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ON GRADIENT RICCI SOLITONS WITH CONSTANT SCALAR

CURVATURE

MANUEL FERNÁNDEZ-LÓPEZ AND EDUARDO GARCÍA-RÍO

Abstract. We use the theory of isoparametric functions to investigate gradi-
ent Ricci solitons with constant scalar curvature. We show rigidity of gradient
Ricci solitons with constant scalar curvature under some conditions on the
Ricci tensor, which are all satisfied if the manifold is curvature homogeneous.
This leads to a complete description of four- and six-dimensional Kähler gra-
dient Ricci solitons with constant scalar curvature.

1. Introduction and main results

A complete n-dimensional Riemannian manifold (M, g) is said to be a gradient
Ricci soliton if there exists a smooth function f on M such that

(1.1) Rc+Hf = λg,

where Rc is the Ricci tensor, Hf denotes the Hessian of the function f , and λ is
a real number. For λ > 0 the Ricci soliton is shrinking, for λ = 0 it is steady
and for λ < 0 it is expanding. The function f is called the potential function
of the gradient Ricci soliton. Gradient Ricci solitons play an important role in
Hamilton’s Ricci flow as they correspond to self-similar solutions, and often arise
as singularity models. Therefore it is important to classify gradient Ricci solitons
and to understand their geometry. We refer to [3, 7, 8] and the references therein
for background on Ricci solitons.

The Ricci soliton equation (1.1) links geometric information about the curvature
of the manifold through the Ricci tensor and the geometry of the level sets of the
potential function by means of their second fundamental form. Hence, classifying
gradient Ricci solitons under some curvature conditions is a natural problem. Gra-
dient Ricci solitons with constant scalar curvature were investigated by Petersen
and Wylie in [15], who showed that constant scalar curvature is a very restrictive
condition in the steady case, since it leads to Ricci flatness. Therefore we focus on
the non-steady case in what follows.

If a non-steady gradient Ricci soliton has constant scalar curvature R, then it is
bounded as 0 ≤ R ≤ nλ in the shrinking case, and nλ ≤ R ≤ 0 in the expanding
case. Our first result shows that the possible values of the scalar curvature are
quantified by the soliton constant λ as follows

Theorem 1. Let (Mn, g) be an n-dimensional complete gradient Ricci soliton with
constant scalar curvature R. Then R ∈ {0, λ, · · · , (n− 1)λ, nλ}.

Petersen and Wylie showed that the extremal values for the scalar curvature
in Theorem 1 are achieved if and only if the underlying Riemannian structure is
Einstein [15]. We investigate the realizability of the extremal values R = λ and
R = (n−1)λ, showing that the value R = λ cannot occur in the shrinking case, while
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any complete gradient Ricci soliton with constant scalar curvature R = (n− 1)λ is
necessarily rigid (see Theorem 10).

A gradient soliton is said to be rigid if it is isometric to a quotient of N × R
k

where N is an Einstein manifold and f = λ
2 |x|

2 on the Euclidean factor. That is,

the Riemannian manifold (M, g) is isometric to N ×Γ R
k, where Γ acts freely on N

and by orthogonal transformations on R
k. Clearly any rigid gradient Ricci soliton

has constant scalar curvature. When M is compact, a Ricci soliton (M, g) is rigid
if and only if it is Einstein, and the constancy of the scalar curvature characterizes
rigidity as a consequence of the Hopf maximum principle (see, for example [9]). In
the more general setting of complete non-compact gradient Ricci solitons, Petersen
and Wylie showed rigidity under some additional assumptions [15]. One of such
conditions is the harmonicity of the Riemann curvature tensor. In the shrinking
case, a gradient Ricci soliton is rigid if and only if the Weyl tensor is harmonic
[11, 14].

Our main result shows rigidity of gradient Ricci solitons with constant scalar
curvature under the assumption that the Ricci operator has constant rank, from
where it follows that curvature homogeneous gradient Ricci solitons are rigid.

Theorem 2. A complete gradient Ricci soliton is rigid if and only if the Ricci
operator has constant rank.

Remark 3. A special family of rigid gradient Ricci solitons are the homogeneous
ones. Indeed, it was shown in [16] that any homogeneous gradient Ricci soliton is
rigid. An immediate application of Theorem 2 shows that the homogeneity con-
dition can be replaced by the more general one of curvature homogeneity. A Rie-
mannian manifold (M, g) is said to be k-curvature homogeneous if for any two points
p, q ∈ M there exists a linear isometry ϕpq : TpM → TqM which preserves the cur-
vature tensor and its covariant derivatives up to order k, i.e., ϕ∗

pq∇
lR(q) = ∇lR(p)

for all l = 0, . . . , k. Clearly, any locally homogeneous Riemannian manifold is
k-curvature homogeneous for all k, and conversely, if (Mn, g) is k-curvature homo-
geneous for sufficiently large k (for instance k ≥ 1

2n(n − 1)), then it is locally ho-
mogeneous. However, there are plenty of examples of Riemannian manifolds which
are 0-curvature homogeneous but not homogeneous (even there are many curvature
homogenous Riemannian manifolds whose curvature tensor does not correspond to
any homogeneous space [1]). Since any curvature homogeneous Riemannian mani-
fold has constant Ricci curvatures, the Ricci operator has constant rank, and thus
it follows from Theorem 2 that any 0-curvature homogeneous complete gradient
Ricci soliton is rigid, which generalizes [16, Theorem 1.1].

Gradient Ricci solitons with constant scalar curvature are rigid in dimension
three [17] (in the shrinking case rigidity was shown without any additional assump-
tion in [4]). We extend the above results to the case of Kähler Ricci solitons by
showing that

Theorem 4. Any Kähler gradient Ricci soliton with constant scalar curvature is
rigid in dimension n = 4, 6.

Previous result strongly depends on the number of different Ricci curvatures and
does not hold necessarily in the general non-Kähler case, where we have:

Theorem 5. Any four-dimensional complete gradient shrinking Ricci soliton with
constant scalar curvature R 6= 2λ is rigid. Moreover, any four-dimensional gradient
shrinking (resp., expanding) Ricci soliton with constant scalar curvature R = 2λ has
non-negative (resp., non-positive) Ricci curvature.
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2. Proof of the results.

The results will be obtained by considering the geometric information underlying
equation (1.1). The analysis of the level sets of the potential function plays a crucial
role since our assumption of constant scalar curvature imposes some restrictions on
their geometry. First of all we introduce some definitions to be used in what follows.

A non-constant C2 function f : M → R is said to be a transnormal function if

(2.1) |∇f |2 = b(f)

for some C2 function b on the range of f in R. The function f is said to be an
isoparametric function if moreover satisfies

(2.2) ∆f = a(f)

for some continous function a on the range of f in R [2, 12, 13, 18].
Equation (2.1) implies that the level set hypersurfaces of f are parallel hyper-

surfaces and it follows from equation (2.2) that these hypersurfaces have constant
mean curvature (i.e., they are isoparametric hypersurfaces).

Given a function f : M → R we denote fmin = min{f(x) / x ∈ M} and fmax =
max{f(x) / x ∈ M}, if they exist. If the function is transnormal we define the sets
M− = {x ∈ M /f(x) = fmin} and M+ = {x ∈ M /f(x) = fmax}, which are called
the focal varieties of f. Note that M− and/or M+ could be the empty set.

If (M, g) is a gradient Ricci soliton the potential function (after a possible rescal-
ing) satisfies |∇f |2 = 2λf −R (see, for example [7, 15]) and ∆f = nλ−R. Thus, if
the Ricci soliton has constant scalar curvature the potential function satisfies (2.1)
and (2.2), thus being an isoparametric function on (M, g). First of all we show that
at least one of the focal varieties is necessarily non-empty.

Lemma 6. Let (M, g) be a gradient Ricci soliton with constant scalar curvature.
If it is shrinking then M− 6= ∅ and if it is expanding then M+ 6= ∅.

Proof. We need to show that the potential function has a minimum (resp., maxi-
mum) if the Ricci soliton is shrinking (resp., expanding). After translating f by a
constant we can suppose that 2λf = |∇f |2. This shows that f has the same sign
as λ, and moreover it vanishes at the same points where ∇f does so. Hence, if
p ∈ M is such that ∇f(p) = 0, then f(p) = 0 and the potential function attains a
minimum (resp., maximum) at p ∈ M .

We will argue by contradiction, assuming that ∇f 6= 0 at any point to get a

contradiction. Define the function r : (M, g) → R by r =
√

2f
λ
. Now it follows that

∇r =
√
λ∇f

2|∇f | , from where we have that r satisfies the Eikonal equation |∇r|2 = 1.

Thus r is a distance function and the integral curves of ∇r are geodesics. Hence
∇r is a complete vector field, due to completeness of (M, g). So, if ∇f 6= 0 then
the range of r must be R, which contradicts the fact that r is non-negative. This
finishes the proof. �

Remark 7. Cao and Zhou [5] showed that if (M, g) is a shrinking gradient Ricci

soliton, then the potential function satisfies
λ

2
(r(p) − c1)

2 ≤ f(p) ≤
λ

2
(r(p) − c1)

2,

where r(x) = d(p0, p) is the distance function from some fixed point p0 ∈ M , and
c1 and c2 are positive constants. Previous inequalities provide an alternative proof
of the fact that f attains a global minimum in the shrinking case.

Proof of Theorem 1. Wang proved in [18] that the focal varieties M− and M+ of a
transnormal function are smooth submanifolds ofM (whenever they are not empty).
Also it was shown in [18] that the restriction of the Hessian Hf of a transnormal
function f satisfying (2.1) to M± has only two eigenvalues, 0 and 1

2b
′(f). Indeed,
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one has Hf (X,Y ) = 0 for all X,Y ∈ TM±, and Hf (V,W ) = 1
2b

′(f)g(V,W ) for all

V,W ∈ TM⊥
± .

In our case, since b(f) = 2λf −R, we have that b′(f) = 2λ. Now, it follows from
(1.1) that the restriction of the Ricci tensor to the (non-empty) focal submanifolds
M± is of the form

Rc|M±
=

(

λIk 0
0 0n−k

)

,

where k = rank Rc|M±
. Previous lemma shows that at least one of the focal va-

rieties is not empty, and hence taking traces one obtains that the possible values
of the scalar curvature are quantified by the Ricci soliton constant λ, thus proving
Theorem 1. �

A basic fact in our analysis is the following [15, Proposition 1.3]: a gradient
shrinking (resp., expanding) Ricci soliton is rigid if and only if it has constant
scalar curvature and 0 ≤ Rc ≤ λ (resp., λ ≤ Rc ≤ 0).

Proof of Theorem 2. Recall that the f -Laplacian of the scalar curvature satisfies
∆fR = λR−|Rc|2, from where |Rc|2 = λR in the constant scalar curvature setting
(see, for example [15]). Next, assuming that the rank of the Ricci operator is
constant, say rank Rc = dim M± = k, one has that the scalar curvature is R = kλ,
since it is constant. Let us denote by Ri, i = 1, . . . , k, the non-zero eigenvalues of
the Ricci operator at any point of M . Then

k
∑

i=1

(Ri − λ)
2

= |Rc|2 − 2λR+ kλ2

= λR− 2λR+ λR = 0 .

Hence all non-zero eigenvalues satisfy R1 = R2 = · · · = Rk = λ, and thus it follows
that Ricci tensor has only two eigenvalues, 0 and λ, from where it follows that
0 ≤ Rc ≤ λ and rigidity is a consequence of the results in [15].

The proof is analogous in the expanding case, using that M+ 6= ∅ and Rc|M+
=

diag [λ, . . . , λ, 0, . . . , 0] to obtain that λ ≤ Rc ≤ 0. �

Remark 8. The proof of Theorem 2 relies on the fact that |Rc|2 = λR in the constant
scalar curvature setting, from where it follows that |Rc|2 is constant provided that
so is R. The converse is also true in the non-expanding setting. In fact, since R2 ≤
n|Rc|2, one has that R is bounded if |Rc|2 is constant. If a steady gradient Ricci
soliton has constant |Rc|2, then it is Ricci flat since at the maximum/supremum of
R, ∆fR = −2|Rc|2 ≤ 0 and at the minimum/infimum of R, ∆fR = −2|Rc|2 ≥ 0,
from where it follows that |Rc|2 ≡ 0 and the manifold is Ricci flat. Also, if (M, g)
is a shrinking gradient Ricci soliton then R is constant provided that so is |Rc|2.
Indeed, at any point where R attains a maximum/supremum R∗ one has that
∆fR = λR∗ − 2|Rc|2 ≤ 0, which implies λR∗ ≤ 2|Rc|2. Analogously, at any point
where R attains a minimum/infimum R∗ one has that ∆fR = λR∗ − 2|Rc|2 ≥ 0
and thus λR∗ ≥ 2|Rc|2. Hence R∗ ≤ R∗, which shows that R is constant.

It is shown in [16] that 3-dimensional gradient Ricci solitons with constant scalar
curvature are rigid. Note that the Ricci tensor of such a soliton has at most three
different eigenvalues. We extend this result in the following

Theorem 9. Let (M, g) be a gradient Ricci soliton with constant scalar curvature.
If Rc has at most three different eigenvalues then it is rigid.

Proof. Note that Rc has at least one zero eigenvalue due to the constancy of the
scalar curvature. Indeed, the Ricci operator satisfies Rc(∇f) = 1

2∇R at any point
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p ∈ M where (∇f)(p) 6= 0, which shows that Rc has a zero eigenvalue on M \M±
and, as shown in the proof of Theorem 1, it also has a zero eigenvalue on M±.

Assume that it has two non-zero (possibly) different eigenvalues R1, R2 of mul-
tiplicities k1 and k2. Since R and |Rc|2 = λR are constant, R1 and R2 must be
constant. Indeed, they solve the system of equations

{

k1R1 + k2R2 = R

k1R
2
1 + k2R

2
2 = λR

which only has two solutions if R1 6= R2 and one solution if R1 = R2. Because of
the continuity of the eigenvalues of the Ricci tensor it follows that they are constant,
from where we get rigidity. �

Proof of Theorem 4. Since for Kähler manifolds (M, g, J) the Ricci tensor is invari-
ant under the action of the complex structure J (that is, it satisfies Rc(J ·, J ·) =
Rc(·, ·)), each Ricci curvature has even multiplicity. Since the Ricci tensor has a
zero eigenvalue with multiplicity at least 2 it follows that Rc has at most two dif-
ferent eigenvalues if n = 4 and three different eigenvalues if n = 6. The result now
follows from Theorem 9. �

Theorem 1 showed that the possible values of the scalar curvature of any gradient
Ricci soliton of constant scalar curvature are R ∈ {0, λ, · · · , (n−1)λ, nλ}. Petersen
and Wylie proved in [15] that the extremal values may occur only for Einstein
metrics. Next we show that the soliton is necessarily rigid if R = (n− 1)λ and that
R 6= λ in the shrinking case.

Theorem 10. Any complete gradient Ricci soliton with constant scalar curvature
R = (n− 1)λ is rigid. Moreover, no complete gradient shrinking Ricci soliton may
exist with R = λ.

Proof. Let us denote by Ri, (i = 1, . . . , n− 1) the non-zero eigenvalues of the Ricci
operator at any point of M . It holds

n−1
∑

i=1

(Ri − λ)2 = |Rc|2 − 2λR+ (n− 1)λ2

= λR − 2λR+ λR = 0 .

So all non-zero eigenvalues satisfy R1 = R2 = · · · = Rn−1 = λ. Thus, Rc has
constant rank and the Ricci soliton is rigid.

To show the non-existence of complete shrinking solitons with R = λ we argue
by contradiction. If R = λ, then the focal variety M− 6= ∅ is a minimal submanifold
(see [12]). Since it has dimension one it must be totally geodesic. Moreover it is
compact since f is proper. So we have that M− is S

1. Now, M is diffeomorphic
to a vector bundle over S1 (see [2, 13]). But this contradicts the fact that M has
finite fundamental group [20]. �

Remark 11. It is shown in [17, Corollary 2] that the existence of a non-zero eigen-
value of the Ricci operator of multiplicity n− 1 leads to rigidity. The assumption
R = (n − 1)λ in Theorem 10 is equivalent to the existence of an eigenvalue of
multiplicity n− 1 along the focal varieties M±.

Although our results are not so conclusive for other values of the scalar curvature,
the Ricci curvature has sign as follows

Proposition 12. Let (M, g) be a gradient shrinking (resp., expanding) Ricci soli-
ton with constant scalar curvature R = kλ. If rankRc ≤ k + 1, then the Ricci
curvature is non-negative (resp., non-positive).
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Proof. Let us denote by Ri, (i = 1, . . . , k + 1) the possibly non-zero eigenvalues of
the Ricci operator at any point of M . We have that

k+1
∑

i=1

R2
i = |Rc|2 = λR = kλ2 =

1

k

(

r+1
∑

i=1

Ri

)2

.

Now, adapting the proof of [6, Lemma 1], one has that for any reals αi, i = 1, . . . , r
(r ≥ 2) such that

r
∑

i=1

α2
i ≤

1

r − 1

(

r
∑

i=1

αi

)2

,

then all the αi’s are non-negative or non-positive.
Hence all non-zero eigenvalues of the Ricci operator are positive or negative. In

the shrinking case it is R > 0 from where we get Rc ≥ 0, and in the expanding case
it holds R < 0, which gives Rc ≤ 0. �

Remark 13. If the scalar curvature of a gradient Ricci soliton satisfies R = (n−2)λ,
then rankRc ≤ n−1 since Rc has at least a zero eigenvalue due to the constancy of
the scalar curvature. Hence the Ricci curvature is non-negative (resp., non-positive)
in the shrinking (resp., expanding) case.

Proof of Theorem 5. It immediately follows from Theorem 10 and Proposition 12.
�

Recall that a gradient shrinking (expanding) Ricci soliton is rigid if and only
if it has constant scalar curvature and 0 ≤ Rc ≤ λ (resp., λ ≤ Rc ≤ 0) [15].
Next, we compute the f -Laplacian of the Ricci tensor acting on the gradient of the
potential function in terms of the eigenvalues of the Ricci tensor aimed to show
that if the scalar curvature is constant and (∆fRc)(∇f,∇f) = 0, then rigidity of
gradient shrinking (resp., expanding) Ricci solitons is characterized by only one of
the bounds: Rc ≥ 0 or Rc ≤ λ (resp., Rc ≤ 0 or Rc ≥ λ).

Lemma 14. Let (M, g) be a gradient Ricci soliton with constant scalar curvature.
If Ri denote the eigenvalues of the Ricci tensor, then it holds

(∆fRc)(∇f,∇f) = 2

n
∑

i=1

(λ−Ri)
2Ri.

Proof. Let us consider p ∈ M such that (∇f)(p) 6= 0. Let {E1, · · · , En} be eigen-
vectors of Rc at p and take normal coordinates centered at p induced by the or-
thonormal basis {E1, . . . , En}. Then, using that Rc(·,∇f) = 0, one has

(∆fRc)(∇f,∇f) =

n
∑

i=1

(∇2
Ei,Ei

Rc)(∇f,∇f)− (∇∇fRc)(∇f,∇f)

=

n
∑

i=1

(∇Ei
(∇Ei

Rc))(∇f,∇f)

=

n
∑

i=1

[∇Ei
((∇Ei

Rc))(∇f,∇f))− 2(∇Ei
Rc))(∇Ei

∇f,∇f)]

=
n
∑

i=1

(∇Ei
(−2Rc(∇Ei

∇f,∇f)) − 2(∇Ei
Rc)(∇Ei

∇f,∇f)

= −2

n
∑

i=1

[EiRc(∇Ei
∇f,∇f)−Rc(∇Ei

∇Ei
∇f,∇f)

−Rc(∇Ei
∇f,∇Ei

∇f)]

= 2

n
∑

i=1

(λ−Ri)
2Ri.
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�

Corollary 15. Let (M, g) be a gradient shrinking (resp., expanding) Ricci soliton
with constant scalar curvature. If (∆fRc)(∇f,∇f) = 0 and Rc ≥ 0 or Rc ≤ λ
(resp., Rc ≤ 0 or Rc ≥ λ) then the soliton is rigid.

Proof. First of all note that, since |Rc|2 = λR, one has
∑n

i=1(λ − Ri)
2Ri =

∑n

i=1 R
2
i (Ri − λ). Now it follows from the constancy of the scalar curvature and

(∆fRc)(∇f,∇f) = 0 that
∑n

i=1(λ−Ri)
2Ri = 0. Hence

n
∑

i=1

(λ−Ri)
2Ri =

n
∑

i=1

R2
i (Ri − λ) = 0.

Thus, under our assumptions on the bounds of the Ricci tensor we get that Ri ∈
{0, λ}, and thus the Ricci curvatures are constant, which shows rigidity. �

As shown in Theorem 5, four-dimensional complete shrinking gradient Ricci
solitons with constant scalar curvature R 6= 2λ are rigid. If the scalar curvature
satisfies R = 2λ we need some additional assumptions to get rigidity. Before stating
the next result, we recall some basic facts about scalar curvature invariants. The
space of scalar curvature invariants of order two, I(1, n), is one-dimensional and
it is generated by the scalar curvature R. The space corresponding to four-order
invariants I(2, n) is generated by {R,∆R, |Rc|2, |Rm|2}. Some other contractions of
the curvature and the Ricci tensors, giving rise to new (0, 2)-symmetric tensors fields
(Ř, Řc and L(Rc)), will be used in what follows. With respect to an orthonormal
basis, set

Řij =
∑

abc

RabciRabcj , Řcij =
∑

a

RcaiRcaj , L(Rc)ij = 2
∑

ab

RiabjRcab.

Considering the four-dimensional Gauss-Bonnet integrand |Rm|2−4|Rc|2+R2, the
following curvature identity is shown in [10]:

Ř − 2Řc− L(Rc) +RRc =
1

4
(|Rm|2 − 4|Rc|2 +R2)g.

Next, observe that the f-Laplacian of the principal Ricci curvatures (see, for
example [9]) is given by

∆fRi = 2λRi − 2RikisRcks = 2λRi + L(Rc)ii.

Theorem 16. Let (M, g) be a 4-dimensional complete gradient shrinking Ricci
soliton with constant scalar curvature R = 2λ. Then it is rigid if and only if one of
the following assumptions holds:

(i) Rc ≤ λ,
(ii) (∆fRc)(∇f,∇f) = 0,

(iii) Ř(∇f,∇f) ≤ 1
4 (|Rm|2 − 4λ2)g(∇f,∇f)

Proof of Theorem 16. Under our first assumption, Rc ≤ λ, we have that 0 ≤ Rc ≤
λ, from where it follows rigidity [15]. Now, assume that (∆fRc)(∇f,∇f) = 0. It

follows from previous lemma that
∑4

i=1(λ − Ri)
2Ri = 0. Since Rc ≥ 0 we have

that Ri ∈ {0, λ}. Thus Rc has constant eigenvalues and the soliton is rigid.
Let {E1, E2, E3, E4} be an orthonormal basis consisting of eigenvectors of the

Ricci tensor with E1 = ∇f

|∇f | . Then ∆fR1 = L(Rc)11. Since R = 2λ, it follows from

Proposition 12 and Remark 13 that ∆fR1 = 1
|∇f |2(p) (∆fRc)(∇f,∇f) ≥ 0.

Now, since the scalar curvature is constantR = 2λ, Rc(E1, E1) = Řc(E1, E1) = 0
and |Rm|2−4|Rc|2+R2 = |Rm|2−4λ2. Hence the curvature identity above becomes

L(Rc)(E1, E1) = Ř(E1, E1)−
1

4
|Rm|2 + λ2.
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Now, it follows from Assumption (iii) that L(Rc)(E1, E1) ≤ 0, and hence ∆fR1 = 0
and rigidity is a consequence of Assumption (ii).

Finally observe that conditions (i)−(iii) are satisfied by any rigid four-dimensional
gradient Ricci soliton. �

Remark 17. As a final observation, note that a complete gradient Ricci soliton is
rigid if and only if the Ricci operator Rc and its powers Rc2, Rc3 and Rc4 have
constant traces. In fact, proceeding as in the proof of Theorem 2 one has that the
function

∑

i

R2
i (λ−Ri)

2 =
∑

i

R4
i − 2λ

∑

i

R3
i + λ2

∑

i

R2
i

is constant provided that the traces of the first powers of the Ricci operator are
so. Since its value on the focal submanifold is zero we have that the function
∑

iR
2
i (λ − Ri)

2 vanishes on M . Thus Ri ∈ {0, λ}, which shows that the Ricci
curvatures are constant, from where it follows that the soliton is rigid.

Further note that while the constancy of the scalar curvature implies the con-
stancy of the trace of Rc2, the functions tr Rc3 and tr Rc4 are not yet completely
understood.
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