ or $(86, L(\sqrt{-15}))$. Then $B \otimes_{\mathbb{Q}} k \not\cong M_2(k)$, $M^B(k) = \emptyset$ and $M^B(k_v) \neq \emptyset$ for any place v of k.

Proof. (1) The prime number 3 (resp. 13) is inert (resp. ramified) in $\mathbb{Q}(\sqrt{-13})$. Then $B \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-13}) \cong \mathrm{M}_2(\mathbb{Q}(\sqrt{-13}))$, and so $B \otimes_{\mathbb{Q}} k \cong \mathrm{M}_2(k)$.

Applying Theorem 1.1 to q = 2, we obtain $M^B(k) = \emptyset$. In fact, $(e_q, f_q) = (4, 1)$ where **q** is the unique prime of k above q = 2, and the prime divisor 13 of d(B) does not belong to $\mathcal{P}(\mathcal{D}(2,4)) \cup \{2\}$ (see Table 1). Since 3 (resp. 13) splits in $\mathbb{Q}(\sqrt{-2})$ (resp. $\mathbb{Q}(\sqrt{-1})$), we have $B \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-2}) \not\cong M_2(\mathbb{Q}(\sqrt{-2}))$ (resp. $B \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-1}) \not\cong$ $M_2(\mathbb{Q}(\sqrt{-1}))$).

By [3, p.94], we have $M^B(\mathbb{Q}(\sqrt{-13})_w) \neq \emptyset$ for any place w of $\mathbb{Q}(\sqrt{-13})$ (cf. [4]). Therefore $M^B(k_v) \neq \emptyset$ for any place v of k.

(2) For a field F of characteristic $\neq 2$ and two elements $a, b \in F^{\times}$, let

$$\left(\frac{a,b}{F}\right) = F + Fe + Ff + Fef$$

be the quaternion algebra over F defined by

$$e^2 = a, f^2 = b, ef = -fe.$$

For a prime number p, let e_p , f_p , g_p be the ramification index of p in k/\mathbb{Q} , the degree of the residue field extension above p in k/\mathbb{Q} , and the number of primes of k above p respectively.

Let $(d(B), k) = (62, L(\sqrt{-39}))$ (resp. $(86, L(\sqrt{-15})))$. First, we prove $B \otimes_{\mathbb{Q}} k \not\cong M_2(k)$. We see $B \cong \left(\frac{62, 13}{\mathbb{Q}}\right)$ (resp. $\left(\frac{86, 5}{\mathbb{Q}}\right)$) by [6, §3.6 g)]. We have $(e_2, f_2, g_2) = (1, 3, 2)$. Let v be place of k above 2. By the same argument as in the proof of [1, Proposition 8.1], we have $B \otimes_{\mathbb{Q}} k_v \not\cong M_2(k_v)$. Therefore $B \otimes_{\mathbb{Q}} k \not\cong M_2(k)$.

Applying Theorem 1.1 to q = 3, we obtain $M^B(k) = \emptyset$. In fact, $(e_q, f_q) = (6, 1)$ where **q** is the unique prime of k above q = 3, and the prime divisor 31 (resp. 43) of d(B) does not belong to $\mathcal{P}(\mathcal{D}(3, 12)) \cup \{3\}$. Since 31 (resp. 43) splits in $\mathbb{Q}(\sqrt{-3})$, we have $B \otimes_{\mathbb{Q}} \mathbb{Q}(\sqrt{-3}) \not\cong M_2(\mathbb{Q}(\sqrt{-3}))$.

By [5, Table 1], we have $M^B(\mathbb{Q}(\sqrt{-39})_w) \neq \emptyset$ (resp. $M^B(\mathbb{Q}(\sqrt{-15})_w) \neq \emptyset$) for any place w of $\mathbb{Q}(\sqrt{-39})$ (resp. $\mathbb{Q}(\sqrt{-15})$). Therefore $M^B(k_v) \neq \emptyset$ for any place vof k.

References

- [1] K. Arai, Algebraic points on Shimura curves of $\Gamma_0(p)$ -type (III), preprint, available at the web page (http://arxiv.org/pdf/1303.5270.pdf).
- [2] K. Buzzard, Integral models of certain Shimura curves, Duke Math. J. 87 (1997), no. 3, 591–612.
- [3] B. Jordan, Points on Shimura curves rational over number fields, J. Reine Angew. Math. 371 (1986), 92–114.
- [4] B. Jordan, R. Livné, Local Diophantine properties of Shimura curves, Math. Ann. 270 (1985), no. 2, 235–248.
- [5] V. Rotger, C. de Vera-Piquero, Galois representations over fields of moduli and rational points on Shimura curves, Canad. J. Math. 66 (2014), 1167–1200.
- [6] H. Shimizu, Hokei kansū. I–III (Japanese) [Automorphic functions. I–III] Second edition. Iwanami Shoten Kiso Sūgaku [Iwanami Lectures on Fundamental Mathematics], 8. Daisū [Algebra], vii. Iwanami Shoten, Tokyo, 1984.
- [7] G. Shimura, On the real points of an arithmetic quotient of a bounded symmetric domain, Math. Ann. 215 (1975), 135–164.

(Keisuke Arai) Department of Mathematics, School of Engineering, Tokyo Denki University, 5 Senju Asahi-cho, Adachi-ku, Tokyo 120-8551, Japan *E-mail address*: araik@mail.dendai.ac.jp