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REGULARITY OF THE SOLUTIONS TO SPDES IN
METRIC MEASURE SPACES

ELENA ISSOGLIO AND MARTINA ZÄHLE

Abstract. In this paper we study the regularity of non-linear
parabolic PDEs and stochastic PDEs on metric measure spaces
admitting heat kernel estimates. In particular we consider mild
function solutions to abstract Cauchy problems and show that the
unique solution is Hölder continuous in time with values in a suit-
able fractional Sobolev space. As this analysis is done via a-priori
estimates, we can apply this result to stochastic PDEs on metric
measure spaces and solve the equation in a pathwise sense for al-
most all paths. The main example of noise term is of fractional
Brownian type and the metric measure spaces can be classical as
well as given by various fractal structures. The whole approach is
low dimensional and works for spectral dimensions less than 4.

1. Introduction

In this paper the following non-linear Cauchy problem
{

∂u
∂t

= −Au+ F (u) +G(u) · ż, t ∈ (0, t0]

u(0) = f
(1)

is considered on σ-finite metric measure spaces (X, µ, d). Here t0 > 0
is arbitrary, −A is the generator of a Markovian strongly continuous
symmetric semigroup {T (t), t ≥ 0} on L2(µ), F and G are sufficiently
regular functions. The term ż denotes a fractional space-time pertur-
bation which will be made more precise later on. In the case of linear
spaces it can be interpreted as a formal time derivative of a spatial
distribution. Solutions to (1) are considered in the mild form, formally
given by

u(t) = T (t)f +

∫ t

0

T (t − s)F (u(s))ds +

∫ t

0

T (t − s)G(u(s))dz(s).

(2)
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This formulation is, in a first place, only formal. We will give it a proper
mathematical meaning as it is done in [24], in particular the last term
involving the noise z is defined by means of fractional derivatives and it
is shown to be indeed well defined using the notion of pointwise prod-
uct of functions and “distributions”. The spaces which we will use to
describe the space-regularity of the solution (2) are fractional Sobolev
spaces defined on metric measure spaces by means of the associated
semigroups.

The main aim of this paper is to show that the mild solution u
of the Cauchy problem (1) given by (2) is γ-Hölder continuous in
time with respect to the Hδ(µ)-norm in space (Theorem 3.4). This
result is achieved under the same assumptions as in Theorem 1.2 in
[24], where it was shown that a unique solution exists and belongs to
the space W γ([0, t0], H

δ
∞(µ)). Moreover, under slightly stricter con-

ditions, we can show that the solution in fact belongs to any space
W γ([0, t0], H

δ
∞(µ))∩Cγ([0, t0], H

δ(µ)) for all γ and δ smaller than cer-
tain parameters determined by the regularity properties of the distri-
butional noise z and the initial function f (Corollary 3.6). In the case
of noises of fractional Brownian type these parameters are determined
my means of the Hurst exponents in space and in time. Note that the
fractional time regularity is always greater than 1/2.
In Remark 3.7 we outline an extension of the results to an appropriate
parameter condition for the case of spectral dimensions ≤ 1, which has
not been considered in [24]. In particular, white noise in space can be
treated in this low dimensional case.

Deterministic elliptic equations and some parabolic equations with-
out noises on classes of fractals have been studied, e.g. in [1, 7, 8, 13,
36, 9].
Abstract problems with Brownian and fractional Brownian noises have
been considered in many papers with various approaches, in particular,
in [38, 6, 12, 29, 37, 16, 31, 11]. None of these covers the results of the
present paper.
Some relationships have been discussed in [24], see also [21]. To these
two references, we only add a brief comparison between the present
paper and the rough path approach developed in recent years. For
example in a series of papers [18, 19, 17] the rough path approach has
been applied to study a stochastic Burger-type equation with multi-
plicative white noise. Even though the equation considered there is
of a different kind than the one studied in this paper (the setting is
Euclidean and not metric measure space, the noise is white and not
coloured and there is a non-linear product term of the form g(u)∂xu
which we do not have), it is interesting to notice that one of the main
difficulties is to give a meaning to the solution, in particular to the
non-linear product term g(u)∂xu, and this is done using the notion of
paraproduct.
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2. Preliminaries

2.1. Semigroups and potential spaces. Throughout the paper we
use the letter c for a general finite constant which might change value
from line to line.
We first recall some basic notions and relationships which are known
from the literature. In the case of metric measure spaces the analogues
of the classical fractional Sobolev (or Bessel potential) spaces in the
literature are introduced by means of the given semigroup {T (t), t ≥ 0},
i.e., of its generator −A:

The generalized Bessel potential operator on L2(µ) is defined for σ ≥
0 as

Jσ(µ) := (A+ Id)−σ/2.

To each operator there corresponds a potential space defined as

Hσ(µ) := Jσ(L2(µ))

and equipped with the norm ‖u‖Hσ(µ) := ‖u‖L2(µ)+‖Aσ/2u‖L2(µ), which

is equivalent to ‖(A+ Id)σ/2u‖L2(µ). In fact these spaces correspond to

the domains of fractional powers of A, i.e., D((A+Id)σ/2) = D(Aσ/2) =
Hσ(µ). In particular, for any α ≥ 0 the operator Jα acts as an iso-
morphisms between Hσ(µ) and Hα+σ(µ). Analogously one can define
the potential spaces corresponding to the generators −Ap, 1 < p < ∞,
of Markovian semigroups on Lp(µ). They are denoted by Hσ

p (µ) and
clearly Hσ

2 (µ) = Hσ(µ). We will also consider the spaces

Hσ
∞(µ) := Hσ(µ) ∩ L∞(µ)

normed by ‖ · ‖Hσ(µ) + ‖ · ‖∞, with slight abuse of notation. Here the
norm ‖ · ‖∞ in L∞(µ) is given by the essential supremum.
The dual spaces of Hσ

p (µ) will be used in the sequel: for 1 < p <
∞, σ ≥ 0 they are denoted by

H−σ
p′ (µ) :=

(

Hσ
p (µ)

)∗
,

where 1
p
+ 1

p′
= 1. In case p = 2 we do not write p explicitly. Note that

H−σ(µ) ⊆ (Hσ
∞(µ))∗ often being a strict inclusion.

For the regularity in time of the solution we consider the following
spaces frequently used in the literature: Let 0 < η < 1 and (X, ‖ · ‖X)
be a normed space. Then W η([0, t0], X) denotes the space of functions
v : [0, t0] → X such that ‖v‖η,X < ∞, where

‖v‖η,X := sup
0≤t≤t0

(

‖v(t)‖X +

∫ t

0

‖v(t)− v(s)‖X
(t− s)η+1

ds

)

is the norm in W η([0, t0], X).

We will use the short notations for the following norms:

‖ · ‖α,∞ := ‖ · ‖Hα
∞
(µ) and ‖ · ‖α := ‖ · ‖Hα(µ) for each α ∈ R .
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Then we recall that for ν ≥ 0 and t > 0 the operators T (t) and Aν

commute on D(Aν) and satisfy the following well-known estimates (see
e.g. [30]) for u, v ∈ D(Aν):

‖T (t)v||ν ≤ ct−
ν
2 ‖v‖0 , (3)

and for 0 < ν < 1,

‖T (t)u− u‖0 ≤ ctν‖u‖2ν , (4)

where 0 < t ≤ t0.
The symmetry of the semigroup {T (t), t ≥ 0} has been used in order
to extend it to elements from the dual spaces. If w ∈ H−β(µ) then
T (t)w is the element of L2(µ) determined by the duality relation

(v, T (t)w) := (T (t)v, w) , v ∈ L2(µ) .

Then we get

|(v, T (t)w)| = |(T (t)v, w)| ≤ ‖T (t)v‖β‖w‖−β

and hence,

‖T (t)w‖0 ≤ ct−
β
2 ‖w‖−β

in view of (3). Applying the latter again and using T (t) = T ( t
2
) ◦ T ( t

2
)

we infer
‖T (t)w‖δ ≤ ct−

δ
2
−β

2 ‖w‖−β (5)

for any δ, β > 0.
Similarly one obtains from (4)

‖T (t)w − w‖−β−2ν ≤ ctν‖w‖−β , (6)

for any β > 0, w ∈ H−β(µ) and 0 < ν < 1.

Note that the constants in the estimates depend on the related pa-
rameters.

Throughout the paper we make the following standing assumptions
which are the same as in [24]:

Assumption (MMS): (X, d) is a locally compact separable met-
ric space. We consider the Borel σ-field on X and a Radon
measure µ on (X, d).

Assumption (HKE(β)): The transition kernel Pt(x, dy) associ-
ated with the semigroup T (t), t ≥ 0 admits a transition density
Pt(x, dy) = p(t, x, y)µ(dy) which satisfies for almost all x, y ∈ X
the following heat kernel estimate

t−
dH
w Φ1(t

− 1
w d(x, y)) ≤ p(t, x, y) ≤ t−

dH
w Φ2(t

− 1
w d(x, y))

if 0 < t < R0 for some constants R0 > 0, w ≥ 2 and nonneg-
ative bounded decreasing functions Φi on [0,∞), where dH is
the Hausdorff dimension of (X, d). For t ≥ R0,

p(t, x, y) ≤ pt
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and pt decreases in t. (In this case the semigroup is ultracon-
tractive, i.e.,

‖T (t)‖L∞(µ) ≤ pt‖f‖L2(µ) ,

where pt := c t−dS/4, if t < R0, and the value dS = 2dH
w

agrees
with its spectral dimension. w is called walk dimension of the
semigroup.) For a given β > 0 we further assume the integra-
bility condition

∫ ∞

0

sdH+βw/2−1Φ2(s)ds < ∞ .1

Heat kernels of this type have been studied in Grigor’yan and Kumagai
[15] and related references therein. Further relationships are presented
in the recent survey [14] of Grigor’yan, Hu and Lau.

In order to make the integral in (2) precise we need pointwise products
of functions and dual elements from the potential spaces. In [24] the
following is proved which also extends related results for the Euclidean
case.

Proposition 2.1. [24, Corollary 4.1]
Suppose (MMS) and (HKE(β)) for 0 < β < δ < min(dS

2
, 1). Then for

q = dS
δ

the product gh of g ∈ Hδ(µ) and h ∈ H−β
q (µ) is well defined in

H−β(µ) by the duality relation (f, gh) := (fg, h) , f ∈ Hδ(µ), and the
following estimate holds true:

‖gh‖−β ≤ c‖g‖δ‖h‖H−β
q (µ) .

2.2. The integral equation and mild solution. A rigorous defi-
nition for the integral and a contraction principle for the solution to
equation (2) are given in [24] by means of fractional calculus in Banach
spaces, in particular, under the following additional conditions.

Assumption (FG): The nonlinear functions F and G are such
that F ∈ C1(Rn), F (0) = 0 and F has bounded Lipschitz
derivative F ′ and G ∈ C2(Rn), G(0) = 0 and G has bounded
Lipschitz second derivative G

′′

.

For the parameters we here consider the case II from [24].

Assumption (P): 0 < α < γ, 0 < β < δ < min(dS
2
, 1), γ <

1−α− β
2
− dS

4
, where β and dS are from (HKE(β)), and q = dS

δ
.

We now will briefly summarize the construction.

1In [24] the w is missing in the exponent.
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If u ∈ W γ([0, t0], H
δ
∞(µ)) the operator U(t; s) : H−β

q (µ) → Hδ
∞(µ) is

defined as

U(t; s)w := T (t− s) (G(u(s))w) (7)

for w ∈ H−β
q (µ). Then under the above assumptions on the function G

and the parameters (P) for any 0 < η < γ the left-sided Weyl-Marchaud
fractional derivative of order η is determined by

Dη
0+U(t; s) :=

1(0,t)(s)

Γ(1− η)

(

U(t; s)

sη
+ η

∫ s

0

U(t; s)− U(t; τ)

(s− τ)η+1
dτ

)

as an element of L1([0, t], L(H
−β
q (µ), Hδ(µ)) (in the sense of Bochner

integration). This is shown in [24, Lemma 5.2, (ii)]2.
Let us now consider the regulated version of z ∈ C1−α([0, t0], H

−β
q ) on

[0, t] given by zt(s) := 1(0,t)(s)(z(s)−z(t)). If additionally 1−η < 1−α,
which is always possible in view of (P), one can define the right-sided
Weyl-Marchaud fractional derivative of zt of order 1− η by

D1−η
t− zt(s) :=

(−1)1−η
1(0,t)(s)

Γ(η)

(

z(s)− z(t)

(t− s)1−η
+ (1− η)

∫ t

s

z(s)− z(τ)

(τ − s)(1−η)+1
dτ

)

as an element of L∞([0, t], H−β
q (µ)).

For more details on these fractional derivative we refer the reader to
[34], [39], [40], and [22] for the Banach space version. They are used
for one of the results in [24]:

Proposition 2.2. Suppose (MMS), (HKE(β)), (FG), the parameter
conditions (P) and z ∈ C1−α([0, t0], H

−β
q (µ)). Then we have the fol-

lowing.

(a) [24, Lemma 5.1] For the operator U(t; x) = T (t−x)(G(u(x)·) as

in (7) with u ∈ W γ([0, t0], H
δ
∞(µ)) the integral

∫ t

s
U(t; x)dz(x)

is well defined by
∫ t

s

U(t; x)dz(x) := (−1)η
∫ t

s

Dη
s+U(t; x)D1−η

t− zt(x)dx, (8)

independently of the choice of η with η < γ and 1− η < 1− α.
(In particular, the integrand on the right side is a Lebesgue
integrable real function.)

(b) [24, Theorem 1.2] For any initial function f ∈ H2γ+δ+ε(µ)
with some ε > 0 there exists a unique solution u to equa-
tion (2) for the definition (8) of the integral such that u ∈
W γ([0, t0], H

δ
∞(µ)).

2We remark that there is a typo in [24, Lemma 5.2], namely in (ii) and (iii) the
right hand side of the main condition on the parameters should read 2 − 2η − β

instead of 2− 2η − (β ∨ dS

2
).
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3. The main result

3.1. Regularity of the solution. The main results are stated in The-
orem 3.4 and Corollary 3.6.

In this section we use short notations for the following norms:

‖ · ‖L := ‖ · ‖L(H−β
q (µ),Hδ(µ)) , ‖ · ‖W γ := ‖ · ‖W γ([0,t0],Hδ

∞
(µ))

with the specified parameters as in Assumption (P).
First recall that under Assumption (FG) the nonlinear operators F and
G are bounded from Hδ

∞(µ) into itself (see [24, Proposition 3.1]).

Lemma 3.1. Suppose (MMS), (HKE(β)), (FG), the parameter con-
ditions (P) and let z ∈ C1−α([0, t0], H

−β
q (µ)). Then there is a positive

constant c such that
∥

∥

∥

∥

∫ t

s

T (t− x)F (u(x))dx

∥

∥

∥

∥

δ

≤ c||u||W γ(t− s). (9)

Proof. Since the semigroup T (t) is a contraction on Hδ(µ) we have
∥

∥

∥

∥

∫ t

s

T (t− x)F (u(x))dx

∥

∥

∥

∥

δ

≤

∫ t

s

‖T (t− x)F (u(x))‖δdx

≤

∫ t

s

‖F (u(x))‖δdx

≤c

∫ t

s

‖u(x)‖δdx ≤ c‖u‖W γ(t− s),

where the latter bound follows from the definition of the W γ-norm. �

Lemma 3.2. Under the same conditions as in Lemma 3.1 we have

‖T (t− x) (G(u(x)))− T (t− y) (G(u(x))) ‖L

≤ c||u||W γ(t− x)−
δ
2
−β

2
−ν(x− y)ν

for any 0 < ν < 1.

Proof. Let h be an arbitrary element of H−β
q (µ) with ‖h‖H−β

q (µ) ≤ 1.

Then Proposition 2.1 implies

‖G(u(x))h‖−β ≤ c‖u‖W γ

uniformly in the time argument x ∈ [0, t0] by the mapping property
of G and the definition of the W γ-norm. Using (5), (6) and the last
estimate we infer

‖T (t− x)(Id− T (x− y))G(u(x))h‖δ

≤ c(t− x)−δ/2−β/2−ν‖(Id− T (x− y))G(u(x))h‖−β−2ν

≤ c(t− x)−δ/2−β/2−ν(x− y)ν‖G(u(x))h‖−β

≤ c(t− x)−δ/2−β/2−ν(x− y)ν‖u‖W γ .
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This bound together with the definition of the L-norm

‖T (t− x)(Id− T (x− y))G(u(x))‖L

= sup
‖h‖

H
−β
q

≤1

‖T (t− x)(Id− T (x− y)) (G(u(x))h) ‖δ

completes the proof. �

Lemma 3.3. Suppose (MMS), (HKE(β)), (FG), the parameter con-
ditions (P) and let z ∈ C1−α([0, t0], H

−β
q (µ)). Then there is a positive

constant c such that

∥

∥

∥

∥

∫ t

s

T (t− x)G(u(x))dz(x)

∥

∥

∥

∥

δ

≤ c(t− s)γ. (10)

Proof. Since by assumption z ∈ C1−α([0, t0], H
−β
q (µ)) then for any η

such that 1− η < 1− α we have

sup
t∈[0,t0]

sup
x∈[0,t]

∥

∥D1−η
t− zt(x)

∥

∥

H−β
q (µ)

≤ c < ∞ .

Let us fix η throughout the proof as some number slightly bigger than
α such that α < η < γ and at the same time γ < 1− η − δ

2
− β

2
which

is always possible in view of (P). We then get

∥

∥

∥

∥

∫ t

s

U(t; x)dz(x)

∥

∥

∥

∥

δ

=

∥

∥

∥

∥

∫ t

s

Dη
s+U(t; x)D1−η

t− zt(x)dx

∥

∥

∥

∥

δ

≤ sup
t∈[0,t0]

sup
x∈[0,t]

∥

∥D1−η
t− zt(x)

∥

∥

H−β
q (µ)

∫ t

s

‖Dη
s+U(t; x)‖L dx

≤c

∫ t

s

‖Dη
s+T (t− x)G(u(x))‖L dx

≤c

∫ t

s

‖T (t− x)G(u(x))‖L
(x− s)η

dx

+ c

∫ t

s

∫ x

s

‖T (t− x)G(u(x))− T (t− y)G(u(y))‖L
(x− y)1+η

dydx

= : S1 + S2.
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Consider S1 first. Using (5) and Proposition 2.1 we obtain

S1 ≤c

∫ t

s

sup
‖w‖

H
−β
q (µ)

≤1

‖T (t− x) (G(u(x))w) ‖δ
(x− s)η

dx

≤c

∫ t

s

(t− x)−
δ
2
−β

2 sup
‖w‖

H
−β
q (µ)

≤1

‖G(u(x))w‖−β

(x− s)η
dx

≤c

∫ t

s

(t− x)−
δ
2
−β

2 (x− s)−η‖G(u(x))‖δ sup
‖w‖

H
−β
q (µ)

≤1

‖w‖H−β
q (µ)dx

≤c

∫ t

s

(t− x)−
δ
2
−β

2 (x− s)−η‖u‖W γdx

≤c(t− s)1−
δ
2
−β

2
−η ≤ c(t− s)γ,

the latter following from 1− δ
2
− β

2
− η > γ by construction. Moreover

the integral is finite since γ > 0.
Consider S2. The numerator inside the integral can be bounded as
follows

‖T (t− x)G(u(x))− T (t− y)G(u(y))‖L (11)

≤‖T (t− x)G(u(x))− T (t− y)G(u(x))‖L

+‖T (t− y)G(u(x))− T (t− y)G(u(y))‖L,

so that we have

S2 =c

∫ t

s

∫ x

s

‖T (t− x)G(u(x))− T (t− y)G(u(y))‖L
(x− y)1+η

dydx

≤c

∫ t

s

∫ x

s

‖T (t− x)G(u(x))− T (t− y)G(u(x))‖L
(x− y)1+η

dydx

+c

∫ t

s

∫ x

s

‖T (t− y)G(u(x))− T (t− y)G(u(y))‖L
(x− y)1+η

dydx

=:S3 + S4.

Let us consider the term S4 first. We have (with similar computations
as for S1)

S4 =c

∫ t

s

∫ x

s

‖T (t− y)G(u(x))− T (t− y)G(u(y))‖L
(x− y)1+η

dydx

≤c

∫ t

s

∫ x

s

sup
‖w‖

H
−β
q

≤1

‖T (t− y) ([G(u(x))−G(u(y))]w) ‖δ
(x− y)1+η

dydx

≤c

∫ t

s

(t− x)−
δ
2
−β

2

∫ x

s

‖G(u(x))−G(u(y))‖δ
(x− y)1+η

dydx



10 ELENA ISSOGLIO AND MARTINA ZÄHLE

recall that η < γ by definition of η, thus

≤c

∫ t

s

(t− x)−
δ
2
−β

2 ‖u‖W γdx

≤c(t− s)1−
δ
2
−β

2 ≤ c(t− s)γ ,

the latter being true as γ < 1 − δ
2
− β

2
by assumption. Regarding the

term S3, we apply Lemma 3.2 with ν > η to the numerator inside the
integral of S3, so that S3 can be bounded by

S3 ≤ c

∫ t

s

∫ x

s

‖T (t− x)G(u(x))− T (t− y)G(u(x))‖L
(x− y)1+η

dydx

≤ c

∫ t

s

∫ x

s

(t− x)−
δ
2
−β

2
−ν(x− y)ν

(x− y)1+η
dydx

≤ c

∫ t

s

(t− x)−
δ
2
−β

2
−ν

∫ x

s

(x− y)ν−1−ηdydx

≤ c

∫ t

s

(t− x)−
δ
2
−β

2
−ν(x− s)ν−ηdx

≤ c(t− s)1−
δ
2
−β

2
−ν+ν−η ≤ c(t− s)γ ,

the latter bound being true as γ < 1−η− δ
2
− β

2
. The proof is complete.

�

We are now about to state and prove the main regularity property
of the solution u under the Assumptions (MMS), (HKE(β)), (FG) and
(P).

Theorem 3.4. Suppose (MMS), (HKE(β)) and (FG). Let 0 < α <
γ , 0 < β < δ < min(dS

2
, 1) and γ < 1 − α − β

2
− dS

4
and set

q = dS
δ
. If z ∈ C1−α([0, t0], H

−β
q (µ)) and the initial condition f is

an element of Hδ+2γ+ε(µ) for some ε > 0, then the unique solution
u ∈ W γ([0, t0], H

δ
∞(µ)) for (2) is also an element of Cγ([0, t0], H

δ(µ)).

Remark 3.5. For u ∈ W γ([0, t0], H
δ
∞(µ)) the second integral in equa-

tion (2) has to be interpreted as above. For u considered as element of
Cγ([0, t0], H

δ(µ)) this integral agrees with the corresponding Riemann-
Stieltjes integral with values in the Banach space Hδ(µ). The latter
has been used in Gubinelly, Lejay and Tindel [16] in an abstract setting
in the sense of Young.

Proof. Let 0 ≤ s < t ≤ t0. We consider the solution at time t as the
evolution of u according to (1) with initial condition at time s being
u(s), that is

u(t) = T (t−s)u(s)+

∫ t

s

T (t− r)F (u(r))dr+

∫ t

s

T (t− r)G(u(r))dz(r),
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so that

u(t)− u(s) =(T (t− s)− Id)u(s)

+

∫ t

s

T (t− r)F (u(r))dr +

∫ t

s

T (t− r)G(u(r))dz(r) (12)

The Hδ(µ)-norms of the two integrals are bounded by c(t − s) and
c(t − s)γ according to Lemma 3.1 and Lemma 3.3, respectively. If we
show that ‖u(t)‖δ+2γ < c uniformly in t for t ∈ [0, t0], then the Hδ(µ)-
norm of the term involving the initial condition can be easily bounded.

In fact note that in this case (A + Id)
δ
2u ∈ D(Aγ) thus we can apply

(4) to get

‖(T (t− s)− Id)u(s)‖δ ≤c‖(A+ Id)δ/2(T (t− s)− Id)u(s)‖0

≤c‖(T (t− s)− Id)(A+ Id)δ/2u(s)‖0

≤c(t− s)γ‖(A+ Id)δ/2u(s)‖2γ

≤c(t− s)γ‖u(s)‖δ+2γ ≤ c(t− s)γ

as wanted. It remains to prove that ‖u(t)‖δ+2γ < c uniformly in t for
t ∈ [0, t0]. Recall that

u(t) = T (t)f +

∫ t

0

T (t− r)F (u(r))dr +

∫ t

0

T (t− r)G(u(r))dz(r),

thus

‖u(t)‖δ+2γ ≤ ‖T (t)f‖δ+2γ

+

∫ t

0

‖T (t− r)F (u(r))‖δ+2γdr

+

∫ t

0

‖Dη
0+U(t; r)D1−η

t− zt(r)‖δ+2γdr

=: S1 + S2 + S3.

The term S1 is easily bounded by c‖f‖δ+2γ . The term S2 is bounded
recalling that ‖T (t − r)F (u(r))‖δ+2γ ≤ (t − r)−γ‖F (u(r))‖δ because
of the smoothing action of the semigroup. Thus S2 ≤ ct1−γ. The
last term can be treated in a similar way as the proof of Lemma 3.3
with the difference that the space Hδ(µ) is replaced by Hδ+2γ(µ). All
computations for the Hδ+2γ(µ)-norm term carry out in the same way,
except that the exponent − δ

2
− β

2
is replaced by − δ

2
− β

2
− γ so that

S3 ≤ ct1−η− δ
2
−β

2
−γ with 1 − η − δ

2
− β

2
− γ > 0 by construction of η.

Clipping the result together we have

‖u(t)‖δ+2γ ≤ c + ct1−γ + ct1−η− δ
2
−β

2
−γ,

and finally taking the supremum over t ∈ [0, t0] we get the uniform
bound. �



12 ELENA ISSOGLIO AND MARTINA ZÄHLE

With slightly more restrictive assumptions on the noise we can show
that the unique solution u belongs to the spacesW γ([0, t0], H

δ
∞(µ)), and

thus to Cγ([0, t0], H
δ(µ)), for all (γ, δ) such that 0 < γ < 1−α− β

2
− dS

4

and β < δ < min(dS
2
, 1).

Corollary 3.6. Suppose (MMS), (HKE(β)) and (FG).

(a) Let 0 < α < 1
2
and 0 < β < min(dS

2
, 1 − 2α, 2(1 − α) − dS

2
) be

given. Suppose that z ∈ C1−α([0, t0], H
−β
q (µ)) for any 1 < q <

dS
β

and f ∈ H2(1−α)−β(µ). Then for any β < δ < min(dS
2
, 1) and

0 < γ < 1 − α − β
2
− dS

4
Equation (2) has a unique solution in

the space W γ([0, t0], H
δ
∞(µ)) and hence, it has a unique solution

belonging to all these spaces.
(b) Moreover, this solution is an element of Cγ([0, t0], H

δ(µ)) for
any γ and δ as before.

Proof. Part (a). Take δ and γ as in the assumption. Then 2(1−α)−β >
2γ + dS

2
> 2γ + δ + ε for some ε > 0 implies that f ∈ H2γ+δ+ε(µ).

Moreover H−β
q (µ) ⊂ H−β

dS
δ

(µ) for 1 < q < dS
β

since β < δ < dS, thus z ∈

C1−α([0, t0], H
−β
dS
δ

(µ)). Then we are under the assumptions of Theorem

3.4 and thus there exists a unique solution to (1) which belongs to
W γ([0, t0], H

δ
∞(µ)). Because of the embedding of the spaces involved,

clearly u ∈ W γ′

([0, t0], H
δ′

∞(µ)) for any 0 < δ′ ≤ δ and 0 < γ′ ≤ γ, too.
We also know that for δ′ and γ′ satisfying the assumptions there exists
a unique solution u′ to (1) which is inW γ′

([0, t0], H
δ′

∞(µ)). As the initial
condition f and the noise term z are the same, then by uniqueness we
must have u = u′ in the larger space W γ′

([0, t0], H
δ′

∞(µ)).
Part (b). It follows directly form part (a) and Theorem 3.4. Obvi-

ously, due to the embedding of the fractional Sobolev spaces Hδ(µ) ⊂
Hδ′(µ) for δ′ < δ and of the Hölder spaces Cγ ⊂ Cγ′

for γ′ < γ, we
have that u ∈ Cγ′

([0, t0], H
δ′(µ)) for all 0 < δ′ < δ and 0 < γ′ < γ. �

Remark 3.7. The parameter condition (P), in particular δ < dS/2,
and the integrability condition on the function Φ2 in the heat kernel
estimate (HKE) have been used only for the product estimate in Propo-
sition 2.1. An analysis of the proofs, in particular those of [24], shows
that the assertions of Theorem 3.4 and Corollary 3.6 remain valid under
the parameter condition

0 <
dS
2

≤ β ≤ δ < 1 , 0 < α < γ < 1− α−
β

2
−

δ

2
(13)

provided z ∈ C1−α([0, t0], H
−β
q (µ)) for some q > 2 such that the multi-

plication property

‖vz‖−β ≤ c‖v‖δ ‖z‖H−β
q (µ) (14)
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holds true for any v ∈ Hδ(µ).
Then one obtains a complement to the former assertions for the case
dS ≤ 1: Here we can choose 1

2
≤ β < 1−2α, which implies 1−α > 3

4
, in

order to get a Hölder continuous solution to equation (2). In particular,
in the Gaussian setting (see below) such a ż may be interpreted as a
noise white in space and coloured in time.

3.2. Applications and extensions. With similar techniques as in
the previous section it is possible to treat equation (1) with A replaced
by a fractional power of A, that is for instance Aθ for 0 < θ ≤ 1. This is
done in [24]. In this case the semigroup associated with the fractional
power −Aθ will be the subordinated semigroup T (θ)(t) and the power
θ must be taken into account in Assumption (P) and all following the-
orems accordingly. Then similar regularity properties as shown for the
case θ = 1 follow. These results go in the direction of [32] where the
authors study a stochastic equation with fractional dissipation (that is
with a term Aθ, 0 < θ ≤ 1) but with the difference that in the present
paper the noise is coloured, whereas in [32] the noise is white in time
and solutions are strong and local.

Clearly, the special case of linear F and G can be considered. In
this case the L∞-boundedness of the solution is no longer needed (see
[24, Theorem 1.3]) and the conditions on the parameters are weaker,
in particular in Assumption (P) it is sufficient that γ < 1− α− β

2
− δ

2
.

Moreover the spectral dimension restriction dS < 4 can be lifted. Us-
ing the aforementioned corresponding results from [24] and the present
methods one can get similar results as in the previous section, the
proofs being completely analogous.

Moreover, one can easily consider linear combinations of noise terms
such as

N
∑

i=1

Gi(u) · żi

for any finite integer N and Gi and zi as G and z in this paper.

Here we list a few examples. The results of Section 3.1 can be applied
to the same kind of stochastic equations considered in the paper by Hinz
and Zähle [24, Section 7]. In particular, we can consider stochastic
partial differential equations driven by fractional Brownian noises on
metric measure spaces. The equations are studied in the pathwise sense
and the results are valid P-a.s.

Example 3.8. A classical example is the nonlinear heat equation on a
smooth bounded domain D ⊂ R

n, n ≤ 3, provided with the Lebesgue
measure µ, driven by fractional Brownian field, see e.g. [23, Section 6].
We consider a real valued fractional Brownian sheet {BH,K(t, x), [0, t0]×
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R
n} with Hurst indices 0 < H < 1 and 0 < K < 1 for time and space

respectively. This is a centered Gaussian field on [0, t0]× R
n with sta-

tionary rectangular increments satisfying

E
(

BH,K(s, x)−BH,K(s, y)−BH,K(t, x)+BH,K(t, y)
)2

= c|s−t|2H |x−y|2K .

It can be shown [23, Section 6] that there exits a version such that for
almost all trajectories ω ∈ Ω one has BH,K(ω) ∈ C1−α([0, t0], H

σ
q (µ))

for 0 < 1 − α < H, 0 < σ < K and 1 < q < ∞. Thus the dis-
tributional spatial partial derivatives ∂

∂xi
BH,K for i = 1, . . . , n belong

to C1−α([0, t0], H
−β
q (µ)), where −β = σ − 1. Let F : Rn → R and

G : Rn → R
n such that F and each component Gi satisfy Assump-

tion (FG). Then Theorem 3.4 and Corollary 3.6 can be applied in the
pathwise sense to







∂u
∂t

= ∆Du+ F (u) +
〈

G(u), ∂
∂t
∇BH,K

〉

u(0, x) = 0, for t ∈ (0, t0)
u(t, x) = 0, for x ∈ ∂D

(15)

for almost all paths. Here ∆D is the classical Dirichlet Laplacian, i.e.,
−∆D generates a heat semigroup on L2(D) with Gaussian estimates.
∇BH,K denotes the distributional gradient of the fractional Brownian
sheet. The term

〈

G(u), ∂
∂t
∇BH,K

〉

in (15) is given by

n
∑

i=1

Gi(u)
∂2

∂t∂xi
BH,K ,

where ∂2

∂t∂xi
BH,K is interpreted as żi in the above sense.

Since the spectral dimension of Rn is dS = n, for almost all sample
paths the unique solution is an element of

W γ([0, t0], H
δ
∞(µ)) ∩ Cγ([0, t0], H

δ(µ))

for all γ and δ such that 1−H < γ < H − 1−K
2

− n
4
and 1−K < δ <

min(n
2
, 1). This can be satisfied only if n ≤ 3.

According to Remark 3.7 for dS = n = 1 the result remains valid under
the parameter condition (13), since the multiplication property (14)
is fulfilled in this Euclidean case. The latter can be seen as follows.
Theorem 4.5.2 in Runst and Sickel [33] and restriction to functions
vanishing on ∂D lead to the estimate

‖uv‖Hβ
p (µ)

≤ c‖u‖δ‖v‖β , 1 < p < 2 ,
1

2
≤ β < δ < 1 .

Then for these parameters (14) follows by duality arguments. Hence,
for n = 1 and K ≤ 1

2
Hölder continuous solutions to equation (2) can

be obtained if H > 2−K
2

. Note that K = 1
2
means white noise in space.

Example 3.9. A more sophisticated case mentioned in [24, Example
2]) is the following. Let (X, d, µ) be a compact metric measure space
satisfying Assumption (MMS) and admitting a semigroup {T (t), t ≥ 0}
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generated by a (fractal) Neumann Laplacian ∆ associated to a local reg-
ular Dirichlet form (E , D(E)) on X , i.e., −A = ∆. For various classes
of fractals the corresponding heat kernels exist and satisfy Assumption
(HKE(β)) for any β > 0 (see, e.g., Barlow and Bass [2] and [3], Barlow,
Bass, Kumagai and Teplyaev [4], Fitzsimmons, Hambly and Kumagai
[10], Hambly and Kumagai [20], Kigami [28], Barlow, Grigor’yan and
Kumagai [5] and the references therein).

A standard example for the noise process z, modified for our sit-
uation, is the following: Let e0, e1, e2, . . . be a complete orthonormal
system of eigenfunctions of A in L2(µ) and λi be the corresponding
eigenvalues, B1(t)

H , B2(t)
H , . . . are i.i.d. fractional Brownian motions

in R with Hurst exponent 1
2
< H < 1, and consider the formal series

bH(t) =

∞
∑

i=1

BH
i (t) qi ei

for real coefficients qi. Then we get a modification bH such that a.s.

z := bH ∈ C1−α
(

[0, t0], H
−β
q (µ)

)

(with convergence of the series in these spaces) for any 0 < 1−α < H ,
β∗ < β < 1 and q > 2 under the following conditions on the measure µ,
the parameter β∗, the eigenfunctions ei and the coefficients qi for i ≥ 1:

(a) ||ei||∞ ≤ c1λ
a1/2
i and

(b) |ei(x)− ei(y)| ≤ c2λ
a2/2
i d(x, y)b (up to an exceptional set)

for some positive constants a1, a2, b, c0, c1, c2, and for a := max(a1, a2),

∞
∑

i=1

q2i λ
−β∗+a−b2/w
i < ∞ .

(Note that in the case q = 2, which is not relevant for our pur-
poses, Conditions (a) and (b) are not needed and the convergence
∑∞

i=1 q
2
i λ

−β∗

i < ∞ would be sufficient for the above property of z.)

(Idea of proof: By the mapping properties of the resolvent opera-
tors Jσ(µ), which may be replaced here by Iσ(µ) := (−∆)σ/2 since
the included eigenvalues are strictly positive, it is equivalent to get a
modification, which satisfies a.s.

Iβ∗+b2/w(µ)bH ∈ C1−α([0, t0], H
−β+β∗+b2/w
q (µ))

for any q and β > β∗. For 0 < δ′ < δ the embedding of the Hölder space

Cδ(X) into H
δ′2/w
q (µ) can be seen, e.g., from the arguments in the proof

of [26, Proposition 5.6] (using there only the upper estimates taking into
regard that the lower heat kernel estimates imply µ(B(x, r)) ≤ c0r

dH

for any ball with centre x and radius r). Therefore a sufficient condition
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for the above one is that

Iβ∗+b2/w(µ)bH ∈ C1−α([0, t0], C
δ(X))

for any δ < b, and the latter can be proved by means of the Kolmogorov
principle for the random function

Y (t, x) := Iβ∗+b2/wbH(t, x) =

∞
∑

i=1

BH
i (t) qi λ

−(β∗+b2/w)/2
i ei(x) .

We get

E
(

Y (t1, x1)− Y (t2, x1)− (Y (t1, x2)− Y (t2, x2)
)2

=
∞
∑

i=1

q2i λ
−(β∗+b2/w)
i E(BH

i (t1)−BH
i (t2))

2(ei(x1)− ei(x2))
2

≤

∞
∑

i=1

q2i λ
−(β∗+b2/w)
i |t1 − t2|

2Hc2λ
a
i d(x1, x2)

2b

≤ c |t1 − t2|
2Hd(x1, x2)

2b .

Moreover,

E(Y (t1, x)− Y (t2, x))
2

=

∞
∑

i=1

q2i λ
−(β∗+b2/w)
i E(BH

i (t1)−BH
i (t2))

2|ei(x)|
2

≤
∞
∑

i=1

q2i λ
−(β∗+b2/w)
i |t1 − t2|

2Hc21λ
a
i

≤ c |t1 − t2|
2H .

Using that the higher moments of centered Gaussian random variables
are powers of the second moments this ensures the usual construction
of a modification of Y with the desired Hölder regularity by means of
an extension of the values on a countable dense subset of [0, t0]×X .)

Note that because of the above ultracontractivity of the semigroup
Condition (a) is always fulfilled for a1 :=

dS
2
. Furthermore, if we work

with the resistance metric R(x, y) w.r.t. the Dirichlet form E then Con-
dition (b) is satisfied for a2 = b = 1.
For p.c.f. fractals with regular harmonic structures we have dS =
2dH
dH+1

< 2, see Kigami [27]. Moreover, under some mild additional
assumptions on such fractals in Euclidean spaces the resistance metric
R satisfies R(x, y) ≤ |x − y|b for some b > 0, see Hu and Wang [25].
Hence, in this case Condition (b) is also fulfilled for the Euclidean met-
ric.
Examples with spectral dimension greater than 2 are provided by gen-
eralized Sierpinski carpets, see Barlow and Bass [3], or by certain prod-
ucts of fractals, see Strichartz [35].
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According to Theorem 3.4 function solutions to Equation (2) which
are Hölder regular in time can be found for dS = 2dH

w
< 4 (recall that

dH denotes the Hausdorff dimension of X and w the walk dimension
of the semigroup) and Hurst exponent H > 1

2
+ dS

8
. Recall that in this

case we have β < dS
2
.

If dS
2

≤ 1 then Remark 3.7 provides the alternative parameter condi-

tion 1
2
≤ β < 2H − 1 for existence of Hölder continuous solutions. In

particular, for β = 1
2
the noise is “white” in space.

For the classical case of the Dirichlet Laplace operator on the unit in-
terval this example has been treated in Gubinelly, Lejay and Tindel
[16] with different methods.
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