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Abstract

We consider adaptive finite element methods for solving a multiscale system consisting of a macroscale
model comprising a system of reaction-diffusion partial differential equations coupled to a microscale
model comprising a system of nonlinear ordinary differential equations. A motivating example is mod-
eling the electrical activity of the heart taking into account the chemistry inside cells in the heart. Such
multiscale models pose extremely computationally challenging problems due to the multiple scales in
time and space that are involved.

We describe a mathematically consistent approach to couple the microscale and macroscale mod-
els based on introducing an intermediate “coupling scale”. Since the ordinary differential equations are
defined on a much finer spatial scale than the finite element discretization for the partial differential
equation, we introduce a Monte Carlo approach to sampling the fine scale ordinary differential equa-
tions. We derive goal-oriented a posteriori error estimates for quantities of interest computed from the
solution of the multiscale model using adjoint problems and computable residuals. We distinguish the
errors in time and space for the partial differential equation and the ordinary differential equations sep-
arately and include errors due to the transfer of the solutions between the equations. The estimate also
includes terms reflecting the sampling of the microscale model. Based on the accurate error estimates,
we devise an adaptive solution method using a “blockwise” approach. The method and estimates are
illustrated using a realistic problem.

Keywords: a posteriori error analysis, adaptive error control, adaptive mesh refinement, adjoint
problem, coupled physics, duality, generalized Green’s function, goal oriented error estimates,
multiscale model, residual, variational analysis

1. Introduction

Our interest in problems consisting of a macroscale time dependent partial differential equation
(PDE) coupled to a miscroscale system of ordinary differential equations (ODEs) originates in the mod-
eling of the electrical activity in the heart. The standard macroscale model of electrical phenomena
in cardiac tissue is the bidomain model proposed by Tung [1], which consists of parabolic and elliptic
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PDEs modeling the macroscopic potential distribution. These PDEs are derived assuming a represen-
tation of the tissue as two anisotropic media, one intracellular, which is strongly anisotropic, and one
extracellular, which is weakly anisotropic. If the two media are assumed to have proportional con-
ductivity tensors, it is possible to reduce the model to the monodomain model, consisting of a single
reaction-diffusion PDE with a load depending on the solution to the ODEs.

On the cellular level, the electrical activity may be modeled by a set of ODEs that depends on a
potential determined by the solution of the PDE. Many cellular models are available, both phenomeno-
logical models that try to mimic measurements, and physiological models which are based on measure-
ments as well as physiological theory. The latter may be very complex, involving up to hundred vari-
ables. For a review on mathematical models describing the electrical activity in the heart, see Sundnes
et. al. [2] and the references therein. A space-time adaptive method can be found in Colli Franzone and
coworkers [3]. A survey of heart modeling can be found in Noble [4].

Specialized numerical methods are required for high fidelity simulation of the heart, since the heart
may consist of up to 1010 cells [2], each modeled by a set of ODEs, and it is impossible to solve the PDE
on the same spatial scale as the ODEs. Moreover, determining the actual physical geometry and loca-
tion of cells is itself a difficult problem. Thus, including the cellular scale phenomena in the macroscale
discretization requires some form of “upscaling” or “recovery” of the information provided by the mi-
croscale modeling. This is in fact necessary if the PDE model derived using homogenization as is the
case for the bidomain equations.

Unfortunately, this subtle mathematical issue is often ignored in computational electrocardiogra-
phy, where it is common to simply evaluate the ODEs in the cells located at the quadrature points of a
finite element method, for example. However, this is not mathematically consistent, since caused the
model to change with the PDE discretization. One consequence, for example, is that it is impossible to
perform a mesh convergence study, which is the crudest form of uncertainty quantification.

As an alternative, we create an intermediate “coupling” or “mesoscale” representation of the cellular
scale physics that is used to exchange information between the macroscale and microscale. To deal
with the very large number of cells, we create the mesoscale representation by sampling cells at the
microscale at random and taking averages over the mesoscale cells.

Another potential issue in such coupled systems is significant differences in the temporal scales in
the different components. For example, in a system where the ODEs model chemical reactions and the
PDE models global behavior such as transport, it is likely that the dynamics of the chemical systems
are much faster than that of the total system. Coupled PDE-ODE systems where the ODEs describe
chemical reactions and the PDE describe transport occur in applications such as the study of pollution
in groundwater, surface water and the atmosphere, control theory and semiconductor simulation. To
deal with this, we allow the PDE and ODE systems to employ significantly different time steps.

Numerical solutions of such multiscale systems are invariably affected by error arising from nu-
merous discretization effects and present significant discretization challenges in terms of obtaining a
desired accuracy [5]. It is therefore critically important to accurately estimate the numerical error in
computed quantities of interest and devise efficient discretization parameter selection algorithms. In
this paper, we derive goal-oriented a posteriori error estimates that distinguish the relative contribu-
tions of various discretization effects, and thus provide the capability of adjusting various discretization
parameters to efficiently obtain a desired accuracy. The error analysis is based on a posteriori error
estimates that employ computable residuals and adjoint equations, see [6, 7, 8, 9, 10] for general in-
formation. For applications to multiscale systems, see [5, 11, 12, 13, 14, 15, 16]. We base the adaptive
strategy on the block adaptive approach described in [17].

The content of this paper is organized as follows: In Section 2, we formulate the multiscale model.
In Section 3, we describe the discretization methods. The a posteriori error analysis is presented in Sec-
tion 4. In Section 5, we describe some implementation details and the adaptive algorithm. A numerical
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example is presented in Section 6. The paper ends with a conclusion in Section 7.

2. Model description

The nominal model problem consists of a reaction-diffusion PDE that describes macroscale behav-
ior over a domain Ω coupled to systems of ODEs that model processes taking place inside small “cells”
C that comprise the heart domain. The coupling of the macro- and micro-scale processes taking place
on vastly different scales in space and time raise serious challenges for analyzing the behavior and com-
puting solutions of the model. We first describe the original coupled system, then we describe a new
system that includes a coupling mechanism that provides an avenue to address these challenges.

2.1. The original model

The region Ω=∪NC

i=1Ci is comprised of NC cells Ci indexed as {1, . . . ,NC }. We model the microscale

behavior using a collection of ODEs: Find pi ∈ [C 1(0,T )]Nr solving{
ṗi = gi (u;pi ), t ∈ (0,T ],

pi (0) =p0
i ,

, i = 1, . . . ,NC , (2.1)

where pi is a vector of length Nr and u is the solution of a PDE modeling the macroscopic behavior
described below. In the context of (2.1), u has the role of a parameter. We have allowed the model for
the microscale behavior gi to vary with each cell. For simplicity of notation, we have assumed the same
number of equations in each cell model, however this is not necessary.

In order to introduce the microscale solutions of the reactants into the macroscale model, we define
the piecewise constant function p(x) for x ∈Ω,

p(x, t ) =pi (t ), (x, t ) ∈Ci × (0,T ], i = 1, . . . ,NC .

The macroscale model problem reads: Find u(x, t ) ∈C 1((0,T );C 2(Ω)) such that
u̇ −∇·ε∇u = f (u;p), (x, t ) ∈Ω× (0,T ],

n ·ε∇u = 0, (x, t ) ∈ ∂Ω× (0,T ],

u(x,0) = u0(x), x ∈Ω,

(2.2)

where ε= ε(x) ≥ ε0 > 0 is a continuous function and f and u0 are sufficiently smooth functions. In this
equation, p now plays the role of a parameter, but one that varies in space on the microscale.

2.2. Multiscale coupling

The coupled system (2.1)-(2.2) immediately raises several issues:

• The solutions of the microscale ODEs (2.1) vary in space on the scale of the cells. This happens
both because of varying cell model and because the ODE model (2.1) depend on experimentally-
determined parameters that vary stochastically. This microscale variation introduces extremely
rapid variation in the coefficient f on the scale of the macroscale PDE (2.2) along with discon-
tinuities across cell boundaries. We would therefore have to use a spatial discretization for (2.2)
that is finer than the cells while being consistent with the cell boundaries in order to achieve full
order accuracy in numerical solutions.

• The ODE system (2.1) has an extremely large dimension NC ×Nr , with the consequence that the
solution of many systems of nonlinear ODEs are required to advance the PDE solution if we solve
the microscale model (2.1) in every cell. This raises another significant computational burden.
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• At the same time, we expect to see a macroscale pattern in variations in cell type and model,
which implies it is inefficient to integrate the microscale ODEs in every cell.

To deal with these issues, we introduce a coupling scale decomposition of Ω. We assume that Ω =
∪Nω

j=1ω j is decomposed into a set of non-overlapping regions ωi . Each ω j is comprised of a collection
of cells ω j = ∪i∈Ij Ci , where Ij is a subset of the indices {1, . . . ,NC }. We assume the collection {Ij }
is non-intersecting while their union equals {1, . . . ,NC }. To smooth out the cell-scale variation in the
reaction model (2.1), we average the reaction solutions over ωi . We introduce a “recovery” operator
R :RNC×Nr → [L 2(Ω)]Nr defined as

Rp(x) = 1

|ω j |
∫
ω j

p(y)d y = 1

|ω j |

( ∑
i∈Ij

pi |Ci |
)

, x ∈ω j , j = 1, . . . ,Nω, (2.3)

where |ω j | and |Ci | denote the volume of the indicated region and cell respectively. Note that
∑

i∈Ij
|Ci | =

|ω j |. The function Rp is piecewise constant, but now varies on the coupling scale rather than the cell
scale.

One reasonable criteria to choosing the intermediate scale cells is to assume that the same reaction
model gi is used for each cell Ci in each coupling region ω j . We now replace the original macroscale
model problem (2.2) by 

u̇ −∇·ε∇u = f (u;Rp), (x, t ) ∈Ω× (0,T ],

n ·ε∇u = 0, (x, t ) ∈ ∂Ω× (0,T ],

u(x,0) = u0(x), x ∈Ω,

(2.4)

Next we note that in the original formulation, pi depends implicitly on the spatial variable x (which
has the role of a parameter) inside each cell. To avoid this, we introduce a projection of u into a space
of functions that are constant on each cell. We let P : L 2(Ω) → RNC be a suitably chosen projection
into functions that are piecewise constant on the cells and we replace (2.1) by{

ṗi = gi (P u;pi ), t ∈ (0,T ],

pi (0) =p0
i ,

i = 1, . . . ,NC , (2.5)

When the exact spatial location of each cell is unavailable, as often is the case, we use a projection P

into the space of functions that are constant on the coupling scale domains ω j , which also produces a
function that is constant on each cell.

3. Multirate finite element methods

In order to derive a variational a posteriori error estimate, we write the time discretization as a finite
element method for a piecewise polynomial while using a common finite element method for spatial
discretization. Combined with suitable quadrature formulas, the resulting approximations match stan-
dard finite difference schemes.

3.1. Variational formulation

To this end, we let (·, ·)X denote the inner product on L 2(X ) on a space X with corresponding norm
‖·‖X and let a(v, w) denote the bilinear form a(v, w)X = (ε∇v,∇w)X . The subscript X is dropped when
X =Ω. Furthermore, we let 〈·, ·〉C j denote the inner product on RNr on cell C j and let 〈·, ·〉 =∑NC

i=1〈·, ·〉Ci .
The corresponding norm is denoted by ‖·‖, which is the same notation as for the L 2-norm, but it is
obvious from the context which norm is intended. Furthermore, we write the right hand side functions
f and g as functions of two variables, replacing ’;’ with ’,’.
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Figure 3.1: The PDE time steps ∆t (long horizontal lines) is allowed to depend on t but not on x. The
ODE time steps ∆s (short horizontal lines) may depend on both t and x.

We first write (2.5)-(2.4) in variational form: The solutions pi ∈ [H 1(0,T )]Nr of (2.5) satisfy,∫ T

0
〈ṗi ,q〉 d t =

∫ T

0
〈gi (P u,pi ),q〉 d t , ∀q ∈ [L 2(0,T )]Nr , i = 1, . . . ,NC , (3.1)

while the solution u ∈L 2((0,T );H 1(Ω)) satisfies,∫ T

0
(u̇, v)+a(u, v) d t =

∫ T

0
( f (u,Rp), v) d t , ∀v ∈L 2((0,T );H 1(Ω)). (3.2)

3.2. A multirate finite element method

We solve the coupled system (2.5)-(2.4) using a discretization that allows different time steps to
be used for the ODEs and the PDE. The discretization yields a nonlinear coupled system of discrete
equations for the approximate solution that must be solved iteratively in practice. It is common to fix
the number of iterations used for such coupled systems, which can significantly affect the properties
of the resulting numerical solution. In the extreme case with no iteration, this represents a so-called
explicit-implicit scheme.

For the temporal discretization for the PDE, the time interval [0,T ] is partitioned into N subintervals
0 = t0 < t1 < ·· · < tN = T , and we denote each subinterval by In = (tn−1, tn] with length by ∆tn = tn−tn−1.
For the temporal mesh for the ODEs, each interval In may be divided into Mn subintervals by tn−1 =
s0,n < s1,n < ·· · < sMn ,n = tn , where Jm,n = (sm−1,n , sm,n] and is of length ∆sm,n = sm,n − sm−1,n . This is
illustrated in Fig. 3.1. We also allow for different time steps in different cells, but the notation becomes
very cumbersome so we do not indicate this. Moreover, we note that it is possible to let the individual
Nr ODE components have different time stepping as in [13], but this is not considered here.

The space of polynomials of order r is denoted Pr , and we discretize all the Nr ODE components
in the space of polynomials of degree rp , Q

rp
m,n = {q(t ) : q|Im,n ∈ [Prp (Im,n)]Nr }. We denote the space of

functions ∪Mn
m=1Q

rp
m,n by Q

rp
n . To simplify notation, we use the same order of polynomial in all cells,

though this is not necessary.
For the PDE, we define a triangulation T h

n of Ω on each interval In that is inconsistent with the
coupling scale decomposition Ω = ∪Nω

j=1ω j : We let T h
n be hexahedral elements and let the coupling

scale partition be the Voronoi tessellation defined by Nω uniformly distributed random points in Ω, i.e.
each ω j is a Voronoi cell [18]. An illustration of this tessellation can be seen in Fig. 3.2.

Let V h
n ⊂ H 1(Ω) be the space V h

n = {v(x) ∈ C (Ω) : v |K ∈ Pr (K ), K ∈ T h
n }. To indicate the sizes of

the elements in V h
n , we introduce the mesh function hK = diam(K ) for K ∈ T h

n and h = maxhK . The
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Figure 3.2: Illustration of a Voronoi tessellation with Nω = 4096.

approximation is in the space-time function space W
ru

n = {w(x, t ) : w(x, t ) =∑ru

i=0 t i vi (x), vi ∈ V h
n , (x, t ) ∈

Ω× In}.
The functions in W

ru
n and Q

rp
n are discontinuous at time nodes, and we denote the jump across a

time nodes ti by [v]i = v+
i − v−

i , where v±
i = limt→t±i

v(t ). Finally in order to evaluate Galerkin orthogo-
nality, we use the following projection operators into the discrete spaces:

Πn : L 2(Ω) → V h
n , (3.3)

πu
n : L 2(In) →Pru (In), (3.4)

π
p
m,n : [L 2(Im,n)]Nr → [Prp (Im,n)]Nr . (3.5)

Note that πu
nΠn =Πnπ

u
n : L 2(Ω× In) →W

ru
n .

The multirate finite element method now reads: For all cells in C and for each time interval n =
1, . . . , N , find P ∈Q

rp
m,n for m = 1, . . . , Mn such that∫

Im,n

〈Ṗ ,q〉 d t +〈[P ]m−1,n ,q+〉 =
∫

Im,n

〈g(P U ,P ),q〉 d t , ∀q ∈Q
rp
m,n , (3.6)

with P 0− = p0. Note that there are NC ODE systems in (3.6). The PDE discretization is: Find U ∈ W
ru

n

such that ∫
In

(U̇ , v)+a(U , v) d t + ([U ]n−1, v+) =
∫

In

( f (U ,RP ), v) d t , ∀v ∈W
ru

n , (3.7)

where U−
0 =Π0u0.

Note that if we use rp = ru = 0 with a left-hand rectangle rule for time integrals and employ a stan-
dard “lumped-mass” quadrature rule in space (trapezoidal rule on elements), then we obtain a standard
difference approximation consisting of the implicit Euler in time and 5 point stencil difference scheme
in space [8].

3.3. Practical discretization considerations

There are additional considerations for discretization that are used in practice.
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Evaluation of the recovery operator

The definition of the recovery operator R in (2.3) requires the solution of the cell reaction equations
(2.5) on all NC cells. We expect NC to be very large, e.g. on the order of millions to billions. At the same
time, we expect that the physical properties of cells vary over the macroscale rather than microscale, so
it is inefficient to solve (2.5) on every cell. We approximate R by an average R̃ computed using a Monte
Carlo sampling approach with a (relatively small) sample of the problems (2.5). As a consequence, we
replace the PDE equation (3.7) by: Find U ∈W

ru
n such that∫

In

(U̇ , v)+a(U , v) d t + ([U ]n−1, v+) =
∫

In

( f (U ,R̃P ), v) d t , ∀v ∈W
ru

n , (3.8)

where U−
0 =Π0u0.

There are two ways to compute the samples. First, we can sample in the spatial variable x, so for
x ∈ω j ,

R̃p(x) = 1

K j

K j∑
k=1
p(x j ,k ), (3.9)

where {x j ,k }
K j

k=1 is a set of K j points chosen at random in ω j , for each j = 1, . . . ,Nω. In this approach,

we solve the reaction model (2.5) only in cells located at {x j ,k }
K j

k=1. This means that the average is af-
fected by by physical size of the cells, since bigger cells contribute more samples with some probability.
Alternatively, we can sample by choosing cell indices at random, so for x ∈ω j ,

R̃p(x) = 1

K j

K j∑
k=1
pik , (3.10)

where {ik } is a randomly selected subset of Ij . In the second approach, the cell average is not affected
by the size of the cell.

Note that this Monte Carlo computation has the property that the computation is actually exact if
sufficiently many samples are used, since there are only NC different values. However for very large NC

and reasonably small numbers of samples, the convergence of the Monte Carlo approximations appears
to behave according to the standard asymptotic results, so that the accuracy is roughly proportional to
the variance of the integrand divided by the square root of the number of samples. Since we want to use
relatively few samples, this indicates that the coupling regions ω j should be chosen so that the variance
of the integrand defining R has small variance.

Iterative solution of the nonlinear discrete equations

In general, (3.6)-(3.8) presents a nonlinear coupled discrete system that is solved iteratively in prac-
tice. We describe a simple fixed point iteration.

We use the superscript ` to denote the iteration number and assume that we carry out Ln total
iterations on each time step. In practice, we may vary the number of iterations in each cell and for the
PDE, but we suppress that notation. The fixed point - finite element method can be formulated on time
interval In as: Given P 0 =P (tn−1) and U 0 =U (x, tn−1), for each cell find P ` ∈ Q

rp
m,n for m = 1, . . . , Mn

on In such that∫
Im,n

〈Ṗ `,q〉 d t +〈(P `+−P −)|m−1,n ,q+m−1,n〉 = ∫
Im,n

〈g(P U`−1,P `),q〉 d t , ∀q ∈Q
rp
m,n . (3.11)
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Then, given P ` on In , find U` ∈W
ru

n such that∫
In

(U̇`, v)+a(U`, v) d t + ((U`+−U−)|n−1, v+
n−1)

=
∫

In

( f (U`,R̃P `), v) d t , ∀v ∈W
ru

n , (3.12)

given U 0. We iterate (3.11) and (3.12) for ` = 1, . . . ,Ln , set P −
n =P Ln (tn) and U−

n =U Ln (tn) to form the
data for the next interval.

In this iterative formulation, we are “lagging” the values of the PDE model U in the cell reaction
model, but treat the remaining nonlinear problems for P ` and U` implicitly. This entails using an
additional nonlinear solver for each model equation. However, we do not indicate this in the notation
as these problems can typically be solved very accurately, e.g. using a standard Newton method.

An implicit-explicit method

In practice, the iterative formulation (3.11)-(3.12) is often solved for only one iteration Ln = 1, yield-
ing an “implicit-explicit” method. This is: For n = 1, . . . , N , find P ∈Q

rp
m,n for m = 1, . . . , Mn such that∫

Im,n

〈Ṗ ,q〉 d t +〈[P ]m−1,n ,q+〉 =
∫

Im,n

〈g(P Un−1,P ),q〉 d t , ∀q ∈Q
rp
m,n , (3.13)

with P 0− =p0. Then find U ∈W
ru

n such that∫
In

(U̇ , v)+a(U , v) d t + ([U ]n−1, v+) =
∫

In

( f (U ,R̃P ), v) d t , ∀v ∈W
ru

n , (3.14)

where U−
0 =Π0u0. The scheme is said to be explicit-implicit due to the use of explicit use of Un−1 when

solving for P on In , while Un is solved implicitly.

4. A posteriori error analysis

In this section, we derive adjoint-based error representation formulas for the methods above. Using
these formulas, we derive indicators of local contributions to the global error that can serve as the basis
for an adaptive method. Ignoring the effect of iteration in the solution of the discrete equations, there
are three discretization parameters that affec the numerical accuracy, namely the spatial mesh size, the
time steps for the PDE, and the time steps for the ODEs. In addition, there is a choice of the projection
and recovery operators. We present error indicators that distinguish the relative contributions of these
choices to the global error. For the iterative method, there is the additional parameter of number of
iterations per time step.

We begin by noting that since the right hand side of (3.13) involves the solution Un−1 from the
previous time step and since the right hand side of (3.14) involves the approximation R̃, there is an
error arising from operator decomposition [5] due the differences U and Un−1 as well as a modeling
error due to the differences between R and R̃.

4.1. Preliminaries

The adjoint to the function spaces presented is denoted by the superscript ∗. The same notation is
used for the adjoint operators, as noted in the following identities

(v,Rq) = 〈R∗v,q〉, (4.1)

〈P v,q〉 = (v,P ∗q), (4.2)
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which hold for any q ∈Q
rp
m,n and v ∈W

ru
n .

We define the residuals, the linearizations of the functions f and g and state the adjoint problems.
The derivation of the theorems follow in the next Section.

Definition 4.1. Let the residuals corresponding to (3.13) and (3.14) be denoted by Rp (P ) ∈ Q
rp∗
m,n and

Ru,K (U ,P ) ∈W
ru∗

n . These are defined by∫
Im,n

〈Rp (P ),q〉 d t =
∫

Im,n

〈g(P Un−1,P )− Ṗ ,q〉 d t −〈[P ]m−1,n ,q+m−1,n〉, (4.3)∫
In

(Ru,K (U ,P ), v)K d t =
∫

In

( f (U ,R̃P )−U̇ +∇·ε∇U , v)K

− 1

2
([n ·ε∇U ], v)∂K \∂Ω d t − ([U ]n−1, v+

n−1)K . (4.4)

Definition 4.2. The linearizations of f and g are defined as

fu =
∫ 1

0

∂ f

∂u
(us +U (1− s),Rps +RP (1− s)) d s, (4.5)

fp =
[∫ 1

0

∂ f

∂Rp j
(us +U (1− s),Rps +RP (1− s)) d s

]Nr

j=1

, (4.6)

gu =
[∫ 1

0

∂gi

∂P u
(P us +P U (1− s),ps +P (1− s)) d s

]Nr

i=1
, (4.7)

gp =
[∫ 1

0

∂gi

∂p j
(P us +P U (1− s),ps +P (1− s)) d s

]Nr

i , j=1

. (4.8)

4.2. Adjoint problems

The definition of an appropriate adjoint problem for a multiscale model is a problematic issue [5].
First of all, there are a number of possible adjoint problems that can be associated with any nonlinear
differential equation. In addition, it may be reasonable to account for the use of projections between
scales and representations and the effects of a finite number of iterations in the definition. Another
issue is the computational difficulty and cost required in the numerical solution of the adjoint.

We consider two different adjoint problems that present a tradeoff between accuracy of the resulting
estimates on one hand and the cost and practicality of implementation on the other. The first approach
is closely related to the ideal adjoint of the coupled system (3.1)-(3.2) treated by an implicit discretiza-
tion, a so-called “implicit adjoint”. This choice leads to a robustly accurate error estimate, but the cost
is that the linear adjoint problem is nearly as difficult to solve numerically as the original multiscale
model. As an alternative, we define a second adjoint problem that uses the same decomposition and
finite iterations as used in the forward model. This approach is much more computationally tractable,
however the resulting error estimate includes terms that cannot be estimated. It is possible to show
that these terms are relative small compared to the terms that can be estimated in the limit of refined
discretization however.

4.3. Fully implicit adjoint problem and error representation formula

The ideal fully implicit adjoint reads: For n = N , . . . ,1, find φ̃p (t ) ∈ [L 2(Im,n)]Nr on m = 1, . . . , Mn

and φ̃u(x, t ) ∈L 2(In ;H 1(Ω)) such that∫
Im,n

〈q,− ˙̃φp〉−〈q,gp
∗φ̃p +R∗fp

∗φ̃u〉 d t =
∫

Im,n

〈q,ψp〉 d t (4.9)
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and ∫
In

(v,− ˙̃φu)+a(v, φ̃u)− (v, fu
∗φ̃u +P ∗gu

∗φ̃p ) d t =
∫

In

(v,ψu) d t , (4.10)

where ψu ∈ L 2(Ω) and ψp ∈ [L 2(Ω)]Nr are given data that determine the quantity of interest to be
computed. The initial conditions for the adjoint problem are φ̃u(x,T ) = 0 and φ̃p (T ) = 0. Next we
derive the error representation formula corresponding to this fully implicit adjoint problem.

Theorem 4.1 (Error representation formula). Let the quantity of interest be the linear functional m(u,p)
be defined by the functions ψu ∈L 2(Ω) and ψp ∈ [L 2(Ω)]Nr such that m(u,p) = ∫ T

0 (u,ψu)+〈p,ψp〉 d t.
The error representation formula for the error E(U ,P ) = |m(u,p)−m(U ,P )| reads

E(U ,P ) =
∣∣∣ N∑

n=1

∫
In

(eu ,ψu)+〈ep ,ψp〉 d t
∣∣∣ (4.11)

=
∣∣∣I +

N∑
n=1

(I In + I I In + IVn +Vn +V In)
∣∣∣, (4.12)

where

I = (u0 −Π0u0, φ̃u,0), (4.13)

I In = ∑
K∈T h

n

∫
In

(Ru,K (U ,P ), φ̃u −Πnπ
u
nφ̃u)K d t , (4.14)

I I In =
Mn∑

m=1

∫
Im,n

〈Rp (P ),φ̃p −πp
m,nφ̃p〉 d t , (4.15)

IVn =
∫

In

( f (U ,RP )− f (U ,R̃P ), φ̃u) d t , (4.16)

Vn =
∫

In

〈g(P U ,P )−g(P Un−1,P ),φ̃p〉 d t . (4.17)

The first term is the contribution from error in the initial data for the PDE. The second and the third
terms quantify the contributions of the discretization of the PDE and the ODEs respectively. The fourth
term quantifies the contribution of the recovery operator and the fifth term is the contribution of the
explicit splitting scheme.

Proof. Introducing the errors eu = u −U and ep =p−P , we use the chain rule identities to obtain,

〈guP eu +gpep ,q〉 = 〈g(P u,p)−g(P U ,P ),q〉, (4.18)

( fueu +fpRep , v) = ( f (u,Rp)− f (U ,RP ), v). (4.19)

Note that (4.18) holds on each Im,n whereas (4.19) holds on each In . Furthermore, by the continuity of
u,

e+u,(m−1,n) = u+
m−1,n −U+

m−1,n = (u−
m−1,n −U−

m−1,n)− (U+
m−1,n −U−

m−1,n)

= e−u,(m−1,n) − [U ]m−1,n .
(4.20)

Similarly,
e+p,(m−1,n) = e−p,(m−1,n) − [P ]m−1,n . (4.21)
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Now substituting ep for q in (4.9) and applying integration by parts we arrive at,∫
Im,n

〈ep ,ψp〉 d t =
∫

Im,n

〈ep ,− ˙̃φp〉−〈ep ,gp
∗φ̃p +R∗fp

∗φ̃u〉 d t

=−〈e−p ,φ̃p〉m−1,n +〈e+p ,φ̃p〉m−1,n

+
∫

Im,n

〈ėp ,φ̃p〉−〈gpep ,φ̃p〉 d t −
∫

Im,n

〈fpRep , φ̃u〉 d t

(4.22)

Now we apply (4.21),∫
Im,n

〈ep ,ψp〉 d t =−〈e−p ,φ̃p〉m,n +〈e−p ,φ̃p〉m−1,n −〈[P ]m−1,n ,φ̃p,(m−1,n)〉

+
∫

Im,n

〈ėp ,φ̃p〉−〈gpep ,φ̃p〉−〈fpRep , φ̃u〉 d t .
(4.23)

A similar computation for eu leads to,∫
In

(eu ,ψu) d t =−(e−u , φ̃u)n + (e−u , φ̃u)n−1 − ([U ]n−1, φ̃u,(n−1))

+
∫

In

(ėu , φ̃u)+a(eu , φ̃u)− ( fueu , φ̃u)− (guP eu ,φ̃p ) d t .
(4.24)

Summing (4.23) over all m, combining it with (4.24) and using (4.18) and (4.19) leads to,∫
In

(eu ,ψu)+〈ep ,ψp〉 d t =−〈e−p ,φ̃p〉n − (e−u , φ̃u)n

+〈e−p ,φ̃p〉n−1 + (e−u , φ̃u)n−1 +
Mn∑

m=1

{
−〈[P ]m−1,n ,φ̃p,(m−1,n)〉

+
∫

Im,n

〈ėp ,φ̃p〉−〈g(P u,p)−g(P U ,P ),φ̃p〉 d t
}
− ([U ]n−1, φ̃u,(n−1))

+
∫

In

(ėu , φ̃u)+a(eu , φ̃u)− ( f (u,Rp)− f (U ,RP ), φ̃u) d t .

(4.25)

Now, using (2.4) and (2.5), and summing over all n,

N∑
n=1

∫
In

(eu ,ψu)+〈ep ,ψp〉 d t = (u0 −Π0u0, φ̃u,0)+
N∑

n=1

{
Mn∑

m=1

{
−〈[P ]m−1,n ,φ̃p,(m−1,n)〉−

∫
Im,n

〈Ṗ ,φ̃p〉−〈g(P U ,P ),φ̃p〉 d t
}

− ([U ]n−1, φ̃u,(n−1))−
∫

In

(U̇u , φ̃u)+a(U , φ̃u)− f (U ,RP ), φ̃u) d t

}
.

(4.26)

Addition and subtraction of
∫

In
( f (U ,R̃P ), φ̃u) d t and

∫
In
〈g(P Un−1,P ),φ̃p〉 d t , integration by parts on

a(U , φ̃u) and the use of Galerkin orthogonalities (3.13) and (3.14) to subtract the interpolants Πnπ
u
nφ̃u

and πp
m,nφ̃p completes the proof.

4.4. The implicit-explicit adjoint problem and error representation formula

Lemma 4.1 gives an error representation formula that requires numerical solution of the fully im-
plicit adjoint problem. Alternatively, we consider an adjoint that employs the same discretization steps
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as used for the original model. The exact implicit-explicit adjoint corresponding to the implicit-explicit
numerical scheme reads: For n = N , . . . ,1, find φp (t ) ∈ [L 2(Im,n)]Nr on m = 1, . . . , Mn such that∫

Im,n

〈q,−φ̇p〉−〈q,gp
∗φp +R∗fp

∗φu,n〉 d t =
∫

Im,n

〈q,ψp〉 d t . (4.27)

Note the use of φu,n , which is known from the time interval In+1. Then find φu(x, t ) ∈ L 2(In ,H 1(Ω))
such that ∫

In

(v,−φ̇u)+a(v,φu)− (v, fu
∗φu +P ∗gu

∗φp ) d t =
∫

In

(v,ψu) d t . (4.28)

The corresponding iterative method follows.

Theorem 4.2 (Error representation formula). Let the quantity of interest be the linear functional m(u,p)
be defined by the functions ψu ∈L 2(Ω) and ψp ∈ [L 2(Ω)]Nr such that m(u,p) = ∫ T

0 (u,ψu)+〈p,ψp〉 d t.
The error representation formula for the error E(U ,P ) = |m(u,p)−m(U ,P )| now reads

E(U ,P ) =
∣∣∣ N∑

n=1

∫
In

(eu ,ψu)+〈ep ,ψp〉 d t
∣∣∣ (4.29)

=
∣∣∣I +

N∑
n=1

(I In + I I In + IVn +Vn +V In)
∣∣∣, (4.30)

where

I = (u0 −Π0u0,φu,0), (4.31)

I In = ∑
K∈T h

n

∫
In

(Ru,K (U ,P ),φu −Πnπ
u
nφu)K d t , (4.32)

I I In =
Mn∑

m=1

∫
Im,n

〈Rp (P ),φp −πp
m,nφp〉 d t , (4.33)

IVn =
∫

In

( f (U ,RP )− f (U ,R̃P ),φu) d t , (4.34)

Vn =
∫

In

〈g(P U ,P )−g(P Un−1,P ),φp〉 d t , (4.35)

V In =
∫

In

(fpRep ,φu −φu,n) d t . (4.36)

The first five terms are similar to the error representation in Lemma 4.1. The last term is the contri-
bution of the transfer error from the ODEs to the PDE through f , weighted by the effect of the splitting
of the adjoint equations.

Proof. The proof proceeds as in the case of Theorem 4.1. However we have to account for the implicit-
explicit solve of the adjoint, which shows up in the analogue of (4.23) as,∫

Im,n

〈ep ,ψp〉 d t =−〈e−p ,φp〉m,n +〈e−p ,φp〉m−1,n −〈[P ]m−1,n ,φp,(m−1,n)〉

+
∫

Im,n

〈ėp ,φp〉−〈gpep ,φp〉−〈fpRep ,φu,n〉 d t .
(4.37)

The presence of the term involving φu,n prevents use of the fact that p and u satisfy (2.4) and (2.5)
. Thus, we add and subtract

∫
Im,n

〈fpRep ,φu〉 d t to (4.37). The rest of the proof follows as before.
The addition and subtraction of the additional term leads to the sixth term in the error representation
formula.
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4.5. Error indicators

Theorem 4.3 (Error indicators). By decomposing the contributions to the discretization error of the PDE
into a spatial and temporal parts as I In = I I x

n +I I t
n , we can distinguish the contributions from the spatial

discretization for the PDE as E x , the temporal discretization of the PDE by E t and the ODE discretization
contribution as E s , so

E(U ,P ) ≤ E x +E t +E s ,

where

E x = I +
N∑

n=1
(I I x

n + IVn), (4.38)

E t =
N∑

n=1
(I I t

n +Vn), (4.39)

E s =
N∑

n=1
I I In . (4.40)

Furthermore, these indicators can be approximated by the computable indicators Æx , Æt and Æs as

Æx = ∑
K∈T h

0

|IK |+
N∑

n=1

∑
K∈T h

n

|I I x
n,K |+

N∑
n=1

|IVn |, (4.41)

Æt =
N∑

n=1
(|I I t

n |+ |Vn |), (4.42)

Æs =
N∑

n=1

Mn∑
m=1

|I I Im,n |, (4.43)

where the subscripts indicate restriction. For these to be computable we replace φu and φp by the discrete
approximations Φu and Φp respectively. This leads to additional terms in the representation that cannot
be estimated but are relatively small in the limit of discretization refinement.

Proof. We have to account for the effect of replacing the exact adjoints φu and φp with the approxima-

tions Φu ∈W
ru+1

n and Φp ∈Q
rp+1
m,n obtained by finite element discretizations similar to (3.14) and (3.13),

but with q ∈ Q
rp
m,n and v ∈ W

ru
n . The effect on E(U ,P ) of replacing φu with Φu in (4.31) – (4.36) leads

to additional terms with weights of the type φu −Φu . However, these additional terms are higher or-
der. The same holds for replacing φp with Φp . Since these errors are negligible we do not indicate this
change in the terms I – V I below.

To have separate indicators for the spatial and the temporal contributions from discretization of the
PDE and the contribution for the discretization of the ODEs, we decompose the error E(U ,P ) into parts
corresponding to these contributions. To distinguish the different contributions, we note that term I I
(4.32) contributes both to errors in space as well as in time. To deal with this, we write

Φu −Πnπ
u
nΦu =Φu −ΠnΦn +ΠnΦn −Πnπ

u
nΦu , (4.44)

which gives I In = I I x
n + I I t

n , where

I I x
n = ∑

K∈T h
n

∫
In

(Ru,K (U ,P ),Φu −ΠnΦu)K d t , (4.45)

I I t
n = ∑

K∈T h
n

∫
In

(Ru,K (U ,P ),ΠnΦu −πu
nΠnΦu)K d t , (4.46)
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where Ru,K is the algebraic equivalent to (4.4), since ΠnΦu ∈ V h
n .

Term IVn involve the exact quantity R, which is not computable. We compute an approximation
of this term by sampling at a large number of points to form R and then choose only a subset of these
samples to form R̃.

Finally, the Term V In involving ep , which arises from the choice of a computationally-tractable ad-
joint problem, is not directly computable. In some cases, such terms can be approximated at the cost
of solving auxiliary adjoint problems [12]. Alternatively, a rigorous mathematical analysis showing such
terms are small relative to the computable terms in the error estimate is carried out in [15]. Intuitively
V In is small in the limit of discretization refinement because involves a product of the errors ep and
φu −φu,n . On the other hand, if V In is large, we expect the other terms in the error estimate to be large
as well. Hence, while the error estimate may not capture the true error accurately in this case, it is still
be reliable in the sense of indicating a large error in the numerical solution.

5. Details of the discretization and the adaptive algorithm

5.1. Discretization details

For discretization in space of the PDE, the partition T h
n of Ω consists of hexahedral elements with

trilinear basis functions for the primal PDE problem and triquadratic basis functions for its adjoint. The
capability for spatial mesh adaptivity, including refinement and derefinement, is provided by the use of
hanging nodes, where at most one hanging node per edge or face is allowed. Conformity of the basis at
the hanging nodes is obtained by interpolation using the neighboring nodes, see [19]. Handling of such
shape regular but non-uniform meshes is alleviated by an octree-based data structure [20].

For the stochastic discretization of the microscale ODEs, the Voronoi cells ω j are generated by Nω

uniformly distributed random points inΩ. Given these points, the corresponding Voronoi tessellation is
generated by calling the Voro++ library [21]. Since this tessellation is generally not aligned with T h

n (as
can be seen in Fig. 3.2) a map from each quadrature point in each T h

n to the corresponding Voronoi
cell is constructed. This procedure requires searching the Voronoi diagram, but the library supplies
efficient routines for doing this. Moreover, T h

n only varies when the mesh is changed, which happens
fairly infrequently in the block adaptivity approach that we use (described in the next section). We
sample by using 10 random points in each ω j to compute RP in Term IV (cf. (4.34)) and sample using
1 point to compute (3.9) or (3.10).

Computing the projection P is performed using the same data structures created for R: We sample
10 points in each ω j , and for each of these points, we find the corresponding element in T h

n and com-
pute the function value at that point. Then we average over these function values to get the projection
over ω j .

The temporal discretization of the primal and adjoint PDE problem is performed using a dG(0) and
a cG(1) respectively. For the ODEs, a dG(1) method is used for the primal and a dG(2) method for its
adjoint. The ODEs are initially solved on the same temporal discretization as the PDE. However, the
ODEs are allowed to have individual time steps in each slab K × In (see Section 3). To determine these
time steps, as well as the discretization of the PDE, we use blockwise adaptivity [17], which is a more
efficient procedure than a standard compute – estimate – mark – refine strategy. This is described in the
following section. Finally, the adjoint time discretization is set to be equal to the temporal discretization
for the forward problem.

To be able to represent data on the different grids, the octree data structure facilitates the projection
and interpolation routines that are necessary. To alleviate the matrix allocations, assembly of the matri-
ces and vectors as well as solving the linear systems involved we take use of the PETSc library [22]. We
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use its conjugated gradient method with the incomplete LU factorization as preconditioner. A Newton
method is used for performing the nonlinear iterations for the primal PDE and ODEs.

Finally, despite the higher order method used for the adjoints, the costs can be compared with those
for the forward problem due to the fact that they are linear.

5.2. Blockwise adaptive error control

To determine spatial and temporal refinement, the adaptive algorithm called blockwise adaptivity
is used. This procedure, introduced by Carey et. al. in [17], is built upon the creation of a sequence
of blocks of meshes. The meshes that constitute the block are carefully created to guarantee that the
numerical method is accurate in terms of the goal functional as well as being efficient in the sense that
they are as coarse as possible.

The blocks form the partition in time by 0 = T0 < T1 < ·· · < TB = T . In each block, both the spatial
and temporal meshes are fixed but possibly non-uniform. Given initial primal and adjoint solutions
on a coarse discretization, the algorithm is based on an absolute tolerance ATOL for the total error,
the Principle of Equidistribution and a strategy for computing blocks. The Principle of Equidistribu-
tion says that an optimal mesh for controlling ATOL is obtained when the element contributions are
approximately equal, see e.g. Eriksson et. al. [6].

The strategy may be based on a criteria, for example the maximum size of a mesh due to limitations
in computer memory. This strategy, known as a memory-bound strategy, is employed in this paper.
Other strategies include forming blocks by considering changes in the topology of the meshes. For the
memory-bound strategy we place upper bounds on the number of degrees of freedom, such that there
are

• a maximum number of spatial elements xMAX,

• a maximum number of PDE time intervals tMAX,

• a maximum number of ODE time intervals sMAX.

Each of this restrictions may define end time of blocks. For completeness we briefly present this method,
but is thoroughly described in [17].

Assuming that in a mesh there are Nx space elements, N macro time intervals and Mn subintervals
in each macro interval, there is a total of Nx N Mn space-time subslabs in the initial discretization. The
Principle of Equidistribution determines an approximate local error tolerance on each subslab of

LATOL = ATOL

3Nx N Mn
, (5.1)

since there are three different contributions to the error which should be equal: The spatial and tem-
poral part of the PDE and the ODE.

The next step is to predict meshes such that each element contribution is approximately LATOL.
For example, standard a priori analysis may show that the error E s |Im,n on a subinterval of size ∆s is
of the order of (∆s)r for some r . Due to the Principle of Equidistribution, the desired error should be
LATOL. If this requires a subinterval of size ∆snew we have by proportionality

LATOL ≈ E s |Im,n ×
(
∆snew

∆s
,

)r

, (5.2)

which results in that the approximate subinterval length can be determined as

∆snew ≈∆s ×
(

LATOL

E s |Im,n

)1/r

, (5.3)
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or as a number of new subintervals by

∆s

∆snew
=

(
E s |Im,n

LATOL

)1/r

. (5.4)

It should be noted that if the original discretization is finer than needed, then ∆snew > ∆s, which sug-
gests coarsening. Moreover, ∆snew is in fact a computable quantity, since E s |Im,n ≈ Æs |Im,n (cf. equations
(4.40) and (4.43)). For the space and discretizations of the PDE, the procedure is similar and uses the
approximations Æx and Æt defined in (4.41) and (4.42).

Using the memory bound strategy, we determine that the predicted number of elements that are of
interest. Thus, besides (5.4) we also need to predict the number of elements in space and time for the
PDE. The latter is done using a similar quotient as (5.4), but for the former, there is a scaling factor with
the dimension d = 3 as (

h

hnew

)d

≈
(

Æx |n,K

LATOL

)d/r

, (5.5)

where r is the order of convergence in space.
Using the predicted number of spatial elements (5.5), one can create a block by starting at T0 = 0,

loop over time and add up the total number of predicted number of elements until the sum is about
equal to xMAX or tMAX. Then this time defines T1. If the maximum predicted number of ODE steps
over all spatial elements exceeds sMAX, that PDE time interval is to be refined, thus increasing the
predicted number of PDE time intervals. The second block starts with T1 and is formed analogously.

Derefinement is restricted to the resolution of the initial coarse mesh, both is space and time. In
addition to the three restriction criteria above, a sufficiently coarse predicted mesh may also define the
end of a block. This can be determined by a parameter θ defined as

θ = #elements in current block

#elements predicted for the next block
. (5.6)

We coarsen the mesh when θ > 10.
We note there can be significant contributions to the error if the meshes on adjacent blocks are

sufficiently different [17]. We do not include expressions estimating these contributions in the a poste-
riori error estimate. Rather, we reduce the impact of such contributions by using the maximum error
estimate in the final time interval of the previous block to determine the refinements of the first time
interval on the next block.

Below, we use one iteration of the block adaptive algorithm, so the PDE-ODE system is solved once
on the initial coarse mesh. This initial mesh is then refined in space and time according to the strategy
described above with ATOL ≈ 10% of the approximate total error estimate Æx +Æt +Æs for the initial
mesh.

6. A numerical example

We consider a problem from electrocardiography known as the monodomain model (cf. [3]), which
is (2.4) where u is the transmembrane potential, i.e. the potential difference over the cell membrane and
f is a current of charged ions. We assume Ω = [0,1]3, T = 400 ms, and a constant conductivity ε = 0.1.
The initial value u0 is set such that there is an excited region close to the origin, which decreases to a
resting value using smoothed Heaviside functions Gδ as,

u0(r ) = v1(1−Gδ(r ))+ v0Gδ(r ), (6.1)
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where r = |x|− r0 and,

Gδ(x) =


1, x > δ,
1

2

(
1+ x

δ
+ 1

π
sin

πx

δ

)
, |x| ≤ δ,

0, x <−δ,

(6.2)

with v0 =−84.624 mV, v1 = 20 mV, r0 = 0.5 and δ= 0.2.
The monodomain model is coupled to an ODE model called the Beeler-Reuter model, a common

model for describing mammalian ventricular action potentials, i.e., the voltage response of a specific
type of heart muscle cells. The model is described in full in Beeler and Reuter’s original paper [23] and
we review it briefly here for completeness.

The model contains seven ODE variables, where six describe gates governing the inflow and outflow
of certain ions through the cell membrane. These gating variables are modeled on the assumptions by
Hodgkin and Huxley saying that the openness depends on the proportion of already open channels,
pi , and the proportion of closed channels, 1−pi . Thus, pi ∈ [0,1], i = 1, . . . ,6. Moreover, the level of
openness is in turn depending on the potential by rate functions αi (u) and βi (u) to form

ṗi =αi (u)(1−pi )−βi (u)pi , i = 1, . . . ,6. (6.3)

Three of the gating variables are fast and thus sensitive to changes in the potential, the other three are
slower. See the seminal paper by Hodgkin and Huxley [24] for a thorough analysis of the modeling of
the gating variables. Beeler and Reuter uses the following general expression for the rate functions

c1 exp(c2(u + c3))+ c4(u + c5)

exp(c6(u + c3))+ c7
, (6.4)

and the values for the constants ck , k = 1, . . . ,7, can be found in [23].
The seventh ODE variable models the concentration of calcium ions inside the cell, and is governed

by the ODE

ṗ7 =−a0 jS(u,p)−b0(a0 −p7), (6.5)

where a0 and b0 are constants and jS is a current depending on the potential u and the gating variables.
The coupling to the PDE is through the ion current f = ji on which is sum of different currents,

ji on(u,p) =−( jN a(P u,p)+ jS(P u,p)+ jX (P u,p)+ jK (P u)). (6.6)

Similar to jS , the currents jN a and jX depend on the potential u and the gating variables. The current
jK depend only on the potential u.

We are interested in controlling the average error in the PDE solution, so we set ψu = 1 and ψp =0.
For the initial temporal discretization of the PDE, a time step of ∆t = 0.1 is chosen up to t = 10,

after which point we use ∆t = 1. The total initial total number of time steps is thus 490. The motivation
for this initial non-uniform discretization is that it is known a priori that the dynamics is rapid in the
beginning of the front. We use Ln = 2 for all n.

To form the initial spatial mesh, Ω is uniformly subdivided into 163 = 4096 elements. The adjoint
PDE problem is solved on this mesh resolution for all times, even though the primal mesh is refined.
Moreover we set Nω = 75000.

The parameters for blockwise adaptivity are set to be xMAX = 75000 (i.e. equal to Nω), tMAX = 1000
and sMAX = 20.
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Figure 6.1: The primal (left) and adjoint (right) PDE solutions at time 0.5 ms (block no. 1).

Figure 6.2: The primal (left) and adjoint (right) PDE solutions at time 200 ms (block no. 5). The range
of the primal solution is −11.76 to −11.70 mV and for the adjoint solution 1.405 ·104 to 1.406 ·104.

6.1. Results

Fig. 6.1 illustrates U and Φu at t = 0.5 ms on the refined mesh. It is clear how the adjoint is large
at the front. For later times, after wave has passed over the domain, the solution have little variation in
space as shown in Fig. 6.2. The adjoint also has little variation in space.

The dynamics of the PDE and its adjoint are clearly visible in Fig. 6.3, which illustrates the solutions
in the center of Ω, i.e. at (0.5,0.5,0.5). The left graph shows that there is a very steep gradient of U in
the first 5 ms of the simulation after which the solution then decays fairly smoothly back to its initial
and resting value after about 300 ms. The adjoint solution Φu in the right plot of Fig. 6.3 has a large
peak around 240 ms. This may seem surprising at first, but its explanation can be found by looking at
the dynamics of the coupled ODEs in Figures 6.4, 6.5 and 6.6.

Recalling that the six of the ODE variables are gating variables and one models the calcium ion
concentration, we can identify two types of gating variables by looking at Figures 6.4, 6.5 and 6.6. Three
rapid gating variables in Fig. 6.4, which has a fast change in state in the beginning and then returns to
its original state after about 250-350 ms – thus slightly later than the large peak of Φu . Moreover, the
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Figure 6.3: Solutions of the primal (left) and adjoint (right) PDE measured in the center of Ω.

calcium concentration in Fig. 6.5 seem to be strongly related to Φu at around 220 ms. Fig. 6.6 illustrates
three slower gating variables, and similar to the calcium concentration, they are less influential for small
t but rather have their significance when the system goes back to its resting state.

To examine convergence properties, we evaluate the error terms after varying the number of iter-
ations Ln in the iterative multirate method, the spatial and temporal mesh sizes of the PDE as well as
the time steps of the ODEs. These four parameters were changed uniformly to produce Figures 6.7 and
6.8. The default values in these experiments are 4096 elements, ∆t = ∆s = 0.1, Ln = 1, Nω = 10000 and
T = 20. As can be seen the errors in the various terms of (4.29) decrease as expected. The main obser-
vation is that the splitting error Term V dominates the total error, but can be controlled by increasing
Ln , cf. Fig. 6.8. In Fig. 6.9 we show the effect of varying the number of Voronoi cells, Nω, which also
show expected behavior.

The large dynamics in the system are naturally manifested in the number of blocks, and the spatial
and temporal discretizations on these blocks. With the given tolerances and parameter values, 8 blocks
are obtained and basic statistics about these blocks can be found in Table 6.1. As can be seen, the sizes
of the first four blocks are limited by the xMAX criteria, with predicted number of elements being 77309,
79829, 94074 and 87403. Recalling that xMAX = 75000, we thus obtain significantly more elements. This
can be understood by looking at the block creation procedure in detail. For example, considering block
3, the predicted number of elements for the first interval (2.3,2.4] was 48987. Since this is less than
xMAX, the procedure considers also the next interval (2.4,2.5]. The predicted number of elements for
the total interval (2.3,2.5] results in 71870 elements. This is also less than xMAX, albeit close. The fact
that this prediction is close to xMAX and knowing that the dynamics of the problem is rapid could
suggest that the block should be ended. In the implementation here, the xMAX criterion is a strict
inequality and the interval (2.5,2.6] is considered. This results in a prediction of 94074 elements to
guarantee error control. The true number of elements obtained are slightly larger, although less than 1
%, due to the constraint of having at most one hanging node per element edge.

The blocks 5, 6, 7 and 8 have the same spatial discretization with 45718 elements. Recall that the
reason for the spatial meshes not being coarsened is due to the parameter θ (5.6). As can be seen in
Table 6.1, blocks 5, 6 and 7 are limited in time by the tMAX = 1000 criteria. Finally we note that the
variation in time is great: the time step size for the PDE and the ODEs are in the range of 10−3 to 1 ms
and 10−4 to 1 ms respectively. Fig. 6.10 illustrates the various time steps over time for the PDE.

7. Conclusion

We consider a problem of a macroscale parabolic PDE which is coupled to a set of microscale ODEs.
We introduce an intermediate scale to couple information between the scales, and use projections to
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Figure 6.4: Solutions of the primal (left column) and adjoint (right column) fast ODE gating variables
measured in the center of Ω.
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Figure 6.5: The calcium ion concentration and its adjoint measured in the center of Ω.
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Figure 6.6: Solutions of the primal (left column) and adjoint (right column) slow ODE gating variables
measured in the center of Ω.

102

101

100

10-1

10-2

103

10-3

10-4

10-5

10-110-2
h

Error

IV

IIx

I

102

101

100
10-110-2

∆t

Error

V
IIt

Figure 6.7: Left: Error and selected contributions as the spatial mesh size varies. Right: Error and se-
lected contributions as the PDE time step varies.

21



102

101

100

10-110-2

∆s
10-3

10-1

Error
III

102

101

100

10-1

10-2

103

1 2 3 4 5 6 7 8 9 10
Ln

Error
V

Figure 6.8: Left: Error and selected contributions as the ODE time step varies. Right: Error and selected
contribution as the number of iterations Ln in the multirate iterative scheme varies.

102

101

100

0 10000 20000 30000 40000 50000
Nω

Error
IV

Figure 6.9: Error and selected contribution as the number of Voronoi cells Nω varies.

Table 6.1: Date on blocks: b is the block number, Tb is the end time in ms and |Ib | is the number of
time intervals in block number b. ∆t is the PDE time step. Mn is the number of ODE time subintervals
with max and mean values. Nx is the number of elements that are predicted and actually used.

b Tb (ms) |Ib | ∆t ×10−3 (µs) Mn Nx

min max mean max mean predicted used

1 1.9 352 2.27 25.0 5.41 8 2.02 77309 77554
2 2.3 182 1.63 3.58 2.21 6 2.07 79829 79899
3 2.6 173 1.61 1.93 1.74 5 2.13 94074 94158
4 2.8 120 1.51 1.89 1.68 6 2.18 87403 87508
5 159.5 1000 0.78 1000 157 6 2.04 45718 45935
6 266.4 1000 28.0 1000 107 2 2 45718 45935
7 293.7 1000 22.0 56.0 27.4 2 2 45718 45935
8 400 222 55.0 1000 481 2 2 45718 45935
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transfer information to the intermediate scale. We use a Monte Carlo method to deal with the very high
dimension of the system of ODEs. We also allow the ODEs to be solved on a much finer scale than
the PDE. We derive an adjoint-based a posteriori estimate that accounts for all of the key discretization
components, and use the estimate to derive indicators of element contributions to the error both in
space and time for the PDE and in time for the ODEs. The estimates take into account errors in the
data passed between the PDE and the ODEs, as well as the fact that the ODEs are modeled on a much
smaller scale than that of the PDE. The indicators are used to guide an algorithm for adaptive error
control.

Finally, we test the adaptive algorithm on a realistic problem.
Future work could consider parallel blockwise adaptivity. Since the ODEs in this model do not in-

teract inbetween spatial elements, this set of ODEs constitute an embarrassingly parallel problem and
can simply be parallelized using a graphical processing unit, GPU. Developing adaptive algorithms de-
signed for modern computer technologies with several memory hierarchies such as a GPU are indeed
interesting, and the blockwise adaptivity could be one method for limiting the number of data transfers
between hierarchies.
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