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Abstract

A structure A = (A; E;),,, where each E; is an equivalence relation
on A is called an n-grid if any two equivalence classes coming from
distinct F;’s intersect in a finite set. A function y : A — n is an
acceptable coloring if for all i € n, the set x~!(i) intersects each E;-
equivalence class in a finite set. If B is a set, then the n-cube B"™ may
be seen as an n-grid, where the equivalence classes of E; are the lines
parallel to the i-th coordinate axis. We use elementary submodels of
the universe to characterize those n-grids which admit an acceptable
coloring. As an application we show that if an n-grid A does not
admit an acceptable coloring, then every finite n-cube is embeddable

in A.

1 Introduction

Following [3], for a natural number n > 2 we shall call an n-grid a structure
of the form A = (4; E),,, such that each Ej is an equivalence relation on
the set A and [a]; N [a]; is finite whenever a € A and i < j < n (where [al;
denotes the equivalence class of a with respect to the relation E;). An n-cube
is a particular kind of n-grid where A is of the form A = Ag x---x A,_; and
each I is the equivalence relation on A whose equivalence classes are the
lines parallel to the i-th coordinate axis (i.e. two n-tuples are Ej-related if
and only if all of their coordinates coincide except perhaps for the i-th one).
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An acceptable coloring for an n-grid A is a function y : A — n such that
la]; N x7'(4) is finite for all @ € A and i € n.

In [3], J.H. Schmerl gives a really nice characterization of those semialge-
braic n-grids which admit an acceptable coloring;:

Theorem 1.1. (Schmerl) Suppose that 2 < n < w, A is a semialgebraic
n-grid and 2% > N, _;. Then the following are equivalent:

(1) some finite n-cube is not embeddable in A.
(2) R™ is not embeddable in A.
(3) A has an acceptable n-coloring.

In this note, we present a characterization that works for any n-grid
(see Definition 2.1 and Theorem 7). Then we use this characterization to
show that (1) = (3) in the previous theorem holds for arbitrary n-grids (see
Theorem B.T]). In fact, the size of the continuum turns out to be irrelevant for
this implication. The implication (3) = (2) for arbitrary n-grids follows from
a result of Kuratowski as it is mentioned in [3]. None of these implications
can be reversed for arbitrary n-grids, regardless of the size of the continuum.

2 Twisted n-grids

In this section we use elementary submodels of the universe to obtain a
characterization of those n-grids which admit an acceptable coloring. At
first sight this characterization seems rather cumbersome, but it is the key
to our results in the next section. The case n = 3 was already obtained in
[1] with a bit different terminology and latter used in [2].

As it has become customary, whenever we say that M is an elementary
submodel of the universe, we really mean that (M, €) is an elementary sub-
model of (H(0), €) where H(#) is the set of all sets of hereditary cardinality
less than 6 and 6 is a large enough regular cardinal (e.g. when we are studying
a fixed n-grid A on a transitive set A, § = (24))* is large enough).

Given an equivalence relation E on a set A, we say that B C A is E-
small if the E-equivalence classes restricted to B are all finite. Note that
the E-small sets form an ideal in the power set of A. Using this terminology,
an n-coloring y : A — n is acceptable for the n-grid (A; E;),_, if and only if
x"1(i) is E;-small for each i € n.

€N
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A test set for an n-grid A is a set M of elementary submodels of the
universe such that A € (Y M, IM| =n — 1 and M is linearly ordered by €.

Definition 2.1. We say that that an n-grid A = (A; E;)
every test set M for A and every k € n, the set

is twisted if for

eEn

{r € A\UM : [z]; € UM for alli # k}
1s Er-small.

The rest of this section is devoted to show that twisted n-grids are exactly
the ones that admit acceptable colorings. For this, let us fix an arbitrary n-
grid A = (A; E;),,,; our first task is to cover A with countable elementary
submodels in a way that allows us to define a suitable rank function for
elements of A and for F;-equivalence classes of elements of A.

We fix M, an elementary submodel such that AU {A} C M, and we let
k = |My|. Thinking of x as an initial ordinal, we let T = J,,., ™ be the
set of finite sequences of ordinals in k. We have two natural orders on T, the
tree (partial) order C and the lexicographic order <. In both orders we have
the same minimum element A, the empty sequence. For ¢ € T and « € &
we write 0”a = o U {{|o|,a)}. Given 0 € T\ {A} we write o + 1 for the
successor of o in the lexicographic order of x/°!; that is

o+1=(ol(lo] 1)) (o(lo] = 1) +1).

We shall write o A 7 for the infimum of ¢ and 7 with respect to the tree
order; thus for o # 7 we have:

oANT=clloAT|=7[|loc AT| and

olle AT]) # 7(lo A T|).

Now we can find inductively (on the length of ¢ € T') elementary sub-
models M, such that:

i) The sequence (M,~, : o € cof(|M,|)) is a continuous (increasing) ele-
mentary chain,

it) My CU{M,~q : a € cof (|Ms))},
i) {AYU{M,:7+1C 0o} C M,y and
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iv) If 7 C o and M, is uncountable then |M,| > |M,|.

We actually do not need to (and will not) define M-, when M, is count-
able or if a > cof (|M,]).

Although the lexicographic order on 7' is not a well order, it is not hard
to see that conditions 77 and v allow the following definition of rank to make
sense:

Definition 2.2. For x € My we define rk(x) as the minimum o € T (in the
lezicographic order) such that M, is countable and x € M, for all T C 0.

Note that by the continuity of the elementary chains in condition ¢, we
have that rk(z) is always a finite sequence of ordinals which are either suc-
cessor ordinals or 0. In particular, if o, = rk(z), o, = rk(y), 0, < o, and
m = |o, A oyl, then o,(m) is a successor ordinal say o+ 1 and we can define

A(z,y) = (0, N oy) "«

This last definition will only be used in the proof of Lemma The
following remark summarizes the basic properties of A(x,y) that we will be
using; all of them follow rather easily from the definitions.

Remark 2.3. If rk(z) < rk(y) then
® € Mpgy andy & My,
o A(z,y)+1Crk(y),
o ifoc 2 Alx,y) + 1 then Ma(zy) € M, (by conditions i and 7ii).

After assigning a rank to each member of My, we need a way to order in
type w all the elements of M, of the same rank. This is easily done by fixing
an injective enumeration

M, ={t7, :m € w}

for each o for which M, is countable, and defining the degree of an element
of My as follows:

Definition 2.4. For x € My we define deg(x) as the unique natural number

satisfying "
=1t deg(x)*
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The following two lemmas will be used to construct an acceptable coloring
for A in the case that A is twisted, although the second one does not make
any assumptions on A.

Lemma 2.5. If A is twisted then there is a set B C A and a partition
B = e, Br such that:

a) Fach By is Ey-small and
b) {i € n:rk([z];) =rk(x)}| > 2 for any z € A\ B.

Proof. For each k € n we let By, be the set of all x € A such that rk([x]) >
rk([x];) for all i # k. Let B = J,,, Bx-

Note that for any = € A and i € n we have that rk([z];) < rk(z). On the
other hand if o = rk([z]y) = rk([z];) for some k # j, then by elementarity
and the fact that [z]; N [z]; is finite, it follows that rk(z) < o and hence
rk(x) = o. This observation easily implies that condition b) is met. It also
implies that if x € By then

rk([elh) <--- <rk([alk, ) < rk([z]y) < 7k(2)

for some numbers ky, ..., k,_o such that {ko, ..., k, 2, k} =n.
Now we put M = {MA([x}ki,m) 1EN — 1}, and use M as a test set for

A to conclude that, since A is twisted, By is Ej-small.
To see that M is indeed a test set, it is enough to show that M Ay, z) €
MA([x]kj ) for i < j. So fix i < j and note that since [x]y, N [z]x; is finite we

7

have A([x]y,, z) = A([2]k,, [7]k;) and therefore by Remark 2.3
A([z]r,, x) + 1 Crk(z) Ark([x]g,).
But then A([z]g,,7) +1 & A([2]y,,7) and again by Remark 2.3 we get

Ma (), x) € M)y, 2)-
O

Lemma 2.6. For all i,k € n with i # k, the set
Cir ={x € A:rk([z];) = rk([z]x) and deg([z];) < deg([x]x)}

1s Er-small.
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Proof. Fix a € A and let ¢ = rk([alx) and d = deg([a]i). Note that if
x € C; N lalg then there is an m < d (namely m = deg([z];)) such that
x € t7 Nt and t7, N7 is finite. Hence C; N [a]x is contained in a finite
union of finite sets.

U

We are finally ready to prove the main result of this section.

Theorem 2.7. The following are equivalent:

1) A is twisted.

2) A admits an acceptable coloring.

Proof. Suppose first that A is twisted. Let B and By, for & € n be as in
Lemma [2.5 and let C;; for i,k € n be as in Lemma 2.6l For each k € n
define Cj, as the set of all x € A\ B such that:

i) rk(z) = rk([z]), and
i7) for all i € n\ {k}, if rk([z];) = rk([z]x) then deg([x];) < deg([x]k).

By condition b) in Lemma 2.5 we have that Cj, C J,.,, Ci» and therefore
each C} is Eg-small. It also follows that the C}’s form a partition of A\ B
so that we can define an acceptable coloring for A by:

x(x) = k if and only if x € B, U Cy.

Now suppose that A admits an acceptable coloring and fix a test set M
and k € n. We want to show that the set

X={r e A\UM : [z]; € UM for all i # k}

is Ey-small. For this let y : A — n be an acceptable coloring such that
(using elementarity and the fact that M is linearly ordered by €) x belongs
to each M € M. Now if z € X and ¢ # k then there is an M € M such that
[z]; N x7'(i) € M and hence [x]; N x~*(i) C M (since x is acceptable); this
implies that x(z) # i. It follows that X C y~*(k) so that X is Ej-small.

]
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3 Embedding cubes into n-grids

Given an n-grid A = (A; E;),.,, it will be convenient in this section to have a
name p; : A — A/E; for the quotient maps (p;(-) = [-];). Note that if i # k,
C C A is infinite and p, | C' is constant, then there is an infinite D C C'
such that p; | D is injective. We will make repeated use of this fact without
explicitly saying so, in the proof of the following:

Theorem 3.1. If A is a non-twisted n-grid then any finite n-cube I" (with
l € w) can be embedded in A.

Proof. By definition, since A is not twisted, there is a test set M anda k € n
such that for some a € A, the set

B ={x € [a]y \UM : [z]; € UM for all i # k}

is infinite. For each x € B and each i € n\ {k} there is an M} € M such that
[x]; € M?. Since M is finite, there must be an infinite C' C B on which the
map x — (M7 :i1€n\ {k}) is constant, say with value (M; :7 € n\ {k}).
Note that since C' is disjoint from UM, the map ¢ — M; must be injective
and hence M = {M, : i € n\ {k}}, because M| = n — 1. Finally, we can
find an infinite set D C C' such that p; | C' is injective for all ¢ # k.

Now taking k; = k and letting ¢ be any injection from [ into D, we easily
see that the following statement is true for j = 1:

P(j): There are distinct ky,...,k; € n and an embedding ¢ : 1! —
(A; By, ..., Ey;) such that:

a) forien\{ki,...,k;}, pi o is injective and belongs to M;,
b) ¢ takes values in A\ |J{M;:ien\{ki,....kj}}.

Note that when j = n, conditions a) and b) become trivially true, and
P(n) just says that there is an embedding (modulo an irrelevant permutation
of coordinates) of the finite cube [ into A, which is exactly what we want
to show. We already know that P(1) is true, so we are done if we can show
that P(j) implies P(j + 1) for 1 < j < n.

Assuming P(j), let ¢ : I/ — (A; By, ..., E},) be such an embedding, and
let kj11 € n\ {ki,...,k;} be such that My, is the €-maximum element of
{M;:ien\{ki,...,k;j}}. Let us call

0= pp;,, 0P € My,
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Now note that ¢ ¢ My, , and at the same time ¢ satisfies the follow-
ing properties (on the free variable ®), all of which can be expressed using
parameters from M, ,:

o &:l = (A By, ..., Ey) is an embedding,

® Py, 0P =9,

o forien\ {ki,...,kj, kj1}, pi o ® is injective and belongs to M;,
o O takes values in A\ J{M, :ien\{ki,... . kj,kjs1}}

This means that there must be an infinite set (in fact there must be an
uncountable one, but we won’t be using this) {¢,, : m € w} of distinct
functions satisfying those properties. Going to a subsequence I/-many times,
we may assume without loss of generality that for each ¢ € [, the map
m — p,(t) is either constant or injective. Now since they cannot all be
constant, it is not hard to see that in fact all these maps have to be injective:
just note that if ¢,# € I are in a line parallel to the (r — 1)-th coordinate
axis then it cannot be the case that the map associated with ¢ is constant
while the one associated with ¢’ is injective, since otherwise {¢,,(t') : m € w}
would be an infinite set contained in [@o(t)]r, N [wo(t')]k,,,- To see this, just
note that in that situation we would have [p,,(t")]k, = [©m(O)]k, = [vo(t)],
and [£n (V)]ig s, = (Phys © Pm)(E) = () = (ks © 0)(E) = [0 ()i

Next we can find an infinite I C w such that for each ¢t € I and each
i € n\ {kj11} the map m — [p,,(t)]; is injective when restricted to /. From
here one can find (one at a time) [ distinct elements my, ..., m;_; of I such
that for all ¢,¢' € I/, for all 7,7/ € | with r # " and for all i € n \ {k;41}, we
have that [, (1)); # [P, (£)]:

Finally we let ¢ : /t" — (A; Ey,, ..., Ey,,,) be the function defined by
»(t,r) = om,.(t). By the way that we constructed the m,’s and using the
fact that all the ¢,,’s are embeddings and also using that ¢ is injective, one
can see that v is in fact an embedding. From the fact that i is essentially
a finite union of some ¢,,’s and by the way we chose those ¢,,’s, it follows
that conditions a) and b) in P(j + 1) are satisfied.

]

This last theorem only goes one way: for example, the n-cube w” is
twisted for n > 2, but of course any finite n-cube can be embedded in it.
I suspect that only for very “nice” classes of n-grids one can reverse this
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theorem. Schmerl’s theorem does it for semialgebraic n-grids; perhaps some
form of o-minimality is what is required.

The question of when can an infinite cube be embedded in an arbitrary
n-grid seems more subtle. For instance, let us consider the case n = 2. Using
the same idea as for the proof of B.I], one can easily show:

Theorem 3.2. If A is a non-twisted 2-grid then either | Xw; can be embedded
in A for all l € w, or wy X [ can be embedded in A for alll € w.

However, it is not true that w x w embeds in any non-twisted 2-grid. For
example, fix an uncountable family {A, : & € w;} of almost disjoint subsets
of wand let A={(n,a) €w xw;:n e A,}. Think of A as a subgrid of the
2-cube w X wy. It is easy to see that this is a non-twisted grid, but not even
w X 2 can be embedded in it.
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