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q-VARIETIES AND DRINFELD MODULES

ALAIN THIÉRY

Abstract. Let Fq be the finite field with q elements, K be an
algebraically closed field containing Fq, K{τ} be the Ore ring of
Fq-linear polynomials and Λn be a free K{τ}-module of rank n.

In a first part, we prove that there is a bijection between the
set of Zariski closed subsets of Kn which are also Fq-vector spaces,
the so-called q-varities, and the set of radical K{τ}-submodules of
Λn. We also study the dimension of q-varieties and their tangent
spaces.

Let F be a q-variety, K{F} := Mor(F,K) be the set of Fq-linear
polynomial maps from F toK. Let A = Fq[T ] and choose δ : A −→
K a ring morphism. By definition, an A-module structure on F is
a ring morphism Φ : A −→ End(F ) such that, for all a ∈ A,

d(Φa) = δ(a)IdT (F )

where T (F ) is the tangent space of F and d(Φa) the differential
map. We prove that K(F ) := K(T )⊗K[T ]K{F} has finite dimen-
sion over K(T ). This dimension is called the rank of the A-module
and is denoted by r(F ).

We then prove that there exists c ∈ A \ {0} such that for all
a ∈ A, prime to c,

Tor(a, F ) := {x ∈ F | Φa(x) = 0} = (A/aA)r(F ).

1. Introduction

In his seminal paper [4], V.G. Drinfeld defined what is now called a
Drinfeld module. Roughly speaking, it is an action of A = Fq[T ] on
an algebraically closed field K. More precisely, it is a ring morphism
Φ : A −→ K{τ}, the Ore ring, such that the first coefficient of Φa is a.
In another important paper [1], G. Anderson defined T -modules,

which are a generalization of Drinfeld modules. It is an action of A on
Kn such that the differential of the action of a is just aIdKn +N where
N is nilpotent.
In the present paper, we first study subvarieties of Kn which are de-

fined by Fq-linear polynomial equations. We call them q-varieties. The
motivation is that we believe that q-varieties are the natural objects
on which an action of A can be defined.
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2 ALAIN THIÉRY

In the first paragraphs, we prove a sort of Nullstellenstatz for q-
varieties. We also define the notions of morphism, irreducibility, di-
mension, tangent space for q-varieties. There is an obvious analogy
with the classical algebraic geometry, see chapter 1 of [8] for example.
Since they are additive algebraic groups, it is well-known, and easy

to prove, that q-varieties are isomorphic to some Kr × F where F is a
finite Fq-vector space. So the reader can think that these objects are
not really worth studying, but K-vector spaces of finite dimension are
all isomorphic to some Kr and we study them in full generality.
In paragraph 6, we define the A-module structure in this context: let

F be a q-variety, an A-module structure is a morphism of Fq-algebras
Φ : A −→ End(F ) such that, for all a ∈ A,

d(Φa) = aIdT (F )

where d(Φa) is the differential of Φa and T (F ) the tangent space of F
(we forget the nilpotent part for simplicity). Let K{F} := Mor(F,K)
be the set of Fq-linear polynomial maps from F to K. Then K{F} is
a K-vector space and an A-module, so it is a K⊗Fq

A = K[T ]-module.
In [1], the rank of the module is by definition the rank of K{F} as

a K[T ]-module, if free and finitely generated. In this case, the module
is said to be abelian. But, of course, all modules are not abelian. For
example, the trivial module, i.e. φa(x) = ax, is not abelian.
To solve this difficulty, we prove that K(F ) := K(T ) ⊗K[T ] K{F}

has finite dimension over K(T ). This dimension is called the rank of
the A-module and is denoted by r(F ). Obviously, in the case of abelian
modules, our definition of the rank matches Anderson’s definition. It
is also easy to see that the trivial module has rank equal to 0.
In paragraph 7, we study torsion points and prove the following

result: There exists c ∈ A \ {0} such that for all a ∈ A, prime to c,

Tor(a, F ) := {x ∈ F | Φa(x) = 0} = (A/aA)r(F ).

This means that A-modules are almost regular.
In paragraph 8, we define an analogue of the Jacobian and the Picard

group. In paragraph 9, some analogues of Faltings’theorem, Mordell–
Lang conjecture or Manin-Mumford conjecture are stated in this con-
text following L. Denis ideas.

2. Definitions and first properties

Let p be a prime number and K an algebraically closed field of
characteristic p. Fix q = pl a power of p. The finite subfield of K
with q elements will be denoted by Fq.
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Let τ = Xq be the Frobenius polynomial. Note that, for i ≥ 0,
τ i := τ ◦ . . . ◦ τ = Xqi . The set of Fq-linear polynomials K{τ} :=

{P (X) =
∑d

i=0 aiX
qi | ai ∈ K} is a non-commutative unitary ring

under composition. We will write P{τ} for P (X).
It is well-know thatK{τ} is left and right euclidean (see [6], Prop.1.6.2

and Prop.1.6.5). It implies the following lemma (see [6], Prop.5.4.8) :

Lemma 2.1. Let L be a m× n matrix with coefficients in K{τ}, then
there exist matrices U ∈ GLm(K{τ}) and V ∈ GLn(K{τ}) such that
ULV is diagonal.

Let n be a positive integer, X1, . . . , Xn be n indeterminates, τi = Xq
i

(1 ≤ i ≤ n) and Λn := K{τ1} ⊕ . . . ⊕ K{τn}, which is a free K{τ}-
module of rank n for the obvious action : P{τ}.Q(Xi) = P (Q(Xi)).

Definition 2.2. Let S ⊂ Λn, we define Z(S), the “zeroes of S”, by

Z(S) = {(x1, . . . , xn) ∈ Kn | ∀f ∈ S, f(x1, . . . , xn) = 0}.

The set Z(S) is called a q-variety.

Remark 2.3. The q-varieties are Zariski closed subsets of Kn and are
also Fq-vector spaces. It can be proved that it is a caracterisation of
q-varieties but we won’t use this result here.

Proposition 2.4. An intersection of q-varieties is a q-variety.

Proof. We have trivially
⋂
i∈I Z(Si) = Z(∪i∈ISi). �

Definition 2.5. Let F ⊂ Kn, we define F as the intersection of all
q-varieties containing F . Using proposition 2.4, F is the smallest q-
variety containing F .

Remark 2.6. Let Λ be the K{τ}-module generated by S in Λn. One
gets immediatly that Z(S) = Z(Λ), so, in the definition of a q-variety,
we can suppose that S is a K{τ}-submodule of Λn. Furthermore, since
K{τ} is Noetherian, the K{τ}-submodules of Λn are finitely generated,
so that a q-variety can be defined by a finite number of equations.

Definition 2.7. Let F ⊂ Kn, we define M(F ) by

M(F ) = {f ∈ Λn | ∀(x1, . . . , xn) ∈ F, f(x1, . . . , xn) = 0}.

It is immediat that M(F ) is a K{τ}-submodule of Λn.

Proposition 2.8. Let F ⊂ Kn. We have the following equality :

Z(M(F )) = F .
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Proof. By definitions 2.2 and 2.7, F ⊂ Z(M(F )). Definition 2.5 implies
that F ⊂ Z(M(F )). Conversely, F is a q-variety, so there exists a
submoduleM such that F = Z(M). Since F ⊂ F , we immediatly have
that M ⊂M(F ). It implies trivially that Z(M(F )) ⊂ Z(M) = F . �

Remark 2.9. The module M(F ) has the following property : let f ∈
Λn be such that τf ∈M(F ), then f ∈M(F ). It means that the quotient
module Λn/M(F ) has no τ -torsion.

This leads to the following definition :

Definition 2.10. Let Λ be a submodule of Λn. We define Rad(Λ) by

Rad(Λ) = {f ∈ Λn | ∃N ∈ N, τNf ∈ Λ}.

A module Λ such that Rad(Λ) = Λ is said to be radical. For example,
for any F ⊂ Kn, the module M(F ) is radical.

Proposition 2.11. Let Λ be a submodule of Λn, then Rad(Λ) is also
a submodule of Λn and Rad(Λ) is radical.

Proof. We only have to prove that if f ∈ Rad(Λ) and P ∈ K{τ}, then
Pf ∈ Rad(Λ). By definition, there exists N ∈ N such that τNf ∈ Λ.

Let P =
∑d

i=0 aiτ
i, then τNP =

∑d
i=0 a

qN

i τN+i = (
∑d

i=0 a
qN

i τ i)τN =

QτN with Q =
∑d

i=0 a
qN

i τ i ∈ K{τ}. Now we have τNPf = QτNf . But
τNf ∈ Λ and Λ is a K{τ}-module, hence τNPf ∈ Λ. By definition,
Pf ∈ Rad(Λ). �

Definition 2.12. Let F ⊂ Kn and H ⊂ Km be q-varieties. A mor-
phism from F to H is a map ψ : F −→ H such that there exists
f1, . . . , fm ∈ Λn satisfaying :

∀x ∈ F, ψ(x) = (f1(x), . . . , fm(x)).

An isomorphism is a bijective morphism ψ such that ψ−1 is also a
morphism.

Example 2.13. The map τ : K −→ K is a morphism. It is bijective
but it is not an isomorphism.
Let P ∈ K{τ} and ψ : K2 −→ K2 be the morphism defined by the

matrix

(
τ 0 P
0 τ 0

)
. It means that ψ(x1, x2) = (x1+P (x2), x2). It is clear

that ψ is an isomorphism since ψ−1 is given by the matrix

(
τ 0 −P
0 τ 0

)
.

Theorem 2.14. Let F ⊂ Kn andH ⊂ Km be q-varieties andMor(F,H)
be the Fq-vector space of all morphisms from F to H, then there exists
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a fonctorial isomorphism of Fq-vector spaces

Mor(F,H) ≃ HomK{τ}(Λm/M(H),Λn/M(F )).

Proof. Let ψ : F −→ H be a morphism given by ψ(x) = (f1(x), . . . , fm(x)).
We can define aK{τ}-linear map uψ from Λm to Λn/M(F ) by uψ(Xj) =
fj mod M(F ). It is clear that it does not depend on the choice of the
fj. Let g =

∑m
j=1 gj(Xj) ∈M(H) with gj ∈ K{τ} and x ∈ F ,

uψ(g)(x) = uψ

(
m∑

j=1

gj(Xj)

)
(x)

=

m∑

j=1

gj (uψ(Xj)) (x)

=
m∑

j=1

gj(fj)(x)

= g(f1(x), . . . , fm(x))

= 0

since (f1(x), . . . , fm(x)) ∈ H and g ∈M(H). It follows that uψ(g) = 0
mod M(F ) so uψ : Λm/M(H) −→ Λn/M(F ) is well-defined.
Conversely, let u : Λm/M(H) −→ Λn/M(F ) be a K{τ}-modules

morphism and f1, . . . , fm ∈ Λn be such that

u(Xj) ≡ fj mod M(F ).

Let us define ψu : F −→ Km by

∀x ∈ F, ψu(x) = (f1(x), . . . , fm(x)).

It is clear that ψu does not depend on the choice of the fj. We now have
to show that ψu(F ) is included in H . Let g =

∑m
j=1 gj(Xj) ∈ M(H)
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and x ∈ F ,

g (ψu(x)) =

m∑

j=1

gj(fj)(x)

=

m∑

j=1

gj
(
u(Xj)

)
(x)

= u

(
m∑

j=1

gj(Xj)

)
(x) (since u is K{τ}-linear)

= u

(
m∑

j=1

gj(Xj)

)
(x)

= u(g)(x) = u(0)(x) = 0.

By definition, it implies that ψu(x) ∈ Z(M(H)). But Z(M(H)) =
H = H by proposition 2.8, proving that ψu(F ) ⊂ H .

It is now straightforward to prove that ũ : ψ 7→ uψ and ψ̃ : u 7→ ψu
are reciprocal isomorphisms. �

The previous theorem implies that the K{τ}-module Λn/M(F ) de-
pends only on the isomorphism class of F , so we can set the following
definition :

Definition 2.15. Let F ⊂ Kn be a q-variety. The K{τ}-module
Λn/M(F ) is called the module of Fq-linear functions on F and is de-
noted by K{F}. By construction, K{F} = Mor(F,K).

Proposition 2.16. Let F ⊂ Kn and H ⊂ Km be q-varieties, and
ψ : F −→ H be a morphism from F to H. Then for any q-variety
G ⊂ H, ψ−1(G) is q-variety.

Proof. Let S ⊂ Λm be a set defining H : H = Z(S). One gets from def-
initions that ψ−1(G) = H∩Z({g(f1, . . . , fm) | g ∈ S}) where f1, . . . , fm
are as in definition 2.12. �

Remark 2.17. The kernel of a morphism is a q-variety but, indeed,
any q-variety can be expressed as a kernel : let F ⊂ Kn be a q-variety
defined by a finite number of equations f1, . . . , fm (see remark 2.6).
Then the morphism ψ : Kn −→ Km defined by ψ(x) = (f1(x), . . . , fm(x))
has a kernel equal to F .

Lemma 2.18. Let F ⊂ Kn be a finite Fq-vector space, then F is a
q-variety.
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Proof. We prove it by induction on d = dimFq
F . If d = 0, F = {0} =

Z(X1, . . . , Xn) is a q-variety. If d = 1, F = Fqx for some x ∈ Kn.
There exists a K-linear bijective map ψ such that ψ(x) = (1, 0, . . . , 0).
But Fq × {0} × . . .× {0} = Z(Xq

1 −X1, X2, . . . , Xn), so it is q-variety
and, by construction, F = ψ−1(Fq × {0} × . . . × {0}), so it is also a
q-variety.
Suppose that any Fq-vector space of dimension d is a q-variety and

let F be an Fq-vector space of dimension d + 1. Choose H ⊂ F a
subvector space of dimension 1 and ψ a morphism such that kerψ = H
(see remark 2.17). Then dimFq

ψ(F ) = d, so it is a q-variety. By
construction F = ψ−1(ψ(F )), so it is also a q-variety. �

3. Main theorem on q-Varieties

Lemma 3.1. Let Λ be a submodule of Λn, then

M(Z(Λ)) = Rad(Λ).

Proof. By definition, Λ ⊂ M(Z(Λ)). Taking radicals, we have Rad(Λ) ⊂
Rad(M(Z(Λ))) =M(Z(Λ)) since M(F ) is a radical module for any F .
Conversely, let f1, . . . , fm ∈ Λn be a finite generating set for Λ. For

1 ≤ i ≤ m, write fi =
∑n

j=1Li,j(Xj) with Li,j ∈ K{τ}. The matrix

L = (Li,j)1≤i≤m
1≤j≤n

is such that kerL = Z(Λ). Applying Lemma 2.1,

there exist matrices U ∈ GLm(K{τ}) and V ∈ GLn(K{τ}) such that
D = ULV is diagonal. Without loss of generality, we can suppose that
Dii 6= 0 for i ≤ r and Dii = 0 if i > r. It means that, up to changing
variables and the generating set, one can suppose that

Λ = K{τ}P1(X1) + . . .+K{τ}Pr(Xr)

with P1, . . . , Pr ∈ K{τ} \ {0}. It follows that

Z(Λ) = kerP1 × . . .× kerPr ×Kn−r.

Let g =
∑n

i=1 gi(Xi) ∈M(Z(Λ)). For all i > r and xi ∈ K, (0, . . . , 0, xi, 0, . . . , 0) ∈
Z(Λ). It implies that gi(xi) = 0, so that gi = 0. For 1 ≤ i ≤ r, write
Pi = τNiQi with Qi separable. By construction, kerQi = kerPi ⊂
ker gi. Since K{τ} is Euclidean, gi = SQi +R with degτ R < degτ Qi.
But kerQi ⊂ kerR and dimFq

kerQi = degτ Qi > degτ R = dimFq
kerR

unless R is zero. It follows that gi = SQi and

τNigi = τNiSQi = TτNiQi = TPi ∈ Λ

where T ∈ K{τ} is such that τNiS = TτNi (see proof of proposition
2.11). Taking N = max1≤i≤rNi, one gets immediatly that τNg ∈
Λ. �
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We can now summarize this in the following theorem.

Theorem 3.2 (Main Theorem). The map Z from the set of radical
modules of Λn to the set of q-varieties included in Kn and the map M
from the set of q-varieties included in Kn to the set of radical modules
of Λn are reciprocal bijections.

We now study the direct image of a q-variety. It is possible to use gen-
eral theorems on algebraic groups (see [2]) but we give a self-contained
proof. First we need the following lemma :

Lemma 3.3. Let H ⊂ F ⊂ Kn be Fq-vector spaces such that F/H is
finite and H is a q-variety, then F is also a q-variety.

Proof. Let ψ be a morphism such that H = kerψ (see remark 2.17).
Then ψ(F ) ≃ F/H is finite, hence it is a q-variety by lemma 2.18. By
construction, F = ψ−1(ψ(F )), so it is a q-variety. �

Theorem 3.4. Let F and G be q-varieties, and ψ : F −→ G be a
morphism. Then ψ(F ) is a q-variety.

Proof. In proof of lemma 3.1, we showed that there exists P1, . . . , Pr ∈
K{τ} \ {0} such that, up to an automorphism of Kn, F = kerP1 ×
. . .× kerPr ×Kn−r. Then H = {0} × . . .× {0} ×Kn−r is a q-variety
such that F/H is finite. Hence ψ(F )/ψ(H) is also finite. Applying
lemma 3.3, it is sufficient to prove that ψ(H) is a q-variety. Since
H ≃ Kn−r, we can consider ψ|H as a morphism from Kn−r to Km.
Using lemma 2.1, ψ(H) is equal, up to an automorphism of Km, to the
direct image of Kn−r by a diagonal morphism. Since for any non-zero
polynomial P ∈ K{τ}, we have P (K) = K, the image is clearly of the
form Ks × {0} × . . .× {0}, hence is a q-variety. �

We now give a few consequences of this theorem.

Proposition 3.5. Let F1 ⊂ Kn and F2 ⊂ Kn be q-varieties, then
F1 + F2 is also a q-variety. Indeed, if F1 = Z(Λ1) and F2 = Z(Λ2) for
some modules Λ1 and Λ2, then F1 + F2 = Z(Λ1 ∩ Λ2)

1.

Proof. It is clear that F1 × F2 is a q-variety in Kn × Kn = K2n and
that ψ : Kn ×Kn −→ Kn defined by ψ(x, y) = x + y is a morphism.
Hence by theorem 3.4, F1 + F2 = ψ(F1 × F2) is a q-variety.
Now, let Λ =M(F1+F2). Since F1 ⊂ F1+F2, Λ ⊂M(F1) = Rad(Λ1)

by lemma 3.1. By the same argument, Λ ⊂ Rad(Λ2). It follows that
Λ ⊂ Rad(Λ1) ∩ Rad(Λ2) = Rad(Λ1 ∩ Λ2) (the last equality is left to
the reader). Applying Z, we get Z(Λ1 ∩ Λ2) = Z(Rad(Λ1 ∩ Λ2)) ⊂

1A proof, directly from the definition, would be welcome.
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Z(Λ) = F1 + F2 = F1 + F2 since F1 + F2 is a q-variety by theorem
3.5. Conversely, since Λ1 ∩ Λ2 ⊂ Λ1, F1 = Z(Λ1) ⊂ Z(Λ1 ∩ Λ2).
Using the same argument with F2, we have F2 ⊂ Z(Λ1 ∩ Λ2), hence
F1 + F2 ⊂ Z(Λ1 ∩ Λ2). �

Proposition 3.6. Let H ⊂ F be q-varieties, then there exists a q-
variety, denoted by F/H, and a morphism Π : F −→ F/H with ker Π =
H satisfaying the following property : for any morphism ψ : F −→ G
with ψ|H = 0, there exists a unique morphism ψ : F/H −→ G such

that ψ = ψ ◦ Π. The q-variety F/H is called the quotient of F by H
and the couple (F/H,Π) is unique up to isomorphism. Furthermore,
the map Π is surjective.

Proof. It is clear that, if it exists, the quotient is unique. Let us prove
the existence.
Let f1, . . . , fm ∈ Λn be a generating set of M(H) and define Π :

Kn −→ Km by Π(x) = (f1(x), . . . , fm(x)). It is clear that Π is a
morphism and that ker Π = H . By theorem 3.4, Π(F ) is a q-variety
that will be denoted by F/H (note that this F/H is isomorphic to the
standard one as an Fq-vector space). We now write Π for Π|F : F −→
F/H for simplicity.
Let ψ : F −→ G ⊂ Kr be a morphism with ψ|H = 0. By def-

inition, there exists g1, . . . , gr ∈ Λn such that for all x ∈ F , ψ(x) =
(g1(x), . . . , gr(x)). The condition ψ|H = 0 means that gi ∈M(H) for all
1 ≤ i ≤ r. Hence there exists ai,j ∈ K{τ} such that gi =

∑m
j=1 ai,jfj.

Let us define the morphism ψ : Km −→ Kr by

ψ(x1, . . . , xm) = (

m∑

j=1

a1,j(xj), . . . ,

m∑

j=1

ar,j(xj)).

By construction, for all x ∈ F , we have ψ(x) = ψ(Π(x)). It implies
that ψ|F/H is a morphism from F/H to G, proving the existence of ψ.

Since Π is surjective, the map ψ is unique.
�

Remark 3.7. Let H ⊂ F be q-varieties, we still denote M(H) = {f ∈
K{F} | ∀x ∈ H, f(x) = 0}. By construction K{H} = K{F}/M(H)
and K{F/H} ≃ M(H). In other words, the following sequence of
K{τ}-modules is exact

0 → K{F/H} → K{F} → K{H} → 0.

Remark 3.8. Let ψ : F −→ H be a morphism of q-varieties. The
previous proposition shows that ψ induces a bijective morphism ψ from



10 ALAIN THIÉRY

F/ kerψ to ψ(F ). Allthough this morphism is a bijection, it is not
necessarily an isomorphism since the reciprocal bijection might not be
a morphism of q-varieties, take ψ(x) = xq for instance.

This leads to the following definition :

Definition 3.9. Let ψ : F −→ H be a morphism of q-varieties. We
say that ψ is separable if the bijective morphism ψ : F/ kerψ −→ ψ(F )
is an isomorphism.

4. Irreducible q-Varieties and dimension

Definition 4.1. Let F be a q-variety. It is said to be irreducible if the
only sub-q-variety of finite index is F itself.

Example 4.2. (1) It is clear that {0} is irreducible.
(2) The sub-q-varieties of K are finite or equal to K, hence K is

irreducible since K is infinite.

Proposition 4.3. (1) Let F be an irreducible q-variety and ψ :
F −→ G be a morphism, then ψ(F ) is irreducible.

(2) Let F1 ⊂ Kn and F2 ⊂ Kn be irreducible q-varieties, then F1 +
F2 is irreducible. It implies that Kn is irreducible.

Proof. (1) Let H ⊂ ψ(F ) be a q-variety such that ψ(F )/H is fi-
nite. Since the induced map ψ : F/ψ−1(H) −→ ψ(F )/H is
an isomorphism of Fq-vector spaces, F/ψ

−1(H) is finite. Hence
ψ−1(H) = F , and H = ψ(F ).

(2) Let H ⊂ F1 + F2 be a q-variety such that (F1 + F2)/H is fi-
nite. Since the canonical map F1/(F1 ∩ H) −→ (F1 + F2)/H
is injective, F1/(F1 ∩ H) is finite. Hence F1 = F1 ∩ H , that is
F1 ⊂ H . By symmetry, we also have F2 ⊂ H . It follows that
F1 + F2 ⊂ H .

�

Proposition 4.4. Let F be a q-variety and K{F} be the K{τ}-module
of Fq-linear functions on F . Then the following properties are equiva-
lent

(1) F is irreducible.
(2) F is isomorphic to Km for some m.
(3) K{F} is a free K{τ}-module.
(4) K{F} is a torsion free K{τ}-module.

Proof. We can suppose, as in proof of lemma 3.1, that

M(F ) = K{τ}P1(X1) + . . .+K{τ}Pr(Xr)
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for some P1, . . . , Pr ∈ K{τ} \ {0}. It follows that

F = kerP1 × . . .× kerPr ×Kn−r.

Suppose that F is irreducible. The q-variety {0}× . . .×{0}×Kn−r

is clearly of finite index in F , so it must be equal to F , hence F =
{0} × . . .× {0} ×Kn−r is isomorphic to Kn−r.
Suppose that F is isomorphic to Km. Then, by theorem 2.14, K{F}

is isomorphic to K{Km} = Λm. Hence K{F} is free.
Suppose that K{F} is free, then, trivially, K{F} is torsion free.
Suppose that K{F} = Λn/M(F ) is torsion free. For 1 ≤ i ≤ r,

we have Pi{τ}.Xi ≡ 0 in Λn/M(F ), hence Xi ∈ M(F ). It implies
immediatly that Pi = Xi and F = {0} × . . . × {0} × Kn−r which is
isomorphic to the irreducible q-variety Kn−r. �

Lemma 4.5. Let F be a q-variety. Then there exists a necessarily
unique irreducible sub-q-variety which is maximal for inclusion. It is
denoted by F̊ and is called the irreducible component of F . Further-
more, F/F̊ is finite and F̊ is the only irreducible q-variety satisfying
such property.

Proof. As in proof of proposition 4.4, we can suppose, up to an auto-
morphism of Kn, that F = F1× . . .×Fr×K

n−r with the Fi being finite
Fq-vector spaces. Let H = {0}× . . .×{0}×Kn−r. It is an irreducible
sub-q-variety of finite index in F .
Now let G ⊂ F be an irreducible q-variety. Since F/H is finite,

G/(G ∩H) is also finite. But G is irreducible, so G = G ∩H , proving
that G ⊂ H . �

Lemma 4.6. Let F and H be q-varieties and ψ : F −→ H be a
morphism. Then

ψ(F̊ ) = ˚ψ(F ).

Proof. By proposition 4.3, ψ(F̊ ) is irreducible. Since F̊ has finite index

in F , ψ(F̊ ) has finite index in ψ(F ), proving the lemma. �

Definition 4.7. Let F be a q-variety. If F0 ( F1 ( . . . ( Fm ⊂ F is
a chain of irreducible q-varieties, the integer m is called the length of
the chain.

Theorem 4.8. Let F ⊂ Kn be a q-variety. Then,

(1) All chains included in F have length less than n.
(2) All maximal chains included in F have the same length.

We will define dimF to be the maximal length of a chain included in
F . For example, we have dimKn = n.
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Proof. Without loss of generality, we can replace F by F̊ and sup-
pose that F is irreducible. It follows from proposition 4.4 that F is
isomorphic to some Km. So it is sufficient to prove the theorem for
F = Kn. We will do it by induction on n, including the property that
dimKn = n. It is obviously true for n = 0 and n = 1 since the only
irreducible are {0} in the first case and {0} and K in the second one.
We suppose that the theorem is true up to n. Now let F0 ( F1 (

. . . ( Fm ⊂ Kn+1 be a chain of irreducible q-varieties. If m = 0,
m ≤ n + 1. If m > 0, Fm−1is an irreducible q-variety, so, up to an
automorphism of Kn+1, Fm−1 = {0} × . . . × {0} × Kn+1−r. Since
Fm−1 6= Kn+1, r 6= 0, hence we can apply the induction hypothesis to
Fm−1 ≃ Kn+1−r : m− 1 ≤ n+ 1− r. It implies m ≤ n+ 1.
Suppose now that F0 ( F1 ( . . . ( Fm ⊂ Kn+1 is a maximal chain

(for example a chain of maximal length). Since Kn+1 is irreducible, we
must have Fm = Kn+1. Up to an automorphism, one can suppose that
Fm−1 = {0}× . . .×{0}×Kn+1−r. The number of zeros is the product
must be equal to 1, otherwise we could replace one of them by K to
get an extra irreducible in the chain which is supposed to be maximal.
Hence Fm−1 = {0} × Kn. But F0 ( F1 ( . . . ( Fm−1 is a maximal
chain. By induction, its length is dimKn = n. So m − 1 = n, that is
m = n+ 1, proving that all maximal chains have the same length and
that dimKn+1 = n+ 1. �

Corollary 4.9. Let F be a q-variety. Then

dimF = rankK{τ}K{F}.

Proof. Let F̊ be the irreducible component of F . Hence F/F̊ is finite

and the K-vector space K{F/F̊} ⊂ homFq
(F/F̊ ,K) has finite dimen-

sion. It follows that rankK{τ}K{F/F̊} = 0. Now by remark 3.7,

rankK{τ}K{F} = rankK{τ}K{F̊}+ rankK{τ}K{F/F̊}.

Furthermore, dimF = dim F̊ . Hence without loss of generality, we can
suppose that F is irreducible.
By proposition 4.4, we can suppose that F = Kn. But K{Kn} = Λn

and dimKn = n by theorem 4.8. �

Theorem 4.10. Let F and H be q-varieties and ψ : F −→ H be a
morphism. Then

dimF = dimkerψ + dimψ(F ).

Remark 4.11. (1) Appliying the theorem to the canonical mor-
phism Π : F −→ F/H gives dimF/H = dimF − dimH as
expected.
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(2) It implies immediatly that dimF/ kerψ = dimψ(F ).

Proof. 2 Let r = dim kerψ, s = dimψ(F ), {0} = K0 ( K1 ( . . . (
Kr ⊂ kerψ be a maximal chain of irreducibles and {0} = I0 ( I1 (

. . . ( Is ⊂ ψ(F ) be a maximal chain of irreducibles. For 0 ≤ i ≤

s, set Fi = ˚ψ−1(Ii). In particular F0 = ˚kerψ = Kr. Furthermore,
by lemma 4.5, Fi has finite index in ψ−1(Ii), hence ψ(Fi) has finite
index in ψ(ψ−1(Ii)) = Ii since Ii ⊂ ψ(F ). But ψ(Fi) is irreducible by

proposition 4.3, so ψ(Fi) = I̊i = Ii. It follows that the Fi are distinct
since the Ii are distinct.
Let us consider the chain {0} = K0 ( K1 ( . . . ( Kr = F0 ( F1 (

. . . ( Fs. We have to prove that it is maximal. The first part of the
chain is maximal by hypothesis. Now, let G be irreducible such that
Fi ⊂ G ⊂ Fi+1 for 0 ≤ i ≤ s − 1. It implies that ψ(Fi) ⊂ ψ(G) ⊂
ψ(Fi+1). But we have just seen that ψ(Fi) = Ii. By maximality, we
must have ψ(G) = Ii or ψ(G) = Ii+1. If G is an irreducible such that
Fs ⊂ G ⊂ F , Is = ψ(Fs) ⊂ ψ(G). But Is is the irreducible component
of ψ(F ), hence ψ(G) ⊂ Is. So, in any case, we have ψ(G) = Ii for
0 ≤ i ≤ s. We deduce that G + kerψ = ψ−1(Ii). Since Kr = F0 ⊂ G,
G = G+Kr, so G has finite index in G+kerψ = ψ−1(Ii). It follows that
G is the irreducible component of ψ−1(Ii), which is Fi by definition. �

5. Tangent space

Let f =
∑n

i=1 Pi(Xi) be an element of Λn. We define d(f) to be
the linear part of f . More precisely, d(f) =

∑n
i=1 a0,iXi with Pi =∑

j≥0 aj,iX
qj

i . We also have d(f) =
∑n

i=1
∂f
∂Xi

Xi.

Definition 5.1. Let F ⊂ Kn be a q-variety. We define the tangent
space of F , denoted by T (F ), by

T (F ) =
⋂

f∈M(F )

ker d(f) = {(x1, . . . , xn) | ∀f ∈M(f), d(f)(x1, . . . , xn) = 0}.

Note that T (F ) is a sub-K-vector space of Kn.

Proposition 5.2. Let F ⊂ Kn and H ⊂ Km be q-varieties, and ψ :
F −→ H be a morphism. Choose f1, . . . , fm ∈ Λn such that for x ∈ F ,
ψ(x) = (f1(x), . . . , fm(x)). Then the map d(ψ) defined by

d(ψ) : T (F ) −→ T (H)
x 7→ (d(f1)(x), . . . , d(fm)(x))

is a well-defined morphism of K-vector spaces.

2It is certainly possible to prove the formula using corollary 4.9 and the rank of
a module.
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Proof. If g1, . . . , gm ∈ Λn are such that for x ∈ F , ψ(x) = (g1(x), . . . , gm(x)).
Then for 1 ≤ i ≤ m, fi − gi ∈ M(F ), hence, by definition, for all
x ∈ T (F ), d(fi − gi)(x) = 0, so d(fi)(x) = d(gi)(x), proving that d(ψ)
does not depend on the choice of the fi.
We still have to prove that (d(f1)(x), . . . , d(fm)(x)) ∈ T (H) for x ∈

T (F ). Let x ∈ T (F ) and g ∈M(H). By chain rule,

d(g)((d(f1)(x), . . . , d(fm)(x))) = d(g(f1, . . . , fm))(x).

But g(f1, . . . , fm) ∈ M(F ) by construction, so d(g(f1, . . . , fm))(x) = 0
by definition of T (F ). It follows that d(g)((d(f1)(x), . . . , d(fm)(x))) =
0, proving that (d(f1)(x), . . . , d(fm)(x)) ∈ T (H) �

Proposition 5.3. Let F ⊂ Knand H ⊂ Km be q-varieties. The map

d : Mor(F,H) −→ HomK(T (F ), T (H))
ψ 7→ d(ψ)

is fonctorial. In particular, it implies that T (F ) depends only on the
isomorphic class of F .

Proof. This is nothing else but chain rule. �

Proposition 5.4. Let F be a q-variety, then T (F̊ ) = T (F ) and

dimK T (F ) = dimF.

Proof. We can suppose, up to an automorphism of Kn, that

M(F ) = K{τ}P1(X1) + . . .+K{τ}Pr(Xr)

for some P1, . . . , Pr ∈ K{τ}\{0}, so F = kerP1×. . .×kerPr×K
n−r and

F̊ = {0}×. . .×{0}×Kn−r. SinceM(F ) is radical, d(Pi) 6= 0. It follows
immediatly that T (F ) :=

⋂r
i=1 ker d(Pi) = {0}× . . .×{0}×Kn−r. �

Proposition 5.5. Let H ⊂ F be q-varieties, then

(1) T (H) ⊂ T (F ).
(2) The K-linear map d(Π) : T (F ) −→ T (F/H) is surjective.

Proof. The first property is obvious from the definition.
For the second one, we suppose in a first time that F is irreducible,

hence, up to an isomorphism, F = Kn. Now, we can also suppose that
M(H) = K{τ}P1(X1)+. . .+K{τ}Pr(Xr) for some P1, . . . , Pr ∈ K{τ}\
{0}. By construction, F/H is the image of the following morphism
which is clearly surjective, hence F/H = Kr :

Π : F = Kn −→ Kr

(x1, . . . , xn) 7→ (P1(x1), . . . , Pr(Xr))
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By definition, the tangent map is given by

d(Π) : T (F ) = Kn −→ T (F/H) = Kr

(x1, . . . , xn) 7→ (d(P1)(x1), . . . , d(Pr)(xr))

Since M(H) is radical, d(Pi) 6= 0, proving that d(Π) is surjective.

We return to the (quite technical) general case. Let F̊ be the irre-

ducible component of F . Then Π(F̊ ) is the irreducible component
of Π(F ) = F/H by lemma 4.6. Suppose that we can show that

Π(F̊ ) = F̊ /(F̊ ∩ H) as q-varieties.3 By the previous case, we have

a surjection T (F̊ ) −→ T (Π(F̊ )) = T ( ˚F/H). But, by proposition 5.4,

T (F̊ ) = T (F ) and T ( ˚F/H) = T (F/H), proving the proposition. �

To finish the proof, we need the following lemma

Lemma 5.6. Let H ⊂ F be q-varieties, Π : F −→ F/H be the projec-

tion morphism and F̊ be the irreducible component of F , then

Π(F̊ ) = F̊ /(F̊ ∩H).

Proof. As usual, we can suppose that F = F1 × . . .× Fr ×Kn−r with
the Fi being finite Fq-vector spaces, so F̊ = {0}× . . .×{0}×Kn−r. Let
f1, . . . , fm ∈ Λn be a generating set of M(H). The map Π is defined
by Π(x) = (f1(x), . . . , fm(x)) (see proof of proposition 3.6). So

Π(F̊ ) = {(f1(0, . . . , 0, xr+1, . . . , xn), . . . , fm(0, . . . , 0, xr+1, . . . , xn))

| (xr+1, . . . , xn) ∈ Kn−r}.

Let us prove that f1, . . . , fm, X1, . . . , Xr is a generating set for
M(F̊ ∩H).

Lemma 5.7. Let M ⊂ Λn be a radical module containing a separable
polynomial P1(X1) then M +K{τ}X1 is also radical.

Proof. Let us consider the K{τ}-modules canonical isomorphim

(M +K{τ}X1)/M ≃ K{τ}X1/(K{τ}X1 ∩M).

SinceK{τ} is euclidean, there existsD1 ∈ K{τ}X1 such thatK{τ}X1∩
M = K{τ}D1. By assumption, P1 ∈ K{τ}X1 ∩M , hence D1 divides
P1, so D1 is separable. Furthermore, since K is algebraically closed,
τK{τ} = K{τ}τ . This implies easily that τ(K{τ}X1/K{τ}D1) =
K{τ}X1/K{τ}D1. Now let P ∈ Λn such that τP ∈M +K{τ}X1. By
the previous result, there exists Q ∈M +K{τ}X1 such that τP ≡ τQ
mod M , hence τ(P − Q) ∈ M . But M is radical, so P − Q ∈ M . It

3they are obviously equal as Fq-vector spaces.
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follows immediatly that P ∈M +K{τ}X1 proving that M +K{τ}X1

is radical. �

By an obvious induction, M +K{τ}X1 + . . .+K{τ}Xr is a radical

module. Clearly, Z(M +K{τ}X1 + . . .+K{τ}Xr) = F̊ ∩H , proving

that M(F̊ ∩H) =M +K{τ}X1 + . . .+K{τ}Xr and the claim.
It follows that

F̊ /(F̊ ∩H) = {(f1(x), . . . , fm(x), x1, . . . , xr) | x ∈ F̊}

= {(f1(0, . . . , 0, xr+1, . . . , xn), . . . ,

fm(0, . . . , 0, xr+1, . . . , xn), 0, . . . , 0) | (xr+1, . . . , xn) ∈ Kn−r}.

This proves the lemma. �

We can now give a criteria for separable morphisms.

Proposition 5.8. Let ψ : F −→ H be a morphism of q-varieties and
ψ be the induced bijective morphism from F/ kerψ to ψ(F ). Then ψ is
separable if and only if d(ψ) is a bijection.

Remark 5.9. (1) Since dimT (F/ kerψ) = dimF/ kerψ = dimψ(F ) =
dimT (ψ(F )), d(ψ) is a bijection if and only if it is injective or
surjective.

(2) Let us denote by ψ̃ the induced morphism ψ̃ : F −→ ψ(F ). It

is clear that ψ̃ = ψ ◦ Π, so d(ψ̃) = d(ψ) ◦ d(Π). By proposition
5.5, d(Π) is surjective, hence d(ψ) is surjective if and only if

d(ψ̃) is surjective.

Proof. Suppose that ψ is separable. By definition, ψ is an isomorphism,
hence d(ψ) is also an isomorphism by proposition 5.3.
Conversely, suppose that d(ψ) is a bijection. We assume first that

F is irreducible. Let r = dimF/ kerψ = dimψ(F ), so that, up to
isomorphisms, F/ kerψ = ψ(F ) = Kr and ψ : Kr −→ Kr is a bijective
morphism. Using lemma 2.1, up to automorphisms, ψ is diagonal.
Since it is injective, the diagonal terms must be powers of τ . But d(ψ)
is a bijection, hence the exponents must be 0, so ψ is the identity map,
up to isomorphisms.
We now consider the general case. By lemma 4.6, the image of
˚F/ kerψ by ψ is the irreducible component of ψ(F ), so ψ : ˚F/ kerψ −→

˚ψ(F ) is a bijective morphism. Since T (H̊) = T (H) for any H , d(ψ) :

T ( ˚F/ kerψ) −→ T ( ˚ψ(F ) is a bijection by hypothesis. It follows from

the previous case that ψ : ˚F/ kerψ −→ ˚ψ(F ) is an isomorphism. We
will be done if we can apply the following lemma to the reciprocal map

ψ
−1
. �
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Lemma 5.10. Let F and H be q-varieties and ψ : F −→ H be an
Fq-linear map such that ψ|F̊ : F̊ −→ H is a morphism. Then ψ is a
morphism.

Proof. Without loss of generality, we can suppose that H = Km and
F = F1 × . . . Fr × Kn−r with Fi ⊂ K finite Fq-vector spaces. Let
f1, . . . , fm be the functions defined by ψ(x, 0, . . . , 0) = (f1(x), . . . , fm(x))
for x ∈ F1. Using polynomial interpolation (see [6] chapter 1.3), there
exists P1, . . . , Pm ∈ K{τ} such that for all x ∈ F1 and 1 ≤ i ≤ m,
fi(x) = Pi(x). We set ψ1(x) = (P1(x), . . . , Pm(x)) for x ∈ K. By
construction, for all x ∈ F1, ψ1(x) = ψ(x, 0, . . . , 0). The same way,
we construct ψ2, . . . , ψr and it is easy to check that for all x ∈ F ,
ψ(x) = ψ1(x1) + . . .+ ψr(xr) + ψ(0, . . . , 0, xr+1, . . . , xn). �

6. A-modules

Let A = Fq[T ] be the polynomial ring and δ : A −→ K be a mor-
phism of Fq-algebras. The kernel of δ is called the characteristic of
A.
Let F be a q-variety. The ring of endomorphism of F , Mor(F, F ),

will be denoted by End(F ).

Definition 6.1. Let F be a q-variety. We say that (F,Φ) is an A-
module structure if Φ : A −→ End(F ) is a morphism of Fq-algebras
such that, for all a ∈ A,

d(Φa) = δ(a)IdT (F ).

Let (F,Φ) and (H,Ψ) be A-modules. We say that U : F −→ G is an
A-morphism if it is a morphism of q-varieties and A-modules, i.e., for
all a ∈ A and for all x ∈ F ,

U(Φa(x)) = Ψa(U(x)).

Remark 6.2. In [1], the condition on d(Φa) is slightly different :
d(Φa) = δ(a)IdT (F ) + N with N an nilpotent endomorphism of T (F ).
In the present article, N is supposed to be zero for simplicity but most
properties should remain valid with N 6= 0.

Example 6.3. Let K be the algebraic closure of Fq(T ), so that δ :
A −→ K is just the inclusion. To define an A-module (F,Φ), it is
sufficient to give ΦT .

(1) The Carlitz module : we take F = K and ΦT = TX + Xq =
Tτ 0 + τ . It is the simplest non trivial A-module in dimension
1. It is denoted by C. Let us denote C− the A-module defined
by C−

T = TX − Xq = Tτ 0 − τ . These two A-modules are
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indeed isomorphic : let λ ∈ K be such that λq−1 = −1 and
U : K −→ K defined by U(x) = λx. It is well-known and easy
to check that U is an isomorphism.

(2) A Drinfeld module is an A-module with F = K and Φ non
trivial (Φa 6= δ(a)τ 0).

(3) Let F = K2 and Φ be the A-module defined by

ΦT =

(
Tτ 0 τ
τ T τ 0

)
.

It means that ΦT (x1, x2) = (Tx1 + xq2, x
q
1 + Tx2). On the line

x2 = x1, the A action is given by ΦT (x, x) = (Tx+xq, Tx+xq) =
(CT (x), CT (x)), so the line x1 = x2 is an A-module and the
induced A-module structure is canonically isomophic the Carlitz
module. The same is true on the line x2 = −x1: ΦT (x,−x) =
(C−

T (x),−C
−
T (x)). It follows that Φ is canonically isomorphic

to the direct sum of C and C− if p 6= 2.

Proposition 6.4. Let (F,Φ) be an A-module and H ⊂ F be a q-
variety. Then

(1) If, for all a ∈ A, Φa(H) ⊂ H, then H is an A-module.
(2) If H ⊂ F is an A-module, then F/H is also an A-module.

(3) The irreducible component F̊ is an A-module.

Proof. (1) Since T (H) ⊂ T (F ) and by fonctoriality of the tangent
map, we have d(Φa|H) = d(Φa)|T (H) = δ(a)IdT (H), so H is an
A-module.

(2) Let Π : F −→ F/H be the projection map. Consider Π ◦ Φa :
F −→ F/H . It is zero on H , hence by property of F/H (see
proposition 3.6), there exists a unique morphism Ψa : F/H −→
F/H such that

Π ◦ Φa = Ψa ◦ Π.

By uniqueness of Ψa, it is clear that a −→ Ψa is a ring morphism
from A to End(F/H). Furthermore, taking the tangent maps,
we get

d(Π) ◦ d(Φa) = d(Ψa) ◦ d(Π).

But d(Φa) = δ(a)IdT (F ) and d(Π) is surjective by proposition
5.5. It follows that d(Ψa) = δ(a)IdT (F/H).

(3) Since the direct image of an irreducible is still irreducible, we

have Φa(F̊ ) ⊂ F̊ .
�
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Let (F,Φ) be an A-module. Then K{F} has an obvious A-module
structure setting for f ∈ K{F} and a ∈ A :

a · f = f ◦ Φa.

Furthermore, the A action commutes with the K and the τ actions. In
particular, K{F} is a K ⊗Fq

A = K[T ]-module.

Theorem 6.5. Let (F,Φ) be an A-module. Then the K(T )-vector
space K(F ) defined by K(F ) = K(T )⊗K[T ]K{F} has finite dimension.
Its dimension is called the rank of the module (F,Φ) and is denoted
by r(F ).

Proof. By definition, F ⊂ Kn for some n ∈ N. Hence K{F} is a
quotient of Λn and is generated, as a K{τ}-module, by the images
of τ 01 , . . . , τ

0
n in K{F}. These images are still denoted τ 01 , . . . , τ

0
n for

simplicity.
Since K{τ} is principal, Λn and its quotient K{F} are noetherian.

It implies that there exists d ∈ N such that T d.τ 01 belongs to the K{τ}-
module generated by T d−1.τ 01 , . . . , T

0.τ 01 . It means that there exist
Pd−1, . . . , P0 ∈ K{τ} such that

T d.τ 01 =

d−1∑

i=0

Pi T
i.τ 01 =

d−1∑

i=0

T i.Pi(τ1).

Rewriting this relation as a polynomial in τ1 with coefficients in K[T ],
we get

(1)
s∑

j=0

Qj(T ).τ
j
1 = 0

for some Qj ∈ K[T ] and s ∈ N. Relation (1) is not trivial because
Q0 is a monic polynomial of degree d, so we can suppose that Qs 6=
0. It implies that τ s1 belongs to the K(T )-vector space generated by
τ s−1
1 , . . . , τ 01 in K(F ). Applying τ to relation (1), we get easily that
τ s+1
1 belongs to the K(T )-vector space generated by τ s1 , . . . , τ

1
1 , hence

to the K(T )-vector space generated by τ s−1
1 , . . . , τ 01 . By induction, we

get that all powers of τ1 belongs to that vector space.
The same is obviously true for τ2, . . . , τn, proving the theorem. �

Remark 6.6. (1) With G. Anderson definition (see [1]), K{F} is
the motive associated to F . Furthermore, if K{F} is a free
K[T ]-module of rank r, it is clear that dimK(T )K(F ) = r.
Hence, our definition of the rank is coherent with Anderson’s
definition.
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(2) Let F = Kn and Φ be the trivial module : for all a ∈ A and
x ∈ Kn,

Φa(x) = δ(a)x.

In particular, for 1 ≤ i ≤ n, (T − δ(T )).τ 0i = 0. Composing
with τm, we get

(T − δ(T )q
m

).τmi = 0.

It follows that K{F} is a torsion module, hence K(F ) = 0 and
the rank of the trivial module is 0.

7. Torsion points

Notation. Let (F,Φ) be an A-module and a ∈ A. The a-torsion of F
will be denoted by Tor(a, F ). In other words

Tor(a, F ) = {x ∈ F | Φa(x) = 0} = kerΦa.

It is an Fq-vector space.

Theorem 7.1. Let (F,Φ) be an A-module and a ∈ A \ ker δ, then
Tor(a, F ) is finite.

Proof. By definition, Tor(a, F ) is the kernel of Φa : F −→ F . So
the theorem is equivalent to dim ker Φa = 0. Now, by theorem 4.10,
dim ker Φa = dimF−dimΦa(F ), so we have to prove that dimΦa(F ) =
dimF . Using proposition 5.4, we have dimK T (Φa(F )) = dimΦa(F )
and dimK T (F ) = dimF , hence it is sufficient to prove T (Φa(F )) =
T (F ).
Since Φa(F ) ⊂ F , we have T (Φa(F )) ⊂ T (F ) by proposition 5.5.

Let us prove the reverse inclusion. We consider the induced map Φ̃a :

F −→ Φa(F ). So Φa = i ◦ Φ̃a where i : Φa(F ) −→ F is the inclusion

map. Taking the tangent map, we get δ(a)IdT (F ) = d(i) ◦ d(Φ̃a). But
d(i) : T (Φa(F )) −→ T (F ) is just the inclusion by proposition 5.5. It

implies that d(Φ̃a)(T (F )) = δ(a)T (F ) = T (F ) since δ(a) 6= 0. But

d(Φ̃a)(T (F )) ⊂ T (Φa(F )), hence T (F ) ⊂ T (Φa(F )). �

Example 7.2. In the following examples, δ is supposed to be the in-
clusion map and F = K2.

(1) Let Φ be the A-module defined by

ΦT =

(
Tτ 0 τ
τ T τ 0

)
.

We have seen that Φ is isomorphic to the sum of two copies of
the Carlitz module. It follows immediatly that for all a ∈ A\{0}

Tor(a, F ) = (A/aA)2.
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(2) Let Φ be the A-module defined by

ΦT =

(
Tτ 0 τ
0 Tτ 0

)
.

One gets immediatly that for all a ∈ A, Φa =

(
aτ 0 Pa
0 aτ 0

)
for

some Pa ∈ K{τ}. So Tor(a, F ) = {0} if a 6= 0.

Proposition 7.3. Let (F,Φ) be an irreducible A-module and a ∈ A \
ker δ. Then

dimFq
Tor(a, F ) = dimK K{F}/a ·K{F}.

Proof. Since F is irreducible, we can suppose that F = Kn, so that
K{F} = Λn. By lemma 2.1, up to automorphisms, there exit P1(X1), . . . , Pr(Xr) ∈
Λn such that a ·Λn = K{τ}P1(X1)⊕ . . .⊕K{τ}Pr(Xr). It is clear that

Tor(a, F ) = Z(P1(X1), . . . , Pr(Xr)) = kerP1 × . . .× kerPr ×Kn−r.

Hence r = n because Tor(a, F ) is finite. Since d(Φa) = δ(a)Id with
δ(a) 6= 0, the Pi must be separable. It follows that

dimFq
Tor(a, F ) =

n∑

i=1

degτ Pi = dimK Λn/a · Λn.

�

Proposition 7.4. Let (F,Φ) be an irreducible A-module and π ∈ A \
ker δ be a prime. Then there exists r ∈ N such that for all n > 0

Tor(πn, F ) = (A/πnA)r.

Proof. Since dim ker Φπ = 0 by theorem 7.1, dimF = dimΦπ(F ). But
Φπ(F ) ⊂ F and F is irreducible, so Φπ(F ) = F , hence Φπ is surjective.
By construction Tor(π, F ) is an A/πA-vector space which is finite

by 7.1. Let r be its dimension : Tor(π, F ) = (A/πA)r. Suppose that
for some n > 0, Tor(πn, F ) = (A/πnA)r. Using the elementary divisors
theorem, there exists integers 0 < n1 ≤ n2 ≤ . . . ≤ ns ≤ n + 1 such
that

Tor(πn+1, F ) = A/πn1A× A/πn2A× . . .× A/πnsA.

Considering Tor(π, F ) ⊂ Tor(πn+1, F ), we get immediatly s = r.
Furthermore, the map Φπ : Tor(πn+1, F ) −→ Tor(πn, F ) is clearly
surjective with kernel equal to ker Φπ. Hence CardTor(πn+1, F ) =
CardTor(πn, F )× CardTor(π, F ). It implies that n1 + n2 + . . .+ nr =
rn + r = r(n + 1). Since ni ≤ n + 1, we must have ni = n + 1 for all
1 ≤ i ≤ r. �
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Example 7.5. In the following example, δ is supposed to be the inclu-
sion map and F = K2. Let Φ be the A-module defined by

ΦT =

(
Tτ 0 + τ 2 τ
T τ Tτ 0

)
.

Let π = T . The elements of Tor(π, F ) are the solutions of
{
Tx1 + xq

2

1 + xq2 = 0

Txq1 + Tx2 = 0

The second equation implies that x2 = −xq1, hence xq2 = −xq
2

1 . Re-

placing xq2 by −xq
2

1 in the first equation, we get Tx1 = 0. It follows
that Tor(π, F ) = {0} and, by proposition 7.4, Tor(πn, F ) = {0} for all
n > 0.
Now let π = T − 1. The elements of Tor(π, F ) are the solutions of

{
(T − 1)x1 + xq

2

1 + xq2 = 0

Txq1 + (T − 1)x2 = 0

The second equation implies that x2 = − T
T−1

xq1, hence x
q
2 = − T q

T q−1
xq

2

1 .

Replacing xq2 in the first equation, we get Tx1 + (1 − T q

T q−1
)xq

2

1 = 0. It

follows that dimFq
Tor(π, F ) = 2 and, by proposition 7.4, Tor(πn, F ) =

(A/πnA)2 for all n > 0.

We show now that r is almost independant of π.

Theorem 7.6. Let (F,Φ) be an A-module and r(F ) be its rank. Then
there exists c ∈ A \ {0} such that for all a ∈ A, prime to c,

Tor(a, F ) = (A/aA)r(F ).

We start with two lemmas

Lemma 7.7. Let (F,Φ) be an A-module and H ⊂ F be a submodule.
Then

r(F ) = r(H) + r(F/H).

Proof. By remark 3.7, we have an exact sequence of K{τ}-modules

0 → K{F/H} → K{F} → K{H} → 0.

It is easy to check that is also a sequence of K[T ]-modules. Since a
localisation is flat, we get an exact sequence of K(T )-vector spaces

0 → K(F/H) → K(F ) → K(H) → 0.

This proves the lemma. �
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Lemma 7.8. Let (F,Φ) be an A-module and H ⊂ F be a submodule.
Then there exists c ∈ A \ {0} such that for all a ∈ A, prime to c, the
following sequence is exact :

0 → Tor(a,H) → Tor(a, F ) → Tor(a, F/H) → 0.

Proof. The only non obvious part is that Tor(a, F ) → Tor(a, F/H) is

surjective. Let H̊ be the irreducible component of H . Since H/H̊ is

finite, there exists c′ ∈ A \ {0} such that Ψc′(H/H̊) = 0 where Ψ is the
induced A-module structure. It follows easily that for all a ∈ A, prime
to c′, Ψa : H/H̊ → H/H̊ is surjective.

Suppose that a is also prime to ker δ. Hence Φa : H̊ → H̊ is surjective
(see proof of proposition 7.4). Let y ∈ H , then there exists x ∈ H such

that y ≡ Φa(x) mod H̊. It means that y − Φa(x) ∈ H̊ . But there

exists z ∈ H̊ such that y − Φa(x) = Φa(z), hence y = Φa(x + z). It
proves that Φa : H → H is surjective.
Let Π : F → F/H be the canonical surjection and y ∈ F such that

Π(y) ∈ Tor(a, F/H). By construction, Φa(y) ∈ H . Since Φa : H → H
is surjective, there exists x ∈ H such that Φa(y) = Φa(x). Hence
y − x ∈ Tor(a, F ) and Π(y − x) = Π(y). This proves the lemma. �

Proof of Theorem 7.6. Let (F,Φ) be an A-module and F̊ be its irre-

ducible component. Since F/F̊ is finite, K{F/F̊} has finite dimension

over K. It implies that it is a K[T ] torsion module, hence r(F/F̊ ) = 0.

We then have r(F ) = r(F̊ ) by lemma 7.7.

Furthermore, there exist c′ 6= 0 such that Ψc′(F/F̊ ) = 0. It implies

that for all a ∈ A prime to c′, we have Tor(a, F/F̊ ) = 0. Let c given

by lemma 7.8, then, for all a ∈ A prime to cc′, Tor(a, F ) = Tor(a, F̊ ).
So, without loss of generality, we can suppose that F is irreducible,

hence F = Kn and K{F} = Λn. We can find f1, . . . , fr(F ) ∈ K{F}
such that there images in K(F ) form a basis. Let M ⊂ K{F} be the
K[T ]-module generated by f1, . . . , fr(F ). Since the images of f1, . . . , fr(F )

are linearly independant over K(T ), the f1, . . . , fr(F ) themselves are lin-
early independant over K[T ]. Hence M is a free K[T ]-module of rank
r(F ).
Let d ∈ N strictly greater than the degrees of f1, . . . , fr(F ). Since the

images of f1, . . . , fr(F ) form a basis of K(F ), for any f ∈ K{F}, one
can find P ∈ K[T ] \ {0} such that Pf ∈ M . So it is possible to find
P ∈ K[T ] \ {0} such that for all 1 ≤ i ≤ n and j ≤ d,

Pτ ji ∈M.
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In particular, since τ(M) is included in the K-vector space generated
by the τ ji , 1 ≤ i ≤ n and j ≤ d, we have Pτ(M) ⊂M . It implies that
for all 1 ≤ i ≤ n,

Pτ(P )τd+1
i = Pτ(Pτdi ) ∈ Pτ(M) ⊂M

where τ(
∑s

j=0 pjT
j) =

∑s
j=0 τ(pj)T

j. By an easy induction, we get
that for all 1 ≤ i ≤ n and j ∈ N,

Pτ(P )τ 2(P ) . . . τ j(P )τd+ji ∈M.

Let a ∈ A \ {0} prime to P . Hence τ(a) is prime to τ(P ) (τ in-
duces an automorphism of K[T ]). But τ(a) = a since a ∈ A = Fq[T ],
hence a is prime to Pτ(P ). By induction, we get that a is prime to
Pτ(P )τ 2(P ) . . . τ j(P ) for any j ∈ N.
The inclusion M ⊂ Λn induces a morphism M/aM → Λn/aΛn. We

want to prove that it is an isomorphism.
Let f ∈ Λn. Taking j such that d + j is greater than the degree of

f , we have

Pτ(P )τ 2(P ) . . . τ j(P )f ∈M.

Since a is prime to Pτ(P )τ 2(P ) . . . τ j(P ), there exit u, v ∈ K[T ] satis-
faying ua+ vPτ(P )τ 2(P ) . . . τ j(P ) = 1, hence

f = auf + vPτ(P )τ 2(P ) . . . τ j(P )f

≡ vPτ(P )τ 2(P ) . . . τ j(P )f mod aΛn

∈M mod aΛn.

It follows that the morphism is surjective.
Now, let f ∈M ∩ aΛn, so there exists λ ∈ Λn such that f = aλ. As

before, taking j such that d+ j is greater than the degree of λ, we have

Pτ(P )τ 2(P ) . . . τ j(P )λ ∈M.

Since a is prime to Pτ(P )τ 2(P ) . . . τ j(P ), there exit u, v ∈ K[T ] satis-
faying ua+ vPτ(P )τ 2(P ) . . . τ j(P ) = 1, hence

λ = uaλ+ vPτ(P )τ 2(P ) . . . τ j(P )λ

= uf + vPτ(P )τ 2(P ) . . . τ j(P )λ ∈M.

It follows that the morphism is injective.
So for all a prime to P , we have M/aM = Λn/aΛn. Since M is

a free K[T ]-module of rank r(F ), dimK Λn/aΛn = dimKM/aM =
r(F ) degT a. If a is also prime to ker δ, proposition 7.3 implies that

dimFq
Tor(a, F ) = r(F ) degT a.



q-VARIETIES AND DRINFELD MODULES 25

Applying this formula in the special case a = π a prime polynomial,
we get

dimA/πA Tor(a, F ) = r(F ).

Now proposition 7.4 says that for all m > 0,

Tor(πm, F ) = (A/πmA)r(F ).

We conclude the proof using chinese remainder theorem and Tor(ab, F ) =
Tor(a, F )× Tor(b, F ) if a and b are coprime. �

8. Jacobian

Let X ⊂ Kn be an affine algebraic curve. Roughly speaking, the
Jacobian of X is the smallest abelian variety containg X . We want to
define an analogue in our situation. In the classical case, we have the
canonical action of Z on K which induces a diagonal action on Kn.
For q-varieties, we must choose the A-module structure. This leads to
the following definition.

Definition 8.1. Let (F,Φ) be an A-module and H ⊂ F . Let JacΦ(H)
be the intersection of all A-modules in F containing H. It is clear that
JacΦ(H) is an A-module and that it is the smallest A-module containing
H. Note that if H is an irreducible q-variety then JacΦ(H) is also
irreducible since the irreducible component of an A-module is an A-
module.

Proposition 8.2. Let (F,Φ) be an A-module and H ⊂ F be an irre-
ducible q-variety. Define the Picard module associated to H by Pic(H) :=
A⊗Fq

H. Then the canonical map

Pic(H) −→ Jacφ(H)
a⊗ x 7→ Φa(x)

is surjective.

Proof. For n ∈ N, define Hn = H + ΦT (H) + ΦT 2(H) + . . .+ ΦTn(H).
Since the image and the sum of irreducibles are irreducible (see propo-
sition 4.3), Hn is irreducible. But the length of a chain of irreducibles
is bounded by dimF , so there exists n ∈ N such that Hn+1 = Hn.
It means that ΦTn+1(H) ⊂ H + ΦT (H) + ΦT 2(H) + . . . + ΦTn(H). It
implies immediatly that Hn is stable by ΦT , hence Hn is an A-module
and it is easy to check that any A-module containing H must contain
Hn, so Hn = JacΦ(H). This proves the proposition. �

Remark 8.3. The previous proposition might not be true if H is not
supposed irreducible as shown in the following example. Let F = (K,Φ)
be an A-module, x ∈ K not a torsion point and H = Fqx. Then
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JacΦ(H) = F because it contains the free A-module of rank 1 generated
by x. But this module, which is the image of Pic(H), can not be equal
to F since F has infinite rank by [9].

9. Some conjectures

In [3], L. Denis proposed three conjectures for A-modules of generic
characteristic (i.e. ker δ = {0}). We give an analogue of these con-
jectures. Indeed these analogues can be seen as special cases of Denis
conjectures.
In the sequel, we suppose that δ : A −→ K is the inclusion map.
Let (F,Φ) be anA-module andH ⊂ F be a q-variety. Let x1, . . . , xr ∈

F and Γ = Ax1+ . . .+Axr be the module generated by x1, . . . , xr in F .
The first conjecture is an analogue of Faltings theorem, see [5].

Conjecture 9.1. There exists G ⊂ H an A-module such that G ∩ Γ
has finite index in H ∩ Γ.

This conjecture is obviously implied by the following one, which is
an analogue of Mordell-Lang conjecture.

Conjecture 9.2. Let Γ = {x ∈ F | ∃ a 6= 0 ∈ A with Φa(x) ∈ Γ}
There exists G ⊂ H an A-module such that G ∩ Γ has finite index in
H ∩ Γ.

A special case of the previous conjecture is Γ = {0}. It is an analogue
of the Manin-Mumford conjecture. In that case, Γ is just the set of all
torsion points and is denoted by Tor(F ).

Conjecture 9.3. There exists G ⊂ H an A-module such that G ∩
Tor(F ) has finite index in H ∩ Tor(F ).

The previous conjectures can be simplified using the following prop-
erty.

Proposition 9.4. Let (F,Φ) be an A-module and H ⊂ F be a q-
variety. Then there exists an irreducible A-module Gmax ⊂ H such
that for any irreducible A-module G ⊂ H, we have G ⊂ Gmax.

Proof. Let G0 ⊂ H be an irreducible A-module with maximal dimen-
sion and G ⊂ H be an irreducible A-module. Then G0 + G is also an
irreducible A-module by proposition 4.3. By maximality of the dimen-
sion, G0 +G = G0, hence G ⊂ G0. �

As in [7], we say that H is sufficiently generic if Gmax = {0}. We
now rewrite our conjectures with this extra condition.
Suppose that H ⊂ F is a sufficiently generic q-variety. Then
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Conjecture 9.5. H ∩ Γ is finite.

Conjecture 9.6. H ∩ Γ is finite.

Conjecture 9.7. H ∩ Tor(F ) is finite.

Proposition 9.8. Conjectures 9.1, 9.2 and 9.3 are equivalent, respec-
tively, to conjectures 9.5, 9.6 and 9.7

Proof of : Conjecture 9.6 implies conjecture 9.2. Suppose that conjec-
ture 9.6 is true. Let H ⊂ F be a q-variety. It is clear that H/Gmax is
a sufficiently generic q-variety included in the A-module F/Gmax. Let
Π : F −→ F/Gmax be the quotient map. Hence H/Gmax = Π(H) and

F/Gmax = Π(F ). We apply conjecture 9.6 to Π(Γ) : Π(H) ∩ Π(Γ) is
finite.
Furthermore, let y ∈ Π(Γ), then there exists x ∈ F and a 6= 0 ∈ A

such that y = Π(x) and Φa(x) ∈ Γ. It follows that Ψa(y) = Ψa(Π(x)) =
Π(Φa(x)) ∈ Π(Γ) where Ψ is the A-module structure on Π(F ). Hence,

y ∈ Π(Γ), so Π(Γ) ⊂ Π(Γ).

Now, Π(H ∩ Γ) ⊂ Π(H)∩Π(Γ) ⊂ Π(H)∩Π(Γ). Hence Π(H ∩ Γ) is
finite. Since ker Π = Gmax, we conclude that Gmax ∩ Γ has finite index
in H ∩ Γ. �

Some cases of the conjectures are known. For examples, in [7], D.
Ghioca proved that conjecture 9.6 holds when F is a direct copy of
a Drinfeld module and in [10], T. Scanlon proved that conjecture 9.3
holds with the same condition of F .
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