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ABSTRACT. The main objective of this article is to develop the theory of deformation of C*-algebras
endowed with a group action, from the perspective of non-formal equivariant quantization. This pro-
gram, initiated in [2], aims to extend Rieffel’s deformation theory [27] for more general groups than
R?. In [2], we have constructed such a theory for a class of non-Abelian Lie groups. In the present
article, we study the somehow opposite situation of Abelian but non-Lie groups. More specifically,
we construct here a deformation theory of C*-algebras endowed with an action of a finite dimensional
vector space over a non-Archimedean local field of characteristic different from 2. At the root of our
construction stands the p-adic version of the Weyl quantization introduced by Haran [12] and further
extended by Bechata [I] and Unterberger [34].
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1. INTRODUCTION

When formulated in the setting of operator algebras, equivariant quantization interconnects both
with deformation theory and with quantum groups. These interconnections originate in the work of Ri-
effel [27], where it is shown that Weyl’s pseudo-differential calculus can be used to design a deformation
theory for C*-algebras equipped with a continuous action of R%. Applying this deformation process to
Co(G), where G is a locally compact group possessing a copy of R? as a closed subgroup and for the
action p® X of G x G, in [29] Rieffel was further able to produce a large class of examples of quantum

groups in the C*-algebraic setting. In [2], Bieliavsky and one of us have successfully extended Rieffel’s
1
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deformation theory for actions of negatively curved Kéhlerian Lie groups on C*-algebras. This was
the first explicit example of a deformation theory for C*-algebras coming from actions of non-Abelian
groups and it was based in an essential way on a generalization (to all negatively curved Kéhlerian Lie
groups) of the ax + b-equivariant quantization due to Unterberger [33]. (See also [3] for an extension
of Rieffel’s to construction to actions of the Heisenberg supergroup.)

There is another approach to quantization, due to Landstad and Raeburn [I7, 18] 19, 20], which also
connects to quantum groups. At the conceptual level, the starting point there is that the twisted group
C*-algebra associated with a unitary 2-cocycle should be considered as a quantization of the virtual
dual group. This approach to quantization has been further developed by Kasprzak in [14] to design
a deformation theory for C*-algebras endowed with a continuous action of a locally compact Abelian
group, from a unitary 2-cocycle on the dual group. It was then observed by Bhowmick, Neshveyev
and Sangha in [0] that Kasprzak’s construction still makes sense for actions of non-Abelian locally
compact groups, provided that the unitary 2-cocycle is now chosen in the dual quantum group (i.e. the
group von Neumann algebra). An important point is that unless the group used to deform is Abelian,
the symmetries of the deformed objects are now given by a quantum group. All this suggests that
quantum groups are naturally present in the context of equivariant quantizations and in the associated
deformation theories.

Very recently, Neshveyev and Tuset gave in [23] a great clarification of the role of quantum groups in
deformations, by providing a beautiful theory holding with the most imaginable degree of generality,
namely for continuous actions of locally compact quantum groups on C*-algebras and from a unitary
2-cocycle on the dual quantum group. Their starting point is the work of De Commer [7], which shows
that given a locally compact quantum group (G, A) (in the von Neumann algebraic setting [I5] [16])
together with a dual measurable unitary 2-cocycld] F on (G,A), the pair (G, FA(.)F*) is again a
locally compact quantum group. The dual quantum group, denoted by (Gr,A), is thought as the
deformation of (G, A) and it is that quantum group which acts on the deformed C*-algebras.

However, already when G is an ordinary non-Abelian group, constructing a nontrivial and concrete
dual unitary 2-cocycle can be a very difficult task. For instance, in [23] the only example given is the
one canonically attached (see below) to the equivariant quantization map constructed in [2]. Moreover,
even at the level of Cy(G), it is not clear whether the constructions of [23] and of [2] agree, while it
is known [22] to hold for of actions of R?. We should also mention that the framework of [27] and
[2] comes naturally with parameters and that Rieffel’s methods are perfectly well adapted to study
the question of continuity of the associated field of deformed C*-algebras. In contrast, it is uncertain
whether the methods of [23] (and already those of [6] [I4]) applied in a parametric situation can lead to
results about continuity. Moreover, oppositely to Rieffel’s type methods, it is unclear whether those
of [23] are well suited in view of applications in noncommutative geometry, for instance in spectral
triple theory [8], @].

For all these reasons, and even if there exists now a satisfactory and completely general deformation
theory of C*-algebras by use of its symmetries [23], we believe that constructing deformation theories
directly from equivariant quantizations is important in its own right.

The main goal of this paper is to continue the program initiated in [2] and which consists in
extending Rieffel’s approach to deformation for more general groups than R?. In [2], even if we
were in the relatively simple situation of solvable simply connected real Lie groups, we faced serious

1A dual measurable unitary 2-cocycle F on @, is an unitary element of L>(G)®L>®(G) which satisfies the cocycle
condition (F ® 1)(A®1d)(F) = (1® F)(Id® A)(F).
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analytical difficulties underlying the non-commutativity of the group. Here we study the somehow
opposite situation of Abelian but non-Lie groups. More specifically, the groups we consider here are
finite dimensional vector spaces over a non-Archimedean local field of characteristic different from
2. At the root of our construction stands the p-adic version of the Weyl quantization introduced by
Haran [12] and further extended by Bechata [I] and Unterberger [34]. Even if our framework is already
covered by Kasprzak’s approach (in fact, it this one of our results), the primary interest of the present
approach is to design new analytical tools adapted to the non-Lie case. In a forthcoming paper, we
treat a non-Abelian and non-Lie example, given by the affine group of a non-Archimedean local field.
Another important feature of the case studied here, is that the deformation parameter is no longer a
real number. Instead, our parameter space is the ring of integers of the field. This affects substantially
the answer we are able to give about the continuity of the field of deformed C*-algebras. To conclude
with general features, we should also mention that here, part of the analytical arguments are even
simpler than their Archimedean analogues in [27]. This a somehow recurrent phenomenon in p-adic
harmonic analysis. Here, this comes from the following reason. The p-adic pseudo-differential calculus
is controlled by two operators I and J [II, [12], which are the natural non-Archimedean substitutes for
the operator of multiplication by the function [z € R™ + (1 4 (z,z))'/?] and for the flat Laplacian.
But here they do commute! However, p-adic pseudo-differential operators do not commute in general!

Let us now be more precise about the program we wish to develop. In the differentiable setting, to
define a non-formal equivariant quantization, one generally starts from a symplectic manifold (M, w)
together with a Lie subgroup G of the group of symplectomorphisms. An equivariant quantization is
a map

Q:CX(M)— B(Hx),
associated with a projective unitary representation (H,, ) of G, satisfying the covariance property:
m(g) Qf) w(9)" = QfI), VfeCX(M), Vged,

where f9:=[r € M > f(g~'.x)]. There is a paradigm of such equivariant quantizations, which covers
most of the quantizations known, called “Moyal-Stratonowich quantization” by Carinena, Gracia-
Bondia and Virilly in [5] (see also [I1) section 3.5]). It is associated with a family of bounded (to
simplify a little bit the picture) selfadjoint operators {2(x)},car on H, satisfying the covariance prop-
erty m(g) Q(x)7(g)* = Q(g.x) (plus two other properties that are not very relevant for the following
discussion). The associated quantization map is then defined by

Q(f) = /M (@) Q) du(z), Vf e CR(M),

where dp is the Liouville measure on M. Now, to connect equivariant quantization to deformation
and to quantum groups, we need to restrict ourselves to the situation where G possesses a subgroup
G which acts simply transitively on M. Under the identification G ~ M, the Lie group G is then
endowed with a symplectic structure that is invariant under left translations. Hence, what we are
looking for is a non-formal quantization map on a the symplectic Lie group G which is equivariant
under left translations. In the context of Moyal-Stratonowich quantization, with e the neutral element
of GG, we then have:
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and the Liouville measure dyu(z) on M becomes a left invariant Haar measure d*(g) on G. Hence,
setting ¥ := Q(e), a G-equivariant Moyal-Stratonowich quantization on G is always of the form

2, 5(f) = /G f(g) 7(g) Sn(g)* dg), VS € CX(G).

What is important with the formula above is that symplectic differential geometry disappeared from
the picture and provides an ansatz to construct left-invariant quantizations on general groups.

Assume now that G is an arbitrary locally compact second countable group, pick a projective rep-
resentation (H, ) and let ¥ € B(H). In general, there is no reason why the associated quantization
map behaves well. A natural assumption is that the quantization map Q y; : C.(G) — B(#H,) extends
to a unitary operator from L?*(G) to £?(H,), the Hilbert space of Hilbert-Schmidt operators on H..
In this case we talk about unitary quantizations. In the existing examples, the representation space
H, is of the form L?(Q,v) and the basic operator ¥ is of the form m o T),, where m is an operator
of multiplication by a Borelian function on Q and 7, is the operator of composition by a Borelian
involution o : Q — Q.

For unitary quantizations, one can transfer the algebraic structure of £2(H,) to L*(G) and define
an associative left equivariant deformed product:

*ryt LP(G) x L*(G) = LA(G),  (f1, f2) = Qi 5 (e x(f1) Qrs(f2)),

where Q] 5, : L%(H,) — L*(G) denotes the adjoint map, which is traditionally called the symbol map.
Note that on the trace-class ideal £'(H,) C L*(H,), it is given by

re(8) =g~ Te(Sw(9)m(9)*)], VS e L' (Hq),

so that the deformed product is then associated with a distributional (in the sense of Bruhat [4])
tri-kernel:

fi x5 f2(90) :/G GKW,E(QO,QI,ED)fl(gl)f2(g2)d>\(gl)d)\(g2),

where K x is (formally) given by

Kz (90,91, 92) = Tr(S7(g5 ' 91) S (g7 ' 92) (95 " 90)) -

In general, Ky is not a singular object but rather a regular function (in the sense of Bruhat [4]).
There is then a natural candidate for a dual unitary 2-cocycle F; . on G, namely

Fro= [ R A © A (o) (o) € WG % G)
X

The 2-cocyclicity property is automatic from the construction since this property is equivalent to left-
equivariance and associativity of the deformed product %, 5. The only remaining task is to check that
F x, is well defined as a unitary element of the group von Neumann algebra W*(G x G). As observed
in [23], this is the case for the quantization map considered in [2].

There is also a natural candidate for a deformation theory. Consider now a C*-algebra A endowed
with a continuous action o of G. Then, we may try to define a new multiplication on A by the formula:

(1) ax?y b= /G Krnle.01.92) 0 (0) 0 (8) P (00) P(02) . b A
X
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Of course, there no reason why this integral should be well defined since the map [g — o4(a)] is
constant in norm and since Ky x; is typically unbounded (at least when the group is non-unimodular).
Rieffel’s approach to deformations consists then in two steps:

e Find A, a dense a-stable Fréchet subalgebra of A, on which the multiplication () is inner.
e Embed continuously the deformed Fréchet algebra (Amg,*%z) into a C*-algebra.

The C*-deformation of A is then defined as the C*-completion of A, and is denoted Ay x.

To deal with the first step, one usually works with oscillatory integrals. Roughly speaking, it
boils down to find a countable family of operators D := {D;};c;, where J is the index set of the
seminorms of A, acting on the space of regular functions (in the sense of Bruhat) £(G x G), which
leave invariant the two-point kernel D; K x:(e, .,.) = Kr (e, .,.) and such that for all a,b € A, the
transposed operator D; sends the mapping [(g1, g2) — ag, (a) ag, (b)] to an element of L (G x G, Areg ;),
where A,¢g ; denotes the semi-normed space associated with the j-th seminorm of A,es. One then gets
a continuous bilinear map defined by

*%2 : ArOg X Areg - ATCg,j ’ (a’ b) = e ng(e, 91792) D; (agl (a) Qg (b)) d)\(gl) d)\(92)-
X
Then, it remains to show that the associativity is preserved by the regularization scheme underlying
the introduction of the operators D.

For the second point, one usually starts by proving an A-valued version of the Calderon-Vaillancourt
Theorem. It basically says that if you consider A to be the C*-algebra of right uniformly continuous
bounded functions on G with action given by right translation, then the quantization map €2, . should
send continuously Ayeg to B(#H). When the projective representation 7 is square integrableﬁ, from the
Duflo-Moore theory [10] we can construct a weak resolution of identity from 7. It allows to use general
methods based on Wigner functions as first introduced in [32].

The paper is organized as follow. In section 2, we fix notations and we review the p-adic Weyl
pseudo-differential calculus on k%, where k is a non-Archimedean local field of characteristic different
from 2. In fact, we consider a family of p-adic quantization maps, indexed by a parameter 6 in Oy,
the ring of integers of k. Section 3 contains the most technical part of the paper. It is in that section
that we construct the space Ayes of regular elements of a C*-algebra A for a given continuous action
a of k?? (Definition BI0). We then define a deformation theory at the Fréchet level (Theorem B.19),
using oscillatory integrals methods. In section 4, we extend the p-adic Calderon-Vaillancourt Theorem
of [1] in the case of C*-valued symbols (Proposition [£4]). This yields an embedding of the deformed
Fréchet algebra into a C*-algebra and consequently a deformation theory at the C*-level (Theorem
[1.6]). We call Ay the C*-deformation of A. We also prove that our deformed C*-norm can be realized
as the C*-norm of A-linear adjointable bounded endomorphisms of a C*-module (Proposition F.TT])
and that our construction coincides with those of [14] and [6] (Theorem EI5]). In the final section
5, we establish the basic properties of the deformation. In particular, we show that contrary to the
Archimedean case, the K-theory is not an invariant of the deformation and that the fields of deformed
C*-algebras (A,p2)pco,, for 7 € O arbitrary, are continuous.

2By a square integrable projective representation, we mean a representation of the associated central extension which
is square integrable modulo its center.
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2. A p-ADIC PSEUDO-DIFFERENTIAL CALCULUS

2.1. Framework and notations. Let k be a non-Archimedean local field, that is a non-Archimedean
non-discrete locally compact topological field. k is complete for the ultrametric associated with the
absolute value |.|i, given by the restriction to dilations of the module function (and extended to zero
on 0). Non-Archimedean local fields are classified. In characteristic zero, k is isomorphic to a finite
extension of Q,, the field of p-adic numbers. In positive characteristic, k is isomorphic to Fy((X)),
the field of Laurent series with coefficients in a finite field. For important technical reasons, we will
(mostly) assume that the characteristic of k different from 2. The additive group (k,+) is self-dual,
with isomorphism k ~ Hom (k,U(1)) given by  — ¥(z.), where ¥ is a fixed non-trivial character.
We denote by Ok := {z € k : |z|x < 1} the ring of integers, by w the generator its unique maximal
ideal (w is called the uniformizer and satisfies ||, = (Card(Ox/wOx))™!) and by Of the conductor
of W, that is to say the largest ideal] of Oy on which ¥ is constant. We normalize the Haar measure
of (k,+) (denoted by dz) by requiring it to be selfdual with respect to the duality associated with W
or, equivalently, by requiring that Vol(Oy) x Vol(Oy.) = 1.

For example, if k = Q,, we have Oy = Z,, the ring of p-adic integers, @ = p and |z|g, = p K if
T = pk% € Q (where m and n are integers non-divisible by p). If one chooses the (standard) character:

Uy(x) := exp {ZWiZanp”} if = Z anp",
—no<n<0 n>—ng

we find O}, = Z, and our normalization for the Haar measure reads Vol(Z,) = 1.

n

We let ||}/ be the second ultra-metric norm on k, given by |z|) = |z~ ™¥)|,.. More generally, we

let |.|ia, |.|s be the associated sup-norms on k%, d € N:

_ , Vo Y
lekd—lnggélwzlk and  [¢]q 1n§?§xd|£z|k-

For z,y,&,n € k% we set X = (2,€),Y = (y,1) € k*@ and we consider the symplectic structure:
(2) L] XK =k, (XY) e (y,€) — (),

d
where (z,y) = >_7_; ziy;-
The following numerical function plays a decisive role in our analysis:

(3) po(X) = max{1,|2z[ia, |26]\a}, X = (2,€) € k*

From the ultrametric inequality, one sees that ji is invariant under translations in (%Ok)d X (%Of{)d.
It is known (see [12]) that p, ! belongs to LP(k>?) for all p > 2d and satisfies a Peetre type inequality:

(4) po(X +Y) < po(X) po(Y), VX,V € k>

Let £(k%?) (resp. D(k?*?), D'(k?>?)) be the set of smooth functions (resp. smooth and compactly
supported functions, distributions) in the sense of Bruhat [4]. Since k?? is totally disconnected, &(k?)
consists in locally constant functions and D(k??) consists in locally constant compactly supported

3Oﬁ is of the form @™ Oy, with n(¥) € Z uniquely defined by the character .
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functions. In particular, yo belongs to £(k??) C D'(k*?). D(k??) and D'(k??) are stabilized by the
(selfdual) Fourier transform and by its symplectic variant:

5) @NX) = 2L [ 10wy X)ay,

The symplectic Fourier transform extends to a unitary operator on L?(k??) and is its own inverse.

Remark 2.1. The normalization chosen in the definition of py and G (i.e. the factor 2) allows to
simplify some computations but is by no mean the reason why we have to exclude the characteristic 2.

From our perspectives, the Schwartz-Bruhat Spaceﬂ D(k??) is not suitable. Instead, we consider a
variant of it, that we may define with the help of two unbounded operators on L?(k??). Let I be the
operator of point-wise multiplication by the function pg:

(6) Ip(X) = po(X) p(X),
and J the convolution operator by the Bruhat distribution G(ug):
(7) J:=Golog.

More generally, we denote by J°, s € R, the convolution operator by G(1(). The Bruhat distributions
G(1g) are known to be supported in (30k)? x (308)¢ (we will give an elementary proof of this fact in
Lemma [2.2)). The operator J has to be considered as a substitute of an order one elliptic differential
operator, in the dual sense that 19 has to be considered as a substitute for a radial coordinate function
on k?%. Since pg is (30k)? x (308)%locally constant and G(uo) is supported on (30x)? x (308)%, as
continuous operators on D’ (k??), I and J commute! As unbounded operators on L?(k2?) (with initial
domain D(k??)) they are essentially selfadjoint and positive. Following Haran [I2], we introduce the
another analogue of the Schwartz space:

SK):= [ Dom(I"J™):= {p € L*(K*) : ¥n,m € N, I".J"p € L*(k*")}.
n,meN
Equipped with the seminorms:
(8) o= [ I"T |2, n,m €N,
S(k??) becomes Fréchet and nuclear and of course
D(k*) C S(K*) c C(K*),

continuously. Moreover, D(k??) is dense in S(k??) but the inclusion is proper since an element in
S(k2?) does not need to be locally constant nor compactly supported. Since p§ belongs to L!(k>?)
for s < —2d, in the seminorms (§)), we can change the L?-norm with any other LP-norm, p € [1,00],
while keeping the same topologyt]. We let S’(k??) be the strong dual of S(k??), that we call the space
of tempered distributions. The operators I and .J extend to continuous endomorphisms of S’(k2?)
and, of course, still commute there. We can also define the d-dimensional versions of the Schwartz
space S(k?) and of its dual S'(k%) by considering the d-dimensional version of the function y and the
d-dimensional ordinary Fourier transform to define d-dimensional version of the operators I and J.
The following (almost obvious) properties will be used repeatedly:

41ndeed7 since k?? is totally disconnected, D(k®?) coincides with the Schwartz space, as defined in [, numéro 9].
®In section B we will consider the seminorms (8) with p = oo instead of 2, see ([22).
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Lemma 2.2. (i) For Y € kK*?, set py(X) := po(X —Y). Then for all s,t1,...,t, €R, Y1,....Y, €
k2 we have:

r g(;@}l e ,uﬁ};) = g(u§}1 . ..,uﬁ};) and J%ui}l . ..,uﬁ};) = ,ui}l . ..,ui?n,
(ii) For Y € k%4, set Wy (X) := U(2[X,Y]). Then for all s € R, we have J*Uy = p&(Y)Uy.

Proof. (i) Of course, the two equalities we have to prove are equivalent. Set O := (%Ok)d X (%Of{)d. Fix

t > 2d and observe that py" € L'(k??) so that G(uy") € Co(k>?). Since moreover yy" is O-invariant,
we have

Glug")(X) = TRX, Y Gy )(X), V(Y. X) €O x k™.
This implies that G(ug") is supported in O since one can easily construct a pair (Y, X) € O x k?¢\ O
such that W(2[X,Y]) # 1. As g equals one on O, we get for all s > 0, I°G(uy") = G(ugy") which is

equivalent to J*(ug?) = pg’. Using that J commutes with I and translations 7y f(X) = f(X +Y),
the result follows by applying J® to the identity

,ug}l ce ﬂ?/; = TylftlTYQ_y1[t2 c. Tyn_ynilft”-i_t(,uat).

(ii) We denote by (.,.) the (bilinear) duality pairing between S(k??) and &'(k??). Fix X € k?¢.

Since U x € Cy(k??), we may view it as an element of S'(k??). Then, we have for all ¢ € S(k??):
Go(X) = |2{(¥x.¢) and thus o(X) = 2[{(¥x,Gp) = 2[{(GTx, o).

From this and the fact that J* = (GIG)® = GI*G, we get

(J*Wx,p) = (GI°GUx, ) = (GUx, I°Go) = |21, "I°Gp(X) = |20, 45 (X)Gop(X) = g (X)(¥x, ).
This completes the proof. O
2.2. Weyl quantization on local fields. In this subsection we recall some facts about the p-adic
pseudo-differential calculus introduced by Haran in [12] and further studied by Bechata and Unter-
berger [1I, 34] (see also [30] [35] for a completely general construction of the Weyl quantization). We
assume that the characteristic of k is different from 2. We fix § € k*. It will play the role of the de-

formation parameter. For any tempered distribution F' € S’(k??), we denote by Q4(F) the continuous
linear operator from S(k?) to S’(k?) defined (with a little abuse of notation) by:

Qy(F) : S(k?) — &'(k9)

(9) o |6 e S o ol /

kd

(/de F(3(z+y).n) o)W Oz —y,m)dy dy)cb(w) dw] :

The distribution F' is called the symbol of the pseudo-differential operator Qy(F'). This Weyl type
pseudo-differential calculus is covariant under the action of the additive group k¢ by translations, in
the sense that

(10) Up(Y)Qo(F)Up(Y)* = Qy(r_y F), VFeS'k*), VX ek,

where 7v F(X) := F(X +Y) and where Uy is the projective unitary (Schrodinger) representation of
k> on L?(k9) given, for X = (z,¢) € k% x k%, by

(11) Up(X)(y) =V (071 (& y — 32)) oy — ).
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The covariance property is obvious for a symbol F € L' (k??), as seen from the absolutely convergent
integral representation:

(12) 2(F) = [3li | PO 20() X,

where
Qo(X) == Up(X) X Up(X)*, VX ek,
and where ¥ is the selfadjoint involution on L?(k?) given by Yp(z) = ¢(—z). Note the scaling relations
UQ(JE,E) = U1($70_1£)7 Q@(gj7£) :Ql($70_1£)7 V:E,fEkd.

The integral representation given above implies that when F' € Ll(k2d), the pseudo-differential oper-
ator Qg (F') is bounded, with(:

(13) 126 (F)I| < 10 1F 1

Of course, this inequality blows up in the limit § — 0. By Fourier theory (on selfdual locally com-
pact Abelian groups), and when characteristic of k is different from 2, one sees that the associated
quantization map

Qo : S'(K*) — L£(S(k?),S'(k%), F s Qy(F),

restricts to \Hllzd/ ? times a unitary operator from L?(k??) to the Hilbert space of Hilbert-Schmidt
operators on L?(k?). Hence, we also have the bound:

—d/2
(14) 196(F)]| < 1126(F)ll2 = 65" |12
One can then transport the algebraic structure of the Hilbert-Schmidt operators to L?(k??), by setting
fixo fo:= Q5 (Qo(f1) Qo(f2)) . Vi, fo € L2(K™).

At the level of the Schwartz space, this deformed product has a familiar form:

(15)  fixo f2(X) = G /k stna LY =X Z = X)) K(Y) fo(Z)dY A2, Vh, f2 € S0,
X

Indeed, this is the p-adic version of the Moyal product in its integral form. Note that this relation can

be rewritten as a functional identity:

f1 %0 fo = 213 /2d 2d$(2[Y, 2)) toy (f1) 72(f2) dY dZ, Y11, f2 € S(k*),
k2?4 xk

where 7 is the translation operator 7gy (f1)(X) = f1(X +Y). The important observation is that this

formula makes sense even when § = 0. Indeed, in this case we have fi xg—g f2 = f1 G2(f2) = f1 fo.

Remark 2.3. In characteristic 2, one can formally change the character ¥ to \II(%) in ([I8) while

preserving its fundamental properties of associativity and covariance. The corresponding modification

in @) is to suppress the ill-defined factor % But then, the operator kernel of g(F) will up to a

constant] be (FoF)(z + y, 07 (x — y)). Since the matriz (§ 1y) is not invertible in characteristic
2, we loose the crucial property of unitarity (from L?-symbols to Hilbert-Schmidt operators) of the
quantization map.

1

L.

7.7:2 is the partial Fourier transform on the second set of variables.

6In characteristic different from 2, |2 = 1 or [2|x =
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Set further
B(kzd) = {F c Sl(k2d) . J"F € Lw(k2d)’ Vn € N}

Using coherent states and Wigner functions methods, Bechata proved in [I] an analogue of the
Calderon-Vaillancourt Theorem for the space B(k??). Namely, he proved the following estimate:

(16) 126(F)I| < llug a2 Fllo,  F € B,

where the norm on the left hand side denotes the operator norm on L?(k%). Contrarily to (I3) and
(I4)), this inequality does not blow up in the limit # — 0. The methods leading to this key result rely
on a clever redefinition of Q4 (F') in term of a quadratic form constructed out of specific coherent states
and Wigner functions. Since we will borrow part of Bechata’s techniques, we recall some ingredients
of his construction.

For ¢ € L?(k%), 0 € k* and X € k??, set 4,0& = Up(X)yp, where Uy is the projective representation
of k%@ given in (). It is known that Up is square integrable modulo its center and that the following
reproducing formula holds:

a7) 60) = I [ (opxdox v} X, ¥orbip € LY, ¢ £ 0.
Let then
(18) Wi o(X) = (6, (X)), X €k,

be the Wigner function] associated with the pair of vectors ¢, € L?*(k?). Let n be the characteristic
function of Of, normalized by ||n|l2 = 1. By [II eq. (1.9)], we have for X = (z,¢) € k* and o, 3 € R:

1 JT5n% = g (2, 0) 1 (0,676) %,

where I, J denote the d-dimensional versions of the operators I and J. In particular, the relation
above entails that n% € S(k?). For X,Y € k??, we set W;Y for the Wigner function associated with

the pair of coherent states ng(, 773‘9,:

(19) Wy (Z) =W?

n% Y

(Z) = (%, Q(Z)15) = (Up(X)n, 2(Z)Up (Y )11).
The next statement is extracted from [I, Proposition 2.10 and Lemme 3.1].

Lemma 2.4. Let € k*. For X = (z,£) € k¢, set Xg := (x,071¢) € K*L. Then for all X,Y,Z € k*?
and with ® the characteristic function of (30x)? x (302)¢, we have:

Wy (2)] = 12l ®(Zp — 3(Xo + Y)).
Moreover, W;Y € S(k*?) and for all n,m € Z we have:

I"J"Wy = 1 (5(X +Y)) i (55 (X —Y)) Wiy

8The Wigner function Waf,w is the symbol of the rank-one operator ¢ — (¢, @)o.
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3. THE FRECHET DEFORMATION OF A C*-ALGEBRA

In this section, we fix a C*-algebra A, together with a continuous action « of the additive group
k2?. This yields a map

(20) a:A— Cy(k*, A), a— [X — ax(a).

Fixing a faithful representation 7 of A on B(H), we will frequently identify A with its image on B(H).
Our first goal is to find A,eg, a dense and a-stable Fréchet subalgebra of A, on which we can give a
meaning to the natural generalization of the deformed product (IH):

(21) 05 b i |2|ﬁd/ T(2Y, 2]) apy(a) az (b)Y dZ,  Va,b € Avy.
Kk2d x k2d
Having in mind Bechata’s version of the Calderon-Vaillancourt estimate (L6), there is an obvious

candidate for A,e, namely the set of elements a in A which are such that a(a) € B(k?, A) (see
Definition [BT]).

3.1. Spaces of A-valued functions and distributions. Set Cy(k??, A) for the C*-algebra of A-
valued continuous and bounded functions on k??, with norm:

Bo (F) = sup |[F(X)]la,
Xek2d
and let C,(k??, A) be the C*-algebra of A-valued uniformly continuous and bounded functions on
k2!, The latter space is the maximal sub-C*-algebra of Cy(k2?, A) on which the action 7 ® Id of
k?? is continuous. Set then S(k%?, A) := S(k**)®A for the A-valued version of the Schwartz space
(recall that S(k??) is nuclear). We naturally embed S(k??, A) into C,(k??, A). Since the (pair-wise
commuting) linear maps I"J™, n,m € Z, are continuous on S(k>?), I"J™ @ Id (originally defined on
the algebraic tensor product S(k??) ® A) extends to a continuous linear map on S(k??, A). To lighten
our notations, and when no confusion can occur, we will denote their extensions by I”J™. In a similar
way, we will use the symbol G to denote the continuous extension of G ® Id on S(k??, A). As already
mentioned, the Fréchet topology of S(k??, A) can be alternatively described via the seminorms:
(22) ‘Bﬁm(f) = sup H(I"Jmf)(X)HA, n,m € N.
Xek2d
Since S(k?) is Fréchet and nuclear, its strong dual S’(k?%) is also nuclear (see for instance [31, Propo-
sition 50.6]). Therefore, we shall denote by S’(k??, A) the completed tensor product S’(k*?)&A. Note
that by [31, P. 525], S'(k??, A) identifies isometrically with the space of continuous linear mappings
from S(k??) to A. Under this identification, we get an embedding of Cj(k??, A) into &’(k??, A). Since
the operators I™J™, n,m € Z, act continuously (by transposition) on &’ (k2d), they extend contin-
uously on &’(k??, A) and we still denote them by I™.J™. Similarly, we denote by G the continuous
extension of the symplectic Fourier transform on S’(k??, A). The next space we introduce is of our
principal tools:

Definition 3.1. For A a C*-algebra, we set
B(k*, A) = {F e S'K* A) : ¥neN, J"F € L=(k*, A)}.
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We endow B(k??, A) with the topology associated with the following family of seminorms:
(23) PA(F) := sup H(J"F)(X)HA, Vn € N.
Xek2d
When A = C, we denote these seminorms by 3,,. Identifying in a natural way the algebraic tensor
product B(k*?) ® A with a subspace of B(k??, A), it is easy to see that B2 is a cross-seminorm:
P (F @ a) = P (F)||a]| a-

Last, we introduce C2°(k??, A) to be the subspace of smooth (in the sense of Bruhat) elements in
C,(k??, A) for the regular representations 7 ® Id of k?? (see [21] for more details):

C(K*™ A) = {F € C (k> A) : 7(F) := [X = 7x(F)] € £(k*, C,(k*, A)) }.

Lemma 3.2. The space B(k??, A) is Fréchet and C°(k*¢, A) C B(k??, A) C C,(k?*, A) with dense
inclusions.

Proof. That B(k??, A) is Fréchet follows from standard arguments.

To prove that B(k%?, A) c C,(k??, A), we assume first that A = C. Since L!(k??) x L*>°(k??) =
C\ (k%) (see for instance [I3}, (32.45) (b), p. 283]), it suffices to show that B(k??) C L'(k3?) L>°(k??).
So, let F € B(k??) and set G := J?*1F. We have F' = J~ 271G = g(uo‘Qp‘l)*G, which is the desired
factorization. Indeed, G' € B(k*?) ¢ L>=(k??) and g(ug%"l) € L' (k??) because ,ua2p_1 € L'(k*?) and
because G (1, p _1) is compactly supported by Lemma [22] (i). For a generic C*-algebra A, we deduce
that the algebraic tensor product B(k??) ® A is contained in C,(k??, A). Since B(k??) ® A is dense in
B(k??, A) and since B is the C*-norm of C,,(k??, A), we conclude that B(k??, A) is contained in the
norm closure of B(k??) ® A in C,(k??, A).

Next, for F' € C,(k??, A) and ¢ € S(k??), we set

(24) P = [ | elX)mx(F)dx,

where 7x is the operator of translation by X € k??. By isometry of 7x for the norm 2]364, we get
B (1, F) < |lell1B (F). Hence, the integral in [24]) converges in Cy,(k??, A) since the latter is closed
in Cy(k%?, A). The operator J commuting with 7x, we get for all n € N J"7,(F) = 7n,(F) which
entails that 7 (7,(F)) < [|J"¢|1B4 (F). Hence, 7,(F) € B(k??, A). Chose next a positive sequence
{op}ren in S(k??) such that ||og||1 = 1 and such that ¢y is supported in B(0,k~!), the open ball
centered at 0 of radius £~'. Then we have

FrB) = [ ouX)(F - rx(P)dx,
which entails that

Py (F =70 (F) < sup Py (F—7x(F)) = sup sup [F(Y)—=F(Y = X)|a,
XeB(0,k1) XeB(0,k1) Yek2d

which goes to zero when k goes to infinity due to the uniform continuity of F. In particular, the
set of finite sums of elements of the form 7,(F), ¢ € S(k*?), F € C,(k*, A) is dense in B(k*?, A).
Since D(k??) is dense in S(k??), we deduce that the set of finite sums of elements of the form 7,(F),
o € DK%, F € C,(k*, A) is also dense in B(k??, A). But by the extension of the Dixmier-Malliavin
theorem for arbitrary locally compact groups, as stated in [2I Theorem 4.16], the former space
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coincides with C2°(k??, A). Hence C2°(k??, A) is a dense subspace of B(k?>?, A) but since C2°(k?, A)
is also dense in C,(k>?, A), we get that B(k??, A) is dense in C,(k?¢, A) too. O

Remark 3.3. Observe that C2°(k??, A) = C(k??, A)NE(k*, A). Since an element in B(k*?, A) does
not need to be locally constant, the dense inclusion C2°(k*?, A) C B(k>?, A) is proper.

Next, we come to the crucial fact that B(k??, A) is stable under point-wise multiplication, which
contrary to the case of C2°(k??, A), is not obvious at all. This essentially follows from the integral
representation of elements in B(k2?, A):

Lemma 3.4. Let n € N and F € B(k?*, A). Then, for all N > n+ 2d + 1, we have the uniformly (in
X € kK??) absolutely convergent integral representation.:

(25) JVF(X) = |23 /k _— U2y, Z) g (Y — 2 g N (Vg™ (2) (JNF)(Y + X)dY dZ.

Proof. Thanks to the Peetre inequality, the integral on the right hand side of (2]) is absolutely
convergent in A and the convergence is uniform in X € k?? as it should be. Assume first that the
result is proven for n = 0. The invariance of the Haar measure by translation gives then:

F(X)= |2|id/ VY - X, Z - X))y V(Y - X)pug™(Z - X)(JVF)(Y)dYdZ.
k2d xk2d
Applying J™ on both sides when N > n +2d + 1, we get from Lemma (Z2]) (ii) and since J commutes
with I and with the translations:
J'F(X) = \2\%/ U2y - X,Z — X)) ud (Y = D)™ (Y = X)pg™(Z — X)(JVNF)(Y) dYdZ,
K2d x k2d

which gives the result. Hence, it is enough to prove the result for n = 0. In this case, the statement
is immediate for F € S(k??, A): Define Sp(X) to be the right hand side of ([28) for n = 0. Since

e N € LYk 0 L (k?), it also belongs to L?(k*?) and Sg(X) can be rewritten as
Sp(X) = (G(ug ™), I~ rx (F)) = (G (ng ™), W 7 (F))
= (g™, 1 G(7x(F))) = GG (7x (F))(0) = x (F)(0) = F(X),

where the second equality follows by Lemma (i), third equality follows by Plancherel and the
last three are immediate. Now, the general case of F' € B(k??, A) follows easily by duality: Taking
¢ € S(k??, A) arbitrary, one sees by Fubini that (Sg,p) = (F, S5) which (from the preceding case)
reads (F, ). Identifying B(k??, A) with a subspace of S’(k??, A), we are done. O

Remark 3.5. Form a slight modification of the arguments given in the above lemma, we also deduce:
(26)  F=|2[¥ / U (2[Y, Z]) pg 2 (Vg 2N Z2) v (JPTTLF) dY dZ,  VF € Bk, A),
K2d x k2d

where now the integral is absolutely convergent for all the seminorms of B(k%¢, A).

Corollary 3.6. B(k2d,A) is a Fréchet algebra under the point-wise product. More precisely, for all
n €N and all Fy, Fy € B(k*!, A) we have:

P (F1F2) < g 21 Biroasn (F1) By oqr (F2).
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Proof. Fix n € N. Using Lemma [34] twice, we get for N =n + 2d + 1:
FUFy(X) = |2] /W(z[x, Yi— 71+ Ya — Z2)) T (2[Vh, 21)) T (2[Ya, Zs))

g N (V1 = X)ug N (20 = X)ugN (Ya = X)ug N (Za = X) (JNF) (V) (JVF) (V) dY1dZ1dYadZs.
Applying J™ on both sides, we deduce since J commutes with the operator of multiplication by g
and by its translates:

J'(FLF)(X) = |2 /6(2[)(7 Vi — Zy +Ys — Z5)) U (2(Y1, Z1]) U (2[Y2, Z5])

X ug (Y1 = 21+ Yo = Zo)ug N (Vi = X ™ (Z1 = X)pg ™ (Yo = X)pg ™ (Z2 — X)
(27) x (JNFYY1) (TN F)(Y2) dY1dZ1dY2dZs.
One concludes using the Peetre inequality together with |2[, < 1. O
Remarks 3.7. Since I["(fF) = (I"f)F, for f € S(k*?, A) and F € B(k?*, A) we also get from 1)

B (FF) < Ml I Bimnr2air (F) Bt (F).
Hence S(k*?, A) is an ideal of B(k*?, A) for the point-wise product.

Last, we need to prove that the space B(k2d,A) behaves well under certain dilations. For this,
we need to introduce some more notations. For 6§ € k, we let Dy be the operator of dilation by 6:
DyF(X) := F(0X). Also, we let Iy to be the operator of multiplication by Dgug and Jy := GIyG.
Note that for 8 =0, Iy = Jy = Id.

Lemma 3.8. Let 0 € Oy and retain the notations given above.
(i) As operators on S' (k%% A), we have

o, J] = [I, Jo] = 0.
(ii) The operator Ji, n € N, maps continuously B(k??, A) to Cy(k??, A) with

A d—
R0 (J5F) < o> 1T Brnsoas (F)-
(1it) We have J" Dy = DyJy and consequently, the operator Dy is continuous on Bk A) with

P (Do F) < ||ty > |1 F Bir gt ().

Proof. (i) The vanishing of the first commutator follows because when 6 € Oy, Dyuyg is also invariant
by translations in (%Ok)d X (%Oﬁ)d. The vanishing of the second commutator follows from the first,
after conjugation by the symplectic Fourier transform.

(ii) A minor adaptation of Lemma B.4] which uses a minor adaptation of Lemma (ii) and (i),
entails that for N =n + 2d + 1:

JPF(X) = |23 /k - U (2[Y, Z)) g (0Y — 0Z) g™ (V)™ (Z2) (JNF) (Y + X) dY dZ.

The estimate then follows from the Peetre inequality together with the estimate pg(0X) < po(X),
valid when |6[x < 1.

(iii) The equality J" Dy = DyJy follows by direct computation and implies the last inequality from
the one obtained in (ii). O
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Remark 3.9. The lemma above is false for 0 € k\ Ox. This is the (technical) reason why we have
restricted the range of the deformation parameter to be Oy.

Definition 3.10. The space A,eg of reqular elements in A for the action a is given by:
(28) Areg = {a € A : ala) € Bk*, A)},
where the map & : A — Cy(k>?, A) is described in (20).
We endow A, with the topology associated with the transported seminorms:
(29) .4 : Areg > Ry, a— Pi(ala)), neN.

Observe that A, depends on the action a. When we need to stress this dependence, we will denote
the space of regular elements by Af,.
We also need the space A, consisting in smooth vectors of A in the sense of Bruhat, as considered

in [21]:
(30) A®:={a€ A : aa) € K™ A)}.

Since k2? is totally disconnected, @(a) € £(k??) if and only if it is locally constant. Hence, an element
a € A belongs to A if and only if there exists an open neighborhood U of 0 in k?? such that for all
x € U, we have a,(a) = a. As expected, we have:

Proposition 3.11. A, is a dense and a-stable Fréchet subalgebra of A. Moreover the action « is
isometric for each seminorm [29) and A% C Aeg with a dense inclusion.

Proof. Aeg is clearly a linear subspace of A. Moreover, by Corollary 3.6l we have for all a,b € Ayeq:

labllz; = %7 (é(ab)) = Py (G(a)é(b))

—2d— A ~ A ~ —2d— A A
< ”M02 1”%‘33n+2d+1 (a(a)) PBrt2d+1 (a(b)) = HN02 1”411 ”CLHn+2d+1Han+2d+1a

hence A,¢g is an algebra. Let now X € k24 and a € Areg. Since J commutes with translations, we
have:

lox ()7 = B (a(ax(a)) =B; (7x (a(a))) = B (ala)) = |allz-

Hence « is isometric for each seminorm ||.||4 and thus A, is preserved by a. The restriction to Ayeg
of the map & : A — C,(k*?, A) identifies Areg with a closed subspace of B(k?? A). Since the topology
of Ayeg is inherited from those of B (k2d, A) via this identification, A,cg is Fréchet. That A, is dense
in A follows from an argument almost identical to those of Lemma[3.2]: by considering for every a € A
the sequence in Ay given by oy, (a) == [i2q pr(X)ax(a)dX, where 0 < ¢ € S(k??) has integral
one and support within B(0,k71). Finally, that A> is dense in A,eg follows by the Dixmier-Malliavin
Theorem [2I] Theorem 4.16] which shows that A* coincides with the finite linear sums of elements of
the form ay,(a), ¢ € D(k?*¥) and a € A, which is dense in the set of finite linear sums of elements of
the form a,(a), p € S(k?!) and a € A. O
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3.2. The deformed product. Our goal is to give a meaning to the formula 2I) on A,e. Since
& : Awg — B(k?!, A) is a continuous (indeed isometric for each seminorm) embedding of Fréchet
spaces, we will first work on B(k??, A) and then pull back our results to Areg. Until soon, that A carries
an action of k2? is unimportant. Let K (X,Y) := ¥(2[X,Y]). Seen as an element of S’(k?? x k2?), the
content of Lemma 2.2 (ii) is that

JRITMK=K and I"'®JK =K.
Hence, using further the commutativity of I and J, we find for all V € N:
K=I"Neo/MUNeoI K=o MU Nl MK =J"e V(" upy™K.

In particular, for F € S(k?@ x k?? A), we get the equality for all N € N:
/ T(2[Y, 2)) F(X,Y) dX dY =
k2d Xk2d
(31) [ TCY2) 0 157 (2) (7Y @ Y F) (X Y) dX dY,
k2d><k2d

The point is that since g™ € L'(k??), N > 2d + 1, the right hand side of (BI]) still makes sense for
F € B(k*® x k., A) when N is large enough. In the following, we refer to the identity (3I)) as the
oscillatory trick.

For F € B(k%*, A), we observe that the map 7(F) := [(X,Y) € k¥ x k@ — (7xF)(Y) € 4],
belongs to B(k?? x k?? A) and that

(32) F(JF)=J°®Ild7(F), seR.

The oscillatory trick ([B1II), Lemma [B:§] (iii) and the equality (B2]) suggest to extend the star-product *y
from S(k??) to B(k>?, A) as follows:

Proposition 3.12. Let 6 € Oy. Then the bilinear map
*o - B(k?%, A) x B(k*!, A) — B(k*, A),

(33)  (Fy, Fy) — |23 / U (2[Y, Z]) 1o 2" HY) g 241 2) oy (T3 FY) 72 (T2 Ry) dY dZ,

k2d x k2d

18 continuous and associative. Moreover when 6 = 0, we have Fy xg—g Fo = F1 F5.

Proof. For Fy, F» € B(k?¥, A) and n € N, we have
JU(Fy xg Fy) = |23 / U (2[Y, Z]) po 2N Y) g 21 (2) T (roy (J3T ) 72 (TP R)) dY dz.
Kk2d x k2d

Hence we get

Bit (Frxo o) < g™ sup By (o (S5 1) 72 (24 ) ).
Y,Zek2d
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Therefore, by Corollary and Lemma [3.8] (ii) (and the fact that J and Jp commute), we deduce

(34) ‘Bﬁ (Fl *6 F2) < Hﬂgzd_l H? quizd q3124d+1+n (TGY(JGMHFl)) m?d—l—l—l—n (TZ(J2d+1F2))
AS

—2d— A d A d

= 1o > S Barain (T L) B g (ST )
—2d— A A

= HM02 1H§%d+s+n(F1)‘134d+2+n(F2),

which proves continuity.

Associativity is obvious when A = C: it is the shadow of the associativity of the algebra of bounded
operators on L%(k%) (see [I, Théoréme 3.3] from which it follows that the quantization map Q5 :
B(k*) — B(L?*(k%)) is injective). It immediately implies the associativity at the level of the algebraic
tensor product B(k??) ® A. We conclude by density of the former in B(k??, A): Fix ¢ > 0 and n € N.
For F; € B(k*, A), we let Fy € B(k*!) ® A be such that P (Fj — F?) < e for any j = 1,2,3, and
ke {6d+3+n,8d+4+n,10d+5+n,12d + 6+ n}. Then we get

Py xg (Fo g F3) — (F1xg Fo) % F3 =
(F1 — Ff) *0 (Fg *0 F3) + Fl‘E *0 ((F2 — F2€) *0 Fg) + Fl‘E *0 (FQE *0 (F3 — Fgf))
— ((Fy — FY) g F2) %9 F5 — (F %9 (Fy — F5)) g F3 — (Ff %9 F5) %9 (F5 — F5),
and from (B4)):
[T (et (Fy %9 (Fa *g F3) — (F1 xg F2) %o F3)

< Bwrsrn (F1 = FD)Bods 5400 (F2)Béerasn (F3) + Boarsrn (FDBioas 540 (F2 — F5)Béarasn (F3)

+ R0 (FDBioarsen (F5)Réraen (B3 — F5) + Bivarorn (1 — FT)Bioarsen (Fo) Béarasn (F3)
+ mf2d+6+n(Ff)g’Bﬁ)d+5+n(F2 - Ff))m?d+4+n(F3) + 213{12d+6+n(F1€)q3{10d+5+n (F§)‘Bé4d+4+n(F3 - F§)

A A A A A A
<e <‘4310d+5+n(F2)‘138d+4+n(F3) + Boasr30n FT)PBéaratn (F3) + Poarsrn (FD)FB10d1 510 (F5)
+ PBibarsen (F2) Bégaasn (F3) + Bibarorn (F5)Béurarn (F3) + Bioaresn (FL)Pi0ds50m (F5 )) :

Using last ‘B?(Fj) <e+PF) (=1,2,3, k € {6d +3+n,8d+4+n,10d + 5 +n,12d + 6 + n}),
we deduce that for all n € N, Fy xg (Fy %9 F3) — (F} %9 F») %9 F3 can be rendered as small as one wishes
in the seminorms B}, hence this associator vanishes.

The fact that the deformed product coincides with the point-wise product when 6 = 0 follows
directly from Lemma [3.4] U

Remark 3.13. Obviously, we have
Fy %9 Fy = |2[i /k mac ) 1o N (V) 1y M (Z) oy (g Fr) 72 (JY Fy) dY dZ,
X

for any N € N such that N > 2d+ 1. Using moreover the commutation of J with translations, we also
deduce the point-wise expression:

F %9 Fo(X) = |2|%;d/ U2V, Z]) uo N (V) g ™ (2) (JY L) (X +0Y) (JVNF) (X + Z)dY dZ.

K2d x k24



18 V. Gayral and D. Jondreville

Last, when Fy, Fy € S(k?*%, A), we can undo the oscillatory trick to get:

Py xg Fy(X) = |2|12;l/ T (2[Y, Z]) Fi(X + 6Y) Fy(X + Z)dY dZ.

k2d x k2d
The following representation of the product xy will be useful to handle the deformed product in a
rather simple way.

Lemma 3.14. Let § € Oy. For Fi, Fy € B(k*), A) and N € N, set

Fy = |2|12<d/ U (2[Y, Z]) 7oy (Fy) 72 (Fp) e 0 mo@ON gy qz.
K2d x k2d

Then, the sequence (Fn)nen belongs to B(k??, A) and converges to Iy xg Fy for the topology of
Bk A).

Proof. That Fy, N € N, belongs to B(k??, A) follows from arguments almost identical to those given
in the first part of the proof of Proposition [3.121 Next, using the oscillatory trick together with the
commutativity of I and J, we get

Fy =2 /E(Q[Y, 2)) 1o 272 ) 1y 22 Z) moy (J3TPFY) 72 (PR ERy) et MmN gy qz,

and thus (using Remark B.13))
F1 *0 F2 — FN =

224 [ W(2[Y, 2]) ua 2 2(Y) ui 23 2(2) moy (J2OH2Fy) 74 (J2H2 ) (1 — e o (Mro(D)/NY gy 7.
k 0 0 %

Using Corollary and Lemma (ii), we then deduce

B (Fr %o Fo = Fn) < g T Bitoara (FOBaa43(F2) sup L ettt
vizexzd  Ho(Y)uo(2)

Observing then that
1 — e~ #0(Y)no(2)/N 1—e /N 1
sup <sup —— <,
vizekzd  Ho(Y)po(Z) >0 x N

we get the result. O

We also note:
Lemma 3.15. Let 0 € Oy. Then, (S(k2d,A),*9) is an ideal of (B(k2d,A),*9).
Proof. Let f € S(k*!,A), F € B(k?*@, A) and n,m € N. For M,N arbitrary integers satisfying
M,N > 2d + 1. By Remark B.I3] we have

Pinn (%0 F) < / oY) N uo(Z)"MPA  (roy (J1f) 72(JNF)) dY dZ.

K2d x k2d

Using Corollary and Lemma again and the Peetre inequality, we deduce
Bonn (rov (I3 ) 72(IVF)) = B3t (170 (J3" f) 72 (T F))
< g M1 B 1 (18 70 (37 ) Bhag14n (72 (JVF))

< g S g (V) sB?z,4d+2+n+M(f) Poas14nin (F).
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Choosing M =2d+ 1 and N = 2d + 1 + m, we deduce

Bionn (f %0 F) < g > T B 500 () Bl tmin (F)-
The case of F %y f is similar. U

Lemma 3.16. Let 0 € Ox. With % the involution of A, we set F*(X) := F(X)*. Then we have
(Fl *0 Fg)* = FQ* *0 Fl* fOT’ all Fy, 5 € B(kzd,A).

Proof. Observe that the involution defined on B(k??, A) is continuous and commutes with J and 7.
Therefore, we get from Lemma [3.14]

(Fy %p F2)* = ngnoouy%{d / W (2[Y, Z]) e Moo DIN (0 (Fy) 72(Fy)) " dY dZ

K2d % k2d

= Jim_ (2}’ /k T Z)) e DN ry (1) 74 (FY)dY 2.
X

But from the same reasoning that the one given in Lemma B4 and using Lemma (i) for the
commutativity of Iy and J, one sees that the expression above is exactly Fj g F}. O

Lemma 3.17. Let 0 € Oy. The action of k> by translation on B(k??, A) is still an automorphism
for the deformed product xg.

Proof. This follows from the defining relation (B3] of g on B(k??, A) together with the fact that 7 is
continuous and commutes with J on B(k??, A). O

Definition 3.18. The deformed product of the Fréchet algebra A,cs is given by the map:
*g + Areg X Areg = A, (a,b) — a(a) x¢ a(b)(0),
which by Remark[313 can be rewritten as:

(85)  axgb= 2R / TELX, Y1) g™ (X) g 2 (V) (724 la)) (60) (J2a(0)) (V) dX dY.

We arrive to our first main result.

Theorem 3.19. Let k be a non-Archimedean local field of characteristic different from 2 and 0 € O.
Let also A be a C*-algebra endowed with a continuous action o of kK**. Then (keeping the notations
displayed above) (Areg,*y) is an associative Fréchet algebra that we call the Fréchet deformation of the
C*-algebra A. Moreover, the original action « is still by automorphisms and the original involution is
still an involution.

Proof. By construction, the action « yields an isometric embedding of A, in B (k??, A), Proposition
entails then that %¢ : B(k??, A) x B(k??, A) — B(k??, A) continuously. Note also that the evalua-
tion map B(k?*?, A) — A, F ~— F(0) is continuous too. Hence, x§ : Ayeg X Areg — A is continuous and
from the inequality (34]), we deduce

—2d— A A
llaxg blla < HM02 1”% ”CLH2d+1 ”b”2d+1~

Next, we need to show that the map *§ takes values in A, (and not only in A). To show this, let
a € Apg and X,Y € k%@, Observe first that 7x o @(a) = @(ax(a)). Consider then the action & of
k*® on B(k?*, A) given by (ax(F))(Y) = ax(F(Y)). Then we have dx (&(a)) = 7x(&(a)). Since T
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commutes with .J, we therefore get dx (J"@(a)) = 7x (J"@(a)), from which we easily deduce by (B5)
that the map & intertwines x§ and xy:

(36) a(axg b) =a(a) *g a(b), Va,be Awg.

Eq. ([36) immediately implies that x§ takes values in A,e;. Moreover, it also implies the associativity
of x& on Ayeg from the associativity of xp on B(k?, A):

(axg b) x§ ¢ = a(axy b)xg &(c)(0) = (ala) xg (b)) *g &(c)(0), Va,b,c € Areg.

Observe then that ([BG) (together with Lemma [BI7) also implies that the action o on Ay is still by
automorphism of the deformed product:

aX(a*g‘ b) :d(a) *0 &(b)(X) :Tx( *ga )(O = (TXa )*9 Tx&(b))(O)
= a(ax(a)) xg a(ax (0))(0) = ax(a) xg ax(b).

Last, that the original involution is still an involution follows from Lemma [3.10] O

Remark 3.20. Theorem can be extended in two directions. Firstly, if k is of characteristic 2,
then all the statements of this section (including Theorem [319) continue to hold true provided we
redefine the function ug in [Bl), the symplectic Fourier transform G in ([{B)) and the deformed product
*¢g in B3) without the factor 2. However, and as indicated earlier, we then lose the contact with
the pseudo-differential calculus that we will intensively use in the next section in order to construct a
C*-norm on the deformed Fréchet algebra (Areg,*g). Secondly, it is not difficult to extend Theorem
in the case of a Fréchet algebra A (instead of a C*-algebra A). If the topology of A comes from a
countable set of seminorms {||.||;}jen, then we only need to require that it carries a continuous action
a of kK2* which is tempered in the sense that for all j € N, there exist C > 0 and k,n € N such that
for all a € A, |lax(a)ll; < Cuo(X)"||allr. But again, to construct a deformed C*-norm we have to
restrict ourselves to C*-algebras and isometric actions.

Remark 3.21. By equivariance of the deformed product and from the discussion which follows (B0,
we deduce that A* is also stable under x. However it is not clear if we have continuity for the
topology of A,

4. THE C*-DEFORMATION OF A C*-ALGEBRA

4.1. The Wigner functions approach. In this section, we assume that k is of characteristic different
from 2 and that § € Oy \ {0}. Also, we identify our C*-algebra A with a subalgebra of B(H) for a
separable Hilbert space H.

By analogy with the integral representation ([Z), we may define for f € L'(k>?, A):

(37) (1) = 3l [, 2(x) @ 700 ax

The map 27 sends continuously L!(k??, A) to B(L?*(k?) ® H). Indeed, since

1926 ()| 52 ey = 1U(X)SU(X)* | gr2geay = 1, VX € K*,
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we get
(38) 19 () s < 0K [ 19900 @ FOO sz, 4X

=161 [ 170 dX = 61 17
K2d
Since moreover (X)) is selfadjoint, we get Qg‘(f)* = Qg‘(f*), where f* € L'(k??, A) is defined by
f*(X) == f(X)*. There is an obvious reason to introduce the map Q7'
Lemma 4.1. The map Qg‘ : (S(k2d,A),*g) — B(Lz(kd) ® H) s a continuous x-homomorphism.

Proof. That Qg‘ is continuous and involution preserving has already been proved. That Qg‘ is a
homomorphism when A = C follows by construction of the xg. Hence, QOA is still a homomorphism
at the level of the algebraic tensor product S(k*?) ® A. For j = 1,2, take fieS (k??, A) and choose
(fix)ken C S(k*)® A converging to f; in the topology of S(k??, A). Then, we have in B(L? (k%) @ H):

1925 (f1)92% (f2) — Q3 (f1 %o f2)Il < 11926 (f1 — Fre) Q8 (F)ll + 192 (f10)% (f2 — for) |
+ 198 ((f1 = fr) %o f2) Il + 196 (e *o (f2 — fo))l,

which by the estimates 34), @) and || f[1 < ||lug Iy 2]3‘24d+1’0(f), may be rendered as small as wished
by choosing k € N large enough. Hence [|Q7'( 1) (f2) — Q4 (fi*o f2)|| = 0 and thus Q7'(f1)Q7(f2) =
Q4 (f1 %0 fa)- O

Let now 7 be the characteristic function of Of, normalized by ||n|2 = 1 and let also W;Y the

Wigner function associated with the pair (n%,n%) of coherent states as in (Id). For F € B(k*¢, A),
we can then define the following A-valued function on k¢ x k2?:

(39) W (F) = |21 / Wy (2) F(Z)dZ.

K2d

Lemma 4.2. Let F' € B(k*?, A). Then for all X,Y € k?* and all n € N, we have:
Wy (F)lla < 5™ (35 (X = ¥)) B2 (F),
If moreover f € S(k®?, A) then for all m,n € N we have
Wy (F)lla < g™ (50X +Y))ig ™ (35(X = Y)) B ():
Proof. Note that if F' € B(k??, A), we have

0,A d -n n
WhAF) = |20 /k TTWEL)2) ()(2)dZ, Wn e,
and if f € S(k??, A), we have
0,A d -n 7—m n ym
Wy (f) = \§|k/k2d (I "I " Wky)(Z) (I"J"f)(Z)dZ, Ym,n€N.
The result follows immediately from Lemma [2.41 O
Now, for ¢, € L?(k?), we denote by |¢)(¢|, the rank one operator L?(k?) — L2(k%), p +— (b, p) .
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Definition 4.3. For F € B(k®?, A), define in the weak sense in L*(k?) @ H:
_ 0,A
W E) = 0 [ )l W () axay,
K2d x k2d

The following may be thought as a variant of the Calderon-Vaillancourt Theorem for our A-valued
Weyl pseudo-differential calculus on local fields. This result for A = C is due to Bechata [I].

Proposition 4.4. The quadratic form associated with the weak integral operator Wg‘(F) defines an
element of B(L*(k%) @ H), with
W3 (F) 2 getyemy < o I Bog (F).
Moreover, we have W5 (F)* = W{H(F*), where F* € B(k??, A) is defined by F*(X) := F(X)*.
Proof. For ® € L2(kd) H and ¢ € L*(k?) we denote by (¢, ®) 12y the vector in H defined

by (¢, ®)r2kay, p)u = (P, @ p)r2kaygy for every p € H. With this in mind and with 7 the

characteristic functlon f (Ox)? (normalized by ||| = 1), it is not difficult to see that the resolution
of the identity (I7) on L?(k?) entails:

(40) 121172 ety = 1615 /k 0 @) 3 dX VO € L2k @ .
Take now ®1, &y € L?(k?) @ H. We therefore get
(@1, WG (F)P2) 12 geayny| < 101 /km o 103, @1) 21y 134 (105> ®2) p2aey |3 Wy ()| dX Y
X
By the Cauchy-Schwarz inequality and (40]), we deduce that the integral above is bounded by
B 0.4 1/2 0.4 1/2
ORIl enerd @alzgener( swp [ WS ENaar) (s [ whiE) s ax) "
XekZd k2d Y€k2d k2d
Hence, by Lemma 2] we get

0,A —od—
|<‘I’17W9 (F)(I>2>L2(kd)®7-l‘ < ”(I)lHLZ(kd)®H”(I)2HL2(kd)®H HMO > 1|]1‘J3§4d+1(F),
which completes the proof. ]

Remark 4.5. Observe that the bound of the norm of Wz’A(F) we have obtained, is independent of
parameter 0.

Corollary 4.6. The map W} : (B(k2d,A),*9) — B(Lz(kd) ® H) is a continuous x-homomorphism
which extends £ : (S(k*?, A),%p) — B(L*(k%) @ H).

Proof. By Proposition 4] Wg‘ is continuous and involution preserving. When A = C, the relations
W F) WP (Fy) = WiHF) xg Fy) and Q4(f) = W(f), for f € S(k*) and F, Fy, F» € B(k?*?) are
implicit in the work of Bechata [I] (they are almost tautological). Obviously, these relations are still
valid at the level of algebraic tensor products. The general case follows from the same methods as
those used in Lemma [£1] using the estimates ([B4]), (B8] and Proposition [£.4] ]

Remark 4.7. Since S(k*?, A) is an ideal in B(k*?, A), we deduce from Corollary[J-0| that Q4 (fxg F) =
QMNYWF) whenever f € S(k*1, A) and F € B(k*?, A).
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We are now able to state the main result of this section, whose proof is an immediate consequence
of Corollary

Theorem 4.8. Letk be a non-Archimedean local field of characteristic different from 2, let 6 € Oy \{0}
and let A C B(H) be a C*-algebra endowed with a continuous action o of k*¢. Then (keeping the
notations displayed above) the norm:

Arog - R+ ’ a = ||CLH9 = HWGA(d(a)) HB(LQ(kd)@)’H)’

endows (Areg, *§, *) with the structure of a pre-C*-algebra. We call its completion the C*-deformation
of the C*-algebra A and denote it by Ay (or by Ag when no confusion can occur).

We first mention an important feature, namely that the deformed algebra Ay still carries a contin-
uous action of k??. We stress that this property heavily relies on the fact that our group is Abelian.
For non-Abelian groups (e.g. [2, 23]), the only surviving action is the one of a quantum group.

Proposition 4.9. The action o of k** on (Areg, %3 ) extends to a continuous action on Ag, that we
denote by ay.

Proof. Once we will have shown that o gives a continuous action of k?? on the Fréchet algebra
(Areg, %3 ), the existence of the extension oy can be easily proven following the lines of [27, Propo-
sition 5.11]. That oy is continuous on A,e follows from the fact that the isometric embedding
Aveg — B(k?@, A) intertwines a with 7 and that 7 is continuous on B(k??, A) as the latter is a
subspace of C,,(k??, A). That it is by automorphism on Ay follows from Lemma B.171 O

4.2. The C*-module approach. We now realize the deformed C*-norm |.||¢ as the C*-norm of
bounded adjointable endomorphisms of a C*-module for A, in a manner very similar to the R%case
[27]. However, this construction cannot substitute the previous one since lattice methods used in [27]
are not available here. In fact, we are in the same situation than those of negatively curved Kéhlerian
Lie groups [2].

Let (.,.)4 be the A-valued sesquilinear pairing on S(k??, A) given by

(fi, fa)a := /de (X)) f2(X)dX.

This paring is clearly well defined. Testing this paring on elementary tensors, we deduce (by the density
of products in a C*-algebra) that (S(k??, A), S(k??, A)) 4 is dense in A. Tt is manifestly positive since
(£, 1)a = froa |[F(X)PdX >0 and (f1, fo)% = (fo, f1)a. If we endow further S(k??, A) with the right
action of the undeformed C*-algebra A given by juxtaposition: f.a := [X +— f(X)a], then we get
(f1, faa)a = (f1, f2) aa. Hence, S(k??) becomes a right pre-C*-module for the undeformed C*-algebra
A. Now, by Lemma [3BT5] we know that (B(k2d, A),*@) acts continuously on S(k?¢, A) by

Lo(F) : S(k*, A) — S(kK* A), frs Fxgf.

This action clearly commutes with the right action of A. That Lg(F) is also adjointable and bounded
follows from the following alternative expression for the paring:

Lemma 4.10. For fi, fo € S(k®*, A) and 6 € Oy \ {0}, we have:

(1 fo)a = / (e Q4 %0 F2)e) ey dX.

K2d
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Proof. By polarization, we may assume without lost of generality that fi = fa. Let (.,.)’; be the
A-valued paring given by the right hand side of the equality we have to prove. Let us first show that
it is well defined. Note that for f € S(k2?, A), we have

* d *
(%, Q' (F* %0 ) L2y = (%, <\§|k/k2d £ %0 S0V) @ QY)Y Yo} 2 oy
Since the integral converges in the norm of B(L*(k%) ® H), we get
* d *
(0 Q0 (f %0 FInk) 2 cay = ‘%h{/k% £ %0 (V)% Qo(Y )1 ) 2 ety dY

d * *
= 15k /k T PO WRx(V)AY = W (F %0 f).
We conclude using Lemma which gives in that case

WA (F* %0 Flla < po(X) ™21 Pgu o (7 %o f),
and thus

I £)all < g M I B0 (fF %o f) < o0

From this inequality, we also deduce that it is enough to treat the case A = C. Indeed, if the equality
works on S(k??) then it works on the algebraic tensor product S(k??) ® A and one concludes using a
limiting argument based on ||(f, f)al| < ||f]|3 and on the inequality given above for ||(f, f)'4||.

In the case A = C, note first that by unitarity of the quantization map, we have

(f, Fre = 10l Te(Q(f)* Qo (f)) = 10l Te(Qo(f* %0 f)).
The resolution of the identity (IT), implies that for a positive trace-class operator S on L?(k?), we
have Tr(S) = |9|1:d Jiza (%, Sm%) dX. Indeed, since |nls = 1, we get by ([T that for all ¢ €

L2(kY), (o, ) = 101 [ (0%, ¢) (¢, n%)dX. Hence, for any orthonormal basis (¢ )ken, using monotone
convergence and Y, |x)(px| = Id in the weak sense, we get

Te(S) = D (r: Ser) r2gery = D (S 0r: 82 0k) p2 ey
keN keN

= (0] Z/1{2d<51/290k777§(>L2(kd)<77§(,51/2@k>L2(kd)dX
keN

= |0 /kgd > (S, on) ey (0 STP0%) 2 ey dX
keN

= |61, / (1> S1%) 12 1y X,
k2d
which completes the proof. O

From the expression of (.,.) 4 given in Lemma[I0] it is clear that the operator Lg(F), F € B(k*?, A),
is adjointable with adjoint Lg(F*). But the elementary operator inequality on B(L?(k%) ® H):

Q) (%0 F* % F g ) = Q) (F) W5 (F)PQ5(f*) < W (E)|*Q5(f* %0 £,

entails that (Lo(F)f, Lo(F)f)a < [[W5(F)|[*(f, f)a. Hence for F € B(k?*!, A), Ly(F) is bounded
adjointable A-linear endomorphism of S(k2?, A), with ||La(F)| < [[Wi(F)||. In fact this inequality
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is an equality. Indeed, by construction, the restriction to the algebraic tensor product B(k??) @ A of
the deformed C*-norm F' +— HWg‘(F )|| coincides with the minimal C*-norm on the algebraic tensor
product of the C*-completion of (B(k2d), *9) by A. But the restriction to the algebraic tensor product
B(k*) @ A of the C*-norm F + ||Lg(F)| extends to a C*-cross norm on the C*-completion of
(B(k?®),x9) by A. Hence, the two norms coincide. Restricting this to the image of A.¢g in B(k??, A),
we deduce:

Proposition 4.11. Let § € O \ {0}. Then the deformed C*-norm ||.||p on the Fréchet x-algebra
(Areg, %5, %) coincides with:

Areg > RT,a = ||Lg(a(a))]l

The main point with the realization of the deformed C*-norm as the operator norm on the pre-C*-
module S(k??, A) is that it still makes sense for the value § = 0, where there is no pseudo-differential
calculus. Indeed, when # = 0 the product on A, is the undeformed one (by Proposition B.I2) and
thus Ayeg acts on the left of S(k?¢, A) via f + a(a) f. Since moreover

[Lo=0(a(a))[| = sup [ax(a)lla = llalla, Va € A,
Xek2d

we deduce that Ag—g = A.

As an illustration of the interest of the C*-module approach to the deformation, we clarify the
relations between the deformations of Co(k??, A) and of C,,(k??, A) for the action given by translations
on the one hand and the C*-closures of the Fréchet algebras (S (k%@ A),%p) and of (B(kzd,A),*g)

induced by the representations Qg‘ and Wg‘ on the other hand.

Proposition 4.12. Let § € Oy. Consider the C*-algebras Co(k*?, A) and C,(k*?, A) endowed with
the action of k** given by T @ Id where as usual T is the action by translations. Then we have the
1somorphisms:

Co(K®?, A)g ~ (S(k22, A), %) and  Cu(k??, Ay ~ (B(k2d, A),*p).
Moreover, when 6 € Ox \ {0}, then
Co(k*, A)g ~ K(L*(k%)) ® A.

Proof. When A = C and 0 # 0, the quantization map €2y is a (multiple of a) unitary operator from
L?(k??) to the Hilbert-Schmidt operators on L?(k?). Since S(k??) is densely contained in L?(k>?),
and since the Hilbert-Schmidt operators are norm-dense in the compacts, we get after completion
(S(k??),%p) = K(L?*(k%)). The associated isomorphism with A arbitrary then follows by nuclearity of
the compact operators. The first two isomorphisms can be proven exactly as in [27, Proposition 4.15],
by observing that B(k??, A) = C,(k??, A)yeq and that S(k??, A) C Cp(k??, A),eq densely, and using the
C*-module picture for the deformed C*-norm. O

In the case of actions of R??, Rieffel proved in [29] that the K-theory is an invariant of the defor-
mation. In [2], we also proved the same result for actions of negatively curved Kéhlerian group. From
the isomorphisms given in Proposition [£.12] we easily deduce this property no longer holds here:

Corollary 4.13. The K-theory is not an invariant of the deformation.
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Proof. We give a counter example. Take A = Cy(k??). As k is a totally disconnected space, Ko(A) =
C.(k?*?,7Z). On the other hand, Proposition says that the deformation of A by the regular action
is the C*-algebra of compact operators. Hence Ky(Ap) = Z. (Note that in this example the Kj-group
is not deformed as it is trivial in both cases.) 0

4.3. The twisted crossed product approach. There is a third way to realize the deformed C*-
norm on the deformed Fréchet algebra (Ayeg,*f), which is based on the work of Kasprzak [14] and
its development by Neshveyev et al. [0 23] 22]. Kasprzak’s original construction uses general results
on crossed product and the notion of Landstad algebras. It applies to continuous actions of a locally
compact Abelian groups on C*-algebras and is parametrized by a continuous unitary 2-cocycle on the
dual group. In fact, the deformed algebra Ag( in Kasprzak’s picture is abstractly characterized by a
crossed product bi-decomposition k2@ X g Ag( = k?? x,, A, where ag is the extension of o from Areg
to Ag, as described in Proposition An equivalent and more concrete approach (see below) has
been given by Bhowmick, Neshveyev and Sangha in [6], which applies to continuous actions of locally
compact groups (not necessarily Abelian) on C*-algebras and is parametrized by a measurable unitary
2-cocycle on the dual, viewed as a quantum group. This approach to deformation had been extended
in full generality in [23] to continuous actions of locally compact quantum groups (in the von Neumann
algebraic setting) on C*-algebras and is still parametrized by a measurable unitary 2-cocycle on the
dual quantum group. Here we mostly follow the paper [22], we let 8 € Oy \ {0} and we still assume
that k is of characteristic different from 2.
For X € k@, let V)‘? be the unitary operator on L?(k??) given by

VRF(Y) =T(2[X,Y]) f(X +Y).
The operators (V) yejea satisfies Weyl type relations V¢, - = U(2[X,Y])VZ V. The C*-sub-algebra
of B(L?(k*®)) generated by the operators

Vi | JOOVRAX, ferioe),
is called the twisted group C*-algebra and is denoted by Cj(k??). For fi, fo € L'(k®?), we have
Vf‘g1 Vf‘i = er1 xofa? where % is the twisted convolution product, defined by

fi %0 fo(X / A(X = Y) () T(E[Y, X])dY.

Moreover, we have for fi, fo € S(k?%):

Go(f1 0 f2) = Go(f1) %6 Go(f2),

where Gy denotes the rescaled version of the symplectic Fourier transform:

G = 31 [ w3y, X]) fr)ay.

Hence C;(k??) is isomorphic to Cp(k??)y thus (by Proposition I2]) isomorphic to the C*-algebra of
compact operators. However, this does not implies directly that the 2-cocycle (X,Y) — ¥(3[Y, X]) on

the selfdual group k¢ is regular in the sense of [23, Definition 2.9]. Since here the modular involution
J is the complex conjugation, regularity here means that Oy (k*)Co(k*?) ¢ K(L?*(k*?)). But this
is a trivial fact here since the operator kernel of Vf1 My, (My stands for the operator of point-wise
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multiplication by f), for fi, fo € S(k??) is given by U(2[X,Y])f1(X — Y)f2(Y) and so Vﬁ My, is
Hilbert-Schmidt thus compact, and one concludes by density.
Following [22], we introduce the operator on S(k*?, Areg) given by:

(41) My f(X) = |2 /2d T2(X,Y]) aoy (G(H)(Y)) dY, 6Oy
Kk

This operator is continuous. Indeed, ITy = GoSyoG, where Sy f(X) := apx ( f(X )), which is continuous

on S(k??, Ayeg) (essentially by Lemma [B8). Note however that Sy does not need to be continuous

on S (kzd, A). Since Sy is invertible with inverse given by S_g, Ily is also invertible with inverse I1_j.

Defining the faithful representations 7 and 7y of the crossed products k2 x, A and k¢ X o, Ag on the

Hilbert module L2(k?¢, A) given for f,¢ € S(k??, Ayeq) by:

m(Pgi= [ aU0) (X, mlne= [ a(700) % (€ ax.

The first main result of [22] is that the (Archimedean version of the) map Iy extends to an isomor-
phisms of crossed products. This is the most important step to prove equivalence between Rieffel’s
and Kasprzak’s approaches to deformation. A quick inspection shows that the proofs of [22, Theorems
1.1 & 2.1] extend to our context without modification, this yields:

Proposition 4.14. For f € S(k*!, A,ey), we have my(f) = w(Ily(f)). Moreover, Iy extends to an
isomorphism of crossed products k2@ X, Ap k2 i, A.

From this, one deduces exactly as [14, Theorem 3.10] that Ay is nuclear if and only if A is nuclear.
Mimicking the arguments of [28, Theorem 3.2] (see also [2, Corollary 7.49]), one can also prove that
our deformed C*-algebra Ay is strongly Morita equivalent to the crossed product

k2d D<Ad(U9)®Oz (K(L2(kd)) ® A)7

where Uy is the projective unitary irreducible representation of k¢ on L?(k?) given in (II)). This
gives an alternative proof of the property of preservation of nuclearity, which is how Rieffel proved the
analogous result for actions of R?? [28, Theorem 4.1]. Note that Proposition BI4] together with the
Stone-von Neumann Theorem (see e.g. [25] Theorem C.34]) also implies that the deformed C*-algebra
is stably isomorphic to a double crossed product of the undeformed C*-algebra (see [23], Theorem 3.6]
for a more general statement in the context of regular cocycles for locally compact quantum groups):

K® Ag ~ k* g, (k* x4 A),

where f3y is the image under IIy of the action dual to ag of the selfdual group k2% on the crossed
product k¢ X, Ag (Which is not the action dual to o on k2, A).
The deformed C*-algebra constructed in [6] is based on the following “quantization maps”:

Ty« Co(k*) — Cp(k*),  f Id @ v(W (g f Gp @ id)TpW*).
Here the function f is viewed as an operator of multiplication on L?(k??), ¥, is the operator of
multiplication by the function [(X,Y) — ¥(2[X,Y])] on L?(k* x k??) and W is the multiplicative

unitary on L%(k?? x k??) given by W¢(X,Y) = £(X,Y — X). Last, v is an element of the predual of
the von Neumann algebra generated by Cj(k??) in L2(k??). Given that Cj(k??) ~ K(L%(k??)), v is
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of the form Tr(A.), for A of trace-class on L?(k??). For f € S(k®?), a computation shows that (up to
a constant)

10, = [ G (X)) Vo dx.

From this, we can easily show that the union of the images of the maps Tj , is dense in Cjy (k2) (see
also [23] Lemma 3.2] for a more general statement). To simplify the discussion we assume that 2
is invertible in Oy (if not, the formulas are slightly different but the conclusion is unchanged). Let
v € k such that |y|x > 1, define for n € Z, ¢, = Xoyn (O x0g)d € S (k??) and consider the element

id@n, «p—n). Then we have

vn(VEx) = |52 (ons VEx o) = |51 G (om 7 x (9-) (X).

An explicit computation then shows that v,(V%) = ¢,,(X) and thus

Ty (f) = / (Gof)(X) V' dX,
YOO x O )4

n

0

Uy =

which, by dominated convergence, converges to Vg‘ge( ) when n — co. One concludes using the fact

that Gy is an automorphism of S(k??) (indeed Gy is an involution).
The crucial observation in [6] is that for any C*-algebra A, the map Ty, extends to a map

Ty, M(Co(k*) ® A) — M (Cj(k*) @ A),
which is continuous on the unit ball for the strict topology. Composing this map with & : A —
Cu (K%, A) € M(Cy(k2, A)), we get a family of maps
A= MOk @A), aw1dev(W TG ala) Gy @ id)WeW™).
By definition, the deformation of A in the sense [6] is the sub-C*-algebra AFNS of M (Cy(k?, A))
generated by the images of the maps Tp, o @. The action &g := [Y — Ad(Gy 7y Gp)] of k?? on AggN >
induces a representation of the crossed product k2? X g AfN S on the Hilbert module L2(k2d,A).
By [23, Theorem 3.9] (see also the detailed discussion in [22] pages 4-5]) we have k2 x4, APNS =
Go (k%@ %, A) Gy. Hence, Gy dg(AFN) Gy € M (k*? x, A). Consider last the extension of the map (@I
to the multipliers of crossed products:
Iy : M (k* x4, Ag) — M (K™ x, A).

The proof of [22] Theorem 2.3] (which is mainly based on general crossed product arguments) extends
straightforwardly to our context and gives a third way to realize our deformed C*-algebra:

Theorem 4.15. The map Iy establishes an isomorphism of Ag ~ ap(Ag) C M(k2d X g Ag) with
APNS ~ Gy ag(APNS) Gy € M (k% x,, A).

5. PROPERTIES OF THE DEFORMATION

In this final section we always assume that the characteristic of k is different from 2 but otherwise
specified, the deformation parameter 6 can be freely chosen in O (i.e. the value § = 0 is also allowed).
Our aim is to show that most of the structural properties of the deformation survive in the non-
Archimedean context. In order to give the shortest possible proofs, we take advantages of the three
different ways to realize our deformed C*-algebra: as a subalgebra of B(L?(k?)) @min A as initially
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defined (see subsection [A.]]), as a subalgebra of bounded adjointable A-linear endomorphisms of the
Hilbert module L*(k?@, A) (see subsection E2)) or as a subalgebra of M (Cj(k®!) @ A) (see subsection
[43). But it is important to mention that all the results that use the twisted group algebra approach
can be alternatively proven by methods similar to those developed in [27, 2§].

We first study the question of approximate unit. This result is a very important technical tool in
numerous forthcoming statements. Here, we have to substantially modify Rieffel’s original arguments
and thus we provide a rather detailed proof (this is mostly due to the fact that the operator J does
not satisfy any kind of Leibniz rule).

Proposition 5.1. The deformed C*-algebra Ay possesses an approximate unit (in the sense of [24])
consisting of elements of Areg.

Proof. Let {€\}rca be a net of approximate unit for A (¢} € Ay, ||e\[la < 1, limy, [|a — €\alla = 0,
limy [|@ — ae)||a = 0 for all @ € A) and let 0 < ¢ € S(k?) with compact support and with [ ¢ = 1.
Define then

ey = a¢(e&) = /de (p(X) ax(e/)\) dX € Areg'

Since for all a € A, we have
la=exala < [ o(X)la—ax(haladX = [ o(X)fa-x(@) = a-x(@)]adX.

and similarly for ||a — aey||, a compactness argument over the support of ¢ entails that {ey}rea is an
approximate unit for the undeformed C*-algebra A consisting of elements of regular elements.

We are going to prove that {e)}rca is also an approximate unit for the deformed C*-algebra Ay.
Since Aeg is dense in Ay, it suffices to prove that |ja — a % ex|lg and |ja — ey %§ allg go to zero
for all a € Ayeg. By Proposition B4l ||.|lg < C|.||2a+1 (on Areg) and thus it suffices to show that
‘deﬂ (6a — a*y ey)) and 2]3‘24d+1 (aa — ex *§ a)) go to zero for all a € Ayeg. For this, note that for
Fi,Fy € B(k?®, A), we have

J(Fy g Fy) = 234 / U (2[Y, Z]) 1o N Y ) pg 241 Z) T (roy (T3 ) 72 (J2TT R)) dY dZ.

k2d x k2d

Using the integral formula ([27) applied to J™ (Tgy(Jezd+1F1) TZ(J 2d+1F2)), we deduce by commuta-
tivity of J and 7 and with N = 2d + 1 + n:

J"(Fyxg Fo)(X) = 2] /W(2[Y, Z2)U(2[X,Y1 = Z1 + Yo — Zo]) W (2[Y1, Z1]) W (2[V2, Zo])

X g XN Y) g TN D) g (Vi = 21+ Yo = Zo)ug N (Vi = X)pg N (Z1 = X)uag ™ (Yo = X)pg N (Z2 = X)
x (JN IR (Y + 0Y) (TN TR (Y + Z) dY dZdY1dZydYad Zo.

On the other hand, by Lemma 4] we have for all F' € B(k%?, A):

JUF = |2|3 / U (2[Y, Z]) pg " HY ) g 241 Z) T (roy (JZHHIF)) dY dZ.

k2d xk2d
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But the integral formula (27) generalizes when Fy € B(k??, A) and Fy € B(k??, M(A)). Applying it
for I, =1, one deduces

P = 20 [TV Z)TRIXY: - 2+ Y; - Z]) T, 20)T (20 2)
* g XY ) g 2N D) g (Vi = Zy+ Yo = Zo)ug N (Vi = XN (Z1 = XN (Y = X)pg N (Z2 — X)
x (JN TR (Yr + 0Y) dY dZdY1dZydYsdZs.
These observations imply that for all a € Ayes, n € N and with N =n + 2d 4 1, we have
J"(a(a) — alaxg e)))(X) = J"(a(a) — a(a) xg a(en))(X)
= |2|ﬁd/deZledzldYéngT(Q[Y, Z)W(2[X, Y1 — Z1 + Yo — Z5)) U (2[Y1, Z1]) W (2[Ya, Z,))
* g XY ) g 2N D) g (Vi = Z+ Yo = Zo)ug N (Vi = XN (Z1 = XN (Yo = X)pg N (Z2 — X)
X <(JNJ92d+1d(a)) (Vi +0Y) — (JVJ2H () (Vi + 0Y) (V24 G(ey)) (Ya + Z)).

Using the Peetre inequality, the fact that the action « is isometric and the (almost tautological)
relation

(Ja(a))(X) = ax (Ja(a)(0)),
we deduce

W) — g ) < sup [ g™ () g™ (2 (1 - X)
Xek2d

x ps 2772y — X sl N (Y — X) g2 (Zy — X)H (2L P24 (0)) (V) + 0Y — Yo — 2)
o (Jn+2d+1J02d+1d((I)) (Yl Loy — Y'2 o Z) (Jn+4d+2d(€)\))(0)HA deZleledYgng,

Performing the translations Y; — Y; + X, Z; — Z; + X, we see that the integral above does not
depend on X. Performing the translation Y; — Y7 — 0Y + Y5 + Z and using Fubini, we see that the
integral above is of the form

(42) /k y O(X)|[ (ST (a)) (X) — (JPPLR G (0)) (X) (T 2a(en)) (0)]], dX,

where 0 < ® € L'(k2?).
Next, we estimate the integral ([@2]) as a sum of two terms

Ri= [ SR a@0) () — (R 6(0) () e X,
k2d

B = [ @O a() (O (R - 1)a(en) (0] dX.
K2d

Let now C,, be the ball in k?? x k?¢ centered in 0 and of radius n. By absolute convergence (in norm)
of the integral I and since ||ex]|a < [|¢[|1]|€i]la < 1, we deduce that for each € > 0 there exists ng € N
(independent of A) such that for all n > ng we have

/kZd\C <I>(X)H(Jn+2d+1jgd+1&(a))(x) _ (Jn+2d+1jgd+1&(a))(X) GAHAdX <.
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On the other hand, by a compactness argument and since {e)}eca 1S an approximate unit, it easily
follows that for any n € N, we have

hin/c (I)(X)H (Jn+2d+1jg2d+154(a))(X) - (Jn+2d+1J€2d+1d(a))(X) eAHA dX =0,
hence lim) I{\ = 0. For the second bit, we first come back to the definition of ey € A, in terms of
e\ € A, to get

(JV = Da(er)(0) = k2d(JN — Dp(Y) ay(e)) dY.

Since moreover [, (JY — 1)p(Y)dY =0, we get for any b € A
bIY = Daen©) = [ (Y = De(Y) (bay (¢)) - ) Y.
k2d
Applying this formula to b = (J"+24+1 7241 5(a)) (X), we get the bound

B[, e[ =1er)
% ||(Jn+2d+lJ€2d+1d(a))(X) ay(e&) - (Jn+2d+1J92d+1d(a))(X)HAdX dY.

Using one more time the isometricity of the action, we finally get,

Iy < / (X)[ (TN = Dp(Y)]
k2d x k2d
x || (JPH I G (a)) (X — V) el — (JPRHL R G (a)) (X - Y)||, dX dY.

Noting that (JV — 1)¢ € S(k??), which can be approximated in D(k??), we conclude that limy I3 = 0
with the same compactness argument than the one we used for I 1)‘ The case of a — ey xj a is entirely
similar. O

In particular, we deduce that if A is o-unital, so does Ay and, thanks to Theorem B.5], we get that
A is o-unital if and only if Ay is.

Remark 5.2. The proof of the proposition above gives the existence of a bounded approzimate unit for
the Fréchet algebra (Aveg,*f), in the sense that for all n € N, supycy |lexlln < 0o and for all a € Ayeg,
lim) ||a g ex — al|, = lim) |lex xg a — al|, = 0.

We next study the question of compatibility of the deformation with ideals and morphisms. The
following two results follow from minor modifications of the similar statements in [27]. (See [14]
Proposition 3.8] for an alternative proof of Proposition 5.3])

Proposition 5.3. Let (A,a) and (B, ) be two C*-algebras endowed with continuous actions of k¢
and let T': A — B be a x-homomorphism which intertwines the actions o and 3. Then, T maps Areg
to Breg and extends to a continuous homomorphism Ty : Ag — By which intertwines the actions oy
and By. If moreover T is injective (respectively surjective) then Ty is injective (respectively surjective)
too.
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Proof. Let a € Ayeg. Then from the equality (in C,(k*?, A)) B(T(a)) = Id ® T(c(a)) together with
the fact that x-homomorphisms are norm decreasing, we get ||T(a)|, < ||a|ln, which implies that T
maps Areg 10 Breg. From the absolute convergence of the integral formula ([B5]) for ¢ at the level of
Areg we deduce that 71" is a continuous *-homomorphism from (A,eg, %§) to (Breg, xg ). From arguments
identical to those of [27, Theorem 5.7] (using the C*-module approach to the deformed C*-norm as
explained in Proposition [L.TT]), we see that 7" is continuous for the C*-norms, hence it extends to the
completions. Ty, the extension of T, also intertwines the actions because the actions have not changed.
That T} is injective (respectively surjective) when T is injective (respectively surjective) can be proven
exactly as in [27, Proposition 5.8]. O

Proposition 5.4. Let (A, ) be a C*-algebra endowed with a continuous action of k> and let I be an
a-invariant (essential) ideal of A. Then Iy is an (essential) ideal of Ag.

Proof. This is exactly the arguments of [27, Proposition 5.9] except the fact that we need to show
that if I is an a-invariant (essential) ideal of A then, I.¢ is an ideal of (Ayeq, x§). But this fact again
follows from the absolute convergence of the integral formula (B3]). O

Now we come to a very important point, namely that the deformation can be performed in stages.
Theorem 5.5. Let 0,0 € Ox. Then, (Ag)y ~ Aot and moreover (Ag)reg = Areg-

Proof. That (Ag)er ~ Agpye follows from [14, Lemma 3.5] or [23, Theorem 3.10] and it remains to

prove that (Ag)reg = Areg- The first step is to show that A.es C (Ag)reg With dense inclusion. By

construction, Ayeg C Ap, so that it makes sense to evaluate the seminorms ||.||2¢ (i.e. those giving the

Fréchet topology of (Ag)reg) 0N Ageg:

lall? = B5 (a(a)) = sup [[J"@(a)(X)llp < C sup [T a@(a)(X)l|ogs1 = C sup Pogyr (J"@(a)(X)),
Xek2d Xek2d Xek2d

but it is easy to see that the later expression coincides with P2, ,, 1 (&(a)) = ||la]|2 54, showing
that Ayeg C (Ap)reg. That Ayeg is dense in (Ag)reg, follows from the Dixmier-Malliavin Theorem for
general locally compact groups [21, Theorem 4.16]. Indeed, let a € (Ap)reg, € > 0 and n € N. By
Proposition BIT] (Ag)> C (Ag)reg densely so that there exists b € (Ag)™ with |la — b||de < /2.
Now, by [21, Theorem 4.16], there exists b1, ...,b, € Ag and @1, ..., ¢, € D(k??) C S(k??) such that
b= Z?Zl @y, (bj). But by construction Ayeg is dense in Ay so that there exists c1,...,c, € Areg With

b; — cjllo < e/ (2k||J™pj|l1). Setting ¢ := Z?Zl v, (¢j), we finally deduce

k
A A A € A
la—cllz? < lla =0l +1[b—cl[* < 5T > leg; (b — ci)llne.
j=1

Now, from the (already used) relation J"d&(c(a)) = a(ayny(a)), valid for a € Ag and ¢ € S(k*)
and since the action « is still isometric on Ay, we deduce that

A
g, (b — )17 = llmg, (bj —ci)lle < 1™ w;ll111b5 — ¢jllos

and thus

k
A € A
la —clz” < 5+ D 1T ejlhllb; = cillne <e,
=1
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as needed. The reversed inclusion follows from the first part: we have seen that Aiee C (Ap)reg
for any C*-algebra A endowed with a continuous action of k?¢. Applying this to the deformed C*-
algebra Ay, which still carries a continuous action of k*¢, we deduce that for any 8’ € Oy, we have
(Ag)reg C ((Ap)or)reg but since ((Ap)o )reg = (Ao40/)reg, we deduce for 0" = —0 that (Ag)reg C Areg,
which completes the proof. ]

With the help of the above theorem, we can use the same proof than [27, Theorem 7.7] to get that
the deformation maps equivariant short exact sequences to short exact sequences. Alternatively, one
can use [14] Theorem 3.9].

Theorem 5.6. Let I be an a-invariant ideal of A and let Q := A/I endowed with the quotient action.
Then the equivariant short exact sequence

0—>1I—-A—=Q—0,
gives rise to a short exact sequence of deformed algebras:
0—1Iyp— Ay — Qp — 0.

Our last result concerns continuity of the field of deformed C*-algebras (Ag)gco, . Here, the con-
tinuity structure refers to the *-subalgebra Ao, viewed as a subspace of constant sections. For the
question of continuity, the twisted crossed product approach does not seem to be especially appropriate,
contrary to the methods developed in [27]. Note however that due to particularity of non-Archimedean
analysis, we are forced to consider a restricted range of parameters.

Theorem 5.7. Let v € Oy fized. Then, the field of deformed C*-algebras (Ap2)geco, s continuous.

Proof. Our proof mimics [27, Chapter 8], where continuity is obtained from combination of lower
and upper semicontinuity. By an immediate adaptation of the arguments given in [27) page 55], lower
semicontinuity of the field (Ag)peco, will follow if for all @ € Ayeg, all f; € D(k24, A) and f2 € S(k??, A)
with G(fa) € D(k??, A), we have

|(f1,@(a) %o f2)a — (f1,@(a) %o fo)all, =0, 60—

But this easily follows from the strong continuity of o and a compactness argument once one has
realized that

(f1,a(a) %o fo)a — (f1,a(a) %o fa)a
= [2[¢ /km Lo U(2[X,Y]) f1(X) ax(agy(a) — agy(a)) G(f2)(Y)dXdY.

In particular, the field (A,g2)gco, is lower-semicontinuous for any v € Ok.

Upper semicontinuity relies on [26l Proposition 1.2]. To be able to use this result, we must let the
action « variate. So, fix v € Ox and define a new action a7 of k?¢ on A by o (a) := ayx(a). It is
clear that o7 is still continuous. To do not get confused, we need extra notations. We now let Af,
to be our dense Fréchet subspace of A as given in (28] for a given action . Accordingly, we denote

by ||.[[» to be seminorms on A%, as defined in [29) and by Aj the deformed C*-algebra. We first

reg
observe that Ay, C A‘rx;g with continuous and dense inclusion. Indeed, for a € AL, using the notation
?V)F(X) = F(yX), F € B(k*%, A), we have @ (a) = D,d(a) and thus we deduce from Lemma (.8
iii):

A=~ —2d— A ~ —2d—
lalls” = B2 (67(a)) < llug ™1 B 2a11(6(a) = g 1T lalli 201
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and the continuity follows. For the density, one observes that the spaces of smooth vectors (in the
sense of Bruhat) for the actions a and o” (for ~v # 0) coincide since @&(a) is locally constant if and

only if @”(a) does. Thus A is dense in Araeg and A is contained in Af, so Ay, is dense in A]?eg

Next we compare the deformed C*-algebras A$" and Ay Let F e B (k?d) and f € S(k??). Undoing
partially the oscillatory trick in Eq. ([B3]), we get after some rearrangements:

Fag f(X) = |202 /kw T(2(X,Y]) F(X +6Y) (G) (V) Y.

From this and the scaling relation GD.(f) = |7|1:2dD«,g(f), v € Ox\{0}, we deduce that D, (F) *
Dy (f) = Dy(F x,2¢ f) in S(k*@, A). Introducing the unitary operator U, := |y|{.D, on the pre-C*-

module S(k??, A), the previous relation entails that for any a € Afeg; We have:

(43) Uy Leg (@ (a) U, = L2 (a(a)),

where the equality holds in the C*-algebra of adjointable bounded A linear endomorphisms of the
pre-C*-module S(k??, A). The above relation also gives L 20(a(a x§ "b)) = Lg(a(a + 20 b)), for

a,b € Af,, and thus
0= || L2 (@(ax§" b)) = Lyzg(ala x2g b)) || = || Lyzg(@(axg” b— a2 b))|| = llax§" b— axlzgbll,2-

Hence, a *9 b=ax" 20 bin A% 20 but since a % 20 b € Af, (a priori, a*fjge be A?‘;g) the equality takes
place within Af,. But the relatlon ([@3) also Shows that

lallg" = |[Lo (a7 (@))]| = [[Lnzo(@(@) || = llallfzg,  Va € AR

Since Ay, is dense both in Agﬂ and in Af‘/2 o> we deduce that Agﬂ = Af‘/2 g- Hence (inverting the roles

of 0 € Ok and of v € O), it suffices to show that the field (Ay" ) co, is upper-semicontinuous. To
this aim, consider on the C*-algebra Cy(Oy, A) the action of k?¢ given by:

Bx(®)(7) = ayx (2(7)).

The space Ok being compact, one easily sees that [ is continuous. For fixed v € O, let ey :
Co(Ok, A) — A be the evaluation map at vy and let Cj (O, A) the (norm closed) ideal of elements in
Co(Ox, A) vanishing at . The associated short exact sequence 0 — Cj (O, A) = Cp(Ox, A) - A — 0
being equivariant for 8 on Cj (O, A) and on Cy(Ok, A), and for a” on A (since e, intertwines S and
"), we deduce from Theorem that we have a short exact sequence of deformed C*-algebras:

0= CJ (O, A)) — Co(Ox, A — A5 — 0.

Moreover, as Cy(Ok) (seen as a subalgebra of M (Cy(Ok, A))) is left invariant by the action f3, it is its
own space of regular elements and by Proposition ) *9 n==odn= 77*9 O for all ¢ € Co((’)k, A)reg
and all n € Cy(Ok). Hence, Cy(Ox) may also be viewed as a subalgebra of M (Cy(Ok, A)e ). Let then

Cy (Ok) be the norm closed ideal in Cy(Ox) of elements vanishing at v and let Cp(Ok, A)g Cy(Ok) be

the norm closure in the deformed C*-algebra Cy(Ok, A)g of the linear span of products. Then by [20],
Proposition 1.2] the field of C*-algebra

(Co(0,4)] / Co(O, 415G (0w))

)
v€0x
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is upper-semicontinuous. But since A5 ~ Cy(Ox, A)g/Cg(Ok, A)g, it suffices to show that Cj (Ok, A)g
coincides with Cy(Oy, A)5CJ(Oy). On the one hand, we have Co(Oy, A)CJ (Ox) C CJ(Ok, A) and
thus at the level of the regular vectors (C’O(Ok,A)C’g(Ok))Bg C C’g(@k,A)rﬁeg C C’g(@k,A)g. But

(Co(Ox, A)CF (O1))1, = Co(Ore, A)iegC (Oxc) = Co(Oxc, Ay € (Ox) and thus Co (O, A)y € (Oxc)
C Cy (O, A)g. On the other hand since Cy(Ox, A)Cq (Ok) = C7 (O, A), we have by the Cohen Fac-
torization Theorem Cj(Ok, A) = Co(Ok, A)Cy(Ok) (see for instance [13, Theorem 32.22]). Hence,
any element ® € 7 (Oy, A)og can be written as ® = Zp with Z € Co(Ox, A) and 7 € CJ(Oy). For
¢ € S(KX), we have §,(®) € CJ(Ok, A)og and By (D) = B,(E)n = Bo(2) x5 1 € Co(O, A)oeg %5
C(Ok). But by Proposition 5] @ is approximated in Cj (O, A)g by elements of the form S, (®).
Hence CJ (O, A)oog C Co(Oy, A)jCJ(Oy) and thus CF (O, A) < Co(O, A)5CJ(Oy), concluding
the proof. O
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