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CONTOUR INTEGRATION UNDERLIES

FUNDAMENTAL BERNOULLI NUMBER

RECURRENCE

Abstract

One solution to a relatively recent American Mathematical Monthly
problem [6], requesting the evaluation of a real definite integral, could be
couched in terms of a contour integral which vanishes a priori. While
the required real integral emerged on setting to zero the real part of
the contour quadrature, the obligatory, simultaneous vanishing of the
imaginary part alluded to still another pair of real integrals forming the
first two entries in the infinite log-sine sequence, known in its entirety.
It turns out that identical reasoning, utilizing the same contour but a
slightly different analytic function thereon, sufficed not only to evaluate
that sequence anew, on the basis of a vanishing real part, but also, in
setting to zero its conjugate imaginary part, to recover the fundamental
Bernoulli number recurrence. The even order Bernoulli numbers B2k en-
tering therein were revealed on the basis of their celebrated connection
to Riemann’s zeta function ζ(2k). Conversely, by permitting the related
Bernoulli polynomials to participate as integrand factors, Euler’s con-
nection itself received an independent demonstration, accompanied once
more by an elegant log-sine evaluation, alternative to that already given.
And, while the Bernoulli recurrence is intended to enjoy here the pride
of place, this note ends on a gloss wherein all the motivating real inte-
grals are recovered yet again, and in quite elementary terms, from the
Fourier series into which the Taylor development for Log(1 − z) blends
when its argument z is restricted to the unit circle.

Mathematical Reviews subject classification: Primary: 11B68, 65Q30, 30E20; Secondary:
42A16.

Key words: Bernoulli numbers and polynomials, recurrence relations, analytic function
integrals around closed contours, Fourier series
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1 Introduction.

An American Mathematical Monthly problem posed within relatively recent
memory [6] sought the evaluation

∫ π/2

0

{

log( 2 sin(x) )
}2

dx =
π 3

24
. (1)

One mode of solution depended upon integration of an analytic function
around the periphery Ω of a semi-infinite vertical strip with no singularities
enclosed, the quadrature having thus a null outcome1 known in advance on
the strength of Cauchy’s theorem. Evaluation (1) was automatically produced
by setting to zero the real part of that integral,2 whereas the complementary
requirement that the imaginary part likewise vanish brought into play, and
successfully so, both known quadratures

∫ π

0

log( sin(x) ) dx = − π log(2) (2)

and

∫ π

0

x log( sin(x) ) dx = −
π 2

2
log(2) . (3)

With (2) and (3) in plain view, a temptation arose to provide for them, too,
an ab initio verification, and, more even than that, to evaluate the entire

1Both contour Ω , a vertical rectangle of unlimited height, and the notion of integrating
an analytic function thereon so as to obtain a null result, imitate a similar ploy utilized in [1,
Section 5.3, example 5] on behalf of (2) and still further attributed there to Ernst Lindelöf.

2Two solutions for (1) were submitted by the undersigned, one involving contour inte-
gration in the manner suggested, and the other based upon a Fourier series. The Bernoulli
recurrence (5) was assembled as a spontaneous by-product of an ancillary, null-quadrature
calculation upon that same contour Ω , initially aimed only at evaluating the log-sine inte-
grals (4). This note embodies the content of that collateral calculation, slightly rephrased
so as to highlight the newly recovered Bernoulli number sum identity.
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hierarchy of log-sine integrals3

In =

∫ π

0

xn log( sin(x) ) dx (4)

as the power of x roams over all non-negative integers n ≥ 0. Not only was
this fresh ambition, digressive and self-indulgent though it may have been, easy
to satisfy via quadrature on the same contour as before, but it also exposed
to view once more the fundamental Bernoulli number recurrence

n−1
∑

k=0

(

n
k

)

Bk = 0 (5)

which is valid for n ≥ 2 and, together with the initial condition B0 = 1
and the self-consistent choice B1 = −1/2 , is adequate to populate the entire
Bernoulli ladder, complete with null entries at all odd indices beyond k = 1 ,
viz., B2l+1 = 0 whenever l ≥ 1 . Source material on the Bernoulli numbers
and the related Bernoulli polynomials is ubiquitous, and can be sampled, for
example, in [2, 10, 12]. References [3, 7] provide a valuable overview all at
once of their mathematical properties and historical genesis in computing sums
of finite progressions of successive integers raised to fixed positive powers.
Equally valuable is online Reference [11], which cites a rich literature and
covers besides a vast panorama of diverse mathematical knowledge.

Bernoulli identity (5), which is the principal object of our present con-
cern, springs into view by setting to zero the imaginary part of the analytic
quadrature (6), below, around contour Ω , with the corresponding null value
requirement on its real part providing an evaluation of the general term from
sequence (4), listed in (14). No claim whatsoever is made here as to any ul-
timate novelty in outcome (14), which is available in symbolic form at any
desired index n through routine demand from Mathematica. Outcome (14),
expressed here as a finite sum of Riemann zeta functions at odd integer ar-
guments, continues to attract the attention of contemporary research focused

3If that were the only goal then we should assuredly stop dead in our tracks, simply
because, on the one hand, Mathematica provides all such evaluations on demand, with
great aplomb, and this even in its symbolic mode, while, on the other, a relatively painless
derivation (Eq. (51)) can be based upon a Fourier series, one which materializes in its turn
from the power series for Log(1− z) when argument z is forced to lie upon the unit circle.
This Fourier series underlies in addition an essentially zinger verification of (1). All such
manifold benefits of the Fourier option are sketched in an Appendix. And, prior even to that,
when Bernoulli polynomials are admitted as integrand factors during contour integration
(Section 4), the log-sine series is produced once more in (43). It goes without saying that
contour-based (Eqs. (14) and (43)) and Fourier-based (Eq. (51)) evaluations of (4), even
though they may be of secondary interest in the present context, do stand in complete
agreement.
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upon polylogarithms [4, 5, 8, 9]. But the formulae thus made available are
subordinated in [4, 5] and elsewhere to the task of evaluating a variety of dis-
similar quantities, and appear to be tangled in thickets of notation. From this
standpoint, formula (14) (and its identical twin (51) derived in an even more
elementary fashion) may perhaps still provide the modest service of a stand-
alone, encapsulated result, easily derived and easily surveyed. In particular,
the canonical method of derivation evolved in [8] and repeatedly alluded to
in [4, 5] requires rather strenuous differentiations of Gamma function ratios,
and results finally in a recurrence on the individual In (or else an equivalent
generating function). To be sure, while the work in [8] is immensely elegant, it
is at the same time immensely more intricate than either of our independent
derivations culminating in (14) and (51).

On the other hand, it does appear to have escaped previous notice that the
Bernoulli recurrence (5), which is ancient and foundational in its own right,
should likewise evolve (via (16)) from the same quadrature around contour
Ω when one insists that the corresponding imaginary part also vanish. And,
just as is the case with (14), formula (16), too, is shaped by its contact with
Riemann zeta functions, but evaluated this time at even integer arguments,
which latter circumstance, by virtue of the celebrated Euler connection, opens
the portal to entry by the similarly indexed Bernoulli numbers. It is of course
none of our purpose here to compete with, let alone to supplant in any way
the standard derivations of (5). Rather, we seek merely to highlight its reap-
pearance in what surely must be conceded to be an unexpected setting.

In Section 4 we augment the discussion by admitting the full-fledged Ber-
noulli polynomials Bn(z) as integrand factors during contour integration (Eq.
(26)). And, while this route will no longer lead us directly to recurrence (5), it
will underwrite two key ingredients upon which its demonstration in Sections
2 and 3 pivots, to wit, an ab initio derivation of the Euler link (17) between
Riemann’s zeta ζ(2m) and Bernoulli number B2m at all even indices 2m ≥ 2,
and the odd index nullity B2m+1 = 0 ∀m ≥ 1 invoked during passage from
Eq. (19) to Eq. (20) below. Moreover, the toolkit of Bernoulli polynomial
identities will provide, in Eq. (43), a fresh derivation of great elegance, as if
one were still needed, of the log-sine evaluation (14).

We round out this note with an appendix wherein contour integration cedes
place to the more elementary setting of a Fourier series on whose basis (14)
is recovered yet again (as Eq. (51)) through repeated integration by parts.
That same Fourier series provides moreover an exceedingly short and simple
confirmation of (1), complementary to the contour integral method, an option
to which allusion has already been made in Footnote 3. Of course, at this
point, no further light can, nor need be shed upon (5) per se.
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2 Null Quadratures on Contour Ω.

Guided by the cited example 5 in [1, Section 5.3], we consider for n ≥ 0 the
sequence of numbers

Kn =

∫

Ω

zn Log
(

1− e 2iz
)

dz = 0 , (6)

all of them annulled by virtue of closed contour Ω being required to lie within
a domain of analyticity for Log

(

1− e 2iz
)

in the plane of complex z = x+ iy.
Save for quarter-circle indentations of vanishing radius δ around z = 0 and
z = π , contour Ω bounds a semi-infinite vertical strip, with a left leg having
x = 0 fixed and descending from y = ∞ to y = δ (quadrature contribution
Ln ), and a right leg at a fixed x = π ascending from y = δ to y = ∞

(quadrature contribution Rn), linked at their bottom by a horizontal segment
with y = 0 and δ ≤ x ≤ π − δ (quadrature contribution Hn). In what
follows it will be readily apparent that the limit δ ↓ 0+ may be enforced
with full impunity, a gesture whose fait accompli status will be taken for
granted. Likewise passed over without additional comment will be the fact
that no contribution is to be sought from contour completion by a retrograde
horizontal segment π ≥ x ≥ 0 at infinite remove, y → ∞ .

We now find

Ln = − in+1

∫ ∞

0

y n log
(

1− e−2y
)

dy , (7)

Rn = + i

∫ ∞

0

(π + iy)
n
log

(

1− e−2y
)

dy , (8)

and

Hn =

∫ π

0

xn

[

log(2)−
iπ

2
+ ix+ log( sin(x) )

]

dx

=
πn+1

n+ 1
log(2)− i

πn+2

2(n+ 1)
+ i

πn+2

n+ 2
+

∫ π

0

xn log( sin(x) )dx . (9)

Series expansion of the logarithm further gives

Ln = + in+1

∞
∑

l=1

1

l

∫ ∞

0

y ne−2ly dy = + in+1 n!

2n+1

∞
∑

l=1

1

ln+2
, (10)

the interchange in summation and integration being legitimated by Beppo
Levi’s monotone convergence theorem, and similarly

Rn = − i
n
∑

k=0

(

n
k

)

πn−k ik
k!

2k+1

∞
∑

l=1

1

lk+2
, (11)
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in both of which there insinuates itself the Riemann zeta function

ζ (s) =

∞
∑

m=1

1

ms
(12)

at a variety of its argument values s.4 So armed, we proceed next to set

Kn = Ln +Hn +Rn = 0 (13)

and remark that, regardless of the parity of index n , Ln per se is always
absorbed by the contribution from the highest power y n within the integrand
for Rn . This circumstance accounts for the imminent appearance of the floor
function affecting the highest value of summation index k in Eqs. (14)-(16)
and (19) below.

A requirement that the real part of (13) vanish provides now the following
string of valuable log-sine quadrature formulae

∫ π

0

xn log( sin(x) ) dx = −
πn+1

n+ 1
log(2)

+
n!

2n+1

⌊n/2⌋
∑

k=1

(−1)k
(2π)n−2k+1

(n− 2k + 1)!
ζ(2k + 1) , (14)

of which the first two, at n = 0 and n = 1 , with the sum on the right miss-
ing, validate (2) and (3), each one of them being in any event widely tabulated.
And again, as was first stated in Footnote 3, Eq. (14) is consistently reaffirmed
by Mathematica, even when harnessed in its symbolic mode. We note in pass-
ing the self-evident fact that, unlike the corresponding prescriptions found in
[9,10], formula (14) is fully explicit, needing to rely neither upon a generating
function nor a recurrence, even though, naturally, such recurrence arrives at
a final rendezvous with identically the same result.

A close prelude to identity (5) follows next from the coëxisting requirement
that the imaginary part of (13) vanish. This requirement takes the initial form

−
πn+2

2(n+ 1)
+

πn+2

n+ 2
=

⌊n−1

2
⌋

∑

k=0

(

n
2k

)

πn−2k(−1)k
(2k)!

22k+1
ζ(2k + 2) (15)

and is subsequently moulded into the shape

⌊n−1

2
⌋

∑

k=0

(

n
2k

)

B2k+2

(k + 1)(2k + 1)
=

n

(n+ 1)(n+ 2)
(16)

4This canonical definition implies a guarantee of series convergence, assured by the re-
quirement that ℜ s > 1 . A robust arsenal of knowledge exists for continuing ζ(s) across
the entire plane of complex variable s = σ + it , with a simple pole intruding at s = 1 .
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on taking note of Euler’s celebrated connection [2, 3, 7, 10, 11, 12]

ζ(2k) = (−1)k+1(2π)2k
B2k

2(2k)!
∀ k ≥ 1 (17)

allowing us to displace attention from the even-argument values of Riemann’s
zeta to the correspondingly indexed Bernoulli numbers B2k .

3 Recurrence Reduction.

Recurrence (16) is not quite yet in the desired form (5), but it is easily steered
toward this goal. That process begins by noting that

(

n
2k

)

1

(k + 1)(2k + 1)
=

(

n+ 2
2k + 2

)

2

(n+ 1)(n+ 2)
, (18)

whereupon (16) becomes

⌊n−1

2
⌋

∑

k=0

(

n+ 2
2k + 2

)

B2k+2 =
n

2
. (19)

Now the advance of 2k in steps of two means that it reaches a maximum
value M = n− 1 when n is odd, and one offset instead by two below n, M =
n− 2, when n is even. At the same time the accepted null value of odd-index
Bernoulli numbers starting with B3 = 0 means that we are free, and self-
consistently so, to intercalate all odd indices missing from the progression
2k + 2 in order to attain an index advance in steps of one and to entertain
a common index maximum of n+ 1, regardless of the parity of n. Altogether
then, (19) admits a restatement as

n+1
∑

k=2

(

n+ 2
k

)

Bk =
n

2
, (20)

or else

n+1
∑

k=0

(

n+ 2
k

)

Bk =
n

2
+

{(

n+ 2
0

)

B0 +

(

n+ 2
1

)

B1

}

. (21)

But now we find that
(

n+ 2
0

)

B0 +

(

n+ 2
1

)

B1 = 1 −
n+ 2

2
= −

n

2
, (22)
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with the effect of reducing (21) to just

n+1
∑

k=0

(

n+ 2
k

)

Bk = 0 , (23)

which is nothing other than (5).

4 Bernoulli Polynomials as Integrand Factors on Con-

tour Ω̃.

Added perspective accrues when power multiplier zn in the integrand from
(6) is replaced by the Bernoulli polynomial Bn(z). By following this route we
will, on the one hand, forfeit a direct access to recurrence (5), but, by way
of compensation, we will recover Euler’s connection (17) linking even index
Bernoulli number B2m values to their Riemann ζ(2m) counterparts, and will
similarly confirm the vanishing B2m+1 = 0 of all odd index Bernoulli numbers
beginning with index 3. More even than that, a continuing interplay between
contour integration around a half strip as presently considered, and one among
the tangle of Bernoulli polynomial identities, will disclose once more the log-
sine formula (14).

All required Bernoulli polynomial relations will be drawn without further
comment from [7], which is readily accessed electronically. And so, bowing
to the notational convention adopted there, we demote the Bernoulli number
symbol from capital Bn to lower case bn, upper case Bn(z) being reserved for
the polynomials so named.5 The polynomials themselves are uniquely defined
by







B0(z) = 1
Bn(z + 1)−Bn(z) = nzn−1, ∀n ≥ 1
∫ 1

0
Bn(t)dt = 0, ∀n ≥ 1

(24)

[7, Section 1, Corollary 1.3] and the Bernoulli numbers bn then follow from

bn = Bn(0) ∀n ≥ 0 (25)

[7, Section 2, Definition 2.2]. Their recurrence (5) is found as entry iv to
[7, Section 2, Proposition 2.3], with no mention whatsoever at that point of a
Riemann ζ connection. Also disclosed there under entry i is the vanishing of all
odd index numbers b2n+1 = 0 ∀n ≥ 1. The auxiliary fact that ℑ(Bn(z)) = 0
and hence a fortiori that ℑ(bn) = 0 without exception whenever ℑ(z) = 0,

5This shift evidently seeks to minimize visual confusion.
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follows from the bijective mapping established between real polynomial bases
in [7, Section 1], Lemma 1.1 and Bernoulli polynomial Definition 1.2, which
latter underwrites the constructive recipe in (24).

Our imminent intent to capitalize on the second entry in (24) suggests that
width π of contour Ω be compressed to just 1 under variable scaling x = πu,
y = πv, acknowledged by the notational shift Ω → Ω̃ in the plane of complex
ξ = u+ iv. And so we replace quantities Kn from (6) by similarly null analogs

K̃n =

∫

Ω̃

Bn(ξ) Log
(

1− e2iπξ
)

dξ = 0 . (26)

The contour integration apparatus of Eqs. (7)-(13), marshalled out on behalf
of Kn, carries over essentially verbatim, ceding place now to

L̃n = − i

∫ ∞

0

Bn(iv) log
(

1− e−2πv
)

dv , (27)

R̃n = + i

∫ ∞

0

Bn(1 + iv) log
(

1− e−2πv
)

dv , (28)

and

H̃n =

∫ 1

0

Bn(u)

[

log(2)−
iπ

2
+ iπu+ log( sin(πu) )

]

du

=

∫ 1

0

Bn(u)
[

log(2) + log( sin(πu) ) + iπB1(u)
]

du (29)

wherein we have identified (u − 1/2) with B1(u) [7, Section 1, Corollary 1.3].
And, of course, we still have, ∀n ≥ 0,

K̃n = L̃n + H̃n + R̃n = 0 (30)
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which, in particular, forces one to consider the sum6

L̃n + R̃n = i

∫ ∞

0

{

Bn(1 + iv)−Bn(iv)
}

log
(

1− e−2πv
)

dv

= nin
∫ ∞

0

vn−1 log
(

1− e−2πv
)

dv

=
nin

(2π)n

∫ ∞

0

vn−1 log
(

1− e−v
)

dv

= −
nin

(2π)n

∞
∑

l=1

1

l

∫ ∞

0

vn−1e−lvdv (31)

= −
n!in

(2π)n

∞
∑

l=1

1

ln+1

= −
n!in

(2π)n
ζ(n+ 1)

after invoking the second line from (24) and mimicking the series expansion
in (10).

Turning attention once more to (29), we must again discriminate between
the null index n = 0 case and all others with n ≥ 1. Thus, when n = 0,
reference to the first and third lines in (24) and Footnote 6 gives

K̃0 = H̃0 = log(2) +

∫ 1

0

log( sin(πu) ) du = 0 (32)

or else
∫ π

0

log( sin(x) ) dx = −π log(2) , (33)

which is Eq. (2).
By contrast, for n ≥ 1, recourse to [7, Section 3, Corollary 3.3] provides,

when integer indices p and q are both in excess of zero7

∫ 1

0

Bp(u)Bq(u) du =
(−1)q−1

(

p+ q
q

) bp+q (34)

6Result (31) holds only for n ≥ 1. When n = 0 the sum L̃0+ R̃ 0 is trivially null by virtue
of the first line in (24). The parent quantities K̃n, by contrast, are null ∀n ≥ 0 without
restriction.

7Both sides of (34) are symmetric in indices p and q, on its left by inspection while on its
right because of the fact, soon to be confirmed yet again (Eqs. (38) and (40) below), that
bp+q vanishes unless p+ q is even.
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and thus causes (29) to read

H̃n =

∫ 1

0

Bn(u) log( sin(πu) ) du+
iπ

n+ 1
bn+1 . (35)

And so, on putting (30), (31), and (35) together we arrive at

∫ 1

0

Bn(u) log( sin(πu) ) du +
iπ

n+ 1
bn+1 =

n!in

(2π)n
ζ(n+ 1) (36)

whenever n ≥ 1. On sorting (36) out according to its real and imaginary
components and the parity of n, we thus find, when n = 2m,

∫ 1

0

B2m(u) log( sin(πu) ) du =
(2m)!(−1)m

(2π)2m
ζ(2m+ 1) (37)

b2m+1 = 0 (38)

and if instead n = 2m− 1,

∫ 1

0

B2m−1(u) log( sin(πu) ) du = 0 (39)

b2m =
2(2m)!(−1)m+1

(2π)2m
ζ(2m) (40)

∀m ≥ 1. Odd index vanishing of b2m+1, m ≥ 1, is thus vindicated, as is also
the full content of Euler’s connection (17) at all even indices b2m beginning
with m = 1.8

There exists one further, polynomial basis inversion identity, namely

un =
1

n+ 1

n
∑

m=0

(

n+ 1
m

)

Bm(u) ∀n ≥ 0 (41)

[7, Section 2, Application 1], which enables us to consolidate the fragmented
information scattered among the quadratures (37) into a single, compact form.
Thus, with (32) adjoined,

∫ 1

0

un log( sin(πu) ) du = −
1

n+ 1
log(2)

+ n !

⌊n/2⌋
∑

m=1

(−1)m

(n− 2m+ 1)!(2π)2m
ζ(2m+ 1) (42)

8The missing start-up values b0 = 1 and b1 = −1/2 follow respectively from b0 = B0(0) =
1 and b1 = B1(0) = (u− 1/2)|u=0 = −1/2.
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or else

∫ π

0

xn log( sin(x) ) dx = −
πn+1

n+ 1
log(2)

+
n!

2n+1

⌊n/2⌋
∑

m=1

(−1)m
(2π)n−2m+1

(n− 2m+ 1)!
ζ(2m+ 1) (43)

which is (14) once more.
The null quadratures in (39) are a consequence of the antisymmetry

B2m−1(1/2−∆u) = −B2m−1(1/2 + ∆u) (44)

around u = 1/2 which follows readily from the fact that9

Bn(1− u) = (−1)nBn(u) ∀n ≥ 0 (45)

[7, Section 2, Proposition 2.1ii (augmented so as to include n = 0)]. When
viewed at m = 1 and with reference to (32), Eq. (39) leads us thus to confront

∫ 1

0

u log( sin(πu) ) du −
1

2

∫ 1

0

log( sin(πu) ) du

=

∫ 1

0

u log( sin(πu) ) du+
1

2
log(2) = 0 (46)

which amounts to
∫ π

0

x log( sin(x) ) dx = −
π2

2
log(2) (47)

in agreement with both (3) and (43), the trailing sum of the latter being then
vacuous. Precursor (33) is, ipso facto, likewise subsumed under (43) by the
very manner of the latter’s derivation.

And finally, even though it has now been sidestepped, recurrence (5) is
duly assembled in [7, Section 2, Proposition 2.3iv ], free from any reference to

9Eq. (44) is clearly accompanied by a symmetric counterpart around u = 1/2 for the
even-indexed polynomials. These symmetry/antisymmetry attributes are corroborated un-
der a different guise by the Fourier series evolved in [7, Section 3, Proposition 3.1, parts
i & ii ]. Consistent too with (44) are the null mid-point evaluations B2m−1(1/2) =
(41−m − 1)b2m−1 = 0 ∀m ≥ 1 [7, Section 2, Proposition 2.3ii ], with the special evalu-
ation B1(1/2) = 0 being already self-evident from B1(u) = u − 1/2. For the even-indexed

polynomials, the overarching, global constraint
∫
1

0
B2n(u)du = 0 ∀n ≥ 1 is maintained

despite their exhibiting non-zero mid-point values B2n(1/2) = (21−2n − 1)b2n 6= 0 ∀n ≥ 0.
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Riemann’s ζ. The basis of deduction at that point is still another Bernoulli
polynomial identity

Bn(u) =

n
∑

m=0

(

n
m

)

bn−mum ∀n ≥ 0 ,

reinforced by the observation, also derived there, that Bn(1) = bn ∀n ≥ 2.
Verily, verily, on this arena all roads seem to converge upon the proverbial
Rome.

5 Appendix: A Fourier Series Grace Note.

A somewhat more pedestrian derivation of (14) rests upon consideration of
the power series

Log ( 1− z ) = −

∞
∑

l=1

z l

l
(48)

along the unit circle z = e i ϑ. Separation into real and imaginary parts re-
solves itself into a pair of Fourier series

log
{

2
∣

∣ sin(ϑ/2)
∣

∣

}

= −

∞
∑

l=1

cos(lϑ)

l
(49)

and
1

2

{

ϑ (mod 2π)− π
}

= −

∞
∑

l=1

sin(lϑ)

l
, (50)

of which the second is of no interest vis-à-vis our immediate objective. The
logarithmic divergence on both left and right in (49) whenever ϑ ≡ 0 (mod 2π)
remains integrable and is thus taken henceforth in easy stride.

Repeated integration by parts vis-à-vis series (49), when first multiplied
by the argument power ϑn, advances by cos → sin → cos couplets, with end-
point contributions arising only on the second beat, and the argument powers
falling in steps of two.10 One assembles in this manner the general formula

∫ π

0

ϑn log( sin(ϑ) ) dϑ = −
πn+1

n+ 1
log(2)

+
n!

2n+1

⌊n/2⌋
∑

k=1

(−1)k
(2π)n−2k+1

(n− 2k + 1)!
ζ(2k + 1) (51)

10In particular, this quadrature cadence provides a motivation, alternative to that previ-
ously given, as to why it is that the floor function affects the upper index cutoff ⌊n/2⌋ in
both (14) and (51), allowing for unit growth in that cutoff only when n per se advances by
two.
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holding good unrestrictedly for n even or odd, and agreeing in every respect
with (14). The only wrinkle to notice, perhaps, is that the sequence of inte-
grations by parts which underlies (51) terminates, at each summation index
l in (49), with a term proportional to either

∫ π

0

cos( 2lϑ ) dϑ = 0 (52)

in the event that n is even, or
∫ π

0

ϑ cos( 2lϑ ) dϑ = 0 (53)

otherwise. Equation (52) is of course obvious whereas (53), while equally
true and welcome as such, is, at first blush, mildly surprising. All in all
the derivation which underlies (14) is far smoother and less apt to inflict
bookkeeping stress, even if it is (51) which seems to rest on a more elementary
underpinning.

It would be truly disappointing were we not able to utilize (49) so as to give
an essentially one-line, zinger-style proof of (1). This anticipation is readily
met simply by squaring both sides of (49), with summation indices l and l ′

figuring now on its right, and noting that when, as here, both l ≥ 1 and
l ′ ≥ 1 ,

∫ π

0

cos( 2lϑ ) cos( 2l′ϑ ) dϑ =
π

2
δ l
l′ , (54)

with δ l
l′ being the Kronecker delta, unity when its indices match, and zero

otherwise. In a gesture which embodies the essence of Parseval’s theorem, it
follows immediately that

1

2

∫ π

0

{

log( 2 sin(ϑ) )
} 2

dϑ =
π

4

∞
∑

l=1

1

l 2
=

π 3

24
, (55)

and we are done.

Acknowledgement. Thanks are due to an anonymous referee for suggest-
ing that our viewpoint would benefit from having the Bernoulli polynomials
brought into play.
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