The dual Jacobian of a generalised hyperbolic tetrahedron, and volumes of prisms

Alexander Kolpakov Jun Murakami

Abstract

We derive an analytic formula for the dual Jacobian matrix of a generalised hyperbolic tetrahedron. Two cases are considered: a mildly truncated and a prism truncated tetrahedron. The Jacobian for the latter arises as an analytic continuation of the former, that falls in line with a similar behaviour of the corresponding volume formulae.

Also, we obtain a volume formula for a hyperbolic n-gonal prism: the proof requires the above mentioned Jacobian, employed in the analysis of the edge lengths behaviour of such a prism, needed later for the Schläfli formula.

Key words: hyperbolic polyhedron, Gram matrix, volume.

1 Introduction

Let T be a generalised hyperbolic tetrahedron (in the sense of $[19, 22]$ $[19, 22]$) depicted in Fig. [1.](#page-1-0) If the truncating planes associated with its ultra-ideal vertices do not intersect, we call such a tetrahedron *mildly truncated*, otherwise we call it *intensely truncated*. If only two of them intersect, we call such a tetrahedron *prism truncated* [\[12\]](#page-23-0). Let us note that a prism truncated orthoscheme is, in fact, a Lambert cube [\[11\]](#page-23-1).

The volumes of the tetrahedron and its truncations are of particular interest, since they are the simplest representatives of hyperbolic polyhedra. Over the last decade an extensive study produced a number of volume formulae suitable for analytic and numerical exploration [\[3,](#page-23-2) [5,](#page-23-3) [11,](#page-23-1) [12,](#page-23-0) [20,](#page-24-2) [22\]](#page-24-1). A similar study was done for the spherical tetrahedron [\[14,](#page-24-3) [17\]](#page-24-4), which can be viewed as a natural counterpart of the hyperbolic one. Many analytic properties of the volume formula for a hyperbolic tetrahedron came into view concerning the Volume Conjecture [\[10,](#page-23-4) [18\]](#page-24-5).

However, other geometric characteristics of a generalised hyperbolic tetrahedron T are also important and bring some useful information. In particular,

Figure 1: Generalised hyperbolic tetrahedron

 $Jac(T)$, the Jacobian of T, which is the Jacobian matrix of the edge length with respect to the dihedral angles, is such. This matrix enjoys many sym-metries [\[15\]](#page-24-6) and can be computed out of the Gram matrix of T [\[7\]](#page-23-5). In the present paper, we consider $Jac[*](T)$, *the dual Jacobian* of a generalised hyperbolic tetrahedron T . By the dual Jacobian of T we mean the Jacobian matrix of the dihedral angles with respect to the edge length. Such an object behaves nicely when T undergoes both mild and intense truncation: the dual Jacobian of a prism truncated tetrahedron is an analytic continuation for that of a mildly doubly truncated one. Let us mention, that the respective volume formulae are also connected by an analytic continuation, in an analogous manner [\[12,](#page-23-0) [19\]](#page-24-0).

As an application of our technique, we give a volume formula for a hyperbolic n -gonal prism, c.f. [\[4\]](#page-23-6).

Acknowledgements. The authors gratefully acknowledge financial support provided by the Swiss National Science Foundation (SNSF project no. P300P2-151316) and the Japan Society for the Promotion of Science (Grant-in-Aid projects no. 25287014, no. 2561002 and Invitation Programs for Research project no. S-14021). The authors thank the anonymous referee for his/her careful reading of the manuscript and helpful comments.

2 Preliminaries

Let T be a mildly truncated hyperbolic tetrahedron with vertices $v_k, k \in$ $\{1, 2, 3, 4\}$, edges e_{ij} (connecting the vertices v_i and v_j) with dihedral angles a_{ij} and lengths ℓ_{ij} , $i, j \in \{1, 2, 3, 4\}$, $i < j$.

Depending on whether the vertex v_k is proper $(v_k \in \mathbb{H}^3)$, ideal $(v_k \in \partial \mathbb{H}^3)$ or ultra-ideal (v_k defines a polar hyperplane as described in [\[21,](#page-24-7) Section 3], c.f. Theorem 3.2.12), let us set the quantity ε_k to be +1, 0 or −1, respectively. For each vertex v_i of T let us consider the face F_{jkl} opposite to it, where $\{i, j, k, l\} = \{1, 2, 3, 4\}.$ The link $L(v_l)$ of the vertex v_l is either a spherical triangle ($\varepsilon_l = +1$), a Euclidean triangle ($\varepsilon_l = 0$) or a hyperbolic triangle $(\varepsilon_l = -1)$. Let us define the quantity b^i_{jk} as follows:

$$
b_{jk}^{i} := \begin{cases} \text{the plane angle of } F_{jkl} \text{ opposite to the edge } e_{jk}, \text{ if } \varepsilon_{l} = +1; \\ \text{zero, if } \varepsilon_{l} = 0; \\ \text{the length of the common perpendicular to the edges } e_{jl} \\ \text{and } e_{kl} \text{ of } F_{jkl}, \text{ if } \varepsilon_{l} = -1. \end{cases}
$$

Here, we consider the face F_{jkl} as a generalised hyperbolic triangle, for which the trigonometric laws hold as described in [\[2,](#page-23-7) [9\]](#page-23-8). Let us also define a μ ity μ ⁱ h

Let us also define a quantity
$$
\mu^i_{jk}
$$
 by means of the formula

$$
\mu_{jk}^i := \int_0^{b_{jk}^i} \cos(\sqrt{\varepsilon_l} s) \mathrm{d} s.
$$

Let μ_{jk}^i denote the derivative of μ_{jk}^i with respect to b_{jk}^i , which means that

$$
{\mu'}^i_{jk} = \cos(\sqrt{\varepsilon_l} b^i_{jk}).
$$

Let σ_{kl} denote the following quantity associated with an edge e_{kl} , $k, l \in$ $\{1, 2, 3, 4\}, k < l,$

$$
\sigma_{kl} := \frac{1}{2} e^{\ell_{kl}} - \frac{1}{2} \varepsilon_k \varepsilon_l e^{-\ell_{kl}}.
$$

Let σ'_{kl} denote the derivative of σ_{kl} with respect to ℓ_{kl} , so we have that

$$
\sigma'_{kl} = \frac{1}{2}e^{\ell_{kl}} + \frac{1}{2}\varepsilon_k \varepsilon_l e^{-\ell_{kl}}.
$$

Let us define the momentum M_i of the vertex v_i opposite to the face F_{jkl} , $\{i, j, k, l\} = \{1, 2, 3, 4\}$ by the following equality (c.f. [\[6,](#page-23-9) VII.6]):

$$
M^i := \mu^i_{jk} \, \mu^i_{jl} \, \sigma_{kl}.
$$

The quantity above is well defined grace to the following theorem.

Theorem 1 (The Sine Law for faces) Let F_{jkl} be the face of T opposite *to the vertex* v_i , $\{i, j, k, l\} = \{1, 2, 3, 4\}$ *. Then* F_{jkl} *is a generalised hyperbolic triangle and the following equalities hold:*

$$
\frac{\mu^i_{jk}}{\sigma_{jk}} = \frac{\mu^i_{jl}}{\sigma_{jl}} = \frac{\mu^i_{kl}}{\sigma_{kl}}.
$$

Let us also define the momentum M_{jkl} of the face F_{jkl} opposite to the vertex v_i , $\{i, j, k, l\} = \{1, 2, 3, 4\}$ by setting (c.f. [\[6,](#page-23-9) VII.6])

$$
M_{jkl} := \mu_{kl}^j \sin a_{ik} \sin a_{il}.
$$

The quantity above is well defined, according to the following theorem.

Theorem 2 (The Sine Law for links) Let v_i be the vertex of T opposite *to the face* F_{jkl} , $\{i, j, k, l\} = \{1, 2, 3, 4\}$ *. Then* $L(v_i)$ *is either a spherical, a Euclidean or a hyperbolic triangle and the following equalities hold:*

$$
\frac{\sin a_{ij}}{\mu_{kl}^j} = \frac{\sin a_{ik}}{\mu_{jl}^k} = \frac{\sin a_{il}}{\mu_{jk}^l}.
$$

Both Theorem [1](#page-2-0) and Theorem [2](#page-3-0) are paraphrases of the spherical, Euclidean or hyperbolic sine laws (for a generalised hyperbolic triangle, see [\[9\]](#page-23-8)). The following theorems are the cosine laws for a generalised hyperbolic triangle adopted to the notation of the present paper.

Theorem 3 (The first Cosine Law for faces) Let F_{jkl} be the face of T *opposite to the vertex* v_i , $\{i, j, k, l\} = \{1, 2, 3, 4\}$ *. Then* F_{jkl} *is a generalised hyperbolic triangle and the following equality holds:*

$$
\sigma'_{kl} = \frac{\mu'^i_{\ kl} + \mu'^i_{\ jk}\,\mu'^i_{\ jl}}{\mu^i_{jk}\,\mu^i_{\ jl}}.
$$

Theorem 4 (The second Cosine Law for faces) Let F_{jkl} be the face of T opposite to the vertex v_i , $\{i, j, k, l\} = \{1, 2, 3, 4\}$. Then F_{jkl} is a gener*alised hyperbolic triangle and the following equality holds:*

$$
\mu_{jk}^{\prime i} = \frac{-\varepsilon_l \sigma_{jk}^{\prime} + \sigma_{jl}^{\prime} \sigma_{kl}^{\prime}}{\sigma_{jl} \sigma_{kl}}.
$$

Theorem 5 (The Cosine Law for links) Let v_i be the vertex of T oppo*site to the face* F_{jkl} , $\{i, j, k, l\} = \{1, 2, 3, 4\}$ *. Then* $L(v_i)$ *is either a spherical*, *a Euclidean or a generalised hyperbolic triangle and the following equality holds:*

$$
\mu_{\ kl}^{\prime j} = \frac{\cos a_{ij} + \cos a_{ik} \cos a_{il}}{\sin a_{ik} \sin a_{il}}
$$

.

3 Auxiliary lemmata

In the present section we shall consider various partial derivatives of certain geometric quantities associated with either the faces or the vertex links of a generalised hyperbolic tetrahedron T. These derivatives will be used later on in the computation of the entries of $Jac^{\star}(T)$.

Lemma 1 *For* $\{i, j, k, l\} = \{1, 2, 3, 4\}$ *we have*

$$
\begin{aligned} \frac{\partial \ell_{kl}}{\partial b_{kl}^i} &= - \varepsilon_j \, \frac{\mu_{kl}^i}{M^i}, \\ \frac{\partial \ell_{kl}}{\partial b_{jk}^i} &= - \sigma_{jl}' \, \frac{\mu_{kl}^i}{M^i}, \quad \frac{\partial \ell_{kl}}{\partial b_{jl}^i} = - \sigma_{jk}' \, \frac{\mu_{kl}^i}{M^i}. \end{aligned}
$$

Proof. According to the definition of σ_{kl} , we have $\sigma_{kl} = 0$ only in the following two cases: $\varepsilon_k = \varepsilon_l = +1$ and $\ell_{kl} = 0$, or $\varepsilon_k = \varepsilon_l = -1$ and $\ell_{kl} = 0$. In the former case, we have a degenerate tetrahedron with two proper vertices collapsing to one point. In the latter case the tetrahedron has two ultra-ideal vertices, whose polar planes are tangent at a point on the ideal boundary $\partial \mathbb{H}^3$. This is a limiting case, since in a generalised (mildly truncated) tetrahedron two polar planes never intersect or become tangent. Thus, we suppose that $\sigma_{kl} \neq 0$.

By taking derivatives on both sides of the first Cosine Law for faces, we get the following formulae:

$$
\sigma_{kl} \frac{\partial \ell_{kl}}{\partial b_{kl}^i} = \frac{\partial \sigma_{kl}^{\prime}}{\partial b_{kl}^i} = \frac{1}{\mu_{jk}^i \mu_{jl}^i} \frac{\partial \mu_{kl}^{\prime i}}{\partial b_{kl}^i} = -\varepsilon_j \, \frac{\mu_{kl}^i}{\mu_{jk}^i \mu_{jl}^i},
$$

since

$$
\frac{\partial \sigma'_{kl}}{\partial b^i_{kl}} = \sigma_{kl} \frac{\partial \ell_{kl}}{\partial b^i_{kl}} \text{ and } \frac{\partial \mu'^i_{kl}}{\partial b^i_{kl}} = -\varepsilon_j \mu^i_{kl}
$$

by a direct computation. This implies the first identity of the lemma. Now we compute

$$
\sigma_{kl} \frac{\partial \ell_{kl}}{\partial b_{jk}^{i}} = \frac{\partial \sigma'_{kl}}{\partial b_{jk}^{i}} = -\frac{((\mu'_{jk})^{2} + \varepsilon_{l}(\mu_{jk}^{i})^{2})\mu_{jl}^{i}\mu'_{jl}^{i} + \mu_{jl}^{i}\mu'_{jk}\mu'_{kl}}{(\mu_{jk}^{i}\mu_{jl}^{i})^{2}} =
$$

$$
-\frac{\mu'_{jl} + \mu'_{jk}\mu'_{kl}}{\mu_{jk}^{i}\mu_{kl}^{i}} \cdot \frac{\mu_{kl}^{i}}{\mu_{jk}^{i}\mu_{jl}^{i}} = -\sigma'_{jl} \frac{\mu_{kl}^{i}}{\mu_{jk}^{i}\mu_{jl}^{i}}.
$$

where we use the identity $(\mu'_{jk})^2 + \varepsilon_l (\mu^i_{jk})^2 = 1$ and, as before, the fact that $\frac{\partial \mu'_{jk}}{\partial b_{jk}^i} = -\varepsilon_l \mu_{jk}^i$. Then the second identity follows. The third one is analogous to the second one under the permutation of the indices k and l . \Box

Lemma 2 *For* $\{i, j, k, l\} = \{1, 2, 3, 4\}$ *we have*

$$
\frac{\partial b_{kl}^j}{\partial a_{ij}} = \varepsilon_i \frac{\sin a_{ij}}{M_{jkl}}
$$

$$
\frac{\partial b_{kl}^j}{\partial a_{ik}} = \varepsilon_i \frac{\sin a_{ij}}{M_{jkl}} \mu_{jk}^l, \quad \frac{\partial b_{kl}^j}{\partial a_{il}} = \varepsilon_i \frac{\sin a_{ij}}{M_{jkl}} \mu_{jl}^k.
$$

Proof. By taking derivatives on both sides of the Cosine Law for links, we get the following formulae:

$$
-\varepsilon_i \mu_{kl}^j \frac{\partial b_{kl}^j}{\partial a_{ij}} = \frac{\partial \mu_{kl}^{\prime j}}{\partial a_{ij}} = -\frac{\sin a_{ij}}{\sin a_{ik} \sin a_{il}}
$$

.

The first identity of the lemma follows. Then we subsequently compute

$$
-\varepsilon_i \mu_{kl}^j \frac{\partial b_{kl}^j}{\partial a_{ik}} = \frac{\partial \mu_{kl}^j}{\partial a_{ik}} = -\frac{\cos a_{il} + \cos a_{ij} \cos a_{ik}}{\sin a_{ij} \sin a_{ik}} \frac{\sin a_{ij}}{\sin a_{ik} \sin a_{il}} =
$$

$$
\mu_{jk}^l \frac{\sin a_{ij}}{\sin a_{ik} \sin a_{il}}.
$$

The second identity follows. The third one is analogous under the permutation of the indices k and $l. \Box$

Now we shall prove several identities that relate the principal minors G_{ii} , $i \in \{1, 2, 3, 4\}$ of the Gram matrix $G := G(T)$ of the tetrahedron T with its face or vertex momenta.

Lemma 3 *For* $\{i, j, k, l\} = \{1, 2, 3, 4\}$ *, we have that*

$$
\det G_{ii} = \varepsilon_i M_{jkl}^2.
$$

Proof. Let us perform the computation for G_{11} and other cases will follow by analogy. We have that

$$
\det \left(\begin{array}{ccc} 1 & -\cos a_{14} & -\cos a_{13} \\ -\cos a_{14} & 1 & -\cos a_{12} \\ -\cos a_{13} & -\cos a_{12} & 1 \end{array} \right) =
$$

$$
= \det \begin{pmatrix} 1 & -\cos a_{14} & -\cos a_{13} \\ 0 & \sin^2 a_{14} & -\mu'^2_{34} \sin a_{13} \sin a_{14} \\ 0 & -\mu'^2_{34} \sin a_{13} \sin a_{14} & \sin^2 a_{13} \end{pmatrix} =
$$

= $(1 - (\mu'^2_{34})^2) \sin^2 a_{13} \sin^2 a_{14} = \varepsilon_1 (\mu^2_{34})^2 \sin^2 a_{13} \sin^2 a_{14} = \varepsilon_1 M^2_{234}.$

By permuting the set $\{i, j, k, l\} = \{1, 2, 3, 4\}$, one gets all other identities of the lemma. \Box

Lemma 4 *For* $\{i, j, k, l\} = \{1, 2, 3, 4\}$ *, we have that*

$$
-\det G = \sin^2 a_{jk} \sin^2 a_{jl} \sin^2 a_{kl} (M^i)^2.
$$

Proof. Let us subsequently compute

$$
\det G = \det \begin{pmatrix}\n1 & -\cos a_{34} & -\cos a_{24} & -\cos a_{23} \\
-\cos a_{34} & 1 & -\cos a_{14} & -\cos a_{13} \\
-\cos a_{24} & -\cos a_{14} & 1 & -\cos a_{12} \\
-\cos a_{23} & -\cos a_{13} & -\cos a_{12} & 1\n\end{pmatrix} =
$$
\n
$$
\det \begin{pmatrix}\n1 & -\cos a_{34} & -\cos a_{24} & -\cos a_{23} \\
0 & \sin^2 a_{34} & -\mu'_{23} \sin a_{24} \sin a_{34} & -\mu'_{24} \sin a_{23} \sin a_{34} \\
0 & -\mu'_{23} \sin a_{24} \sin a_{34} & \sin^2 a_{24} & -\mu'_{34} \sin a_{23} \sin a_{24} \\
0 & -\mu'_{24} \sin a_{23} \sin a_{34} & -\mu'_{34} \sin a_{23} \sin a_{24} & \sin^2 a_{23}\n\end{pmatrix} =
$$
\n
$$
\sin^2 a_{23} \sin^2 a_{24} \sin^2 a_{34} \quad \det \begin{pmatrix}\n1 & -\mu'_{23} & -\mu'_{24} \\
-\mu'_{23} & 1 & -\mu'_{34} \\
-\mu'_{24} & -\mu'_{34} & 1\n\end{pmatrix} =
$$
\n
$$
\sin^2 a_{23} \sin^2 a_{24} \sin^2 a_{34} \quad \det \begin{pmatrix}\n1 & -\mu'_{23} & -\mu'_{24} \\
0 & \varepsilon_4(\mu_{23}^1)^2 & -\sigma'_{34}\mu_{23}^1\mu_{24}^1 \\
0 & -\sigma'_{34}\mu_{23}^1\mu_{24}^1 & \varepsilon_3(\mu_{24}^1)^2\n\end{pmatrix} =
$$
\n
$$
\sin^2 a_{23} \sin^2 a_{24} \sin^2 a_{34} \quad (\varepsilon_3 \varepsilon_4 - (\sigma'_{34})^2)(\mu_{23}^1\mu_{24}^1)^2 =
$$
\n
$$
-\sin^2 a_{23} \sin^2 a_{24} \sin^2 a_{34} \quad (M^
$$

Here we used the Cosine Law for links in the second equality and the first Cosine Law for faces in the fourth equality. Also, we used the fact that for $\{i, j, k, l\} = \{1, 2, 3, 4\}$ one has $1 - \varepsilon_l (\mu^i_{jk})^2 = (\mu'^i_{jk})^2$ (in the third equality) and $\sigma_{ij}^2 - (\sigma_{ij}')^2 = \varepsilon_i \varepsilon_j$ (in the sixth equality). All other identities of the lemma follow by permuting the set $\{i, j, k, l\} = \{1, 2, 3, 4\}$.

4 Dual Jacobian of a generalised hyperbolic tetrahedron

In this section we shall compute the entries of the dual Jacobian matrix $Jac[*](T)$ of a generalised hyperbolic tetrahedron T.

Theorem 6 *Let* T *be a generalised hyperbolic tetrahedron. Then*

$$
Jac^{\star}(T) := \frac{\partial(\ell_{12}, \ell_{13}, \ell_{14}, \ell_{23}, \ell_{24}, \ell_{34})}{\partial(a_{12}, a_{13}, a_{14}, a_{23}, a_{24}, a_{34})} = -\eta \mathscr{DPS},
$$

where

$$
\eta := \left(\frac{\prod_{i=1}^{4} \varepsilon_{i} \, \det G_{ii}}{(-\det G)^{3}} \right)^{1/2}, \, \mathscr{D} := \left(\begin{array}{cccc} \sigma_{12} & & & & \\ & \sigma_{13} & & & \\ & & \sigma_{14} & & \\ & & & \sigma_{23} & \\ & & & & \sigma_{34} \end{array} \right)
$$

and

$$
\mathscr{S}:=\left(\begin{array}{cccccc} \omega_{12} & \varepsilon_{1}\sigma_{14}' & \varepsilon_{1}\sigma_{13}' & \varepsilon_{2}\sigma_{24}' & \varepsilon_{2}\sigma_{23}' & 1 \\ \varepsilon_{1}\sigma_{14}' & \omega_{13} & \varepsilon_{1}\sigma_{12}' & \varepsilon_{3}\sigma_{34}' & 1 & \varepsilon_{3}\sigma_{23}' \\ \varepsilon_{1}\sigma_{13}' & \varepsilon_{1}\sigma_{12}' & \omega_{14} & 1 & \varepsilon_{4}\sigma_{34}' & \varepsilon_{4}\sigma_{24}' \\ \varepsilon_{2}\sigma_{24}' & \varepsilon_{3}\sigma_{34}' & 1 & \omega_{23} & \varepsilon_{2}\sigma_{12}' & \varepsilon_{3}\sigma_{13}' \\ \varepsilon_{2}\sigma_{23}' & 1 & \varepsilon_{4}\sigma_{34}' & \varepsilon_{2}\sigma_{12}' & \omega_{24} & \varepsilon_{4}\sigma_{14}' \\ 1 & \varepsilon_{3}\sigma_{23}' & \varepsilon_{4}\sigma_{24}' & \varepsilon_{3}\sigma_{13}' & \varepsilon_{4}\sigma_{14}' & \omega_{34} \end{array}\right),
$$

where

$$
\omega_{kl} := \frac{\sigma'_{ik}\sigma'_{jl} + \varepsilon_l \sigma'_{il}\sigma'_{jl}\sigma'_{kl} + \sigma'_{il}\sigma'_{jk} + \varepsilon_k \sigma'_{ik}\sigma'_{jk}\sigma'_{kl}}{\sigma_{kl}^2}.
$$

Proof. We compute the respective derivatives, that constitute the entries of $\text{Jac}^{\star}(T)$. Suppose that $\varepsilon_i \neq 0, i \in \{1, 2, 3, 4\}$, since the cases when $\varepsilon_j = 0$ for some $j \in \{1, 2, 3, 4\}$ can be dealt with in an analogous manner. Then for ${i, j, k, l} = {1, 2, 3, 4}$, one has

$$
\frac{\partial \ell_{kl}}{\partial a_{ij}} = \frac{\partial \ell_{kl}}{\partial b_{kl}^j} \frac{\partial b_{kl}^j}{\partial a_{ij}} = -\varepsilon_i \frac{\mu_{kl}^j}{M^j} \cdot \varepsilon_i \frac{\sin a_{ij}}{M_{jkl}} \stackrel{(1)}{=} -\frac{1}{M^j} \frac{\sin a_{ij}}{\sin a_{ik} \sin a_{il}} =
$$

$$
-\frac{1}{M^j} \frac{\sin a_{ij}}{\sin a_{ik} \sin a_{il}} \frac{1}{\sigma_{ij}} \frac{1}{\sigma_{kl}} \sigma_{ij} \sigma_{kl} \stackrel{(2)}{=} -\frac{1}{M^j} \frac{\sin a_{ij}}{\sin a_{ik} \sin a_{il}} \sigma_{ij} \sigma_{kl} \frac{\mu_{jk}^i \mu_{jl}^i}{M^i} \frac{\mu_{ik}^l \mu_{jk}^l}{M^l} \stackrel{(3)}{=} \frac{1}{M^j}
$$

$$
\frac{M_{ijk}M_{ikl}M_{ijl}M_{jkl}}{\sqrt{(-\det G)^3}}\,\sigma_{ij}\sigma_{kl}\stackrel{(4)}{=}-\sqrt{\frac{\Pi_{i=1}^4\varepsilon_i\det G_{ii}}{(-\det G)^3}}\,\sigma_{ij}\sigma_{kl}=-\eta\,\sigma_{ij}\sigma_{kl}.
$$

−

Here we used the definitions of vertex and face momenta, as well as Lemmata [1](#page-4-0) and [4.](#page-6-0) Indeed, in (1) we have that $M_{ijk} = \mu_{kl}^j \sin a_{ik} \sin a_{il}$ and in (2) we use the fact that $\sigma_{ij} = \frac{\mu_{ik}^l \mu_{jk}^l}{M^l}$, $\sigma_{kl} = \frac{\mu_{jk}^i \mu_{jl}^i}{M^i}$. In (3) we use

$$
\mu_{jk}^{i} = \frac{M_{ijk}}{\sin a_{jl} \sin a_{kl}}, \quad \mu_{ik}^{l} = \frac{M_{ikl}}{\sin a_{ij} \sin a_{jk}},
$$

$$
\mu_{jl}^{i} = \frac{M_{ijl}}{\sin a_{jk} \sin a_{kl}}, \quad \mu_{jk}^{l} = \frac{M_{jkl}}{\sin a_{ij} \sin a_{ik}},
$$

together with the identities of Lemma [4.](#page-6-0) In (4) we use Lemma [3.](#page-5-0) Analogous to the above, we compute for $\{i, j, k, l\} = \{1, 2, 3, 4\},\$

$$
\frac{\partial \ell_{kl}}{\partial a_{ik}} = \frac{\partial \ell_{kl}}{\partial b_{jk}^{i}} \frac{\partial b_{jk}^{i}}{\partial a_{ik}} = -\varepsilon_{k} \frac{\sin a_{ik}}{M_{ijl}} \frac{\mu_{kl}^{i}}{M^{i}} \sigma_{jk}' =
$$

$$
-\varepsilon_{k} \frac{\sqrt{\varepsilon_{j} \det G_{jj}}}{M^{i} \sin a_{jk} \sin a_{jl}} \frac{\sin a_{ik}}{\sqrt{\varepsilon_{k} \det G_{kk}}} \frac{1}{\sigma_{ik} \sigma_{kl}} \sigma_{ik} \sigma_{kl} \sigma_{jk}' =
$$

$$
-\varepsilon_{k} \frac{\sqrt{\varepsilon_{j} \det G_{jj}}}{M^{i} \sin a_{jk} \sin a_{jl}} \frac{\sin a_{ik}}{\sqrt{\varepsilon_{k} \det G_{kk}}} \frac{\mu_{jk}^{i} \mu_{jl}^{i}}{M^{i}} \frac{\mu_{il}^{j} \mu_{kl}^{j}}{M^{j}} \sigma_{ik} \sigma_{kl} \sigma_{jk}' =
$$

$$
-\varepsilon_{k} \frac{\sqrt{\varepsilon_{j} \det G_{jj}}}{\sqrt{\varepsilon_{k} \det G_{kk}}} \frac{\sqrt{\varepsilon_{l} \det G_{lk}} \sqrt{\varepsilon_{k} \det G_{kk}} \sqrt{\varepsilon_{i} \det G_{ki}}}{\sqrt{(-\det G)^{3}}} \sigma_{ik} \sigma_{kl} \sigma_{jk}' =
$$

$$
-\varepsilon_{k} \sqrt{\frac{\prod_{i=1}^{4} \varepsilon_{i} \det G_{ii}}{(-\det G)^{3}}} \sigma_{ik} \sigma_{kl} \sigma_{jk}' = -\varepsilon_{k} \eta \sigma_{ik} \sigma_{kl} \sigma_{jk}'.
$$

Finally, for $\{i, j, k, l\} = \{1, 2, 3, 4\}$, we compute the derivative

$$
\frac{\partial \ell_{kl}}{\partial a_{kl}} = \frac{\partial \ell_{kl}}{\partial b_{jk}^i} \frac{\partial b_{jk}^i}{\partial a_{kl}} + \frac{\partial \ell_{kl}}{\partial b_{jl}^i} \frac{\partial b_{jl}^i}{\partial a_{kl}}.
$$

Since the two terms of the above sum are symmetric under the permutation of k and l , we may compute only the first one. The second one will be analogous. By Lemmata [1](#page-4-0) and [2,](#page-5-1) we get

$$
\frac{\partial \ell_{kl}}{\partial b_{jk}^i} \frac{\partial b_{jk}^i}{\partial a_{kl}} = -\varepsilon_l \frac{\mu_{kl}^i}{M^i} \frac{\sin a_{il}}{M_{ijk}} \sigma'_{jl} \mu'_{ik}^j \stackrel{(5)}{=} \frac{1}{2} \sigma_{ik}^j
$$

$$
-(\sigma'_{ik}\sigma'_{jl} + \varepsilon_l \sigma'_{il}\sigma'_{jl}\sigma'_{kl}) \frac{\mu^i_{kl}}{M^i} \frac{\sin a_{il}}{M_{ijk}} \frac{1}{\sigma_{il}\sigma_{kl}} \stackrel{(6)}{=} \\
-(\sigma'_{ik}\sigma'_{jl} + \varepsilon_l \sigma'_{il}\sigma'_{jl}\sigma'_{kl}) \frac{\sqrt{\varepsilon_j \det G_{jj}}}{M^i \sin a_{jk} \sin a_{jl}} \frac{\sin a_{il}}{\sqrt{\varepsilon_l \det G_{ll}}} \frac{\mu^i_{jk}\mu^i_{jl}}{M^i} \frac{\mu^j_{ik}\mu^j_{kl}}{M^j} \stackrel{(7)}{=} \\
-(\sigma'_{ik}\sigma'_{jl} + \varepsilon_l \sigma'_{il}\sigma'_{jl}\sigma'_{kl}) \sqrt{\frac{\varepsilon_j \det G_{jj}}{(-\det G)^3}} \frac{\sqrt{\varepsilon_l \det G_{ll}} \sqrt{\varepsilon_k \det G_{kk}} \sqrt{\varepsilon_l \det G_{ll}} \sqrt{\varepsilon_l \det G_{li}} \sqrt{\varepsilon_l \det G_{li}}}{\sqrt{\varepsilon_l \det G_{ll}}} \\
-(\sigma'_{ik}\sigma'_{jl} + \varepsilon_l \sigma'_{il}\sigma'_{jl}\sigma'_{kl}) \sqrt{\frac{\Pi^4_{i=1}\varepsilon_i \det G_{ii}}{(-\det G)^3}} = -\eta (\sigma'_{ik}\sigma'_{jl} + \varepsilon_l \sigma'_{il}\sigma'_{jl}\sigma'_{kl}).
$$

Here, in (5) we used the second Cosine Law for faces and in (6) we used the equality $M_{ikl} = \mu_{kl}^i \sin a_{jk} \sin a_{jl}$ together with Lemma [3.](#page-5-0) In (7) we perform a computation analogous to (3). Thus, we obtain

$$
\frac{\partial \ell_{kl}}{\partial a_{kl}} = \frac{\partial \ell_{kl}}{\partial b_{jk}^i} \frac{\partial b_{jk}^i}{\partial a_{kl}} + \frac{\partial \ell_{kl}}{\partial b_{jl}^i} \frac{\partial b_{jl}^i}{\partial a_{kl}} =
$$

$$
-\eta \left(\sigma'_{ik}\sigma'_{jl} + \varepsilon_l \sigma'_{il}\sigma'_{jl}\sigma'_{kl}\right) - \eta \left(\sigma'_{il}\sigma'_{jk} + \varepsilon_k \sigma'_{ik}\sigma'_{jk}\sigma'_{kl}\right) = -\eta \omega_{kl}\sigma_{kl}^2.
$$

The proof is completed. \square

5 Dual Jacobian of a doubly truncated hyperbolic tetrahedron

Let us consider the case when T is a (mildly) doubly truncated tetra-hedron depicted in Fig. [2](#page-10-0) with dihedral angles θ_i and edge lengths ℓ_i , $i \in \{1, 2, 3, 4, 5, 6\}$. We suppose that the vertices cut off by the respective polar planes are v_1 and v_2 .

If T is mildly truncated then the formula from Theorem [6](#page-7-0) applies. If T is a prism truncated tetrahedron, as in Fig. [3,](#page-10-1) with dihedral angles μ , θ_i and edge lengths $\ell, \ell_i, i \in \{1, 2, 3, 5, 6\}$ then its Gram matrix is given by

$$
G = \left(\begin{array}{cccc} 1 & -\cos\theta_1 & -\cos\theta_5 & -\cos\theta_3 \\ -\cos\theta_1 & 1 & -\cos\theta_6 & -\cos\theta_2 \\ -\cos\theta_5 & -\cos\theta_6 & 1 & -\cosh\ell \\ -\cos\theta_3 & -\cos\theta_2 & -\cosh\ell & 1 \end{array}\right),
$$

which is a slightly different notation compared to $[12, 13]$ $[12, 13]$. Each link $L(v_k)$, $k = 1, 2$, is a hyperbolic quadrilateral with two right sameside angles, which can be seen as a hyperbolic triangle with a single truncated

Figure 2: Doubly truncated tetrahedron (mild truncation)

vertex. Each link $L(v_k)$, $k = 3, 4$, is a spherical triangle. In the definitions of Section [2](#page-1-1) we change each b_{1j}^i , with $i, j \in \{2, 3, 4\}$, $i \neq j$, for $b_{1j}^i + \sqrt{-1} \frac{\pi}{2}$ $\frac{\pi}{2}$ and each b_{2j}^i , with $i, j \in \{1, 3, 4\}$, $i \neq j$, for $b_{2j}^i + \sqrt{-1} \frac{\pi}{2}$ $\frac{\pi}{2}$. Thus, some of the vertex and face momenta become complex numbers. All the trigonometric rules of Section [2](#page-1-1) still hold grace to [\[2,](#page-23-7) Section 4.3]. Computing the respective derivatives in a complete analogy to the proof of Theorem [6,](#page-7-0) we obtain the following statement.

Figure 3: Doubly truncated tetrahedron (prism truncation)

Theorem 7 *Let* T *be a prism truncated tetrahedron depicted in Fig. [3.](#page-10-1) Then*

by means of the analytic continuation $a_{12} := \sqrt{-1} \ell$, $\ell_{12} = \sqrt{-1} \mu$ *we have*

$$
Jac^{\star}(T) := \frac{\partial(\mu, \ell_1, \ell_2, \ell_3, \ell_5, \ell_6)}{\partial(\ell, \theta_1, \theta_2, \theta_3, \theta_5, \theta_6)} = \frac{\partial(\ell_{12}, \ell_{34}, \ell_{13}, \ell_{23}, \ell_{24}, \ell_{14})}{\partial(a_{12}, a_{34}, a_{13}, a_{23}, a_{24}, a_{14})}.
$$

6 Volume of a hyperbolic prism

Let $\vec{\alpha}_n$ denote the *n*-tuple $(\alpha_1, \ldots, \alpha_n)$ with $0 < \alpha_k < \pi, k = 1, \ldots, n$. Let $\vec{\beta}_n$ and $\vec{\gamma}_n$ be analogous *n*-tuples. Let $\Pi_n := \Pi_n(\vec{\alpha}_n, \vec{\beta}_n, \vec{\gamma}_n)$ be the hyperbolic *n*-sided prism depicted in Fig. [4,](#page-11-0) with the respective dihedral angles, as shown in the picture.

Figure 4: The prism $\Pi_n(\vec{\alpha}_n, \vec{\beta}_n, \vec{\gamma}_n)$

Let S_k , $k = 1, \ldots, n$, be the supporting hyperplane for the k-th side face of the prism Π_n (we start numbering the faces anti-clockwise from the side face adjacent to the angles α_1 , β_1 and γ_1 , γ_2), and let S_0 and S_{n+1} be those of the top and the bottom face, correspondingly. For each S_k , $k = 0, \ldots, n+1$, let S_k^+ μ_k^+ be the respective half-space containing the unit outer normal to it. Let $S_k^- = \mathbb{H}^3 \setminus S_k^+$ \prod_{k}^{+} . Then $\Pi_n = \bigcap_{i=0}^{n+1} S_i^{-}$.

Let $T := T(\alpha, \alpha', \beta, \beta', \gamma; \ell)$ be the prism truncated tetrahedron depicted in Fig. [5.](#page-12-0) Here α , α' , β , β' and γ are the respective dihedral angles, ℓ is the length of the respective edge. The volume $Vol T$ of the tetrahedron T is given by [\[12,](#page-23-0) Theorem 1]^{*}. Let $v(\alpha, \alpha', \beta, \beta', \gamma; \ell) := \text{Vol } T(\alpha, \alpha', \beta, \beta', \gamma; \ell)$ denote the respective volume function.

 $*$ in Section [7](#page-19-0) we give a simplified formula for the volume of T .

Figure 5: The prism truncated tetrahedron $T(\alpha, \alpha', \beta, \beta', \gamma; \ell)$

Let p_0p_{n+1} be the common perpendicular to S_0 and S_{n+1} . Let also define $k \oplus m := (k+m) \mod n$, for $k, m \in \mathbb{N}$. Then we can state the main theorem of this section.

Theorem 8 Let $\Pi_n = \Pi_n(\vec{\alpha}_n, \vec{\beta}_n, \vec{\gamma}_n)$ be a hyperbolic n-sided prism, as in *Fig.* [4.](#page-11-0) *If* $p_0p_{n+1} \subset \Pi_n$, then the volume of Π_n *is given by the formula*

$$
\text{Vol }\Pi_n = \sum_{k=1}^n v(\alpha_k, \alpha_{k\oplus 1}, \beta_k, \beta_{k\oplus 1}, \gamma_{k\oplus 1}; \ell^{\star}),
$$

where ℓ^* *is the unique solution to the equation* $\frac{\partial \Phi}{\partial \ell}(\ell) = 0$ *, with*

$$
\Phi(\ell) := \pi \ell + \sum_{k=1}^n v(\alpha_k, \alpha_{k\oplus 1}, \beta_k, \beta_{k\oplus 1}, \gamma_{k\oplus 1}; \ell).
$$

Let P_k , $k = 1, \ldots, n$, be the plane containing p_0p_{n+1} and orthogonal to S_k . First, we consider the case when p_0p_{n+1} lies inside the prism Π_n and the planes P_k , $k = 1, \ldots, n$, divide the prism Π_n into n prism truncated tetrahedra, as shown in Fig. [6.](#page-13-0)

Then each P_k meets the k-th side face of the prism Π_n . Thus, the planes S_0 , S_k , $S_{k \oplus 1}$ and S_{n+1} together with P_k and $P_{k \oplus 1}$ become the supporting planes for the faces of a prism truncated tetrahedron, which we denote by T_k . Each P_k is orthogonal to S_k , S_0 and S_{n+1} . The dihedral angles of

Figure 6: The decomposition of Π_n (top view, on the left) and the prism truncated tetrahedron T_k (on the right)

 T_k inherited from the prism Π_n are easily identifiable. Let μ_k denote the dihedral angle along the edge p_0p_{n+1} and let ℓ^* be its length. Then we have $T_k = T(\alpha_k, \alpha_{k\oplus 1}, \beta_k, \beta_{k\oplus 1}, \gamma_{k\oplus 1}; \ell^{\star}), k = 1, \ldots, n.$ Clearly,

Vol
$$
\Pi_n = \sum_{k=1}^n
$$
 Vol $T_k = \sum_{k=1}^n v(\alpha_k, \alpha_{k\oplus 1}, \beta_k, \beta_{k\oplus 1}, \gamma_{k\oplus 1}; \ell^*)$.

Thus, we have to prove only the following statement.

Proposition 1 *If the common perpendicular* p_0p_{n+1} *is inside the prism* Π_n *and each* P_k *meets the respective side also inside* Π_n , $k = 1, \ldots, n$, then the *equation* $\frac{\partial \Phi}{\partial \ell} = 0$ *has a unique solution* $\ell = \ell^*$, *the length of* $p_0 p_{n+1}$ *.*

Proof. Let us consider the collection of prism truncated tetrahedra $T_k =$ $T(\alpha_k, \alpha_{k\oplus 1}, \beta_k, \beta_{k\oplus 1}, \gamma_{k\oplus 1}; \ell), k = 1, \ldots, n$. Each pair $\{T_k, T_{k\oplus 1}\}\$ of them has an isometric face corresponding to the plane $P_{k \oplus 1}$. Indeed, each such face is completely determined by the plane angles (two right angles at the side of length ℓ , the angles α_k and β_k at the opposite side) and one side length. We obtain the prism $\Pi_n(\vec{\alpha}_n, \vec{\beta}_n, \vec{\gamma}_n)$ by glueing the tetrahedra T_k together along the faces P_k , $k = 1, \ldots, n$, in the respective order. Their edges of length ℓ match together, and one obtains a prism if the angle sum

of the dihedral angles μ_k , $k = 1, \ldots, n$, along them equals 2π . We have that

$$
\frac{\partial \Phi}{\partial \ell} = \pi + \sum_{k=1}^{n} \frac{\partial v}{\partial \ell}(\alpha_k, \alpha_{k\oplus 1}, \beta_k, \beta_{k\oplus 1}, \gamma_{k\oplus 1}; \ell).
$$

Since v is the volume function from [\[12,](#page-23-0) Theorem 1], then by applying the Schläfli formula $[16, Equation 1]$ one obtains

$$
\frac{\partial \Phi}{\partial \ell} = \pi - \frac{1}{2} \sum_{k=1}^{n} \mu_k.
$$

Thus, whenever the tetrahedra T_k constitute a prism, we have $\sum_{k=1}^n \mu_k = 2\pi$ or, equivalently, $\frac{\partial \Phi}{\partial \ell} = 0$. The length ℓ in this case is exactly the length of the common perpendicular p_0p_{n+1} to the planes S_0 and S_{n+1} .

The rest is to prove that $\ell = \ell^*$ is a unique solution. In order to do so, we shall show that $\frac{\partial \mu_k}{\partial \ell} > 0$, $k = 1, \ldots, n$. By using Theorem [7](#page-10-2) we get the following formulae for a prism truncated tetrahedron (as depicted in Fig. [3\)](#page-10-1):

$$
\frac{\partial \ell_2}{\partial \ell} = -\eta \sin \mu_k \sinh \ell_6 \cosh \ell_2, \quad \frac{\partial \ell_3}{\partial \ell} = -\eta \sin \mu_k \sinh \ell_5 \cosh \ell_3,
$$

$$
\frac{\partial \ell_5}{\partial \ell} = -\eta \sin \mu_k \sinh \ell_3 \cosh \ell_5, \quad \frac{\partial \ell_6}{\partial \ell} = -\eta \sin \mu_k \sinh \ell_2 \cosh \ell_6.
$$

Note that the above derivatives are all negative. In our present notation it means that for each prism truncated tetrahedron T_k , $k =$ $1, \ldots, n$, the edges of the top and bottom faces inherited from the prism Π_n diminish their length if we increase solely the parameter ℓ . Recall that $T_k = T(\alpha_k, \alpha_{k\oplus 1}, \beta_k, \beta_{k\oplus 1}, \gamma_{k\oplus 1}; \ell)$, and let us denote $T'_k :=$ $T(\alpha_k, \alpha_{k\oplus 1}, \beta_k, \beta_{k\oplus 1}, \gamma_{k\oplus 1}; \ell')$ with $\ell' > \ell$.

Let $ABCD$ be the top (equiv., bottom) face of T_k , as shown in Fig. [7,](#page-15-0) and $A'B'C'D'$ be the top (equiv., bottom) face of T'_{k} . Since the dihedral angles accept for μ_k and μ'_k remain the same, the plane angles of ABCD at A, B, C and those of $A'B'C'D'$ at A', B' and C' are respectively equal. One sees easily that we can match then $ABCD$ and $A'B'C'D'$ such that B and B' coincide, the sides AB and $A'B'$, BC and $B'C'$ overlap and the point D' lies inside the quadrilateral $ABCD$. Then the area of $A'B'C'D'$ is less than that of ABCD. Equivalently, by the angle defect formula [\[1,](#page-23-11) Theorem 1.1.7], $\mu'_k > \mu_k$. Thus, $\frac{\partial \mu_k}{\partial \ell} > 0$, $k = 1, \ldots, n$, and the proposition follows. \Box

However, there is a possibility that, although the common perpendicular p_0p_{n+1} is entirely inside the prism Π_n , one (or several) of the planes P_k meets the respective S_k partially outside of the face S_k .

Figure 7: Prisms T_k and T'_k with top faces marked

First we consider the case when a single plane P_k meets S_k entirely outside, as depicted in Fig. [8.](#page-16-0) Like this, we obtain the figure shaded in grey, that consists of two triangular prisms sharing an edge.

Second we consider the case when a single plane P_k meets S_k partially outside, as depicted in Fig. [9.](#page-17-0) Like this, we obtain a more complicated figure that consists of two tetrahedra sharing an edge (one of which has two truncated vertices).

Thus the planes S_0 , P_k , $P_{k \oplus 1}$, S_k , $S_{k \oplus 1}$ and S_{n+1} bound a "butterfly" prism. We put $k = 1$, for clarity. In the general case, $k \geq 2$, one uses induction on the number of planes P_k meeting S_k outside of Π_n . Here, some other cases of "butterfly" prisms are possible.

Proposition 2 If the common perpendicular p_0p_{n+1} is completely inside the *prism* Π_n *, the plane* P_1 *meets the plane* S_1 *outside of* Π_n *, and all other* P_k *,* $k = 2, \ldots, n$, meet the respective side faces inside Π_n , then the volume of *the prism equals*

$$
\text{Vol}\,\Pi_n = \sum_{k=1}^n v(\alpha_k, \alpha_{k\oplus 1}, \beta_k, \beta_{k\oplus 1}, \gamma_{k\oplus 1}; \ell^{\star}),
$$

Figure 8: The decomposition of Π_n (top view, on the left) and the "butterfly" prism truncated tetrahedron T_k (on the right)

where ℓ^* *is the unique solution to the equation* $\frac{\partial \Phi}{\partial \ell}(\ell) = 0$ *, with*

$$
\Phi(\ell) := \pi \ell + \sum_{k=1}^n v(\alpha_k, \alpha_{k\oplus 1}, \beta_k, \beta_{k\oplus 1}, \gamma_k; \ell).
$$

Proof. We start with the case of a "butterfly" prism depicted in Fig. [8.](#page-16-0) Let us observe that the "butterfly" prism T_1 overlaps with the subsequent prism truncated tetrahedron T_2 exactly on its part $T_1^{(o)}$ $I_1^{(0)}$ outside of Π_n . The part of T_1 inside Π_n , called $T_1^{(i)}$ $1^{(i)}$, contributes to the total volume of the prism. The volume of $T_1^{(o)}$ $i_1^{(0)}$ is excessive in the respective volume formula and should be subtracted. In fact, we prove that

$$
v(\alpha_1, \alpha_2, \beta_1, \beta_2, \gamma_2; \ell^*) = V := \text{Vol } T_1^{(i)} - \text{Vol } T_1^{(o)},
$$

which implies that the excess in volume brought by T_2 is eliminated by the term "-Vol $T_1^{(o)}$ ". 1

In order to do so, let us denote by θ the dihedral angle along the common edge of the triangular prisms $T_1^{(o)}$ $T_1^{(o)}$ and $T_1^{(i)}$ $1^{(i)}$. Let ℓ_{θ} be the length of this edge. Let $\gamma := \gamma_2$ and let ℓ_{γ} be the length of the vertical edge with dihedral angle γ . We know that $\frac{\partial V}{\partial \gamma} = -\frac{1}{2}$ $\frac{1}{2} \ell_{\gamma}$, by the structure of the volume formula for a prism truncated tetrahedron. Indeed, the function V does not correspond to the volume of a real prism truncated tetrahedron any more, however all the

Figure 9: Another "butterfly" prism truncated tetrahedron T_k

metric relations defining the dihedral angles between the respective planes are preserved. Thus, after computing the derivative $\frac{\partial V}{\partial \ell}$ analogous to [\[12\]](#page-23-0), we obtain the latter equality. Now we compute the respective derivatives for the parts of the "butterfly" prism T_1 .

Observe that the parameter θ depends on γ , while we vary γ and keep all other dihedral angles fixed. Let us denote $\hat{\gamma}=\pi-\gamma$ for brevity. We have that

$$
\frac{\partial Vol \, T_1^{(o)}}{\partial \hat{\gamma}} = -\frac{\ell_{\gamma}}{2} - \frac{\ell_{\theta}}{2} \, \frac{\partial \theta}{\partial \hat{\gamma}}
$$

and

$$
\frac{\partial \text{Vol} T_1^{(i)}}{\partial \gamma} = -\frac{\ell_\theta}{2} \frac{\partial \theta}{\partial \gamma},
$$

by the Schläfli formula [\[16,](#page-24-8) Equation 1]. The above identities together with the fact that $\frac{\partial}{\partial \hat{\gamma}} = -\frac{\partial}{\partial \gamma}$ imply that

$$
\frac{\partial}{\partial \gamma_2} v(\alpha_1, \alpha_2, \beta_1, \beta_2, \gamma_2; \ell^*) = \frac{\partial V}{\partial \gamma_2}.
$$

By analogy, we can prove that

$$
\frac{\partial}{\partial \xi} v(\alpha_1, \alpha_2, \beta_1, \beta_2, \gamma_2; \ell^{\star}) = \frac{\partial V}{\partial \xi},
$$

for any $\xi \in {\alpha_1, \alpha_n, \beta_1, \beta_n, \mu_1}$. The volume formula for a prism truncated tetrahedron implies that by setting $\alpha_1 = \alpha_n = \pi/2$ and $\beta_1 = \beta_n = \pi/2$ we

Figure 10: Parametrising the "butterfly" prism depicted in Fig. [8](#page-16-0)

get $v(\alpha_1, \alpha_n, \beta_1, \beta_n, \gamma_2; \ell^*) = 0$. In the case of a "butterfly" prism T_1 , under the same assignment of dihedral angles, we have that the bases of the two triangular prisms become orthogonal to their lateral sides. Thus $T_1^{(i)}$ $j_1^{(i)}$ and $T_1^{(o)}$ $I_1^{(0)}$ degenerate into Euclidean prisms, which means that their volumes tend to zero. Thus, we obtain the identity $v(\alpha_1, \alpha_n, \beta_1, \beta_n, \gamma_2; \ell^{\star}) = V$.

The proof of the monotonicity for the function $\frac{\partial \Phi}{\partial \ell}(\ell)$ is analogous to that in Proposition [1.](#page-13-1) However, since the part $T_1^{(o)}$ $n_1^{(0)}$ contributes to the function $v(\alpha_1, \alpha_n, \beta_1, \beta_n, \gamma_2; \ell)$ with the negative sign, we have to replace the edge lengths ℓ_3 and ℓ_5 with $-\ell_3$ and $-\ell_5$, respectively, as shown in Fig. [10.](#page-18-0) Then we recompute the respective derivatives of the lengths of the horizontal edges according to Theorem [7.](#page-10-2) We obtain that the lengths ℓ_2 and ℓ_6 diminish, as before, while the lengths ℓ_3 and ℓ_5 increase. This implies that the upper (resp., lower) triangular base of $T_1^{(i)'}$ $\prod_{i=1}^{n_i(j)}$ can be placed entirely inside the upper (resp. lower) triangular base of $T_1^{(i)}$ $\int_1^{\pi/2}$ By the area comparison argument, we have that $\mu'_1 > \mu_1$. The inequality $\frac{\partial \mu_1}{\partial \ell} > 0$ follows.

All other cases of "butterfly prisms" (e.g. that in Fig. [9\)](#page-17-0) can be considered by analogy. \square

Remark. In the general case, when the common perpendicular p_0p_{n+1} does not lie entirely inside the prism Π_n , we expect that an analogue to Theorem [8](#page-12-1) holds with an exception that the equation $\frac{\partial \Phi}{\partial \ell}(\ell) = 0$ may have several solutions. However, one of these solutions is geometric and yields the volume of Π_n .

7 Modified volume formula

We modify the volume formula for a prism truncated tetrahedron from [\[12\]](#page-23-0), in order to reduce it to a simpler form. Indeed, the formula in [\[12,](#page-23-0) Theorem 1] uses analytic continuation and accounts for possible branching with respect to any variable $a_j = e^{\ell}$, with some $j \in \{1, 2, ..., 6\}$, and $a_k = e^{i \theta_k}$, for any $k \in \{1, 2, \ldots, 6\} \backslash \{j\}$. Usually, we put $j = 4$ for simplicity. However, the formula allows for intense truncation at any edge, since it is invariant under a permutation of the variables $a_l, l \in \{1, \ldots, 6\}.$

In our case, given a prism Π_n and its decomposition into prism truncated tetrahedra T_i , $i \in \{1, \ldots, n\}$, we know that only the common perpendicular p_0p_{n+1} is produced by an intense truncation. Thus, we can always put $j = 4$ and, moreover, the variable a_4 will be the only one that might cause branching.

In this case, we suggest a simplified version of the formula from [\[12,](#page-23-0) Theorem 1]. This formula also has less numeric discrepancies and performs faster, if used for an actual computation.

Let us put $a_k := e^{i \theta_k}, k \in \{1, 2, 3, 5, 6\}, a_4 := e^{\ell}, \text{ and let } \mathcal{U} =$ $\mathscr{U}(a_1, a_2, a_3, a_4, a_5, a_6, z)$ denote

$$
\mathcal{U} := \text{Li}_2(z) + \text{Li}_2(a_1a_2a_4a_5z) + \text{Li}_2(a_1a_3a_4a_6z) + \text{Li}_2(a_2a_3a_5a_6z) - \text{Li}_2(-a_1a_2a_3z) - \text{Li}_2(-a_1a_5a_6z) - \text{Li}_2(-a_2a_4a_6z) - \text{Li}_2(-a_3a_4a_5z),
$$

where $Li_2(\circ)$ is the dilogarithm function.

Let $z_-\,$ and z_+ be two solutions to the equation $e^{z\frac{\partial \mathscr{U}}{\partial z}}=1$ in the variable z . According to [\[12,](#page-23-0) [20\]](#page-24-2), these are

$$
z_{-} := \frac{-q_1 - \sqrt{q_1^2 - 4q_0 q_2}}{2q_2} \quad \text{and} \quad z_{+} := \frac{-q_1 + \sqrt{q_1^2 - 4q_0 q_2}}{2q_2},
$$

where

 $q_0 := 1 + a_1 a_2 a_3 + a_1 a_5 a_6 + a_2 a_4 a_6 + a_3 a_4 a_5 + a_1 a_2 a_4 a_5 + a_1 a_3 a_4 a_6 + a_2 a_3 a_5 a_6,$

$$
q_1 := -a_1 a_2 a_3 a_4 a_5 a_6 \left(\left(a_1 - \frac{1}{a_1} \right) \left(a_4 - \frac{1}{a_4} \right) + \left(a_2 - \frac{1}{a_2} \right) \left(a_5 - \frac{1}{a_5} \right) + \left(a_3 - \frac{1}{a_3} \right) \left(a_6 - \frac{1}{a_6} \right) \right),
$$

 $q_2 := a_1a_2a_3a_4a_5a_6(a_1a_4 + a_2a_5 + a_3a_6 + a_1a_2a_6 + a_1a_3a_5 + a_2a_3a_4 +$ $a_4a_5a_6 + a_1a_2a_3a_4a_5a_6$. Given a function $f(x, y, \ldots, z)$, let $f(x, y, \ldots, z) \mid_{z=z_+}^{z=z_-}$ denote the difference $f(x, y, \ldots, z_-) - f(x, y, \ldots, z_+)$. Now we define the following function $\mathscr{V} =$ $\mathcal{V}(a_1, a_2, a_3, a_4, a_5, a_6, z)$ by means of the equality

$$
\mathscr{V} := \frac{i}{4} \left(\mathscr{U}(a_1, a_2, a_3, a_4, a_5, a_6, z) - z \frac{\partial \mathscr{U}}{\partial z} \log z \right) \Big|_{z=z_+}^{z=z_-}.
$$

Proposition 3 *The volume of a prism truncated tetrahedron* T *is given by*

$$
\text{Vol}\,T = \Re\left(-\mathscr{V} + a_4 \frac{\partial \mathscr{V}}{\partial a_4} \log a_4\right).
$$

Proof. Let us denote

$$
f(T) = \Re\left(-\mathcal{V} + a_4 \frac{\partial \mathcal{V}}{\partial a_4} \log a_4\right),\,
$$

and compute the derivative

$$
\frac{\partial}{\partial \ell} \left(f(T) + \frac{\mu \ell}{2} \right) = a_4 \frac{\partial}{\partial a_4} \left(f(T) + \frac{\mu \log a_4}{2} \right) =
$$

= $a_4 \frac{\partial}{\partial a_4} \left(\Re \left(-\mathcal{V} + \left(a_4 \frac{\partial \mathcal{V}}{\partial a_4} + \frac{\mu}{2} \right) \log a_4 \right) \right).$

The function $\Re\left(a_4 \frac{\partial \mathcal{H}}{\partial a_4}\right)$ $\frac{\partial \mathscr{V}}{\partial a_4} + \frac{\mu}{2}$ 2 has an a.e. vanishing derivative, c.f. the note in [\[12\]](#page-23-0) after Theorem 1 saying that $\mu \equiv -2\Re(a_4 \frac{\partial \nu}{\partial a_4})$ $\frac{\partial y}{\partial a_4}$ mod π . Hence,

$$
\frac{\partial}{\partial \ell} \left(f(T) + \frac{\mu \ell}{2} \right) = a_4 \frac{\partial}{\partial a_4} \left(\Re \left(-\mathcal{V} + \left(a_4 \frac{\partial \mathcal{V}}{\partial a_4} + \frac{\mu}{2} \right) \log a_4 \right) \right) \stackrel{(1)}{=} \\ \stackrel{(1)}{=} \Re \left(-a_4 \frac{\partial \mathcal{V}}{\partial a_4} + a_4 \frac{\partial \mathcal{V}}{\partial a_4} + \frac{\mu}{2} \right) = \frac{\mu}{2}.
$$

The equality (1) holds because of the commutativity of the operations \Re and $\frac{\partial}{\partial a_4}$ for the function $-\mathscr{V} + \left(a_4 \frac{\partial \mathscr{V}}{\partial a_4}\right)$ $\frac{\partial \mathscr{V}}{\partial a_4} + \frac{\mu}{2}$ 2 $\log a_4$. The latter holds since $a_4 = e^{\ell}$ is a real parameter. This implies that $\frac{\partial f(T)}{\partial \mu} = -\frac{\ell}{2}$ $\frac{\ell}{2}$. By analogy to the proof of [\[12,](#page-23-0) Theorem 1], we can show that $\frac{\partial f(T)}{\partial \theta_k} = -\frac{\ell_k}{2}$, and that if T degenerates into a right Euclidean prism, then $f(T) \to 0$. Thus, $Vol T = f(T)$ and the proposition

follows. \square

Also, we have the following way to determine the dihedral angle μ along the length ℓ edge coming from the intense truncation.

Proposition 4 *The angle* μ *is given by*

$$
\mu \equiv -\Re\left(\frac{i\,a_4}{2}\,\frac{\partial \mathscr{U}(a_1,\ldots,a_6,z)}{\partial a_4}\bigg|_{z=z_+}^{z=z_-}\right) \mod \pi.
$$

Proof. We have $\mu \equiv -2\Re\left(a_4 \frac{\partial \mathcal{H}}{\partial a_4}\right)$ ∂a_4) mod π , where $0 < \mu < \pi$ and has an a.e. vanishing derivative. Then we compute

$$
\frac{\partial \mathscr{U}(a_1,\ldots,a_6,z_{\pm}(a_1,\ldots,a_6))}{\partial a_4}-\frac{\partial}{\partial a_4}\left(z_{\pm}\frac{\partial \mathscr{U}(a_1,\ldots,a_6,z_{\pm})}{\partial z}\log z_{\pm}\right)=
$$

$$
\frac{\partial \mathscr{U}(a_1,\ldots,a_6,z_{\pm})}{\partial a_4} + \frac{\partial z_{\pm}}{\partial a_4} \frac{\partial \mathscr{U}(a_1,\ldots,a_6,z_{\pm})}{\partial z} - \frac{\partial z_{\pm}}{\partial a_4} \frac{\partial \mathscr{U}(a_1,\ldots,a_6,z_{\pm})}{\partial z} = (1)
$$

$$
\frac{\partial \mathscr{U}(a_1,\ldots,a_6,z_{\pm})}{\partial a_4},
$$

since, for some $m \in \mathbb{Z}$,

$$
z_{\pm} \frac{\partial \mathscr{U}(a_1,\ldots,a_6,z_{\pm})}{\partial z} = 2\pi i m,
$$

by the definition of $z_$ and z_+ . Therefore, we obtain

$$
\mu \equiv -2\Re\left(a_4 \frac{\partial \mathscr{V}}{\partial a_4}\right) \bmod \pi \equiv -\Re\left(\frac{i a_4}{2} \frac{\partial \mathscr{U}(a_1, \dots, a_6, z)}{\partial a_4}\Big|_{z=z_+}^{z=z_-}\right) \bmod \pi,
$$

where $0 < \mu < \pi$. \Box

8 Numerical examples

Finally, we produce some numerical examples concerning an *n*-gonal ($n \geq 5$) prism Π_n with the following distribution of dihedral angles: the angles along the vertical edges are $\frac{2\pi}{5}$, the angles adjacent to the bottom face are $\frac{\pi}{3}$, and those adjacent to the top face are $\frac{\pi}{2}$. Indeed, such a prism Π_n exists due to [\[8,](#page-23-12) Theorem 1.1]. Then we apply Theorem [8](#page-12-1) for the cases $n = 5, 6, 7$, and perform all necessary numeric computations with Wolfram Mathematica[®].

In order to avoid excessive branching in numerical computations, we use the modified parameters

$$
q'_i := \frac{q_i}{\prod_{k=1}^6 a_k}
$$
 and $z_{\pm} := \frac{-q'_1 - \sqrt{q_1'^2 \pm 4q'_0 q'_2}}{2q'_2}$.

in the formulae for $\mathcal U$ and $\mathcal V$ from Section [7.](#page-19-0)

It follows from the definition of q'_i , $i = 1, 2, 3$, above that the quantity $q_1^{\prime 2} - 4q_0^{\prime}q_2^{\prime}$ is a real number, c.f. [\[20,](#page-24-2) Section 1.1, Lemma]. This fact prevents computational discrepancies and simplifies any further numerical analysis of the volume formula.

\overline{n}	(ℓ^*,μ)	$Vol \Pi_n$
.5	$(0.50672, 2\pi/5)$	2.63200
6	$(0.38360, \pi/3)$	3.43626
	$(0.312595, 2\pi/7)$	4.19077

Table 1: Left: parameters (ℓ^*, μ) of T_n , right: volume of Π_n

Each of the above prisms Π_n can be subdivided into n isometric copies of a prism truncated tetrahedron T_n . Indeed, T_n is a prism truncated tetrahedron with angles $\theta_1 = \frac{2\pi}{5}$, $\theta_2 = \theta_3 = \frac{\pi}{2}$, $\theta_5 = \theta_6 = \frac{\pi}{3}$, and $\mu = \frac{2\pi}{n}$. By rotating it along the edge with dihedral angle μ , we compose the desired prism Π_n . The graph of Vol T_n , with $n = 5$, as a function of ℓ , is shown in Fig. [11](#page-22-0) on the left. The graph of $\frac{\partial \Phi}{\partial \ell}(\ell)$ for the same prism truncated tetrahedron T_n is depicted in Fig. [11](#page-22-0) on the right. We observe that the function $\frac{\partial \Phi}{\partial \ell}(\ell)$ is indeed monotone and has a single zero $\ell^* \approx 0.50672....$

Figure 11: Left: Vol T_5 , right: $\frac{\partial \Phi}{\partial \ell}$, both as functions of ℓ

The volume of T_5 with $\theta_1 = \frac{2\pi}{5}$ $\frac{2\pi}{5}, \theta_2 = \theta_3 = \frac{\pi}{2}$ $\frac{\pi}{2}$, $\theta_5 = \theta_6 = \frac{\pi}{3}$ $\frac{\pi}{3}$ and $\ell^* \approx 0.50672...$ equals ~ 0.52639... by Proposition [3.](#page-20-0) Thus, we can see that Vol $\Pi_5 = 5 \cdot$ Vol T_5 in accordance with Theorem [8,](#page-12-1) and from Proposition [4](#page-20-1) $\mu = 1.25664... \approx \frac{2\pi}{5}.$

References

- [1] P. Buser "Geometry and spectra of compact Riemann surfaces", New-York, Heidelberg, London: Springer, 2010.
- [2] Y. Cho "Trigonometry in extended hyperbolic space and extended de Sitter space", Bull. Korean Math. Soc. 46 (6) 1099-1133 (2009); [arXiv:0712.1877.](http://arxiv.org/abs/0712.1877)
- [3] Y. Cho, H. Kim "On the volume formula for hyperbolic tetrahedra", Discrete Comput. Geom. 22 (3), 347-366 (1999).
- [4] D.A. DEREVNIN, A.C. KIM "The Coxeter prisms in \mathbb{H}^{3} " in Recent advances in group theory and low-dimensional topology (Heldermann, Lemgo, 2003), pp. 35-49.
- [5] D.A. DEREVNIN, A.D. MEDNYKH "A formula for the volume of a hyperbolic tetrahedron", Russ. Math. Surv., 60 (2), 346-348 (2005).
- [6] W. Fenchel "Elementary geometry in hyperbolic space", Berlin, New-York: Walter de Gruyter, 1989.
- [7] R. Guo "Calculus of generalized hyperbolic tetrahedra", Geometriae Dedicata, 153 (1), 139-149 (2011); [arXiv:1007.0453.](http://arxiv.org/abs/1007.0453)
- [8] C.D. Hodgson, I. Rivin "A characterization of compact convex polyhedra in hyperbolic 3-space", Invent. Math. 111, 77-111 (1993).
- [9] R. Guo, F. Luo "Rigidity of polyhedral surfaces - II", Geom. Topol. 13, 1265-1312 (2009); [arXiv:0711.0766.](http://arxiv.org/abs/0711.0766)
- [10] R.M. Kashaev "The hyperbolic volume of knots from the quantum dilogarithm", Lett. Math. Phys. 39 (3), 269-275 (1997); [arXiv:q-alg/9601025.](http://arxiv.org/abs/q-alg/9601025)
- [11] R. Kellerhals "On the volume of hyperbolic polyhedra", Math. Ann., 285 (4), 541-569 (1989).
- [12] A. KOLPAKOV, J. MURAKAMI "Volume of a doubly truncated hyperbolic tetrahedron", Aequationes Math., 85 (3), 449-463 (2013); [arXiv:1203.1061.](http://arxiv.org/abs/1203.1061)
- [13] A. KOLPAKOV, J. MURAKAMI "Erratum to: Volume of a doubly truncated hyperbolic tetrahedron", Aequationes Math., 88 (1-2), 199-200 $(2014).$
- [14] A. KOLPAKOV, A. MEDNYKH, M. PASHKEVICH "Volume formula for a \mathbb{Z}_2 -symmetric spherical tetrahedron through its edge lengths", Arkiv för Matematik, 51 (1), 99-123 (2013); [arXiv:1007.3948.](http://arxiv.org/abs/1007.3948)
- [15] F. Luo "3-dimensional Schl¨afli formula and its generalization", Commun. Contemp. Math., 10, suppl. 1, 835-842 (2008); [arXiv:0802.2580.](http://arxiv.org/abs/0802.2580)
- [16] J. MILNOR "The Schläfli differential equality" in Collected Papers. I. Geometry (Publish or Perish, Houston, TX, 1994), pp. 281-295.
- [17] J. Murakami "The volume formulas for a spherical tetrahedron", Proc. Amer. Math. Soc. 140 9, 3289-3295 (2012); [arXiv:1011.2584.](http://arxiv.org/abs/1011.2584)
- [18] H. Murakami, J. Murakami "The colored Jones polynomials and the simplicial volume of a knot", Acta Math. 186 (1), 85-104 (2001); [arXiv:math/9905075.](http://arxiv.org/abs/math/9905075)
- [19] J. Murakami, A. Ushijima "A volume formula for hyperbolic tetrahedra in terms of edge lengths", J. Geom. **83** (1-2), 153-163 (2005); [arXiv:math/0402087.](http://arxiv.org/abs/math/0402087)
- [20] J. Murakami, M. Yano "On the volume of hyperbolic and spherical tetrahedron", Comm. Anal. Geom. 13 (2), 379-400 (2005).
- [21] J.G. Ratcliffe, "Foundations of hyperbolic manifolds", New York: Springer-Verlag, 1994. (Graduate Texts in Math.; 149).
- [22] A. USHIJIMA "A volume formula for generalised hyperbolic tetrahedra" in Mathematics and Its Applications 581 (Springer, Berlin, 2006), pp. 249-265.

Alexander Kolpakov Department of Mathematics University of Toronto 40 St. George Street Toronto ON M5S 2E4 Canada kolpakov.alexander(at)gmail.com

Jun Murakami Department of Mathematics Faculty of Science and Engineering Waseda University 3-4-1 Okubo Shinjuku-ku 169-8555 Tokyo, Japan murakami(at)waseda.jp