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Torus as phase space: Weyl quantization,

dequantization and Wigner formalism

Marilena Ligabò ⋆

Dipartimento di Meccanica, Matematica e Management - Politecnico di Bari
Via Orabona, 4 - 70125 Bari

Abstract The Weyl quantization of classical observables on the torus (as phase
space) without regularity assumptions is explicitly computed. The equivalence
class of symbols yielding the same Weyl operator is characterized. The Heisen-
berg equation for the dynamics of general quantum observables is written through
the Moyal brackets on the torus and the support of the Wigner transform is
characterized. Finally, a dequantization procedure is introduced that applies, for
instance, to the Pauli matrices. As a result we obtain the corresponding classical
symbols.

1. Introduction

In this paper we consider the quantization of systems having the torus T2 =
R

2/Z2 as classical phase space. This subject was introduced by Berry and Han-
nay in [1] and since then has received much attention from the mathematical
community as well as from the physical one. The mathematical literature (see
e.g. [2,3,4,5,6,7,8,9,10]) mostly deals with quantization of (linear) hyperbolic
symplectomorphisms, with the aim of understanding the quantum counterpart
of the classical chaotic behavior. On a more physical point of view, the discrete
Wigner transform and the finite dimensional Weyl systems have been studied by
several authors, (see e.g. [11,12,13,14,15,16,17,18,19,20,21,22,23,24,25]) with
particular attention to the implementation of tomographic techniques on finite
dimensional quantum systems.

Referring the reader e.g. to [26,27,28] for reviews on the (equivalent) quantiza-
tion procedures, to be briefly described in the Appendix, we limit ourselves here
to recall that for h = 1/N there are infinitely many inequivalent N -dimensional
unitary representations of the discrete Heisenberg group, labeled by a parameter
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θ ∈ T2. These representations yield the quantization of sufficiently regular clas-
sical observables via Fourier expansion, and of the linear symplectomorphisms
via commutativity between quantization and linear evolution (exact Egorov the-
orem).

We note, however, that several relevant mathematical questions concerning
the quantization procedure are still open. Namely:

(i) The identification of the most general class of classical observables on the
torus which can be quantized;

(ii) The characterization of the equivalence class of symbols with the same Weyl
operator;

(iii) The determination of the support of the Wigner transform;
(iv) The quantization of all sufficiently regular classical dynamical systems (dis-

crete and continuous in time, linear and nonlinear) on T
2;

(v) The dequantization of the quantum observables, i.e. the identification of
the classical symbol (function defined on T2) whose canonical quantization
reproduces the given quantum operator.

The purpose of this article is to answer the above questions. More specifically:

(i) (Section 2)
As in [3] the Weyl quantization of a sufficiently smooth function α on T2

(classical observable) is defined by replacing exponentials in the Fourier series
of α by their representations in CN , and depends on the parameter θ =
(θ1, θ2) ∈ T

2 labeling the chosen representation. The corresponding Weyl
operator A (N × N matrix) is explicitly computed, and depends only on

the values of α on the lattice L(θ,N) :=
{(

j
2N + θ1

N
, k
2N + θ2

N

)

: j, k ∈ Z2N

}

(Theorem 2.3). By this property all functions α : T2 → C admitting Weyl
quantization with respect to the selected representation can be characterized:
α admits quantization if and only if it takes finite values on L(θ,N). The
quantization map is not one-to-one: two functions assuming the same values
on L(θ,N) yield the same quantized operator (Corollary 2.10). A less obvious
remark is that two functions on T2 assuming different values on L(θ,N)
can generate the same quantum operator. A general procedure is exhibited
(Theorem 2.13) to construct functions assuming different values on the lattice
but generating the same operator upon quantization.
Within the Weyl quantization, the Moyal product and the Moyal brackets of
two classical functions on T2 are defined (Definitions 2.17 - 2.19) and explic-
itly computed (Theorems 2.18 - 2.20). This allows us to write the equation
of motion on the classical phase space corresponding to the Heisenberg equa-
tion for the evolution of quantum observables on C

N (Subsection 2.2). In
this sense any classical dynamics on the torus can be quantized, not only the
linear maps that describe stroboscopic, discrete-time dynamics.

(ii) (Section 3)
The construction of the Wigner transform Wθ,Nψ of a quantum state ψ ∈ CN

on T2 is presented here starting from any chosen representation of the discrete
Heisenberg group following the approach in [3], with some suitable modifica-
tions. The resulting Wθ,Nψ is shown to be a distribution (signed measure)
on phase space with total mass equal to one and support L(θ,N), (Theorem
3.4); moreover the corresponding marginals are the position and momentum
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probability distributions with support L1(θ1, N) := { j
N

+ θ1
N

: j ∈ ZN}

and L2(θ2, N) := { j
N

+ θ2
N

: j ∈ ZN} respectively, (Proposition 3.2). An
equivocation on the support of the Wigner transform Wθ,Nψ is present in
the literature because the vector ψ ∈ CN is characterized by N complex
numbers, and, heuristically, the Wigner transform, quadratic in ψ, is char-
acterized by N2 distinct values and so its support is naively expected to
contain N2 points. In this article this ambiguity is definitely clarified: the
correct support of Wθ,Nψ is L(θ,N), consisting of 4N2 points, that strictly
contains L1(θ1, N)×L2(θ2, N) (cartesian product of the support of the two
marginals). However, the independent values of Wθ,Nψ are only N2, thus, in
principle, it can be always restricted to a proper N×N points lattice, but this
restriction is not natural because the corresponding marginals are no longer
the position and momentum probability measure, and the total mass is no
longer one. The larger support was first noticed by Berry and Hannay, [1],
and recently the doubling feature of the lattice has been reconsidered in the
physical literature, [18,25], and advocated by different physical motivations,
through a construction of the discrete Wigner function not based on the rep-
resentations of the discrete Heisenberg group.

(iv) (Sections 4 and 5)
A dequantization method based on the Wigner formalism is introduced: given
any operator A on the Hilbert space CN , a function α : T2 → C is identified
such that its Weyl quantization is exactly A (Theorem 4.1). An example is
the dequantization of the Pauli matrices σx, σy, σz in the case of a spin 1/2,
i.e. N = 2. Moreover, the values of the Wigner transform of a generic state
ψ ∈ C2 are shown to be the expectation values of the operators σx, σy , σz in
the state ψ, with appropriate symmetries. This correspondence is generalized
to any N , and, as a byproduct, this procedure yields, in a natural way, N -
dimensional versions of the Pauli matrices (Subsection 5.3).

2. Weyl quantization on the torus

The standard Weyl quantization on the torus consists in a map that associates to
a smooth function defined on the torus T

2 = R
2/Z2 a quantum operator on the

Hilbert space CN , where N is related to the Planck constant h via the relation
h = 1

N
.

The Weyl quantization is obtained selecting one N -dimensional representa-
tion of the discrete Heisenberg group H(Z) from the family {Tθ,N}θ∈T2, where
for all θ = (θ1, θ2) ∈ T2 the unitary representation Tθ,N : H(Z) → U(CN ) acts
as follows on the canonical basis {uj}j=0,...,N−1 of CN

Tθ,N(n1, n2, s)uj = e
2πis
N e−

πin1n2
N e

2πin1(j+θ1)
N e

2πin2θ2
N uj−n2 , (2.1)

for all n1, n2 ∈ Z and s ∈ R, where the result of j−n2 is modulo N , and U(CN )
denotes the space of unitary operators on CN . The variable s acts just as a

scalar multiplication by e
2πis
N , hence it can be disregarded and, with an abuse of

notation, we can define the map Tθ,N : Z2 → U(CN ):

Tθ,N(n1, n2) := Tθ,N(n1, n2, 0), n1, n2 ∈ Z. (2.2)
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For a short review of the representation theory of the discrete Heisenberg group
H(Z) we refer to the Appendix and to the references therein. In what follows we
select one representation Tθ,N by choosing N ∈ N, N ≥ 1, and θ = (θ1, θ2) ∈ T2

and we refer to Tθ,N as representation (θ,N).
Let α ∈ C1(T2;C). By the Fourier inversion formula:

α(x, p) =
∑

n1,n2∈Z

α̂(n1, n2)e
2πi(n1x+n2p), (x, p) ∈ T

2, (2.3)

where

α̂(n1, n2) =

∫

T2

α(x, p)e−2πi(xn1+pn2) dx dp, (n1, n2) ∈ Z
2.

and the Fourier series in (2.3) converges uniformly.

Definition 2.1. The Weyl quantization of α ∈ C1(T2;C) in the representation

(θ,N), denoted by OpWθ,N(α), is defined as follows

OpWθ,N(α) =
∑

n1,n2∈Z

α̂(n1, n2)Tθ,N(n1, n2).

Remark 2.2. By Definition 2.1 it follows immediately that for all n1, n2 ∈ Z:

Tθ,N(n1, n2) = OpW
θ,N (e2πi(n1x+n2p)).

The first result is the explicit computation of the matrix elements of the Weyl
operators.

We introduce some notations: let {uj}j=0,...,N−1 be the canonical basis in
CN , it is convenient to regard the index j as an element of ZN , with ZN =
Z/NZ. Let 〈·, ·〉 denote the scalar product on CN , and MN(C) the space of
the N × N complex matrices. If A ∈ MN (C) we denote with Aj,k its entries,
j, k = 0, . . . , N − 1. It is convenient to regard the indices j and k as elements of
ZN . Finally we denote with F2 the discrete Fourier transform with respect to
the second variable, namely: if β : Z2N × Z2N → C then

F2β(m, r) =
∑

j∈Z2N

β(m, j) e−
2πirj
2N , m, r ∈ Z2N . (2.4)

Theorem 2.3. Let α ∈ C1(T2;C). Then for all n, j = 0, . . . , N − 1

〈un,OpWθ,N (α)uj〉

=
1

2N
(F2αθ,N (j + n, j − n) + F2αθ,N(j + n+N, j − n+N)) , (2.5)

where for all m, l ∈ Z2N

αθ,N(m, l) := α

(

m

2N
+
θ1
N
,
j

2N
+
θ2
N

)

.
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Proof. We compute the action of OpW
θ,N(α) on the vector uj , obtaining:

OpW
θ,N(α)uj

=
∑

n1,n2∈Z

α̂(n1, n2)Tθ,N(n1, n2)uj

=
∑

n1,n2∈Z

α̂(n1, n2)e
−

πin1n2
N e

2πi(n1θ1+n2θ2)
N e

2πin1j

N uj−n2

=
∑

n1,n2∈Z

(∫

T2

α(x, p)e−2πi(n1x+n2p) dx dp

)

e−
πin1n2

N e
2πi(n1θ1+n2θ2)

N e
2πin1j

N uj−n2

=
∑

m1,m2∈Z

r,s=0,...,2N−1

∫

T2

α(x, p)e−2πi[(r+2Nm1)x+(s+2Nm2)p] dx dp

×e−
πi(r+2Nm1)(s+2Nm2)

N e
2πi[(r+2Nm1)θ1+(s+2Nm2)θ2]

N e
2πi(r+2Nm1)j

N uj−(s+2Nm2) (2.6)

where in (2.6) we divide n1 and n2 by 2N , namely we write n1 = r+2Nm1 and
n2 = s + 2Nm2. Then using the uniform convergence we pass the series inside
the integral obtaining

OpW
θ,N (α)uj

=
2N−1
∑

r,s=0

e−
πirs
N e

2πirj
N

(∫

T2

α(x, p)e−2πi[r(x− θ1
N )+s(p− θ2

N )]

×
∑

m1,m2∈Z

e−2πi[m1(2Nx−2θ1)+m2(2Np−2θ2)] dx dp



 uj−s. (2.7)

Now, using the Poisson summation formula, [32],

∑

m∈Z

e2πimy =
∑

m∈Z

δ(y −m), (2.8)
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for the sum with respect to m1,m2 ∈ Z in (2.7), we obtain that

OpW
θ,N (α)uj

=
1

(2N)2

2N−1
∑

r,s=0

(∫

T2

α(x, p)e−2πi[r(x− θ1
N )+s(p− θ2

N )] dx dp

)

e−
πirs
N e

2πirj
N

×
∑

m1,m2∈Z

δ

(

x−
1

2N
(m1 + 2θ1)

)

δ

(

p−
1

2N
(m2 + 2θ2)

)

uj−s

=
1

(2N)2

2N−1
∑

r,s,m1,m2=0

αθ,N(m1,m2)e
−

2πi(rm1+sm2)
2N e−

πirs
N e

2πirj
N uj−s

=
1

(2N)2

2N−1
∑

s,m1,m2=0

αθ,N(m1,m2)e
−

2πism2
2N

2N−1
∑

r=0

e−
2πir(m1−2j+s)

2N uj−s (2.9)

=
1

2N

2N−1
∑

s,m1,m2=0

αθ,N(m1,m2)e
−

2πism2
2N δ

(2N)
s,2j−m1

uj−s

=
1

2N

2N−1
∑

m1,m2=0

αθ,N(m1,m2)e
−

2πim2(2j−m1)

2N um1−j ,

where in (2.9) we used the following identity for the sum with respect to r:

1

2N

2N−1
∑

j=0

e−
2πijk
2N = δ

(2N)
k,0 , (2.10)

where δ
(2N)
k,0 denotes the Kronecker delta on Z2N . Therefore

〈un,OpW
θ,N(α)uj〉

=
1

2N

2N−1
∑

m1,m2=0

αθ,N(m1,m2)e
−

2πim2(2j−m1)

2N δ
(N)
n,m1−j

=
1

2N

2N−1
∑

m2=0

(

αθ,N(j + n,m2)e
−

2πim2(j−n)
2N + αθ,N(j + n+N,m2)e

−
2πim2(j−n+N)

2N

)

=
1

2N
(F2αθ,N(j + n, j − n) + F2αθ,N(j + n+N, j − n+N))

and this concludes the proof. ⊓⊔

Remark 2.4. A simple computation yields

OpW
θ,N(α)∗ = OpW

θ,N(α).

Hence the Weyl quantization of any real-valued function is a self-adjoint opera-
tor.
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Remark 2.5. The matrix elements in (2.5) are the anaologous of the kernel of the
Weyl operator in the well-known Weyl quantization on R2. If a : R2 → C is any
smooth function then its Weyl quantization is an integral operator on L2(R),
namely

OpW
h (a)ψ(x) =

∫

R

Ka(x, y)ψ(y) dy, ψ ∈ L2(R).

The kernel Ka is

Ka(x, y) =
1

h
F2a

(

x+ y

2
,
y − x

h

)

=
1

h

∫

R

a

(

x+ y

2
, p

)

e−
2πip(x−y)

h dp,

where F2 denotes the Fourier transform with respect to the second variable on
R.

Remark 2.6. Theorem 2.3 shows that the Weyl quantization map α 7→ OpWθ,N (α)

is not injective between F(T2), the space of functions on T2, and L(CN ) ≃
MN (C), the space of linear operators acting on CN . Indeed, any two functions
assuming the same values on the lattice

L(θ,N) :=

{(

j

2N
+
θ1
N
,
k

2N
+
θ2
N

)

: j, k ∈ Z2N

}

yield the same Weyl operator in the representation (θ,N).

Remark 2.7. By Theorem 2.3 the Weyl operator quantizing α in the representa-
tion (θ,N) depends only on the values of α on L(θ,N), namely on

αθ,N(r, s) := α

(

r

2N
+
θ1
N
,
s

2N
+
θ2
N

)

, r, s = 0, . . . , 2N − 1.

This means that the actual object that is quantized is the sampling αθ,N of the
function α on L(θ,N) (i.e. a 2N × 2N matrix).

We can now determine the most general class of functions on T2 admitting Weyl
quantization and analyze the non-injectivity of this map.

Definition 2.8. Let F(T2) denote the space of functions from T2 to C. The
(θ,N)-sampling operator µθ,N : F(T2) →M2N (C) is defined as follows:

µθ,N(α) = αθ,N ,

where αθ,N (r, s) = α
(

r
2N + θ1

N
, s
2N + θ2

N

)

, r, s = 0, . . . , 2N − 1.

Then, clearly:

Theorem 2.9. Let α ∈ F(T2). Then α admits Weyl quantization OpWθ,N(α),
the N × N matrix with entries given by (2.5), if and only if it admits a finite

sampling µθ,N(α) on L(θ,N) =
{(

j
2N + θ1

N
, k
2N + θ2

N

)

: j, k ∈ Z2N

}

⊂ T
2.

Theorems 2.3, 2.9 and Definition 2.8 yield immediately the following Corollary
specifying the contents of Remark 2.6.

Corollary 2.10. Let α, β ∈ F(T2) such that µθ,N (α) = µθ,N(β). Then OpWθ,N(α) =

OpWθ,N(β).



8 Marilena Ligabò

Remark 2.11. By Corollary 2.10, two functions taking the same values on L(θ,N)
generate the same Weyl operator in the representation (θ,N). The converse is
not true, namely functions assuming different values on L(θ,N) can generate
the same Weyl operator in the representation (θ,N), as shown in Theorem 2.13.

To identify all functions generating the same Weyl operator, let us introduce
an equivalence relation in the function space F(T2).

Definition 2.12. Let α, α′ ∈ F(T2). We say that α is equivalent to α′ in the
representation (θ,N), and write α

.
=θ,N α′, if they generate the same Weyl

operator, i.e.
α
.
=θ,N α′ ⇐⇒ OpWθ,N(α) = OpWθ,N(α′). (2.11)

We now characterize the equivalence relation
.
=θ,N by studying the kernel of

the Weyl quantization procedure. To this end we introduce the operator

∆ :M2N (C) →MN(C) (2.12)

defined as follows, for all A = (Ar,s)r,s=0,...,2N−1 ∈M2N (C):

∆(A) = (∆(A)j,k)j,k=0,...,N−1

∆(A)j,k := Aj,k + (−1)kAj+N,k + (−1)jAj,k+N + (−1)j+k+NAj+N,k+N .

By using the above definition one can prove the following theorem which is a
central result of this paper.

Theorem 2.13. Let α, α′ : T2 → C two functions on T2, then:

(i) α
.
=θ,N α′ if and only if ∆(µθ,N (α)) = ∆(µθ,N(α′)).

(ii) If A = OpWθ,N(α) and A = ∆(µθ,N (α)) ∈MN(C), then

Am,l =
1

2N

N−1
∑

s=0

Am+l,s e
πis(m−l)

N ,

for all m, l = 0, . . . , N − 1, where the result of m+ l is modulo N .

Proof. We start with the proof of (i) and denote by

x(r, s) = αθ,N(r, s)− α′

θ,N(r, s)

for all r, s ∈ Z2N . Since OpW
θ,N(α) = OpW

θ,N(α′), by (2.5) we have that for all
n, j = 0, . . . , N − 1

2N−1
∑

m=0

(x(j + n,m) + (−1)mx(j + n+N,m)) e−
πiim(j−n)

N = 0.

Introduce the change of variables:
{

r = j + n
s = j − n

(mod 2N).

It follows that
{

2j = r + s
2n = r − s

(mod 2N),
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thus r and s must be both even or both odd. We have only two cases: (r, s) =
(2r′, 2s′) or (r, s) = (2r′ + 1, 2s′ + 1), for some r′, s′ = 0, . . . , N − 1. Thus in the
first case we obtain:

2N−1
∑

m=0

(x(2r′,m) + (−1)mx(2r′ +N,m)) e−
2πiims′

N = 0, (2.13)

and in the second one:

2N−1
∑

m=0

(x(2r′ + 1,m) + (−1)mx(2r′ + 1 +N,m)) e−
2πiims′

N e−
πiim
N = 0, (2.14)

for r′, s′ = 0, . . . , N − 1. Now we multiply (2.13) and (2.14) by e
2πiis′k

N , with
k = 0, . . . , N − 1, and sum with respect to s′ obtaining:

N−1
∑

s′=0

e
2πiis′k

N

2N−1
∑

m=0

(x(2r′,m) + (−1)mx(2r′ +N,m)) e−
2πiims′

N = 0

for the first case and

N−1
∑

s′=0

e
2πiis′k

N

2N−1
∑

m=0

(x(2r′ + 1,m) + (−1)mx(2r′ + 1 +N,m)) e−
2πiims′

N e−
πiim
N = 0

for the second one. Thus, since

N−1
∑

s′=0

e
2πiis′(k−m)

N = Nδ
(N)
m,k,

we obtain that, for all r′, k = 0, . . . , N − 1

x(2r′, k) + (−1)kx(2r′ +N, k) + x(2r′, k) + (−1)k+Nx(2r′ +N, k +N) = 0

and

x(2r′+1, k)+(−1)kx(2r′+1+N, k)−x(2r′+1, k)−(−1)k+Nx(2r′+1+N, k+N) = 0.

Therefore, for all j, k = 0, . . . , N − 1

x(j, k) + (−1)kx(j +N, k) + (−1)jx(j, k +N) + (−1)j+k+Nx(j +N, k +N) = 0

and this concludes the proof of (i).
We now prove assertion (ii). We formally define for all j, k = 0, . . . , N − 1:

Aj+N,k := (−1)kAj,k, Aj,k+N := (−1)jAj,k, Aj+N,k+N := (−1)j+k+NAj,k.

By (2.5), a direct computation shows that for all r, s = 0, . . . , 2N − 1:

Ar,s = 2

N−1
∑

j=0

Aj,r−j e
−

πis(2j−r)
N .
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Therefore for all k = 0, . . . , 2N − 1:

2N−1
∑

s=0

Ar,se
πisk
N = 2

N−1
∑

j=0

Aj,r−j

2N−1
∑

s=0

e−
πis(2j−r)

N = 4N

N−1
∑

j=0

Aj,r−jδ
(2N)
2j,r+k. (2.15)

The modular equation 2j = r+ k (mod 2N) has solution if and only if r, k have
the same parity, i.e. (r, k) = (2r′, 2k′) or (r, k) = (2r′ + 1, 2k′ + 1), for some
r′, k′ = 0, . . . , N − 1. Therefore, by (2.15) it results that

Ar′+k′,r′−k′ =
1

4N

2N−1
∑

s=0

A2r′,se
πis(2k′)

N , if (r, k) = (2r′, 2k′)

and

Ar′+k′+1,r′−k′ =
1

4N

2N−1
∑

s=0

A2r′+1,se
πis(2k′+1)

N , if (r, k) = (2r′ + 1, 2k′ + 1)

Now we introduce the change of variables:

{

m = r′ + k′

l = r′ − k′
(mod N)

for the first case and

{

m = r′ + k′ + 1
l = r′ − k′

(mod N)

for the second one. In both cases it results that

Am,l =
1

4N

2N−1
∑

s=0

Am+l,s e
πis(m−l)

N

=
1

4N

N−1
∑

s=0

(

Am+l,s e
πis(m−l)

N +Am+l,s+N e
πi(s+N)(m−l)

N

)

=
1

4N

N−1
∑

s=0

(

Am+l,s e
πis(m−l)

N + (−1)m+l(−1)m−lAm+l,s e
πis(m−l)

N

)

=
1

2N

N−1
∑

s=0

Am+l,s e
πis(m−l)

N

and this concludes the proof. ⊓⊔

Remark 2.14. The Weyl quantization in the representation (θ,N) is defined for
any function α ∈ F(T2) given its sampling on L(θ,N), namely the matrix

µθ,N (α) = {αθ,N(r, s)}r,s=0,...,2N−1 ∈M2N (C).
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Actually Theorem 2.13 shows that the quantization is a linear correspondence
between M2N (C) (the space of all possible values {αθ,N(r, s)}r,s=0,...,2N−1 and
MN (C) (the space of the quantum operators), namely

M2N (C)
OpW

θ,N

−→ MN (C).

As explained this correspondence is not injective and in order to obtain a bijec-
tion, we have to consider the appropriate quotient space. More precisely:

Corollary 2.15. The Weyl quantization is a linear bijection between the quotient
space M2N(C)/Ker∆ and MN(C), where Ker∆ denotes the kernel of the operator
∆ defined in (2.12).

Proof. The proof of injectivity follows by Theorem 2.13. Moreover, since the
dimension of Ker∆ is 3N2, it results that M2N (C)/Ker∆ and MN(C) have the
same dimension N2 so the the linear map is a bijection between the two spaces.

⊓⊔

Remark 2.16. Assertion (i) of Theorem 2.13 immediately entails that functions
assuming different values on L(θ,N) may admit the same Weyl quantization.
Moreover assertion (ii) shows how the Weyl operator explicitly depends on the
equivalence class of the relation

.
=θ,N .

2.1. Moyal product and Moyal brackets. The Moyal product represents the sym-
bol of the product of non-commuting operators as a deformed product of ordinary
functions.

Definition 2.17. Let α, β ∈ F(T2). The Moyal product α ♯ β is (up to equiv-

alence) the function on T2 generating the operator product OpWθ,N(α)OpWθ,N(β)
through Weyl quantization in the representation (θ,N).

Theorem 2.18. Let α, β ∈ C1(T2;C). Then α ♯ β : T2 → C is given by

(α ♯ β)(x, p) = (2.16)

= 1
(2N)2

2N−1
∑

r1,r2,s1,s2=0

α
(

x+ r1
2N , p+

s1
2N

)

β
(

x+ r2
2N , p+

s2
2N

)

e
πi
N

(r1s2−r2s1).

Proof. By the Fourier inversion formula α and β:

α(x, p) =
∑

n1,n2∈Z

α̂(n1, n2)e
2πi(n1x+n2p)

and

β(x, p) =
∑

m1,m2∈Z

β̂(m1,m2)e
2πi(m1x+m2p),
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where the series converge uniformly. From (2.1) we have that

OpW
θ,N(α)OpW

θ,N(β)

=
∑

n1,n2∈Z

m1,m2∈Z

α̂(n1, n2)β̂(m1,m2)Tθ,N(n1, n2)Tθ,N(m1,m2)

=
∑

n1,n2∈Z

m1,m2∈Z

α̂(n1, n2)β̂(m1,m2)e
−

iπ
N

(n1m2−n2m1)Tθ,N(n1 +m1, n2 +m2)

=
∑

n1,n2∈Z

j1,j2∈Z

α̂(n1, n2)β̂(j1 − n1, j2 − n2)e
−

iπ
N

(n1j2−n2j1)Tθ,N(j1, j2),

=
∑

j1,j2∈Z

γ̂(j1, j2)Tθ,N(j1, j2)

where we used property 2 of Proposition 6.2 in the Appendix, and

γ̂(j1, j2) :=
∑

n1,n2∈Z

α̂(n1, n2)β̂(j1 − n1, j2 − n2)e
−

πi
N

(n1j2−n2j1).

It is easy to prove that

γ̂(j1, j2) =

∫

T2

α

(

x′ −
j2
2N

, p′ −
j1
2N

)

β (x′, p′) e2πi(x
′j1−p′j2) dx′ dp′. (2.17)

By definition:

γ(x, p) =
∑

j1,j2∈Z

γ̂(j1, j2)e
2πi(j1x+j2p) = α ♯ β(x, p).

From (2.17) it follows that

α ♯ β(x, p) =

1

(2N)2

2N−1
∑

r1,r2,s1,s2=0

α
(

x+ r1
2N , p+

s1
2N

)

β
(

x+ r2
2N , p+

s2
2N

)

e
πi
N

(r1s2−r2s1).

This concludes the proof. ⊓⊔
Out of the Moyal product of two functions we can define their Moyal brackets.

Definition 2.19. Let α, β ∈ F(T2). The Moyal brackets {α, β}♯ is the function

(up to equivalence) on T2 having the commutator [OpWθ,N(α),OpWθ,N(β)] as Weyl
operator in the representation (θ,N).

Theorem 2.20. Let α, β ∈ C1(T2;C). Then {α, β}♯ : T
2 → C is given by

{α, β}♯(x, p) (2.18)

= 2i
(2N)2

2N−1
∑

r1,r2,

s1,s2=0

α
(

x+ r1
2N , p+

s1
2N

)

β
(

x+ r2
2N , p+

s2
2N

)

sin
(

π
N
(r1ss − r2s1)

)

.
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Proof. The proof is an elementary consequence of Theorem 2.18. ⊓⊔

Remark 2.21. Theorems 2.18 - 2.20 show that the Moyal product and the Moyal
brackets of two symbols are independent of θ, they only depend on N .

2.2. Quantum dynamics in phase space: evolution of symbols on the torus. Let
H : T2 → R be a function representing the classical Hamiltonian and let

Hθ,N = OpW
θ,N(H )

be its Weyl quantization in the representation (θ,N). We consider a function
α : T2 → C admitting finite sampling on L(θ,N) and its Weyl quantization

Aθ,N = OpW
θ,N(α) in the representation (θ,N). We can define the one-parameter

group
t ∈ R 7→ U(t) = e−2πiNtHθ,N ,

and the operator Aθ,N(t) = U(−t)Aθ,NU(t), t ∈ R. An elementary computation
shows that t ∈ R 7→ Aθ,N(t) solves the Heisenberg equation











i

2πN

dA(t)

dt
= [Hθ,N , A(t)],

A(0) = Aθ,N .

The evolution equation for the symbol of the operator Aθ,N (t) is obtained via
the Moyal brackets in Definition 2.19. Let αθ,N(t) be the symbol of Aθ,N(t).
Then αθ,N(t) is the solution of the following equation on the torus











i

2πN

dα(t)

dt
= {H , α(t)}♯,

α(0) = α.

(2.19)

Remark 2.22. From (2.18), proceeding as is the case of the standard semiclassical
calculus in R2 (see e.g [29,30,31]) it is not difficult to prove that

2πN

i
{α, β}♯(x, p) = {α, β}(x, p) +O

(

(

1

2πN

)2
)

, (2.20)

for all α, β ∈ C∞(T2;C), where {α, β} are the Poisson brackets of α and β,
namely

{α, β} =
∂α

∂x

∂β

∂p
−
∂α

∂p

∂β

∂x
.

This implies that in the N → ∞ limit of (2.19) one recovers the classical equation
of motion of the Hamiltonian dynamics

{

dα(t)

dt
= {H , α(t)}

α(0) = α.
(2.21)

In this sense (2.19) represents the quantization of the generic classical dynamical
system on the torus given by (2.21).
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3. Wigner transform on the torus

In this section we construct the Wigner transform on T2 starting from the repre-
sentation of the discrete Heisenberg group. We follow the approach in [3], with a
suitable modification of the definition, that takes into account the fact that the
representation Tθ,N is not N -periodic. Then we compute explicitly the Wigner
transform and determine its support.

Definition 3.1. Let ψ, ϕ ∈ CN , we define the Fourier-Wigner transform of ψ
and ϕ in the representation (θ,N) as Vθ,N (ψ, ϕ) : Z2 → C such that

Vθ,N (ψ, ϕ)(n1, n2) = 〈ψ, Tθ,N(n1, n2)ϕ〉, for all (n1, n2) ∈ Z
2, (3.1)

where 〈·, ·〉 denotes the scalar product on CN . We define the Wigner transform
of ψ and ϕ in the representation (θ,N) as the distribution on T

2 defined by

Wθ,N (ψ, ϕ)(x, p) =
∑

n1,n2,∈Z

Vθ,N(ψ, ϕ)(n1, n2)e
−2πi(n1x+n2p), (3.2)

where the Fourier series converges in the sense of distribution (since Vθ,N (ψ, ϕ)
is uniformly bounded).

Before computing the explicit formula for the Wigner transform Wθ,N(ψ, ϕ)
we present some of its basic properties. The following Proposition is the analog
of Proposition 3.2 of [3] for the modified definition of the Wigner transform
on T2 in Eq. (3.2). We introduce some notations: if D is a distribution on T2

(D ∈ D ′(T2)) and φ is a test function on T2 (φ ∈ D(T2)), we denote with
∫

T2 D(x, p)φ(x, p) dx dp the action of D on φ and with δZ the Dirac delta on T2,
namely

δZ(x) =
∑

m∈Z

δ(x−m). (3.3)

Proposition 3.2. Let ψ, ϕ ∈ CN , then

1.
∫

T2

Wθ,N (ψ, ϕ)(x, p) dx dp = 〈ψ, ϕ〉; (3.4)

2.
∫

T1

Wθ,N (ψ, ϕ)(x, p) dp =

N−1
∑

j=0

ψjϕjδZ

(

x−
j + θ1
N

)

; (3.5)

3.
∫

T1

Wθ,N (ψ, ϕ)(x, p) dx =
1

N

N−1
∑

j=0

ψ̂jϕ̂jδZ

(

p−
j + θ2
N

)

, (3.6)

where ψ̂j, ϕ̂j, j = 0, . . . , N − 1 are the discrete Fourier coefficients of ψ and
ϕ:

ψ̂j =

N−1
∑

m=0

ψme
−

2πimj
N and ϕ̂j =

N−1
∑

m=0

ϕme
−

2πimj
N .
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4.

Wθ,N (ϕ, ψ) =Wθ,N (ψ, ϕ). (3.7)

In particular, if for ϕ = ψ we set Wθ,Nψ :=Wθ,N(ψ, ψ), then Wθ,Nψ is real.
5. For any α ∈ C1(T2;C) we have:

〈ψ,OpWθ,N(α)ϕ〉 =

∫

T2

α(x, p)Wθ,N (ψ, ϕ)(x, p) dx dp. (3.8)

Proof. First, notice that a simple calculation yields:

Vθ,N(ψ, ϕ)(n1, n2) =

N−1
∑

j,l=0

ψjϕle
−

πin1n2
N e

2πin1
N

(l+θ1)e
2πiθ2n2

N δ
(N)
j,l−n2

= e
2πi(n1θ1+n2θ2)

N e−
πin1n2

N

N−1
∑

l=0

ψl−n2
ϕle

2πiln1
N ,

where δ
(N)
j,m is the Kronecker delta on ZN .

Let us begin with the proof of assertion 1:
∫

T2

Wθ,N(ψ, ϕ)(x, p) dx dp

=

∫

T2

∑

n1,n2,∈Z

Vθ,N(ψ, ϕ)(n1, n2)e
−2πi(n1x+n2p) dx dp

=
∑

n1,n2,∈Z

(∫

T1

e−2πin1x dx

)(∫

T1

e−2πin2p dp

)

Vθ,N(ψ, ϕ)(n1, n2)

= Vθ,N(ψ, ϕ)(0, 0) = 〈ψ, ϕ〉.

We now prove assertion 2. First notice that
∫

T1

Wθ,N(ψ, ϕ)(x, p) dp

=
∑

n1,n2∈Z

(∫

T1

e−2πin2p dp

)

Vθ,N(ψ, ϕ)(n1, n2)e
−2πin1x

=
∑

n1∈Z

Vθ,N (ψ, ϕ)(n1, 0)e
−2πin1x

=
∑

n1∈Z

e
2πin1θ1

N

N−1
∑

l=0

ψlϕle
2πin1l

N e−2πin1x.

Then, applying the Poisson summation formula (2.8) in the summation with
respect to n1 ∈ Z, we obtain

∫

T1

Wθ,N(ψ, ϕ)(x, p) dp =

N−1
∑

l=0

ψlϕl

∑

n1∈Z

δ

(

x−
l + θ1
N

− n1

)

=

N−1
∑

l=0

ψlϕl

∑

n1∈Z

δ

(

x−
l + n1N + θ1

N

)

,
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as desired.
The proof of assertion 3 is quite similar: we start with the Fourier inversion

formula that gives the following identities

ψj =
1

N

N−1
∑

l=0

ψ̂le
2πlj
N , ϕj =

1

N

N−1
∑

l=0

ϕ̂le
2πlj
N , for all j = 0, . . . , N − 1.

We have that
∫

T1

Wθ,N(ψ, ϕ)(x, p) dp =
∑

n2∈Z

Vθ,N (ψ, ϕ)(0, n2)e
−2πin2p,

then using (3.9) we get:

∑

n2∈Z

Vθ,N (ψ, ϕ)(0, n2)e
−2πin2p

=
1

N2

∑

n2∈Z

e
2πin2θ2

N

N−1
∑

j,l,m=0

ψ̂je
−

2πij(l−n2)

N ϕ̂me
2πiml

N e−2πin2p

=
1

N2

N−1
∑

j,m=0

∑

n2∈Z

e−2πin2(p− j+θ2
N )ψ̂jϕ̂m

N−1
∑

l=0

e−
2πil(j−m)

N .

Using the Poisson formula (2.8) in the summation with respect to n2 ∈ Z and
the identity

N−1
∑

k=0

e
2πimk

N = Nδ
(N)
m,0

in the summation with respect to l = 0, . . . , N − 1 we finally obtain:

∫

T1

Wθ,N(ψ, ϕ)(x, p) dp =
1

N

N−1
∑

j=0

ψ̂jϕ̂j

∑

n2∈Z

δ

(

p−
j + n2N + θ2

N

)

,

as desired.
The proof of assertion 4 is a direct consequence of (3.2). Finally, the proof of

assertion 5 is a direct consequence of (3.1) and (3.2):

〈ψ,OpW
θ,N(α)ϕ〉 =

∑

n1,n2∈Z

α̂(n1n2)〈ψ, Tθ,N (n1, n2)ϕ〉

=
∑

n1,n2∈Z

α̂(n1n2)Vθ,N (ψ, ϕ)(n1, n2)

=
∑

n1,n2∈Z

Vθ,N(ψ, ϕ)(n1, n2)

∫

T2

α(x, p)e−2πi(xn1+pn2) dx dp

=

∫

T2

α(x, p)Wθ,N (ψ, ϕ)(x, p) dx dp.

⊓⊔
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Remark 3.3. Assertion 5 of Proposition 3.2 can be extended, in an appropri-
ate sense, to any function α : T2 → C admitting finite sampling, as shown in
Proposition 3.10 and in Remark 3.11 below.

The next theorem yields an explicit formula for the Wigner transform, and
shows that it is actually a signed measure on T2 with discrete support.

Theorem 3.4. Let ψ, ϕ ∈ CN , then

Wθ,N (ψ, ϕ) =
2N−1
∑

r,s=0

W̃N (ψ, ϕ)(r, s) δZ
(

x− r
2N − θ1

N

)

δZ
(

p− s
2N − θ2

N

)

, (3.9)

where

W̃N (ψ, ϕ)(r, s) =
1

2N

∑

l∈ZN

ψr−lϕle
−

πi
N

(2l−r)s, r, s = 0, . . . , 2N − 1. (3.10)

Proof. We start with the definition of Wθ,N (ψ, ϕ) given in Eq. (3.2):

Wθ,N (ψ, ϕ)(x, p)

=
∑

n1,n2∈Z

Vθ,N (ψ, ϕ)(n1, n2)e
−2πi(n1x+n2p)

=

2N−1
∑

j1,j2=0

∑

n1,n2∈Z

Vθ,N(ψ, ϕ)(j1 + 2Nn1, j2 + 2Nn2)e
−2πi(j1x+j2p)e−4πiN(n1x+n2p)

=

2N−1
∑

j1,j2=0

∑

n1,n2∈Z

e2πi(2n1θ1+2n2θ2)Vθ,N(ψ, ϕ)(j1, j2)e
−2πi(j1x+j2p)e−4πiN(n1x+n2p),

where we used property 4 of Proposition 6.2 in the Appendix. Now, again by
the Poisson formula (2.8), we have that

∑

n1,n2∈Z

e−2πi[n1(2Nx−2θ1)+n2(2Np−2θ2)]

= 1
(2N)2

∑

n1,n2∈Z

δ
(

x− (n1+2θ1)
2N

)

δ
(

p− (n2+2θ2)
2N

)

,

therefore,

Wθ,N (ψ, ϕ)(x, p)

=
2N−1
∑

r,s=0

W̃N (ψ, ϕ)(r, s)
∑

m1,m2∈Z

δ
(

x−
(

r+2Nm1

2N + θ1
N

))

δ
(

p−
(

s+2Nm2

2N + θ2
N

))

,

where

W̃N (ψ, ϕ)(r, s) =
1

(2N)2

2N−1
∑

j1,j2=0

Vθ,N(ψ, ϕ)(j1, j2)e
−

2πi
2N [j1(2θ1+r)+j2(2θ2+s)].
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Now we compute explicitly W̃N (ψ, ϕ): for r, s = 0, . . . , 2N − 1

W̃N (ψ, ϕ)(r, s) =
1

(2N)2

∑

j1,j2=0,...,2N−1

l=0,...,N−1

ψl−j2ϕle
−

πij1j2
N e

πij1l

N e−
2πi
2N (j1r+j2s)

=
1

(2N)2

2N−1
∑

j2=0

N−1
∑

l=0

ψl−j2ϕle
−

πij2s

N

2N−1
∑

j1=0

e−
2πij1(j2+r−2l)

2N

=
1

2N

N−1
∑

l=0

ψl−j2ϕle
−

πij2s

N δ
(2N)
j2,2l−r

=
1

2N

N−1
∑

l=0

ψr−lϕle
−

πi
N

(2l−r)s,

and this concludes the proof. ⊓⊔
Several remarks are in order.

Remark 3.5. In classical mechanics the state of a system is characterized by a
probability measure on the phase space, while the observables are described by
real functions. The value of any observable in the state of the system is obtained
by the pairing between the two objects. In the standard phase space formulation
of quantum mechanics (where the Hilbert space is L2(Rn) and the phase space
T ∗Rn ≃ Rn × Rn), the quantum state ψ ∈ L2(Rn) is described by its Wigner
transform, which is a function on the phase space that can be associated to an
absolutely continuous measure. The observables are functions on phase space as
well. If the phase space is the torus T2, Definitions 3.2 and 2.1 immediately yield
that the state is described by the Wigner transform, which is a distribution on T

2

(signed measure), while the observables are represented by continuous function
on T

2, as in the classical formalism. Moreover the value of any observable in the
given state of the system is obtained by the pairing described in 5 of Proposition
3.2.

Remark 3.6. The Wigner transform Wθ,N(ψ, ϕ) in (3.9) depends on the repre-

sentation of the Heisenberg group, i.e. on θ, only in its support, while W̃N (ψ, ϕ)
is independent of θ. Moreover, for all r, s = 0, . . . , 2N − 1

W̃N (ψ, ϕ)(r + 2N, s+ 2N) = W̃N (ψ, ϕ)(r, s),

thus W̃N (ψ, ϕ) is actually defined on Z2N × Z2N .

Remark 3.7. It can be easily proved that the values of the functions W̃N and Vθ,N
are related, as in the standard quantization on R2, by the following formula:

Vθ,N(ψ, ϕ)(k,m) = 2N W̃N (ψ̃, ϕ)(m,−k) e
2πi(kθ1+mθ2)

N , (3.11)

for all k,m = 0, . . . , 2N−1, θ = (θ1, θ2) ∈ T2, ψ =
∑

j ψjuj, ϕ =
∑

j ϕjuj ∈ CN ,
where

ψ̃ =
N−1
∑

j=0

ψN−juj .
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Remark 3.8. Let Mx[Wθ,N(ψ, ϕ)] and Mp[Wθ,N(ψ, ϕ)] denote the two marginals
of Wθ,N(ψ, ϕ), namely

Mx[Wθ,N(ψ, ϕ)](x) =

∫

T1

Wθ,N (ψ, ϕ)(x, p) dp, (3.12)

and

Mp[Wθ,N (ψ, ϕ)](p) =

∫

T1

Wθ,N(ψ, ϕ)(x, p) dx, (3.13)

We can now analyze the support of the Wigner transform: (3.5) and (3.6) entail
that

suppMx[Wθ,N (ψ, ϕ)] ⊂ L (θ1, N) =

{

j

N
+
θ1
N

: j ∈ ZN

}

and

suppMp[Wθ,N (ψ, ϕ)] ⊂ L (θ2, N) =

{

j

N
+
θ2
N

: j ∈ ZN

}

.

Then one can naively expect that suppWθ,N (ψ, ϕ) ⊂ L (θ1, N)×L (θ2, N), but
(3.9) shows that this is not the case! We have indeed:

suppWθ,N (ψ, ϕ) ⊂ L(θ,N) =

{(

r

2N
+
θ1
N
,
s

2N
+
θ2
N

)

: r, s ∈ Z2N

}

.

Clearly L (θ1, N) × L (θ2, N) is a proper subset of L(θ,N): it corresponds to

the “even pairs”, i.e.
{(

2j
2N + θ1

N
, 2m2N + θ2

N

)

: j,m ∈ ZN

}

. However there is an-
other lattice, the ghost lattice, that corresponds to all other cases and cannot
be ignored as shown below. The double lattice is there because the map Tθ,N
defined in (2.1) is 2N -periodic (up to a phase factor) and not just N -periodic.
This “double” periodicity is inherited by the Wigner transform.

Remark 3.9. The support of the Wigner transform has been noticed in the origi-
nal paper by Berry and Hannay [1], and then revisited in [25], together with the
following symmetries:

W̃N (ψ, ϕ)(m+N, l) = (−1)lW̃N (ψ, ϕ)(m, l), (3.14)

W̃N (ψ, ϕ)(m, l +N) = (−1)mW̃N (ψ, ϕ)(m, l), (3.15)

W̃N (ψ, ϕ)(m +N, l +N) = (−1)m+l+NW̃N (ψ, ϕ)(m, l), (3.16)

for any m, l = 0, . . . , N − 1. The proof of (3.14), (3.15), (3.16) is an immediate
consequence of (3.10). These symmetries derives from the fact that ϕ and ψ
are characterized by N complex numbers, so that the Wigner transform can
assume at most N2 independent values. Therefore the Wigner transform can be
restricted e. g. to the proper N ×N sub-lattice

I(θ,N) =

{(

m

2N
+
θ1
N
,
l

2N
+
θ2
N

)

: m, l = 0, . . . , N − 1

}

,

the independent lattice, where it assumes the N2 independent values. Note, how-
ever, that I(θ,N) differs from the cartesian product of the support of the two
marginals of the Wigner transform, i.e. I(θ,N) 6= L (θ1, N) × L (θ2, N), and
that the values assumed on L (θ1, N)× L (θ2, N) are not independent.
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Theorem 3.4 immediately yields the following properties for the values of the
Wigner transform, namely the analog of Proposition 3.2 for the map W̃N .

Proposition 3.10. Let ψ = (ψj)j=0,...,N−1, ϕ = (ϕk)k=0,...,N−1 ∈ CN . Then:

1.
2N−1
∑

r,s=0

W̃N (ψ, ϕ)(r, s) = 〈ψ, ϕ〉; (3.17)

2.
2N−1
∑

s=0

W̃N (ψ, ϕ)(r, s) =

N−1
∑

j=0

ψjϕjδ
(2N)
r,2j ; (3.18)

3.
2N−1
∑

r=0

W̃N (ψ, ϕ)(r, s) =
1

N

N−1
∑

j=0

ψ̂jϕ̂jδ
(2N)
r,2j , (3.19)

where ψ̂, ϕ̂j , j = 0, . . . , N − 1 are the Fourier coefficients of ψ and ϕ:

ψ̂j =

N−1
∑

m=0

ψme
−

2πimj
N and ϕ̂j =

N−1
∑

m=0

ϕme
−

2πimj
N . (3.20)

4.

W̃N (ϕ, ψ) = W̃N (ψ, ϕ), (3.21)

In particular, if for ϕ = ψ we define W̃Nψ := W̃N (ψ, ψ), then W̃Nψ is real.
5. For any function α ∈ F(T2) we have:

〈ψ,OpWθ,N(α)ϕ〉 =

2N−1
∑

r,s=0

αθ,N(r, s)W̃N (ψ, ϕ)(r, s), (3.22)

where for all r, s = 0, . . . , 2N − 1

αθ,N(r, s) := α

(

r

2N
+
θ1
N
,
s

2N
+
θ2
N

)

,

namely αθ,N = µθ,N(α).

Remark 3.11. Assertion 5 in Proposition 3.10 is the extension of assertion 5 in
Proposition 3.2 to any function α ∈ F(T2) having finite sampling on L(θ,N).

The proof of the formula follows from a direct computation of 〈ψ,OpW
θ,N(α)ϕ〉

using the matrix elements of OpW
θ,N(α) in (2.5).

We conclude this section defining the Wigner transform of a linear operator
acting on CN which will be useful in the next section.
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Definition 3.12. Given a linear operator F acting on CN , we define the Fourier-
Wigner transform of F in the representation (θ,N), Vθ,N (F ) : Z2 → C as

Vθ,N(F )(n1, n2) = tr (Tθ,N(n1, n2)F ) , for all (n1, n2) ∈ Z
2, (3.23)

where tr denotes the trace.
We define the Wigner transform of F in the representation (θ,N) as the distri-
bution on T2 defined by

Wθ,N(F )(x, p) =
∑

n1,n2,∈Z

Vθ,N(F )(n1, n2)e
−2πi(n1x+n2p), (3.24)

where the Fourier series converges in the sense of distribution, (since Vθ,N(F )
is uniformly bounded).

An immediate consequence of Theorem 3.9 is the following.

Corollary 3.13. Let F be a linear operator in C
N represented by the matrix

(Fj,k)j,k=0,...,N−1. Then:

Wθ,N(F )(x, p) =

2N−1
∑

r,s=0

W̃N (F )(r, s) δZ
(

x− r
2N − θ1

N

)

δZ
(

p− s
2N − θ2

N

)

(3.25)

where

W̃N (F )(r, s) =
1

2N

N−1
∑

l=0

Fl,r−le
−

πi
N

(2l−r)s. (3.26)

Moreover for all r, s = 0, 2N − 1

W̃N (F )(r + 2N, s+ 2N) = W̃N (F )(r, s). (3.27)

Therefore W̃N (F ) is actually defined on Z2N × Z2N . Finally:

Corollary 3.14. Let F be a linear operator in CN . Then:

W̃N (F )(m+N, l) = (−1)lW̃N (F )(m, l), (3.28)

W̃N (F )(m, l +N) = (−1)mW̃N (F )(m, l), (3.29)

W̃N (F )(m +N, l +N) = (−1)m+l+NW̃N (F )(m, l), (3.30)

for any m, l = 0 . . . , N − 1.
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4. Dequantization

In this section we describe how to invert the Weyl quantization procedure on
the torus. Namely, given a linear operator A acting on CN , we want to asso-
ciate to it a function α : T2 → C reproducing A under Weyl quantization. By
the non-injectivity of the Weyl quantization α will not be unique. Actually, we
characterize all functions admitting A as Weyl operator.

Theorem 4.1. Let A be a linear operator in CN represented by the matrix
(An,j)n,j=0,...,N−1. Consider W̃N (A), defined in (3.26), and the (θ,N)-sampling

operator µθ,N defined in Definition (2.8). Then A = OpWθ,N(α) for all α : T2 → C

such that µθ,N (α) = NW̃N (A).

Proof. Let α : T2 → C such that µθ,N(α) = NW̃N (A). We have to prove that

An,j = 〈un,OpW
θ,N(α)uj〉, for all n, j = 0, . . . , N − 1. By (2.5) in Theorem 2.3 we

have that

〈un,OpW
θ,N(α)uj〉

=
1

2N
(F2αθ,N(j + n, j − n) + F2αθ,N(j + n+N, j − n+N))

=
1

2

2N−1
∑

n2=0

e−
2πin2(j−n)

2N

[

W̃N (A)(j + n, n2) + (−1)n2W̃N (A)(j + n+N,n2)
]

=

2N−1
∑

n2=0

e−
2πin2(j−n)

2N W̃N (A)(j + n, n2)

=

N−1
∑

l=0

Al,j+n−lδ
(2N)
2l,2n = An,j .

where we used the symmetry of the Wigner transform (3.28). This concludes the
proof of the Theorem. ⊓⊔

Corollary 4.2. Let α : T2 → C a function on T2, and A = OpWθ,N(α) its

Weyl operator in the representation (θ,N). Then for all α′ : T2 → C such

that µθ,N(α′) = NW̃N (A) it results that α′ .=θ,N α.

Remark 4.3. Let us discuss in what sense Theorem 4.1 represents an inversion of
the Weyl of the quantization procedure. Consider a function α ∈ F(T2) and its

Weyl operator A := OpW
θ,N(α). Dequantize A using Theorem 4.1 (which amounts

to compute its Wigner transform, namely W̃N (A)). The question is whether or

not µθ,N(α) is equal to NW̃N (A), namely whether the values assumed by α

on L(θ,N) are equal or not to the values of NW̃N (A). The answer is negative

simply because the coefficients {NW̃N(A)(r, s)}r,s∈Z2N satisfy the symmetries
(3.28), (3.29), (3.30), not satisfied in general by {αθ,N(r, s)}r,s∈Z2N . The next
result, Corollary 4.4, entails a kind of universality for the sum of the values
assumed on the lattice having 4 points at a distance N . More precisely:

Corollary 4.4. Let α, α′ : T2 → C, then the following proposition are equivalent:
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1. α
.
=θ,N α′;

2. for all r, s = 0, . . . , N − 1:

∆(µθ,N (α))r,s = ∆(µθ,N(α′))r,s = 4NW̃N (A)(r, s),

where A = OpWθ,N(α) = OpWθ,N(α′).

Proof. The proof can be obtained combining Theorem 2.13 and Corollary 4.2.
⊓⊔

Remark 4.5. By Corollary 4.4, it follows that the equivalence class of symbols
related to the same Weyl operator A is completely characterized by the principal
sub-matrix of W̃N (A), (the N ×N sub-matrix extract by the 2N × 2N matrix

W̃N (A) taking the first N rows and columns), namely the values assumed on
the independent lattice I(θ,N).

Remark 4.6. Let us sum up some relevant aspects about Weyl quantization and
dequantization on the torus:

(i) Each equivalence class in F(T2) contains at least one element having the
symmetries described in Corollary 3.14 on the lattice L(θ,N). Namely, given
α ∈ F(T2) there exists α′ .=θ,N α such that for all m, l = 0, . . . , N − 1

α′

θ,N (m+N, l) = (−1)lα′

θ,N (m, l) ,

α′

θ,N (m, l +N) = (−1)mα′

θ,N (m, l) ,

α′

θ,N (m+N, l +N) = (−1)m+l+Nα′

θ,N (m, l) ,

where

α′

θ,N (r, s) := α′

(

r

2N
+
θ1
N
,
s

2N
+
θ2
N

)

, r, s = 0, . . . , 2N − 1.

(ii) The same equivalence class contains functions with different values on
L(θ,N).

5. Spin in phase space

In this section we consider in detail the case of a spin 1/2, namely N = 2. In
particular we analyze the Wigner transform and its 4 independent values and
we show how they are related to the Pauli matrices.

5.1. Wigner transform and Pauli matrices. Let N = 2, ψ, ϕ ∈ C2. By (3.9), for
all θ = (θ1, θ2) ∈ T

2 we have:

Wθ,2(ψ, ϕ)(x, p) =
3
∑

m,n=0

W̃2(ψ, ϕ)(m,n) δZ

(

x−
m

4
−
θ1
2

)

δZ

(

p−
n

4
−
θ2
2

)

,

where

W̃2(ψ, ϕ)(m,n) =
1

4

[

ψmϕ0e
πimn

2 + ψm−1ϕ1e
πi(m−2)n

2

]

.
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Now construct the matrix W̃2(ψ, ϕ) := (W̃2(ψ, ϕ)(m,n))m,n=0,1,2,3 having as

entries the values of W̃2(ψ, ϕ). A simple computation yields:

W̃2(ψ, ϕ) =
1

4







〈ψ, Iϕ〉 〈ψ, σzϕ〉 〈ψ, Iϕ〉 〈ψ, σzϕ〉
〈ψ, σxϕ〉 〈ψ, σyϕ〉 −〈ψ, σxϕ〉 −〈ψ, σyϕ〉
〈ψ, Iϕ〉 −〈ψ, σzϕ〉 〈ψ, Iϕ〉 −〈ψ, σzϕ〉
〈ψ, σxϕ〉 −〈ψ, σyϕ〉 −〈ψ, σxϕ〉 〈ψ, σyϕ〉






(5.1)

where I is the identity matrix and σx, σy , σz are the Pauli matrices, namely

I =

(

1 0
0 1

)

, σx =

(

0 1
1 0

)

,

σy =

(

0 −i
i 0

)

, σz =

(

1 0
0 −1

)

.

As explained, the independent values of W̃2(ψ, ϕ) are {W̃2(ψ, ϕ)(m,n)}m,n=0,1

and they correspond to the first 2× 2 block in the matrix W̃2(ψ, ϕ). We denote

this sub-matrix w̃2(ψ, ϕ) = (W̃2(ψ, ϕ)(m,n))m,n=0,1 and we call it the principal
sub-matrix. It results that

w̃2(ψ, ϕ) =
1

2

(

〈ψ, Iϕ〉 〈ψ, σzϕ〉
〈ψ, σxϕ〉 〈ψ, σyϕ〉

)

.

In the case ϕ = ψ the matrix corresponding to W̃2ψ = (W̃2ψ(m,n))m,n=0,1,2,3

is given by

W̃2ψ =
1

4







〈ψ, Iψ〉 〈ψ, σzψ〉 〈ψ, Iψ〉 〈ψ, σzψ〉
〈ψ, σxψ〉 〈ψ, σyψ〉 −〈ψ, σxψ〉 −〈ψ, σyψ〉
〈ψ, Iψ〉 −〈ψ, σzψ〉 〈ψ, Iψ〉 −〈ψ, σzψ〉
〈ψ, σxψ〉 −〈ψ, σyψ〉 −〈ψ, σxψ〉 〈ψ, σyψ〉







and the principal sub-matrix is w̃2ψ = (W̃2ψ(m,n))m,n=0,1

w̃2ψ =
1

2

(

〈ψ, Iψ〉 〈ψ, σzψ〉
〈ψ, σxψ〉 〈ψ, σyψ〉

)

.

Therefore, the state ψ is determined by the expectation values of the Pauli
matrices on the vector ψ. Here the knowledge of the values of Wθ,2ψ in the
ghost lattice is critical, because the values corresponding to the even indices in
the matrix W̃2ψ are four times ‖ψ‖2. Therefore the relevant information about
the state ψ is encoded in the values of Wθ,2ψ on the ghost lattice.

Remark 5.1. In (5.1) the support properties of the two marginals described in
(3.18) and (3.19) of Proposition 3.10 are apparent. The sum of all rows (first
marginal) is actually 0 in correspondence of columns with odd indces (1 and 3).
The same is true summing all the columns (second marginal): we obtain 0 in
correspondence of rows with odd indices.
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5.2. Dequantization of the Pauli matrices. We want to compute the classical
symbols of the Pauli matrices and of the identity matrix.

According to Theorem 4.1 and Corollary 4.4, we can say that the Weyl
symbols of the matrices {I, σx, σy, σz} in the representation (θ, 2) can be ob-

tained simply computing the corresponding Wigner transform, namely W̃2(I)

and W̃2(σj), j = x, y, z. We compute explicitly the matrices

W̃2(I) = (W̃2(I)(m,n))m,n=0,1,2,3

and
W̃2(σj) = (W̃2(σj)(m,n))m,n=0,1,2,3 j = x, y, z

that completely characterize the (equivalence class of) symbols of the matrices
I, σx, σy, σz . The result is:

W̃2(I) =
1

2







1 0 1 0
0 0 0 0
1 0 1 0
0 0 0 0






, W̃2(σx) =

1

2







0 0 0 0
1 0 −1 0
0 0 0 0
1 0 −1 0






,

W̃2(σy) =
1

2







0 0 0 0
0 1 0 −1
0 0 0 0
0 −1 0 1






, W̃2(σz) =

1

2







0 1 0 1
0 0 0 0
0 −1 0 −1
0 0 0 0






,

so we have that their principal sub-matrix correspond, up a multiplication factor
1
2 , to the canonical basis in the space M2(C):

w̃2(I) =
1

2

(

1 0
0 0

)

, w̃2(σx) =
1

2

(

0 0
1 0

)

,

w̃2(σy) =
1

2

(

0 0
0 1

)

, w̃2(σz) =
1

2

(

0 1
0 0

)

.

Theorem 5.2. The Weyl symbols of I, σx, σyσz can be characterized as follows:

1. αI : T2 → C is (up to equivalence) the Weyl symbol in the representation
(θ, 2) of I if and only if

∆(µθ,2(αI)) = 4

(

1 0
0 0

)

;

2. αx : T2 → C is (up to equivalence) the Weyl symbol in the representation
(θ, 2) of σx if and only if

∆(µθ,2(αx)) = 4

(

0 0
1 0

)

;

3. αy : T2 → C is (up to equivalence) the Weyl symbol in the representation
(θ, 2) of σy if and only if

∆(µθ,2(αy)) = 4

(

0 0
0 1

)

;
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4. αz : T2 → C is (up to equivalence) the Weyl symbol in the representation
(θ, 2) of σz if and only if

∆(µθ,2(αz)) = 4

(

0 1
0 1

)

.

Proof. The proof is a direct consequence of Theorem 4.1 and Corollary 4.4. ⊓⊔

Remark 5.3. It is well known that the Pauli matrices are related to the generators
of the 2-dimensional Weyl system, see [11]. More precisely it is easy to see that

σz = e−πiθ1Tθ,2(1, 0) and σx = e−πiθ2Tθ,2(0, 1) (5.2)

and that
σy = e−πi(θ1+θ2)Tθ,2(1, 1). (5.3)

Using this relations it is easy to compute (up to equivalence) the Weyl sym-
bols αI , αx, αy, αz of I, σx, σy , σz respectively without using the dequantization
procedure, i.e. Theorem 4.1:

Theorem 5.4. Let αI , αx, αy, αz : T2 → C such that for all (x, p) ∈ T2:

αI(x, p) = 1, αx(x, p) = e2πi(p−
θ2
2 ) (5.4)

and

αy(x, p) = e2πi(x−
θ1
2 )e2πi(p−

θ2
2 ), αz(x, p) = e2πi(x−

θ1
2 ). (5.5)

Then OpWθ,N (αI) = I, OpWθ,N(αj) = σj, j = x, y, z.

Proof. The proof is an immediate consequence of (5.2, 5.3) and (2.4), or it can
be obtained using Theorem 5.2. ⊓⊔

Remark 5.5. According to Theorem 5.2, the Weyl quantization produces a nat-
ural correspondence between the canonical basis of M2(C) and the matrices
{I, σx, σy, σz}. This correspondence suggests how to define the natural exten-
sion of the Pauli matrices in dimension N > 2.

5.3. N -dimensional Pauli matrices. We want to generalize the contents of sub-
sections 5.1, 5.2 to N > 2. Let θ = (θ1, θ2) ∈ T2 and ψ, ϕ ∈ CN , from (3.9) it
follows, by a simple computation, that for all r, s = 0, . . . , 2N − 1:

W̃N (ψ, ϕ)(r, s) =
1

2N
〈ψ,B[r,s]ϕ〉,

where

B[r,s] =

N−1
∑

j=0

e−
πi(r−2j)s

N E
(N)
j,r−j ,

and (E
(N)
k,n )m,l = δ

(N)
k,mδ

(N)
n,l is the canonical basis of MN (C). Define the matrix

W̃N (ψ, ϕ) = (W̃N (ψ, ϕ)(r, s))r,s=0,...,2N−1 in the following way:

W̃N (ψ, ϕ) =

(

1

2N
〈ψ,B[r,s]ϕ〉

)

r,s=0,...,2N−1

. (5.6)
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According to (3.14), (3.15), (3.16), the matrices (B[r,s])r,s=0,...,2N−1 have the
following properties: for all r, s = 0, . . . , 2N − 1

B[r+N,s] = (−1)sB[r,s], B[r,s+N ] = (−1)rB[r,s], (5.7)

and

B[r+N,s+N ] = (−1)r+s+NB[r,s], (5.8)

where the sums in the upperscript are modulo 2N . Thus the independent matri-
ces are those labelled with r, s = 0, . . . , N − 1. These N2 matrices are a natural
generalization to higher dimensional spaces of the Pauli matrices because, as in
the 2-dimensional case, they correspond, via Weyl quantization, to the equiva-
lence class of symbols specified by the canonical basis of MN(C). More precisely:

Theorem 5.6. Let θ ∈ T2 and r, s = 0, . . . , N − 1, then β[r,s] : T2 → C is (up to
equivalence) the Weyl symbol in the representation (θ,N) of B[r,s] if and only if

∆(µθ,N(β[r,s])) = 2NE(N)
r,s . (5.9)

Proof. The proof is a direct consequence of Theorem 4.1 and Corollary 4.4. ⊓⊔

We conclude this section with the explicit computation of β[r,s] (Weyl symbols
of the N -dimensional Pauli matrices B[r,s], up to equivalence).

Theorem 5.7. Let r, s = 0, . . . , N − 1 and β[r,s] : T2 → C such that for all
(x, p) ∈ T2:

β[r,s](x, p) =
1

2N

2N−1
∑

k,m=0

e2πik(x−
r

2N −
θ1
N )e2πim(p−

s
2N −

θ2
N ). (5.10)

Then OpWθ,N (β[r,s]) = B[r,s].

Proof. First we observe that

µθ,N(β[r,s])j,l = β[r,s]

(

j

2N
+
θ1
N
,
l

2N
+
θ2
N

)

= 2Nδ
(2N)
j,r δ

(2N)
l,s ,

for all j, l = 0, . . . 2N − 1. Then it follows immediately that

∆(µθ,N (β[r,s])) = 2NE(N)
r,s

and so we can apply Theorem 5.6. ⊓⊔
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6. Appendix

In this appendix we recall some basic results on the discrete Heisenberg group
H(Z) and its unitary irreducible representations. There are different (equiva-
lent) approaches to the classifications of the finite dimensional representations
of H(Z), e.g [2,6], and here we refer to [2]. The discrete Heisenberg group H(Z)
is given by Z2 × R with the following product

(n1, n2, s)(m1,m2, r) =

(

n1 +m1, n2 +m2, s+ r −
1

2
(n1m2 − n2m1)

)

,

for all (n1, n2, s), (m1,m2, r) ∈ H(Z). The problem of the classification of all
the finite dimensional unitary and irreducible representations of H(Z) has been
addressed and solved, [2,33], and can be formulated as follows.

Theorem 6.1. Let N ∈ N, N > 1, and let {u0, u1, . . . , uN−1} be the canonical
basis of CN .

1. For all θ = (θ1, θ2) ∈ T2, the map Tθ,N : H(Z) → U(CN ) such that for all
(n1, n2, s) ∈ H(Z) and for all j = 0, . . . , N − 1

Tθ,N(n1, n2, s)uj = e
2πis
N e−

πin1n2
N e

2πin1(j+θ1)
N e

2πiθ2n2
N uj−n2 (6.1)

where the result of j−n2 is modulo N , is a unitary irreducible representation
of the discrete Heisenberg group H(Z) on CN

2. Given θ, θ̃ ∈ T2, the representations Tθ,N and Tθ̃,N are equivalent if and only

if θ = θ̃.

3. If ρ is any unitary irreducible representation of H(Z) with ρ(0, 0, s) = e
2πis
N I,

then there exist a unique element θ ∈ T2 such that ρ is unitarily equivalent
to Tθ,N .

We present some properties of the family of irreducible N -dimensional represen-
tations {Tθ,N}θ∈T2 defined in (6.1), [2]. First observe that, since the last variable

s always acts in a simple way as multiplication by the scalar e
2πis
N , it is conve-

nient to disregard it entirely, so for all θ = (θ1, θ2) ∈ T2 we define, with an abuse
of notation, the reduced map Tθ,N : Z2 → U(CN ) such that for all n1, n2 ∈ Z

Tθ,N(n1, n2) = Tθ,N(n1, n2, 0) = e−
πin1n2

N t2(θ2)
n2t1(θ1)

n1 , (6.2)

where t1(θ1) := Tθ,N(1, 0, 0) and t2(θ2) := Tθ,N(0, 1, 0).

Proposition 6.2. Let θ = (θ1, θ2) ∈ T2, then:

1. for all n1, n2 ∈ Z

Tθ,N(n1, n2)
∗ = Tθ,N(−n1,−n2);

2. for all n1, n2,m1,m2 ∈ Z

Tθ,N(n1, n2)Tθ,N(m1,m2) = e−
πi(n1m2−n2m1)

N Tθ,N(n1 +m1, n2 +m2);

3. for all n1, n2 ∈ Z

t1(θ1)
n1t2(θ2)

n2 = e−
2πin1n2

N t2(θ2)
n2t1(θ1)

n1 ;
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4. for all n1, n2, j, l ∈ Z

Tθ,N(n1 + 2Nj1, n2 + 2Nj2) = e2πi(2j1θ1+2j2θ2)Tθ,N(n1, n2);

5. for all n, j ∈ Z

Tθ,N(n+ jN, 0) = e2πijθ1Tθ,N(n, 0)

and
Tθ,N(0, n+ jN) = e2πijθ2Tθ,N(0, n).

Remark 6.3. We observe that by assertion 5 of Proposition 6.2 it follows that
the operators t1(θ1) and t2(θ2) are N -periodic, up to a phase factor, while, by
assertion 4, that Tθ,N is 2N -periodic, up to a phase factor. This periodicity of
Tθ,N is inherited by the Wigner transform and implies the double lattice support
described in Remark 3.8.
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