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¢-VARIETIES AND DRINFELD MODULES

ALAIN THIERY

ABSTRACT. Let F; be the finite field with ¢ elements, K be an
algebraically closed field containing F,, K{7} be the Ore ring of
F,-linear polynomials and A,, be a free K{7}-module of rank n.

In a first part, we prove that there is a bijection between the
set of Zariski closed subsets of K™ which are also F,-vector spaces,
the so-called g-varities, and the set of radical K{7}-submodules of
A,. We also study the dimension of g-varieties and their tangent
spaces.

Let F be a g-variety, K{F'} := Mor(F, K) be the set of Fy-linear
polynomial maps from F to K. Let A = F,[T] and choose § : A —
K a ring morphism. By definition, an A-module structure on F' is
a ring morphism ® : A — End(F) such that, for all a € A,

d(q)a) = 6(G)IdT(F)
where T'(F') is the tangent space of F' and d(®,) the differential
map. We prove that K(F) := K(T) ® g7 K{F} has finite dimen-
sion over K (T'). This dimension is called the rank of the A-module
and is denoted by r(F).

We then prove that there exists ¢ € A\ {0} such that for all
a € A, prime to c,

Tor(a, F) :={x € F | ®,(z) = 0} = (A/ad)" ).

1. INTRODUCTION

In his seminal paper [4], V.G. Drinfeld defined what is now called a
Drinfeld module. Roughly speaking, it is an action of A = F,[T] on
an algebraically closed field K. More precisely, it is a ring morphism
¢ : A — K{7}, the Ore ring, such that the first coefficient of ®, is a.

In another important paper [I], G. Anderson defined T-modules,
which are a generalization of Drinfeld modules. It is an action of A on
K™ such that the differential of the action of a is just aldg» + N where
N is nilpotent.

In the present paper, we first study subvarieties of K™ which are de-
fined by F,-linear polynomial equations. We call them g¢-varieties. The
motivation is that we believe that g-varieties are the natural objects
on which an action of A can be defined.
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In the first paragraphs, we prove a sort of Nullstellenstatz for g-
varieties. We also define the notions of morphism, irreducibility, di-
mension, tangent space for g-varieties. There is an obvious analogy
with the classical algebraic geometry, see chapter 1 of [§] for example.

Since they are additive algebraic groups, it is well-known, and easy
to prove, that g-varieties are isomorphic to some K" x F' where F'is a
finite Fy-vector space. So the reader can think that these objects are
not really worth studying, but K-vector spaces of finite dimension are
all isomorphic to some K" and we study them in full generality.

In paragraph 6, we define the A-module structure in this context: let
F be a g-variety, an A-module structure is a morphism of F,-algebras
® : A — End(F) such that, for all a € A,

d(‘ba) = aIdT(F)

where d(®,) is the differential of &, and T'(F) the tangent space of F
(we forget the nilpotent part for simplicity). Let K{F'} := Mor(F, K)
be the set of IF-linear polynomial maps from F to K. Then K{F'} is
a K-vector space and an A-module, so it is a K ®r, A = K[T']-module.

In [I], the rank of the module is by definition the rank of K{F'} as
a K|[T]-module, if free and finitely generated. In this case, the module
is said to be abelian. But, of course, all modules are not abelian. For
example, the trivial module, i.e. ¢,(z) = azx, is not abelian.

To solve this difficulty, we prove that K(F) := K(T) @k K{F'}
has finite dimension over K (7"). This dimension is called the rank of
the A-module and is denoted by r(F"). Obviously, in the case of abelian
modules, our definition of the rank matches Anderson’s definition. It
is also easy to see that the trivial module has rank equal to 0.

In paragraph 7, we study torsion points and prove the following
result: There exists ¢ € A\ {0} such that for all a € A, prime to c,

Tor(a, F) := {x € F | ®,(x) = 0} = (A/aA)" D),

This means that A-modules are almost regular.

In paragraph 8, we define an analogue of the Jacobian and the Picard
group. In paragraph 9, some analogues of Faltings'theorem, Mordell-
Lang conjecture or Manin-Mumford conjecture are stated in this con-
text following L. Denis ideas.

2. DEFINITIONS AND FIRST PROPERTIES

Let p be a prime number and K an algebraically closed field of
characteristic p. Fix ¢ = p' a power of p. The finite subfield of K
with ¢ elements will be denoted by F,.
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Let 7 = X7 be the Frobenius polynomial. Note that, for ¢ > 0,
":=70...07 = X%, The set of F,linear polynomials K{7} :=
{P(X) = Z?:o a; X9 | a; € K} is a non-commutative unitary ring
under composition. We will write P{7} for P(X).

It is well-know that K{7} is left and right euclidean (see [6], Prop.1.6.2
and Prop.1.6.5). It implies the following lemma (see [6], Prop.5.4.8) :

T

Lemma 2.1. Let L be a m x n matriz with coefficients in K{7}, then
there exist matrices U € GL,,(K{7}) and V' € GL,,(K{7}) such that
ULV is diagonal.

Let n be a positive integer, X7, ..., X,, be n indeterminates, 7; = X/
(1<i<n)and A, := K{n} ® ... ® K{r,}, which is a free K{7}-
module of rank n for the obvious action : P{7}.Q(X;) = P(Q(X)).

Definition 2.2. Let S C A, we define Z(S), the “zeroes of S”, by
Z(S)={(z1,...,x,) € K" |Vf €S, f(z1,...,2,) =0}
The set Z(S) is called a g-variety.

Remark 2.3. The q-varieties are Zariski closed subsets of K™ and are
also IFy-vector spaces. It can be proved that it is a caracterisation of
g-varieties but we won’t use this result here.

Proposition 2.4. An intersection of q-varieties is a g-variety.
Proof. We have trivially (,.; Z(S:) = Z(Uie1Si). O

Definition 2.5. Let F C K", we define F as the intersection of all
q-varieties containing F'. Using proposition F is the smallest q-
variety containing F'.

Remark 2.6. Let A be the K{r}-module generated by S in A,. One
gets immediatly that Z(S) = Z(A), so, in the definition of a q-variety,
we can suppose that S is a K{71}-submodule of A,,. Furthermore, since
KA{1} is Noetherian, the K{1}-submodules of A\,, are finitely generated,
so that a g-variety can be defined by a finite number of equations.

Definition 2.7. Let F' C K", we define M(F') by
M(F)={feA,|Y(x1,...,xn) € F, f(xy1,...,2,) =0}
It is immediat that M (F') is a K{7}-submodule of A,.
Proposition 2.8. Let FF C K". We have the following equality :
Z(M(F))=F.
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Proof. By definitions 2.2land2.7, F C Z(M(F')). Definition 2.5 implies
that F C Z(M(F)). Conversely, F is a g-variety, so there exists a
submodule M such that F' = Z(M). Since F C F, we immediatly have
that M C M(F). It implies trivially that Z(M(F)) C Z(M)=F. O

Remark 2.9. The module M(F) has the following property : let f €
A, be such that Tf € M(F), then f € M(F). It means that the quotient
module A,,/M(F) has no T-torsion.

This leads to the following definition :
Definition 2.10. Let A be a submodule of A,,. We define Rad(A) by
Rad(A) = {f € A, |IN €N, 7V f € A}.

A module A such that Rad(A) = A is said to be radical. For example,
for any F C K", the module M (F') is radical.

Proposition 2.11. Let A be a submodule of A, then Rad(A) is also
a submodule of A,, and Rad(A) is radical.

Proof. We only have to prove that if f € Rad(A) and P € K{r}, then

Pf € Rad(A). By definition, there exists N € N such that 7V f € A.
Let P = 3% a7, then 7VP = 320 agNTN” H= agNTi)’TN =
QN with Q = Z?:o a?NTi € K{r}. Now we have 7N Pf = Q7" f. But
7™V f € A and A is a K{7}-module, hence 7V Pf € A. By definition,
Pf e Rad(A). O

Definition 2.12. Let FF C K" and H C K™ be q-varieties. A mor-
phism from F to H is a map ¥ : F' — H such that there exists
fis- oy fm € Ay satisfaying :

Ve e F, ¢(z) = (fi(2), ..., fm(2)).

An isomorphism is a bijective morphism 1) such that ' is also a
morphism.

Example 2.13. The map 7 : K — K s a morphism. It is bijective
but it is not an isomorphism.
Let P € K{7} and ¢ : K> — K? be the morphism defined by the

0
matrix (7;) fO) It means that (1, x9) = (x14+P(22),x2). It is clear

0 _
that 1 is an isomorphism since 11 is given by the matrix (TO 7{)3)

Theorem 2.14. Let F C K" and H C K™ be g-varieties and Mor(F, H)
be the Fy-vector space of all morphisms from F to H, then there exists
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a fonctorial isomorphism of F -vector spaces

Mor(F, H) ~ Hom g (7y(Am/M(H), A, /M (F)).

Proof. Let 1) : F — H be a morphism given by (z) = (fi(z), ..., fm(2)).
We can define a K{7}-linear map u,, from A,,, to A, /M (F') by uy(X;) =

f; mod M(F). It is clear that it does not depend on the choice of the

fi- Let g =371 9;(X;) € M(H) with g; € K{r} and z € F,

since (fi(z),..., fm(z)) € H and g € M(H). It follows that u,(g) =0
mod M (F') so uy : Apy/M(H) — A, /M (F) is well-defined.

Conversely, let uw : A,,/M(H) — A,/M(F) be a K{r}-modules
morphism and fi,..., f,, € A, be such that

uw(X;) = f; mod M(F).
Let us define ¢, : F — K™ by

Vz € F, ¢u(x) = (fl(x)>afm(z))

It is clear that 1, does not depend on the choice of the f;. We now have
to show that ¢, (F) is included in H. Let g = 7", g;(X;) € M(H)



6 ALAIN THIERY

and x € F|,

/\ /_\ ||'MS [ MS
><\

9;(f;)(=

) (since w is K{7}-linear)

2 Sovs)er
u(0)(z) =

By definition, it implies that ¢, (x) € Z(M(H)). But Z(M(H)) =
H = H by proposition 2.8, proving that ¢, (F) C H.

It is now straightforward to prove that @ : ¥ — u, and 1; SU Yy
are reciprocal isomorphisms. O

The previous theorem implies that the K{7}-module A,,/M(F') de-
pends only on the isomorphism class of F', so we can set the following
definition :

Definition 2.15. Let F' C K™ be a q-variety. The K{1}-module
A, /M(F) is called the module of F,-linear functions on F and is de-
noted by K{F}. By construction, K{F} = Mor(F, K).

Proposition 2.16. Let ' C K" and H C K™ be q-varieties, and
v F — H be a morphism from F to H. Then for any q-variety
G C H, v™YG) is q-variety.

Proof. Let S C A,, be a set defining H : H = Z(.S). One gets from def-

initions that v=(G) = HNZ({g(f1,..., fm) | g € S}) where fi,..., fm
are as in definition 2.12] O

Remark 2.17. The kernel of a morphism is a g-variety but, indeed,
any q-variety can be expressed as a kernel : let F' C K™ be a q-variety
defined by a finite number of equations fi,..., fm (see remark [2.4).
Then the morphism : K™ — K™ defined by (x) = (fi(z), ..., fm(T))
has a kernel equal to F'.

Lemma 2.18. Let F' C K" be a finite IFj-vector space, then F is a
q-variety.
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Proof. We prove it by induction on d = dimg, F'. If d =0, F' = {0} =
Z(Xy,...,X,) is a g-variety. If d = 1, F = F,x for some x € K".
There exists a K-linear bijective map ¢ such that ¢ (z) = (1,0,...,0).
But F, x {0} x ... x {0} = Z(X] — X1, Xo, ..., X,), so it is ¢g-variety
and, by construction, F' = ¢ }F, x {0} x ... x {0}), so it is also a
g-variety.

Suppose that any F,-vector space of dimension d is a g-variety and
let ' be an Fg-vector space of dimension d + 1. Choose H C F' a
subvector space of dimension 1 and ¢ a morphism such that ker v = H
(see remark ZI7). Then dimg, ¥ (F) = d, so it is a g-variety. By
construction F' = ¢~1(y)(F)), so it is also a g-variety. O

3. MAIN THEOREM ON ¢- VARIETIES
Lemma 3.1. Let A be a submodule of A,,, then
M(Z(A)) = Rad(A).

Proof. By definition, A C M(Z(A)). Taking radicals, we have Rad(A) C
Rad(M(Z(A))) = M(Z(A)) since M(F') is a radical module for any F.

Conversely, let fi,..., fm € A, be a finite generating set for A. For
1 <i <m,write f; = 37, Lij(X;) with L;; € K{r}. The matrix
L = (L”)lléém is such that ker L = Z(A). Applying Lemma 21|
there exist matrices U € GL,,(K{7}) and V € GL,(K{7}) such that
D = ULV is diagonal. Without loss of generality, we can suppose that
D;; # 0 for i <rand Dy =0 if ¢ > r. It means that, up to changing
variables and the generating set, one can suppose that

A=K{r}P(X1)+ ...+ K{7}P.(X,)
with Py, ..., B, € K{7} \ {0}. It follows that
Z(N) =ker P, x ... xker P, x K"".
Let g =>"", ¢:(X;) € M(Z(A)). Foralli > randz; € K, (0,...,0,z;,0,...,0) €
Z(A). It implies that g;(z;) = 0, so that g; = 0. For 1 < i < r, write
P, = t™iQ,; with Q; separable. By construction, ker Q; = ker P, C
ker g;. Since K{7} is Euclidean, g; = SQ; + R with deg_ R < deg_Q);.

But ker Q; C ker R and dimy, ker Q; = deg, Q; > deg, R = dimy_ ker R
unless R is zero. It follows that g; = S@Q; and

™ig; = 7NSQ; = TTViQ; =TP, € A

where T' € K{r} is such that 7iS = T'7"i (see proof of proposition
2I1). Taking N = max;<;<, N;, one gets immediatly that 7%Vg €
A. 0
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We can now summarize this in the following theorem.

Theorem 3.2 (Main Theorem). The map Z from the set of radical
modules of A, to the set of q-varieties included in K™ and the map M
from the set of q-varieties included in K™ to the set of radical modules
of \,, are reciprocal bijections.

We now study the direct image of a ¢-variety. It is possible to use gen-
eral theorems on algebraic groups (see [2]) but we give a self-contained
proof. First we need the following lemma :

Lemma 3.3. Let H C FF C K" be F-vector spaces such that F/H is
finite and H is a q-variety, then F' is also a q-variety.

Proof. Let 1 be a morphism such that H = ker (see remark 2.17).
Then ¢(F) ~ F/H is finite, hence it is a g-variety by lemma 2.8 By
construction, F' = ¢~ 1(y(F)), so it is a g-variety. O

Theorem 3.4. Let F and G be q-varieties, and ¢ : F — G be a
morphism. Then ¥(F) is a q-variety.

Proof. In proof of lemma B.1] we showed that there exists P;,..., P, €
K{7} \ {0} such that, up to an automorphism of K", F' = ker P, x
...xker P, x K™, Then H = {0} x ... x {0} x K™ " is a g-variety
such that F//H is finite. Hence o (F)/¢(H) is also finite. Applying
lemma [33] it is sufficient to prove that (H) is a g¢-variety. Since
H ~ K", we can consider ¢y as a morphism from K"~ to K™.
Using lemma 2.1 ¥ (H) is equal, up to an automorphism of K™, to the
direct image of K"~ " by a diagonal morphism. Since for any non-zero
polynomial P € K{7}, we have P(K) = K, the image is clearly of the
form K* x {0} x ... x {0}, hence is a g-variety. O

We now give a few consequences of this theorem.

Proposition 3.5. Let I, C K" and F, C K™ be q-varieties, then
Fy + Fy is also a q-variety. Indeed, if Fy = Z(A\1) and Fy = Z(Ag) for
some modules A1 and Ao, then Fy + Fy = Z (A1 N Ag)ﬁ.

Proof. It is clear that [} x F, is a g-variety in K™ x K™ = K" and
that ¢ : K™ x K™ — K" defined by ¥(x,y) = = + y is a morphism.
Hence by theorem B4, Fy + Fy = ¢(F) x Fy) is a g-variety.

Now, let A = M(F1+Fy). Since Fy C Fi+Fy, A C M(F;) = Rad(Ay)
by lemma Bl By the same argument, A C Rad(Az). It follows that
A C Rad(A;) N Rad(A2) = Rad(A; N Ag) (the last equality is left to
the reader). Applying Z, we get Z(A; N Ay) = Z(Rad(A; NAg)) C

1A proof, directly from the definition, would be welcome.
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Z(N) = Fy + F» = Fy + Fy since I} + F; is a g-variety by theorem
Conversely, since Ay N Ay C Ay, Fy = Z(A) C Z(A N Ay).
Using the same argument with F5, we have Fy C Z(A; N Ag), hence
Fl‘l'FQCZ(AlﬂAg). L]

Proposition 3.6. Let H C F' be g-varieties, then there exists a q-
variety, denoted by F//H, and a morphism 11 : F — F/H with ker IT =
H satisfaying the following property : for any morphism ¢ : FF — G
with Yy = 0, there ewists a unique morphism v F/H — G such
that 1 = 1 o Il. The q-variety F/H is called the quotient of F by H
and the couple (F/H,11) is unique up to isomorphism. Furthermore,
the map 11 is surjective.

Proof. Tt is clear that, if it exists, the quotient is unique. Let us prove
the existence.

Let fi,...,fm € A, be a generating set of M(H) and define II :
K" — K™ by I(x) = (fi(x),..., fm(x)). It is clear that I is a
morphism and that ker IT = H. By theorem B4 TI(F') is a g-variety
that will be denoted by F//H (note that this F//H is isomorphic to the
standard one as an F,-vector space). We now write II for IIjp : 7 —
F/H for simplicity.

Let ¢ : FF — G C K" be a morphism with ¢z = 0. By def-
inition, there exists gi,...,9, € A, such that for all x € F, ¢(x) =
(g1(x), ..., g,(x)). The condition 1|z = 0 means that g; € M (H) for all
1 <@ <r. Hence there exists a;; € K{r} such that g; = 377" a;; f;.

Let us define the morphism 1 : K™ — K" by

O(x1,. .. T) = (Z ar;(z;), ..., Zam-(xj)).

By construction, for all z € F, we have ¢(z) = P((x)). Tt implies
that ¢¥|p/g is a morphism from F /H to G, proving the existence of .

Since II is surjective, the map 1 is unique.
U

Remark 3.7. Let H C F be g-varieties, we still denote M(H) = {f €
K{F} |Vx € H, f(z) = 0}. By construction K{H} = K{F}/M(H)
and K{F/H} ~ M(H). In other words, the following sequence of
KA{7}-modules is exact

0— K{F/H} - K{F} —- K{H} — 0.

Remark 3.8. Let ¢ : F' — H be a morphism of q-varieties. The
previous proposition shows that v induces a bijective morphism 1 from
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F/kery to (F). Allthough this morphism is a bijection, it is not
necessarily an isomorphism since the reciprocal bijection might not be
a morphism of q-varieties, take (x) = x? for instance.

This leads to the following definition :

Definition 3.9. Let ¢ : ' — H be a morphism of q-varieties. We
say that 1 is separable if the bijective morphism 1 : F/ker ) — ¢(F)
18 an isomorphism.

4. IRREDUCIBLE ¢- VARIETIES AND DIMENSION

Definition 4.1. Let F' be a q-variety. It is said to be irreducible if the
only sub-q-variety of finite index is F' itself.

Example 4.2. (1) It is clear that {0} is irreducible.
(2) The sub-q-varieties of K are finite or equal to K, hence K is
wrreducible since K is infinite.

Proposition 4.3. (1) Let F be an irreducible q-variety and v :
F — G be a morphism, then (F) is irreducible.

(2) Let Fy C K™ and Fy C K™ be irreducible g-varieties, then Fy +
Fy is irreducible. It implies that K™ s 1rreducible.

Proof. (1) Let H C ¢(F') be a g-variety such that (F)/H is fi-
nite. Since the induced map ¢ : F/¢~'(H) — ¢(F)/H is
an isomorphism of F-vector spaces, F/¢~*(H) is finite. Hence
v Y H)=F,and H = ¢(F).

(2) Let H C Fy + F; be a g-variety such that (Fy + Fy)/H is fi-
nite. Since the canonical map Fy/(Fy N H) — (Fy + Fy)/H
is injective, Fy/(Fy; N H) is finite. Hence F} = Fy; N H, that is
Fy C H. By symmetry, we also have Fy, C H. It follows that
P+ F,CH.

U

Proposition 4.4. Let F be a g-variety and K{F'} be the K{7}-module
of F,-linear functions on F'. Then the following properties are equiva-
lent

1) F is irreducible.

2) F is isomorphic to K™ for some m.
3) K{F'} is a free K{7}-module.

4) K{F} is a torsion free K{T}-module.

(
(
(
(

Proof. We can suppose, as in proof of lemma 3.1, that
M(F) = K{r}P(Xy)+ ...+ K{T} P.(X,)
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for some P, ..., P, € K{7}\ {0}. It follows that
F=kerP x...xkerP. x K"™".

Suppose that F' is irreducible. The g-variety {0} x ... x {0} x K™~"
is clearly of finite index in F, so it must be equal to F', hence F =
{0} x ... x {0} x K™ " is isomorphic to K" ".

Suppose that F' is isomorphic to K™. Then, by theorem .14 K{F'}
is isomorphic to K{K™} = A,,. Hence K{F'} is free.

Suppose that K{F'} is free, then, trivially, K{F'} is torsion free.

Suppose that K{F} = A,,/M(F) is torsion free. For 1 < i < r,
we have P{7}.X; = 0 in A,/M(F), hence X; € M(F). It implies
immediatly that P, = X; and F' = {0} x ... x {0} x K"~" which is
isomorphic to the irreducible g-variety K"™". U

Lemma 4.5. Let ' be a q-variety. Then there exists a necessarily
unique 1rreducible sub-q-variety which is maximal for inclusion. It is
denoted by F and is called the irreducible component of F'. Further-
more, F/F s finite and F s the only irreducible q-variety satisfying
such property.

Proof. As in proof of proposition 4.4l we can suppose, up to an auto-
morphism of K", that F' = F} x...x F, x K"™" with the F; being finite
[F-vector spaces. Let H = {0} x ... x {0} x K"7". It is an irreducible
sub-g-variety of finite index in F'.

Now let G C F be an irreducible g-variety. Since F'/H is finite,
G/(GN H) is also finite. But G is irreducible, so G = G N H, proving
that G C H. O

Lemma 4.6. Let ' and H be q-varieties and ¢ : FF — H be a
morphism. Then

W(F) = ¢(F).

Proof. By proposition 3] w(F ) is irreducible. Since [ has finite index
in F', ¢(F) has finite index in ¢ (F"), proving the lemma. O

Definition 4.7. Let F' be a q-variety. If Fo C Fy C ... C F, C F is

a chain of irreducible q-varieties, the integer m is called the length of
the chain.

Theorem 4.8. Let F' C K" be a q-variety. Then,

(1) All chains included in F have length less than n.
(2) All mazimal chains included in F' have the same length.

We will define dim F' to be the maximal length of a chain included in
F. For example, we have dim K™ = n.
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Proof. Without loss of generality, we can replace F' by F and sup-
pose that F' is irreducible. It follows from proposition [£.4] that F' is
isomorphic to some K™. So it is sufficient to prove the theorem for
F = K" We will do it by induction on n, including the property that
dim K™ = n. It is obviously true for n = 0 and n = 1 since the only
irreducible are {0} in the first case and {0} and K in the second one.

We suppose that the theorem is true up to n. Now let Fy C F} C

. C F,, ¢ K"! be a chain of irreducible g-varieties. If m = 0,
m<n+1. If m >0, F,_1is an irreducible ¢-variety, so, up to an
automorphism of K" F, ; = {0} x ... x {0} x K™™'~ Since
F,_1 # K" r #0, hence we can apply the induction hypothesis to
Foi~K'' " :m—1<n+1-—r. It impliesm <n+ 1.

Suppose now that Fy C Fy € ... C F,, C K™ is a maximal chain
(for example a chain of maximal length). Since K™*! is irreducible, we
must have F,,, = K", Up to an automorphism, one can suppose that
F_1 = {0} x ... x {0} x K™=, The number of zeros is the product
must be equal to 1, otherwise we could replace one of them by K to
get an extra irreducible in the chain which is supposed to be maximal.
Hence F,,_; = {0} x K™. But Fy, € F; € ... C F,,_; is a maximal
chain. By induction, its length is dim K™ = n. So m — 1 = n, that is
m =n + 1, proving that all maximal chains have the same length and
that dim K"t =n + 1. O

Corollary 4.9. Let F' be a q-variety. Then
dim F' = rankg K{F'}.

Proof. Let E' be the irreducible component of F'. Hence F / F is finite
and the K-vector space K{F/F} C homg, (F/F, K) has finite dimen-
sion. It follows that rankg - K{F/F} = 0. Now by remark [3.7

rankK{T}K{F} = rankK{T}K{ﬁ’} + rankK{T}K{F/}%}.

Furthermore, dim ' = dim F'. Hence without loss of generality, we can
suppose that [ is irreducible.

By proposition 4], we can suppose that F' = K™. But K{K"} = A,
and dim K" = n by theorem L8 O

Theorem 4.10. Let I' and H be g-varieties and v : FF — H be a
morphism. Then
dim F' = dim ker ¢ + dim ¢ (F).
Remark 4.11. (1) Appliying the theorem to the canonical mor-
phism 11 : F — F/H gives dim F//H = dim F — dim H as
expected.
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(2) It implies immediatly that dim F'/ ker ¢ = dim ¢ (F).

Proof. B Let r = dimkerv), s = dim¢(F), {0} = Ky € Ky C ...
K, C kert be a maximal chain of irreducibles and {0} = [y, C

. C I, C Y(F) be a maximal chain of irreducibles. For 0 < ¢
s, set F; = w—f(li). In particular Fy = ke;wﬁ = K,. Furthermore,
by lemma {5 F; has finite index in ¢~!([;), hence ¢ (F;) has finite
index in ¢ (¢~1(L;)) = I; since I; C ¢(F). But ¢(F;) is irreducible by
proposition 3] so ¢ (F;) = I, = I,. Tt follows that the F} are distinct
since the I; are distinct.

Let us consider the chain {0} = Ko C K1 C ... C K, =Fy C F} C
... € F,. We have to prove that it is maximal. The first part of the
chain is maximal by hypothesis. Now, let G be irreducible such that
F, C G C Fiy for 0 <i < s—1. It implies that ¢(F;) C ¥(G) C
¥(Fiy1). But we have just seen that ¢ (F;) = I;. By maximality, we
must have ¢(G) = I; or Y(G) = I;1;. If G is an irreducible such that
F,CGCF, I, =9¢(F) C¢¥(G). But I, is the irreducible component
of ¥(F), hence (G) C I,. So, in any case, we have ¢(G) = I; for
0 < i <s. We deduce that G + ker+ = ~1(I;). Since K, = F C G,
G = G+K,, so G has finite index in G+ker ¢ = ¢~1(I;). It follows that
G is the irreducible component of 1 ~1(I;), which is F} by definition. O

IA NN

5. TANGENT SPACE

Let f = > ", P(X;) be an element of A,,. We define d(f) to be
the linear part of f. More precisely, d(f) = >\ ao,;X; with P, =

ZJ-ZO aj,inj. We also have d(f) =>_" of x.

i=1 95X, ‘i
Definition 5.1. Let ' C K" be a q-variety. We define the tangent
space of F', denoted by T'(F'), by
T(F)= () kerd(f)={(z1,...,2,) |Vf € M(f), d(f)(x1,... 2,) =
feM(F)
Note that T'(F) is a sub-K -vector space of K™.
Proposition 5.2. Let FF C K" and H C K™ be q-varieties, and ) :
F— H be a morphism. Choose f1,..., fm € A, such that for x € F,
(x) = (fi(x),..., fm(x)). Then the map d(vp) defined by
d(v): T(F) — T(H)
o= (df)(x),. .. d(fm)(x))

1s a well-defined morphism of K -vector spaces.

2t is certainly possible to prove the formula using corollary 9] and the rank of
a module.
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Proof. If g1, ..., gm € A, aresuch that for x € F, ¥ (x) = (g1(x), . .., gm(T)).

Then for 1 < i < m, f; — g € M(F), hence, by definition, for all
x e T(F), d(f; —g:)(x) =0, so d(fi)(x) = d(g;)(x), proving that d(¢)
does not depend on the choice of the f;.

We still have to prove that (d(f1)(x),...,d(fm)(x)) € T(H) for z €
T(F). Let z € T(F) and g € M(H). By chain rule,

d(g)((d(f)(@), ..., d(fm)(x))) = d(g(f1, -, fm)) (@)

But g(fi,..., fm) € M(F) by construction, so d(g(fi, ..., fm))(x) =0
by definition of T'(F'). It follows that d(g)((d(f1)(z),...,d(fn)(z))) =
0, proving that (d(f1)(z),...,d(fm)(x)) € T(H) O

Proposition 5.3. Let ' C K"and H C K™ be g-varieties. The map

d:Mor(F,H) —s Homg(T(F), T(H))
v oo= dy)

is fonctorial. In particular, it implies that T'(F') depends only on the
isomorphic class of F.

Proof. This is nothing else but chain rule. 0

o

Proposition 5.4. Let F' be a g-variety, then T(F) = T(F) and
dimg T'(F) = dim F.
Proof. We can suppose, up to an automorphism of K™, that
M(F) = K{r}P(Xy) + ...+ K{7}P.(X,)

forsome Py, ..., P, € K{T}\{0},so F' = ker P, x...xker P,x K" and
F={0}x...x{0} x K™ ". Since M(F) is radical, d(P;) # 0. It follows
immediatly that T'(F) := ()_, ker d(P;) = {0} x ... x {0} x K. [
Proposition 5.5. Let H C F' be q-varieties, then

(1) T(H) CT(F).

(2) The K-linear map d(I1) : T(F) — T(F/H) is surjective.
Proof. The first property is obvious from the definition.

For the second one, we suppose in a first time that F is irreducible,
hence, up to an isomorphism, F' = K". Now, we can also suppose that
M(H) = K{7}P/(X1)+.. +K{7}P.(X,) for some Py, ..., P, € K{7}\
{0}. By construction, F'/H is the image of the following morphism
which is clearly surjective, hence FF//H = K" :

M:F=K" — K’
(21, 20) = (Pia1),..., P.(X)))



¢-VARIETIES AND DRINFELD MODULES 15

By definition, the tangent map is given by
d(Il) : T(F)=K" — T(F/H)=K"
(x1,...,2n) =  (d(P)(z1),...,d(P)(z;))
Since M(H) is radical, d(F;) # 0, proving that d(II) is surjective.
We return to the (quite technical) general case. Let F' be the irre-

ducible component of F. Then II(F) is the irreducible component

of II(F) = F/H by lemma Suppose that we can show that
I(F) = F/(FNH) as g-varietiesH By the previous case, we have

a surjection T'(F) — T(II(F)) = T(F/H) But, by proposition [5.4]
T(F)=T(F) and T(F/H) = T(F/H), proving the proposition. [

To finish the proof, we need the following lemma

Lemma 5.6. Let H C F be q-varieties, I1 : F — F/H be the projec-
tion morphism and I be the irreducible component of I, then

I(F) = F/(FnH).
Proof. As usual, we can suppose that F=Fx.. . xFExK""" with
the F; being finite F -vector spaces, so F' = {0} x...x {0} x K"~". Let
fi,-- - fm € Ay, be a generating set of M(H). The map II is defined
by (x) = (fi(z), ..., fm(z)) (see proof of proposition B.6). So

I(E) = {(f1(0,...,0,Zrs1, - Zn)s ooy fin(0y )0, T, -y )
| (rg1s .-, 2n) € KM}

Let us prove that fi,..., f,, X1,..., X, is a generating set for
M(FNH).

Lemma 5.7. Let M C A,, be a radical module containing a separable
polynomial Py(X1) then M + K{7} X, is also radical.

Proof. Let us consider the K{7}-modules canonical isomorphim

(M + K{7}X,)/M ~ K{7} X1 /(K{7}X1 N M).
Since K{7} is euclidean, there exists D; € K{7}X; such that K{7} XN
M = K{7}D,. By assumption, P, € K{7}X; N M, hence D; divides
Py, so Dy is separable. Furthermore, since K is algebraically closed,
TK{r} = K{r}r. This implies easily that 7(K{7}X,/K{7}D;) =
K{r}X,/K{7}D;. Now let P € A, such that TP € M + K{7}X;. By

the previous result, there exists Q € M + K{7}X; such that 7P = 7Q
mod M, hence 7(P — Q) € M. But M is radical, so P — Q € M. It

3they are obviously equal as F,-vector spaces.
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follows immediatly that P € M + K{7}X; proving that M + K{7}X;
is radical. ]

By an obvious induction, M + K{7}X; + ...+ K{7}X, is a radical
module. Clearly, Z(M + K{r}X, + ...+ K{r}X,) = F'n H, proving
that M(FNH) =M + K{r}X, + ...+ K{r} X, and the claim.

It follows that

F/FNH)={(fix), ., fm(@), 21, .., 2,) | w € F}
={(f1(0,...,0,Tps1y- -y Tn),s .-y
(0,0 0, i1, oy 20), 0,000, 0) | (Tpagy ooy y) € KPTTH
This proves the lemma. O
We can now give a criteria for separable morphisms.

Proposition 5.8. Let ¢ : F' — H be a morphism of q-varieties and
Y be the induced bijective morphism from F/ker ¢ to (F). Then ¢ is
separable if and only if d(v)) is a bijection.

Remark 5.9. (1) Since dim T (F/ker ) = dim F/ ker¢p = dim¢(F) =
dim T(¢(F)), d(x) is a bijection if and only if it is injective or
surjective.

(2) Let us denote by U the induced morphism v : F —s (F). I
is clear that ) = P o 11, so d(¢) = d(¥) o d(Il). By proposztwn
(5.3, d(II) is surjective, hence d(v) is surjective if and only if
() is surjective.

Proof. Suppose that 1) is separable. By definition, ¢ is an isomorphism,
hence d(¢)) is also an isomorphism by proposition [5.3

Conversely, suppose that d(¢) is a bijection. We assume first that
F is irreducible. Let r = dim F//ker¢ = dimv(F'), so that, up to
isomorphisms, F/ker¢ = ¢(F) = K" and ¢ : K" — K" is a bijective
morphism. Using lemma 2.1, up to automorphisms, ¢ is diagonal.
Since it is injective, the diagonal terms must be powers of 7. But d(1))
is a bijection, hence the exponents must be 0, so 9 is the identity map,
up to isomorphisms.

We now consider the general case. By lemma [4.6], the image of
F / kerlp by 1 is the irreducible component of (F),s0 : F/kery —
w(F) is a bijective morphism. Since T(H) = T(H) for any H, d(¥) :
T(F/ ker ) — T(@D(F) is a bijection by hypothesis. It follows from
the previous case that ¢ : F/ lzergb — w(F) is an isomorphism. We

will be done if we can apply the following lemma to the reciprocal map
—1

v O
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Lemma 5.10. Let F and H boe q-varieties and ¢ : F — H be an
F,-linear map such that @bllj“ : F'— H is a morphism. Then 1 is a
morphism.

Proof. Without loss of generality, we can suppose that H = K™ and
F = F x...F, x K" with F; C K finite F -vector spaces. Let
fi, ..., fm be the functions defined by ¢(x,0,...,0) = (fi(z),..., fm(x))
for x € Fy. Using polynomial interpolation (see [6] chapter 1.3), there
exists Py,..., P, € K{7} such that for all z € F}; and 1 < i < m,
filz) = Pi(x). We set () = (Pi(x),...,Pn(x)) for x € K. By
construction, for all z € Fy, ¢¥1(x) = ¥(x,0,...,0). The same way,
we construct s, ...,1, and it is easy to check that for all x € F,

(x) =vi(z) + . o+ 0e(z) 00, .. ,0, 201, T)- O

6. A-MODULES

Let A = F,[T] be the polynomial ring and 6 : A — K be a mor-
phism of F,-algebras. The kernel of 0 is called the characteristic of
A.

Let F be a g-variety. The ring of endomorphism of F'; Mor(F, F),
will be denoted by End(F').

Definition 6.1. Let F' be a q-variety. We say that (F,®) is an A-
module structure if ® : A — End(F) is a morphism of F,-algebras
such that, for all a € A,

d(q)a) = 5(a)IdT(F) .

Let (F,®) and (H, V) be A-modules. We say that U : FF — G is an
A-morphism if it is a morphism of q-varieties and A-modules, i.e., for
alla € A and for all x € F,

U(®q(2)) = Wa(U(x)).

Remark 6.2. In [I], the condition on d(®,) is slightly different :
d(®,) = 6(a)ldppy + N with N an nilpotent endomorphism of T'(F).
In the present article, N is supposed to be zero for simplicity but most
properties should remain valid with N # 0.

Example 6.3. Let K be the algebraic closure of Fy(T), so that ¢ :

A — K s just the inclusion. To define an A-module (F,®), it is
sufficient to give ®rp.

(1) The Carlitz module : we take F = K and &7 = TX + X7 =

T70 + 7. It is the simplest non trivial A-module in dimension

1. It is denoted by C. Let us denote C~ the A-module defined

by Cr = TX — X7 = T7% — 7. These two A-modules are
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(2)
(3)
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indeed isomorphic : let X\ € K be such that ¥~ ! = —1 and
U: K — K defined by U(x) = A\x. It is well-known and easy
to check that U is an isomorphism.

A Drinfeld module is an A-module with F' = K and ® non
trivial (Dq # 6(a)7°).

Let F = K? and ® be the A-module defined by

T 7
br = ( T TTO) '
It means that Or(x1,22) = (Tx1 + 23, 29 + Txy). On the line
x9 = 11, the A action is given by O (z, x) = (Tx+x?, Tx+x9) =
(Cr(x),Cr(x)), so the line 1 = xo is an A-module and the
induced A-module structure is canonically isomophic the Carlitz
module. The same is true on the line vo = —x1: Op(x, —x) =

(Cr(z), —Cr(x)). It follows that ® is canonically isomorphic
to the direct sum of C and C~ if p # 2.

Proposition 6.4. Let (F,®) be an A-module and H C F be a g-
variety. Then

(1)
(2)
(3)

Proof.

(2)

(3)

If, for alla € A, ®,(H) C H, then H is an A-module.
If H C F is an A-module, then F'/H is also an A-module.
The irreducible component F' is an A-module.

(1) Since T(H) C T(F) and by fonctoriality of the tangent

map, we have d(®q ) = d(Po)ir) = 0(a)ldr@), so H is an
A-module.
Let IT : FF — F/H be the projection map. Consider ITo @, :
F — F/H. 1t is zero on H, hence by property of F'/H (see
proposition B.6]), there exists a unique morphism V¥, : F/H —
F/H such that

ITod, =V, oIl

By uniqueness of ¥, it is clear that a — ¥, is a ring morphism
from A to End(F/H). Furthermore, taking the tangent maps,
we get

d(IT) o d(®,) = d(¥,) o d(II).
But d(®,) = 6(a)ldpry and d(II) is surjective by proposition
b5 It follows that d(V,) = d(a)ldpr)m).
Since the direct image of an irreducible is still irreducible, we
have ®,(F) C F.

O
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Let (F,®) be an A-module. Then K{F'} has an obvious A-module
structure setting for f € K{F}anda € A :

a-f=fod,.

Furthermore, the A action commutes with the K and the 7 actions. In
particular, K{F} is a K ®r, A = K[T]-module.

Theorem 6.5. Let (F,®) be an A-module. Then the K(T)-vector
space K(F) defined by K(F) = K(T)®xmK{F} has finite dimension.
Its dimension is called the rank of the module (F,®) and is denoted
by r(F).

Proof. By definition, ' C K" for some n € N. Hence K{F} is a
quotient of A, and is generated, as a K{7}-module, by the images
of 7,...,7% in K{F}. These images are still denoted 70,...,7° for
simplicity.

Since K{r} is principal, A, and its quotient K{F'} are noetherian.
It implies that there exists d € N such that T%.7 belongs to the K{7}-
module generated by 797170 ... T°7Y It means that there exist

Py 4, ..., Py € K{r} such that

d—1 d—1
7710 = Z BT 1) = ZTi.B(Tl).
i=0 i=0

Rewriting this relation as a polynomial in 73 with coefficients in K|[T7,
we get

(1) >_@Qi(1)7 =0

for some @; € K[T] and s € N. Relation (I is not trivial because
Qo is a monic polynomial of degree d, so we can suppose that Qs #
0. It implies that 77 belongs to the K (T')-vector space generated by
71,7 in K(F). Applying 7 to relation (), we get easily that
7% belongs to the K (T)-vector space generated by 77, ..., 7}, hence
to the K (T')-vector space generated by 7571, ..., 7). By induction, we
get that all powers of 71 belongs to that vector space.

The same is obviously true for 7, ..., 7,, proving the theorem. [J

Remark 6.6. (1) With G. Anderson definition (see [1]), K{F} is
the motive associated to F. Furthermore, if K{F} is a free
K[T)-module of rank r, it is clear that dimgqy K(F) = 7.
Hence, our definition of the rank is coherent with Anderson’s
definition.
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(2) Let F = K™ and ® be the trivial module : for all a € A and
re K",
O, (x) = d(a)x.
In particular, for 1 < i <n, (T —46(T)).70 = 0. Composing
with ™™, we get
(T —§(T)"").7™ = 0.
It follows that K{F'} is a torsion module, hence K(F) =0 and
the rank of the trivial module is 0.

7. TORSION POINTS

Notation. Let (F,®) be an A-module and a € A. The a-torsion of F
will be denoted by Tor(a, F'). In other words

Tor(a, F) ={z € F | ®,(x) = 0} = ker ®,.
It is an F-vector space.

Theorem 7.1. Let (F,®) be an A-module and a € A\ kerd, then
Tor(a, F') is finite.

Proof. By definition, Tor(a, F) is the kernel of &, : FF — F. So
the theorem is equivalent to dimker ®, = 0. Now, by theorem [0,
dim ker ®, = dim F'—dim ®,(F’), so we have to prove that dim ®,(F') =
dim F'. Using proposition B.4] we have dimy T'(P,(F)) = dim ®,(F)
and dimg T(F) = dim F', hence it is sufficient to prove T'(®,(F)) =
T(F).

(Siglce o, (F) C F, we have T(®,(F)) C T(F) by proposition .5
Let us prove the reverse inclusion. We consider the induced map 5; :
F — ®,(F). So &, =io P, where i : &,(F) — F is the inclusion
map. Taking the tangent map, we get d(a)ldpry = d(i) o d(;}i) But
d(i) : T(®u(F)) — T(F) is just the inclusion by proposition It
implies that d(®,)(T(F)) = d(a)T(F) = T(F) since d(a) # 0. But
d(D,)(T(F)) C T(®4(F)), hence T(F) C T(®,(F)). O

Example 7.2. In the following examples, § is supposed to be the in-
clusion map and F = K?2.

(1) Let ® be the A-module defined by

T 7
¢r = ( T T 7'0) '
We have seen that ® is isomorphic to the sum of two copies of

the Carlitz module. It follows immediatly that for alla € A\{0}
Tor(a, F) = (A/aA)>.
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(2) Let ® be the A-module defined by
T 71
®r = ( 0 TTO) ’

. . at® P,
One gets immediatly that for all a € A, &, = 0 ar for
some P, € K{r}. So Tor(a, F') = {0} if a # 0.

Proposition 7.3. Let (F,®) be an irreducible A-module and a € A\
kerd. Then

dimg, Tor(a, F) = dimg K{F'}/a- K{F}.

Proof. Since F' is irreducible, we can suppose that F' = K", so that

K{F} = A,. By lemmal[ZT] up to automorphisms, there exit P (X3),. ..

A, such that a- A, = K{7} P (X1)®...® K{r}P.(X,). It is clear that
Tor(a, F) = Z(P(Xy),...,P(X,)) =ker P, x ... x ker P, x K"™".

Hence r = n because Tor(a, F') is finite. Since d(®,) = d(a)ld with
d(a) # 0, the P; must be separable. It follows that

dimp, Tor(a, F') = Z deg. P, =dimg A, /a - A,,.
i=1

U

Proposition 7.4. Let (F,®) be an irreducible A-module and m € A\
kerd be a prime. Then there exists r € N such that for alln > 0

Tor(n", F) = (A/7"A)".

Proof. Since dim ker &, = 0 by theorem [(.1l dim F' = dim &, (F'). But
¢, (F) C F and F is irreducible, so ®,(F) = F, hence ®, is surjective.

By construction Tor(w, F') is an A/mA-vector space which is finite
by [LIl Let r be its dimension : Tor(w, F') = (A/mA)". Suppose that
for some n > 0, Tor(n™, F') = (A/7"A)". Using the elementary divisors
theorem, there exists integers 0 < n; < ny < ... < ng < n+ 1 such
that

Tor(a" 1 F) = A/a™ A x AJn™A x ... x A/n™ A,

Considering Tor(r, F) C Tor(a"™ F), we get immediatly s = r.
Furthermore, the map ®, : Tor(z""!, F) — Tor(sr", F) is clearly
surjective with kernel equal to ker ®,. Hence CardTor(z"*! F) =
CardTor(7", F') x CardTor(n, F'). It implies that ny +ns + ... +n, =
rn+r =r(n+1). Since n; < n+ 1, we must have n; = n + 1 for all
1<e<r. U
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Example 7.5. In the following example, § is supposed to be the inclu-
sion map and F = K?. Let ® be the A-module defined by

B — T+ 72 7
= Tt T70) "
Let m =T. The elements of Tor(m, F') are the solutions of
{Tx1+:c‘{2 +28=0

TLL’[{ +TSL’2 =0

o 2
The second equation implies that xy = —x1, hence 4 = —x% . Re-

placing x3 by —x‘fz in the first equation, we get Txy = 0. It follows
that Tor(mw, F') = {0} and, by proposition[7.4), Tor(n"™, F') = {0} for all
n > 0.

Now let m =T — 1. The elements of Tor(m, F') are the solutions of

(T—l)x1+:£‘112+:zg:0
Tal+ (T —1)xe =0

The second equation implies that x5 = — 71, hence x4 = —%x‘{z.
q 2
Replacing 4 in the first equation, we get Txq + (1 — 225 )2 = 0. It

follows that dimg, Tor(m, F') = 2 and, by proposition[7.4], Tor(r", F) =
(A/7"A)? for allm > 0.

We show now that r is almost independant of 7.

Theorem 7.6. Let (F,®) be an A-module and r(F') be its rank. Then
there ezists ¢ € A\ {0} such that for all a € A, prime to c,

Tor(a, F) = (A/aA)" ).
We start with two lemmas

Lemma 7.7. Let (F,®) be an A-module and H C F be a submodule.
Then
r(F)=r(H)+r(F/H).
Proof. By remark 37 we have an exact sequence of K{7}-modules
0— K{F/H} - K{F}— K{H} — 0.

It is easy to check that is also a sequence of K[T]-modules. Since a
localisation is flat, we get an exact sequence of K (T')-vector spaces

0— K(F/H)— K(F)— K(H) — 0.

This proves the lemma. U
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Lemma 7.8. Let (F,®) be an A-module and H C F be a submodule.
Then there exists ¢ € A\ {0} such that for all a € A, prime to c, the
following sequence is exact :

0 — Tor(a, H) — Tor(a, F') — Tor(a, F//H) — 0.

Proof. The only non obvious part is that Tor(a, F') — Tor(a, F/H) is
surjective. Let [ be the irreducible component of H. Since H / H is
finite, there exists ¢ € A\ {0} such that W, (H/H) = 0 where ¥ is the
induced A-module structure. It follows easily that for all a € A, prime
to ¢, U, : H/H — H/H is surjective.

Suppose that a is also prime to ker §. Hence @, : H — His surjective
(see proof of proposition [[4]). Let y € H, then there exists © € H such
that y = ®,(z) mod H. It means that y — ®,(z) € H. But there
exists z € H such that y — ®,(z) = ®,(2), hence y = Bo(x + 2). It
proves that ®, : H — H is surjective.

Let IT : FF — F/H be the canonical surjection and y € F' such that
II(y) € Tor(a, F/H). By construction, ®,(y) € H. Since &, : H — H
is surjective, there exists © € H such that ®,(y) = ®,(z). Hence
y —x € Tor(a, F') and II(y — ) = [I(y). This proves the lemma. [

Proof of Theorem[7.0, Let (F,®) be an A-module and F be its irre-
ducible component. Since F/F is finite, K{F/F} has finite dimension
over K. It implies that it is a K [T torsion module, hence r(F/F) = 0.
We then have r(F) = r(F) by lemma 7

Furthermore, there exist ¢ # 0 such that W (F/EF) = 0. It implies
that for all @ € A prime to ¢, we have Tor(a, F/F) = 0. Let ¢ given
by lemma [7.8, then, for all a € A prime to c¢c, Tor(a, F) = Tor(a, F').

So, without loss of generality, we can suppose that F'is irreducible,
hence F' = K™ and K{F} = A,. We can find fi,..., frp) € K{F}
such that there images in K (F') form a basis. Let M C K{F'} be the
K[T]-module generated by fi, ..., f,r). Since the images of f1,..., fr(»)
are linearly independant over K (T'), the fi, ..., f.(r) themselves are lin-
early independant over K[T']. Hence M is a free K[T]-module of rank
r(F).

Let d € N strictly greater than the degrees of fi1,..., f.(). Since the
images of fi,..., fr(p) form a basis of K(F), for any f € K{F}, one
can find P € K[T]\ {0} such that Pf € M. So it is possible to find
P e K[T]\ {0} such that for all 1 <i<n and j <d,

Prl e M.
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In particular, since 7(M) is included in the K-vector space generated
by the 77, 1 < i <nand j <d, we have Pr(M) C M. It implies that
forall 1 <i<mn,

Pr(P)r*! = Pr(Pr?) € Pr(M)Cc M

where 7(3°_p;T7) = >2°_7(p;)T’. By an easy induction, we get
that for all 1 <7 <m and j € N,

Pr(P)r*(P)...7(P)r™ € M.

Let a € A\ {0} prime to P. Hence 7(a) is prime to 7(P) (7 in-
duces an automorphism of K[7T']). But 7(a) = a since a € A = F[T],
hence a is prime to P7(P). By induction, we get that a is prime to
Pr(P)r*(P)...77(P) for any j € N.

The inclusion M C A,, induces a morphism M/aM — A, /aA,. We
want to prove that it is an isomorphism.

Let f € A,. Taking j such that d 4 j is greater than the degree of
f, we have

Pr(P)r*(P)...7(P)f € M.
Since a is prime to P7(P)72%(P)...77(P), there exit u,v € K[T] satis-
faying ua + vP7(P)7T?(P)...79(P) = 1, hence
f=auf +vPr(P)r*(P)...7(P)f
=ovP7(P)r*(P)...7(P)f mod aA,
€ M mod aA,.

It follows that the morphism is surjective.
Now, let f € M NaA,, so there exists A € A,, such that f = a). As
before, taking 7 such that d+ j is greater than the degree of A, we have

Pr(P)T*(P)...T/(P)\ € M.
Since a is prime to P7(P)72(P)...7/(P), there exit u,v € K[T] satis-
faying ua + vP7(P)7*(P)...77(P) = 1, hence
A = ua) + vP7(P)T*(P)... 7 (P)A
=uf +vPr(P)7*(P)... 7/ (P)\ € M.
It follows that the morphism is injective.
So for all a prime to P, we have M/aM = A,/al,. Since M is

a free K[T)]-module of rank r(F), dimg A,/aA, = dimg M/aM =
r(F') degp a. If a is also prime to ker §, proposition [C.3] implies that

dimg, Tor(a, F) = r(F) degy a.
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Applying this formula in the special case a = 7 a prime polynomial,
we get

dim /x4 Tor(a, F) = r(F).
Now proposition [7.4] says that for all m > 0,

Tor(7™, F) = (A/x™A)"),

We conclude the proof using chinese remainder theorem and Tor(ab, F') =
Tor(a, F') x Tor(b, F') if a and b are coprime. O

8. JACOBIAN

Let X C K™ be an affine algebraic curve. Roughly speaking, the
Jacobian of X is the smallest abelian variety containg X. We want to
define an analogue in our situation. In the classical case, we have the
canonical action of Z on K which induces a diagonal action on K™.
For g-varieties, we must choose the A-module structure. This leads to
the following definition.

Definition 8.1. Let (F,®) be an A-module and H C F. Let Jace(H)
be the intersection of all A-modules in F' containing H. It is clear that
Jace(H) is an A-module and that it is the smallest A-module containing
H. Note that if H is an irreducible q-variety then Jace(H) is also
irreducible since the irreducible component of an A-module is an A-
module.

Proposition 8.2. Let (F,®) be an A-module and H C F' be an irre-
ducible g-variety. Define the Picard module associated to H by Pic(H) :=
A ®g, H. Then the canonical map

Pic(H) — Jacy(H)
a®xr — DPy(x)

18 surjective.

Proof. For n € N, define H, = H + ®7(H) + $p2(H) + ... + O (H).
Since the image and the sum of irreducibles are irreducible (see propo-
sition [4.3)), H, is irreducible. But the length of a chain of irreducibles
is bounded by dim F', so there exists n € N such that H,., = H,.
It means that ®pni1(H) C H 4+ Op(H) + Or2(H) + ... + O (H). It
implies immediatly that H,, is stable by ®r, hence H,, is an A-module
and it is easy to check that any A-module containing H must contain
H,, so H, = Jace(H). This proves the proposition. O

Remark 8.3. The previous proposition might not be true if H is not
supposed irreducible as shown in the following example. Let F' = (K, ®)
be an A-module, x € K not a torsion point and H = F,x. Then
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Jace(H) = F because it contains the free A-module of rank 1 generated
by x. But this module, which is the image of Pic(H), can not be equal
to F since F has infinite rank by [9].

9. SOME CONJECTURES

In [3], L. Denis proposed three conjectures for A-modules of generic
characteristic (i.e. kerd = {0}). We give an analogue of these con-
jectures. Indeed these analogues can be seen as special cases of Denis
conjectures.

In the sequel, we suppose that 6 : A — K is the inclusion map.

Let (F, ®) be an A-module and H C F be a g-variety. Let xy,...,z, €
FandI' = Azy+...+ Ax, be the module generated by x1,...,x, in F.

The first conjecture is an analogue of Faltings theorem, see [5].

Conjecture 9.1. There exists G C H an A-module such that G N T
has finite index in H N T .

This conjecture is obviously implied by the following one, which is
an analogue of Mordell-Lang conjecture.

Conjecture 9.2. Let T' = {z € F | 3 a # 0 € A with ®,(x) € T'}
There exists G C H an A-module such that G N T has finite index in
HNT.

A special case of the previous conjecture is I' = {0}. It is an analogue

of the Manin-Mumford conjecture. In that case, I is just the set of all
torsion points and is denoted by Tor(F).

Conjecture 9.3. There exists G C H an A-module such that G N
Tor(F') has finite index in H N Tor(F').

The previous conjectures can be simplified using the following prop-
erty.

Proposition 9.4. Let (F,®) be an A-module and H C F be a g-
variety. Then there exists an irreducible A-module G C H such
that for any irreducible A-module G C H, we have G C Gax.-

Proof. Let Go C H be an irreducible A-module with maximal dimen-
sion and G C H be an irreducible A-module. Then Gy + G is also an
irreducible A-module by proposition 4.3 By maximality of the dimen-
sion, Gy + G = Gy, hence G C Gy. O

As in [7], we say that H is sufficiently generic if Guax = {0}. We
now rewrite our conjectures with this extra condition.
Suppose that H C F' is a sufficiently generic g-variety. Then
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Conjecture 9.5. HN7T is finite.
Conjecture 9.6. H NT is finite.
Conjecture 9.7. H NTor(F) is finite.

Proposition 9.8. Conjectures[9.1], (9.2 and[9.3 are equivalent, respec-
tively, to conjectures [9.7, and[9.7

Proof of : Conjecture implies conjecture [9.2. Suppose that conjec-
ture is true. Let H C F' be a g-variety. It is clear that H/Gpax is
a sufficiently generic g-variety included in the A-module F/Gay. Let
Il : FF — F/Guyax be the quotient map. Hence H/G.x = II(H) and
F/Guax = II(F). We apply conjecture to II(T") : II(H) NII(T) is
finite.

Furthermore, let y € II(T'), then there exists z € F and a # 0 € A
such that y = II(x) and ®,(z) € . It follows that ¥, (y) = V,(II(z)) =
II(®,(x)) € II(I") where ¥ is the A-module structure on II(F'). Hence,

y € II(T), so II(T")  TI(T).

Now, II(HNT) c II(H)NILT) c II(H) NTI(T'). Hence II(H NT) is
finite. Since ker IT = Gax, we conclude that G NI has finite index
in HNT. L]

Some cases of the conjectures are known. For examples, in [7], D.
Ghioca proved that conjecture holds when F' is a direct copy of
a Drinfeld module and in [10], T. Scanlon proved that conjecture
holds with the same condition of F'.
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